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Abstract—A Green integral formulation of the boundary value
problem in chirowaveguides with translational symmetry and
the application to the rectangular case are presented in this
paper. The Green equations for the two eigenmodes in unbounded
chiral media, i.e. right and left circularly polarized waves, are
formulated in terms of the Hankel functions. By splitting the
waveguide contour into a finite number of intervals, the equations
are discretized and a homogeneous system of equations can be
obtained. The number of unknowns is reduced to the half by
applying the relations between the longitudinal components and
their normal derivatives at the metallic contours. The method
has been used for modeling the rectangular waveguide and the
dispersion diagram and the field structure for some propagation
modes are presented.

I. INTRODUCTION

During the last decades, a high variety of new artificial ma-
terials, knowns as metamaterials, with bizarre properties have
been designed and built. The new properties have challenged
the capabilities of both theoretical and numerical techniques,
which has triggered the development of new algorithms and
methods [1], [2], [3]. Among those new materials, chiral media
have attracted considerable attention and many theoretical
and experimental papers on the interaction of electromagnetic
waves in different waveguide structures have been published
[4], [5], [6], [7]. Chiral media produce two main effects on
a linearly polarized propagating wave: rotation of polariza-
tion angle, known as electromagnetic rotatory dispersion, and
changes in the polarization from linear to elliptical, known as
circular dichroism. It has been also found that strong electro-
magnetic activity can also produce negative refraction [8].

The scope of this paper is to model wave propagation in
metallic waveguides with translational symmetry filled with
chiral media (also known as chirowaveguides). By discretizing
the Green integral equation for the two propagation modes in
unbounded chiral media a numerical solution of the electro-
magnetic field inside the guide can be obtained. A similar
method was used to solve the dielectric waveguide with
PEC (perfect electric conductor) boundaries in [9], where a
comparison with the analytical solution for rectangular and
isosceles right triangular waveguides was also presented. Our
model is first tested by solving the dielectric rectangular guide
with PEC walls and by comparing with the known solution.
Then the effects due to the chirality for several propagation
modes will be discussed. This method is able to be adapted

to most of the standard waveguide systems and also to open
chirowaveguides.

II. INTEGRAL EQUATIONS FOR CHIROWAVEGUIDES

The Green’s second identity in two dimensions for an uni-
form waveguide with arbitrary cross section S and boundary
L is:∫

S

[
G∇2

tΦ− Φ∇2
tG
]
ds =

∮
L

[G∂nΦ− Φ∂nG] d`, (1)

where ~∇t = x̂∂/∂x+ ŷ∂/∂y, ∂n = n̂ · ~∇t and both the Green
function (G = G(~r0, ~r)) and Φ = Φ(~r) satisfy:(

∇2
t + γ2

)
Φ(~r) = 0, (2)(

∇2
t + γ2

)
G(~r0, ~r) = −δ(~r0 − ~r), (3)

being γ a constant, δ(~r0 − ~r) the Dirac function.
The application to an uniform dielectric waveguides with

translational symmetry is straightforward by considering that
each electromagnetic field component can be expressed as
Φ(~r)ej(ωt−βz), where γ2 = ω2 − β2.

For the chiral media case, the presence of the chirality
parameter, κ in the constitutive equations

~D = ε ~E − jκ√ε0µ0
~H, (4)

~B = µ ~H + jκ
√
ε0µ0

~E, (5)

leads to a coupling in the electric and magnetic fields. This
coupling can be overcome by decomposing the fields into the
circularly polarized wavefield components [10] :

~E± =
(
~E ∓ jη ~H

)
(6)

where η =
√
µ/ε is the wave impedance.

By eliminating the transverse field, two separated Helmholtz
equations for both longitudinal wavefield components can
be obtained [10]. The boundary conditions between metallic
walls and chiral material must be also expressed in terms
of the wave field components. By making use of the PEC
boundary conditions in (1), integral expressions for E+

z (~r)
and E−

z (~r) are obtained and their solutions provide the longi-
tudinal component of the wavefields and its normal derivative.
From E±

z (~r) and ∂nE±
z (~r) the transversal components of the

wavefields and, therefore, the whole electromagnetic field can
be calculated.
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Fig. 1: Dispersion diagram of the rectangular chirowaveguide
as a function of κr with εr = 1, µr = 1.

.

