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ABSTRACT   

Automatic discrimination between strain and temperature in a Brillouin optical time domain analyzer via artificial neural 

networks is proposed and discussed in this paper. Using a standard monomode optical fiber as the sensing element, the 

ability of the proposed solution to detect the known changes that the Brillouin gain spectrum exhibits depending on the 

applied temperature and/or strain will be studied. Experimental results, where different simultaneous strain and 

temperature situations have been considered, will show the feasibility of this technique. 
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1. INTRODUCTION  

Distributed sensing via optical fiber sensor systems has become a significant area of research in the last years, given the 

remarkable features that these solutions offer in terms of monitoring large infrastructures along tens of kilometers with 

spatial resolutions around the 1-meter limit for standard implementations. While systems based on Raman scattering are 

limited to temperature measurements1, Brillouin scattering enables the possibility of simultaneously estimating both 

strain and temperature2. This inherent advantage exhibited by both spontaneous and stimulated scattering-based solutions 

may become a drawback given that it is not straightforward to identify the contributions from the above mentioned 

parameters. In Brillouin-based distributed sensor systems, particularly in Brillouin optical time-domain analyzers 

(BOTDAs), it is known that the Brillouin frequency shift (BFS) exhibits a linear dependence for both temperature and 

strain3, giving rise to a sensitivity of about 1MHz/ºC and 50MHz/1000µɛ, respectively. Specialty fibers are commonly 

employed when only temperature or strain are to be measured, thus trying to avoid a possible contribution from the 

remaining parameter that might give rise to an erroneous result4.  

Several authors have proposed different alternatives to perform strain/temperature discrimination in Brillouin-based 

distributed sensor systems. A simultaneous use of Raman and Brillouin scattering processes in the same system may 

allow to perform the desired discrimination, as Raman scattering will only provide information on temperature1. Other 

solutions are based on the use of large-effective-area nonzero-dispersion-shifted5 (LEAF) or photonic crystal6 (PCF) 

fibers, given that in these cases several Brillouin peaks, with different temperature/strain dependences, appear in the 

acquired spectra. Polarization maintaining fibers have also been used in this regard by involving several parameters such 

as the BFS and the associated power and bandwidth7.  

Apart from the linear dependence between the BFS and the applied strain/temperature change, the Brillouin gain 

spectrum (BGS) exhibits a different behavior depending on the parameter under analysis: increasing temperatures will 

provoke narrower BGSs, in addition to a higher gain associated with the BGS; on the contrary, an increasing strain will 

give rise to wider BGSs and corresponding decreasing powers3. These changes are normally too subtle to be taken into 

account to distinguish between strain and temperature contributions in standard BOTDAs. However, in this paper we 

propose the employment of artificial neural networks (ANNs) in an attempt to use these features to perform an automatic 

discrimination of both parameters using a conventional BOTDA implementation.  
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2. EXPERIMENTAL ISSUES 

2.1 Experimental setups 

A complete set of experiments involving simultaneous measurements of strain and temperature was designed to check 

the performance of the ANN approach. Although some initial measurements were performed in a climatic chamber, the 

necessity to apply strain to several meters of the fiber under test (FUT) led to the design of the water tank (142 x 32 cm) 

shown in Fig. 1. A homogeneous water temperature can be achieved via a customized temperature controller, a 

thermocouple, an electrical resistance and an air pump. On the other hand, a strain setup, formed by two wheels and a 

positioner, was located inside the tank, allowing to perform a quasi-homogeneous strain to approximately 20 meters of 

the FUT. 

 

 

Figure 1. Aluminium tank covered by thermal isolator designed for the strain and temperature experiments: a) 

thermocouple; b) electrical resistance used to heat the water; c) air pump to get a homogeneus water temperature 

distribution; d) strain setup formed by two wheels and a positioner (left wheel) to apply strain to the FUT. 

 

A standard BOTDA system, like the one described in8, was employed to carry out the distributed measurements. A 

single laser source emitting at λ = 1550.92 nm generates the light used for both pump and probe waves. The pulsed pump 

is then created via a semiconductor optical amplifier (SOA), with a pulse width of approximately 12ns. This wave is 

amplified via an Erbium-doped fiber amplifier (EDFA) and goes through a polarization scrambler before entering the 

FUT. The two sidebands of the probe wave are generated with an electro-optical modulator (EOM) and a RF generator. 

Finally, the detection stage is formed by a fiber Bragg grating allowing to select the lower frequency sideband of the 

incoming signal and a high-transimpedance gain 125 MHz photodetector and an acquisition card with an averaging of 

1024 samples. The FUT comprises a total of 4km (2 spools of 2km SMF -G652B/D), with approximately 20 meters 

located inside the water tank, just before the splice between both spools. 