−
0

.8

−
0

.6

−
0

.4

−
0

.2

00
.2

0
.4

0
.6

0
.8

−
0
.8

−
0
.6

−
0
.4

−
0

.2

00
.2

0
.4

0
.6

0
.8

−
0
.8

−
0
.6

−
0
.4

−
0
.2

00
.2

0
.4

0
.6

0
.8

κ
r
 = 0.1 

κ
r
 = 0.3 

κ
r
 = 0.5 

E
t

H
z

Fig. 2: Et and Hz for the first propagation mode, HE10, and
for κr = 0.1 (top), κr = 0.3 (middle) and κr = 0.5 (bottom),
with β = 0.1, n = 1.0, and η = 1.0.

The numerical solution for rectangular waveguide is ob-
tained by dividing the contour in a grid of N intervals. In order
to decrease the size of the matrices, the C2 rotation symmetry
can be considered and the problem is reduced to half of the
transversal section. Furthermore, the C2 rotation symmetry
allows to classify the eigenmodes in two groups, depending on
the relation between the wavefields in the symmetric points,
~E±(~r) = p ~E±(−~r), where p = ±1.

III. RESULTS AND DISCUSSION

The method has been applied to a X-band rectangular
waveguide (a = 2.286 cm, b = 1.016 cm). Fig. 1 shows the
dispersion curves for the first five modes as a function of the
chirality parameter where the modes are labeled as HExy and
EHxy , which correspond to TExy and TMxy , respectively, for
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Fig. 3: Same as Fig. 2 for HE01 mode.
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Fig. 4: Same as Fig. 2 for EH20 mode.

the limit case when κr=0. For a given frequency, the complex
propagation constant was obtained as the one who makes null
the determinant of the matrix. In some cases, this procedure
can provide wrong values for β, that can be eliminated by
adding extra points placed outside the section S or from the
field structure in the waveguide cross section.

Figures 2, 3, 4, 5 and 6 show vector and contour plots of
Et and Hz , respectively, for the first five propagation modes
and for three different values of κr. The chirality affects
the electromagnetic field pattern by breaking the expected
reflection symmetry of the dielectric case, which is replaced
by a rotation symmetry. As it can be expected, neither TE nor
TM pure modes are obtained in a rectangular chirowaveguide.

Fig. 2 shows the obtained results for the first propagation
mode, HE10. For the low chirality case, κr = 0.1, the fields
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Fig. 5: Same as Fig. 2 for HE11 mode.
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Fig. 6: Same as Fig. 2 for EH11 mode.

seem to keep the reflection symmetry, but this is not the
case for the high chirality case, κr = 0.5. As the chirality
increases, the typical structure of the TE10 mode disappears.
For example, the electric field is not always parallel to short-
side of the waveguide b, but it points in the direction of the
long-side, a. Furthermore, the electric field is not transversal
to the propagation direction, Ez 6= 0, not shown in the figures.
As we can expected, only the rotation symmetry is revealed
for high values of chirality.

Fig. 3 shows the results for HE01 mode, where it can
be observed that the typical TE01 structure disappears as
the chirality increases. For example, the electric field is not
parallel to the long side of the waveguide, a, as can be seen
clearly at the center of the waveguide.

Fig. 4 and 5 show the obtained results for modes which

correspond to HE20 and HE11, respectively. Again, for κr =
0.1 the fields keep the expected patterns of the achiral case.
As the chirality increases, the reflection symmetry disappears
and the rotation symmetry revealed.

TE11 and TM11 are degenerated modes in the dielectric
case and also the corresponding modes for the chirowaveguide,
HE11 and EH11. For a given frequency, the excitation of a
specific mode depends on the initial conditions, in our model
the value for E+

z or ∂nE+
z at the chosen contour point. Fig. 6

shows the results for the first EH mode, where it can be
observed that the Hn 6= 0 at the PEC boundaries.

IV. CONCLUSIONS

An application of the Green integral equations to uniform
waveguides with arbitrary cross section filled with chiral media
is presented in the paper. The model is first tested by solving
the rectangular dielectric waveguide, and both the dispersion
diagrams and the field structure of the dielectric waveguide
are obtained. Then, the method is applied the chiral guide.
The results show that chirality affects the electromagnetic field
pattern by breaking the reflection symmetry of the TE modes
and by producing a rotation symmetry in the field structure.
The technique here presented can be adapted to most of the
standard waveguide systems and also to the chiral fiber.
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