 

2.2 ANN design 

A simple ANN design was chosen to study the feasibility of the proposed solution: a feedforward network with a 

supervised backpropagation learning algorithm. The Levenberg-Marquardt optimization was chosen as the training 

algorithm and the minimum squared error performance function was used to decide whether the training stage is 

finished. The acquired BOTDA data are divided into training, validation and test stages. The ratio of data used for these 

stages, the network structure (number of hidden layers and associated number of neurons) and even the way the BOTDA 

data are fed into the network have been varied to study their influence in the final classification results. The BGSs 

obtained from the BOTDA traces have been treated in two ways: a) sampling the frequency/intensity values at given 

percentages in terms of the peak intensity of the BGS (25, 40, 50, 70, 85 and 95%) (stripes method) and b) performing a 

Lorentzian fit and using the associated information.  
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2.3 BOTDA data 

Figure 2 presents an example of the BOTDA data acquired to feed the ANN. The experimental tests were designed 

considering temperatures from 20 to 72ºC with steps of ≈ 8ºC. For each temperature, 11 different strain situations were 

considered, from 0 to 10 turns of the positioning wheel, where 1 turn gives rise to an elongation of 0.5 mm in the FUT 

section. Each measurement (strain-temperature pair) was repeated three times. In Fig. 2, the x-axis position denotes the 

number of samples. As the sampling interval is 0.5m, the length of the FUT section is 20m. It can be observed how 

higher strains provoke an inhomogeneous strain distribution along the FUT, with higher strains associated with the fiber 

located over the wheels of the strain setup. This is obviously a situation to be avoided, but that can be at the same time 

useful in evaluating the performance of the ANN to handle noisy data. 

 

 
 

Figure 2. Example of data acquired with the BOTDA system: a) BFSs at the hotspot section for T=46ºC and strains from 0 

to 10 turns; a) BFSs at the hotspot section for T=70ºC and strains from 0 to 10 turns. 

 

3. RESULTS 

Multiple results were obtained modifying the parameters mentioned above, as well as the method to evaluate the ANN 

output: averaging all the hotspot ANN outputs to obtain a single representative value or counting the ANN outputs and 

choosing the maximum value of the ANN output vector for strain and temperature. Figure 3 shows an example of the 

achieved results. Figure 3(a) presents two network configurations where the stripes method has been considered to 

sample the input data; while Fig. 3(b) shows results associated with the use of the Lorentzian fitting method. In both 

cases, some problematic tests, those corresponding to 0 strain and 20 and 62ºC, have been eliminated from the dataset in 

an attempt to improve the classification results. These experiments gave rise to non-consistent results in terms of the 

remaining data due to different reasons (for example 0 strain was found to be non-homogeneous for different 

temperatures and 20ºC was measured at room temperature, thus exhibiting more fluctuations in comparison to other 

trials). 

It can be observed how the best results in these cases are obtained in Fig. 3(b), in particular when using a single hidden 

layer with 11 and 8 neurons and a ratio of 70/10/20 for training/validation/test. These results are obtained as the average 

for each ANN configuration, since the simulation was performed twice per each network. The best single results 

(without averaging) obtained for temperature/strain classification have been of 56.7/86.7% and 70/73.3%, using a single 

hidden layer with 11 neurons a 70/10/20 dataset, the Lorentzian method to choose the input data and average and single 

maximum output methods, respectively. 
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Figure 3. Example of ANN results: a) considering the stripes method to feed the network; b) using the Lorentzian fit method 

to feed the network. Temperature and strain values are represented in blue and red, respectively. Training/validation/test 

data ratios are listed above each figure in brackets. Numbers in red in the x-axis indicate the use of two hidden layers (e.g. 

13 12 indicates the use of two hidden layers with 13 and 12 neurons, respectively); otherwise, a single hidden layer with the 

indicated number of neurons is considered. Output evaluation: a straight line indicates the use of the average method and a 

dashed line the single maximum. 

4. CONCLUSIONS 

In this work, we have explored the feasibility of performing temperature/strain discrimination in distributed 

measurements via a conventional BOTDA system. Different strategies and neuronal network configurations have been 

investigated, giving rise to classification results that reach the 70-80% of success. We believe that this is a promising 

result that suggests that further efforts should be devoted to reach higher classification percentages. On the one hand, 

experiments should be carefully developed in order to avoid the appearance of inconsistencies in the acquired data. 

Wider pump pulses should also be considered to avoid a possible widening of the resulting BGS that might make it 

difficult to detect the different effects generated by temperature and strain changes in the Brillouin spectrum linewidth. 

Finally, more sophisticated artificial intelligence approaches, such as deep learning techniques, might also be studied.  
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