
UNIVERSITY OF CANTABRIA
Department of Applied Mathematics and Computational Sciences

39071 Santander, Spain

Doctoral Thesis

A Bayesian Network Approach for Probabilistic
Safety Analysis of Traffic networks

Análisis Probabilista de Seguridad de Redes de
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ABSTRACT

This thesis consists mainly of two parts. The first one is based on a review of concepts
and models that have been useful to carry out this study. The second is the one that
covers the majority of the work, where a new model of probabilistic analysis for the study
of road safety based on Bayesian Networks is presented.

Bayesian networks use the probabilistic structure of a multidimensional random vari-
able based on an acyclic graph and a set of conditional probabilities to perform a prob-
abilistic safety analysis. Due to the great advantages that they present with respect to
other methods used, such as regression or failure tree methods, they have been used in the
last years in many different fields: artificial intelligence, tunneling processes, biomedicine,
nuclear plants, and more recently on railway lines. What is intended in this thesis is to
perform a safety analysis on roads so this first part focuses on models of Bayesian net-
works applied to road safety. In this way, models with different purposes are presented:
a) predicting the frequency with which accidents of different types occur, b) classifying
traffic accidents according to their severity, c) analyzing and preventing accidents, and d)
safety.

On the other hand, without the knowledge of certain aspects on graphs would not be
possible a correct construction of a model of Bayesian networks. For this reason and thus
to be able to clarify concepts and methods used, different explanatory illustrations are
presented in which variables used later in the proposed model are utilized.

The second part presents a new model for the study of road safety using a probabilistic
analysis based on Bayesian networks. The problem of the safety analysis is an undoubt-
edly random problem, since practically all the variables that intervene in the same one
are random. This requires evaluating probabilities of occurrence of events and frequencies
associated with different intervening elements. A first problem arises when representing
the dependencies between the variables. Fault trees have some important limitations, in-
cluding failure to easily represent common causes of failure. The tree structure, i.e. with
open branches, does not allow closing them, which would be necessary to reproduce the
common causes without replicating the corresponding variables. In contrast, Bayesian
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networks do not have this limitation and allow their reproduction without the need to
replicate these variables. Another notable advantage is that, when using directed graphs,
they can be closed and the joint probability of all variables determined by the conditional
probabilities of each node given by their parents. In addition, these networks can re-
produce any dependency structure without producing incompatibilities, which can occur
when the definition of joint probability is made with arbitrary conditional distributions.
Another great advantage is that all of the above conditional probabilities can be defined
independently. Finally, it should be noted that there are very powerful and even free
software packages, which have already been tried and tested, and which allow the imple-
mentation of these computer structures without any extra effort. All these advantages
are what have led to choosing the Bayesian networks as the optimal model to solve this
problem.

The Bayesian network model reproduces not only all the existing elements on the road
but the driver’s behaviour when he is driving through it. Each element contributes a set
of variables according to their type. For example, curves include their radius, length,
direction, etc., the signals include their state, the driver’s decisions upon seeing them, the
associated speeds, the distances between signals, and so on. Due to the great importance
of human error in the field of safety, modeling variables associated with driver’s behaviour
are introduced, such as driver’s tiredness and attention; as well as the type of driver or
decision of the adopted speed or the presence of a signal. All variables are considered as
random and their dependencies are reproduced by the Bayesian network, so that any set
of probabilities can be calculated through a process of forward marginalization. The sets
of conditional probabilities of the variables, given their parents, are established by means
of closed formulas that allow to quantify the Bayesian network. To reduce the complexity
of the problem, we propose to use a method that divides the Bayesian network into small
parts, such that the complexity of the problem becomes linear in the number of elements.
This is crucial to deal with real cases where the number of variables can be measured in
thousands.

The probability of incidents related to the different road sections is calculated accord-
ing to an equivalent number of severe incidents, so that the most critical elements can be
identified and ranked in order of importance. This allows to obtain very relevant informa-
tion to improve the safety and to save time and money in the measures that are necessary
to adopt to improve certain roads. In addition, when an accident occurs, the Bayesian
network can help identify its causes through a process of inference propagation backwards.

Different examples of Spanish roads, A-67, N-611 and CA-182, are represented to
expose the operation of the model that arises. In particular, a detailed study of the
regional network in Cantabria, CA-131, CA-132 and CA-142, is carried out by means of
this new method.
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RESUMEN

Esta tesis consta principalmente de dos partes. La primera de ellas se basa en una
revisión de conceptos y modelos que han sido de utilidad para poder llevar a cabo este
estudio. La segunda es la que abarca la mayor parte, y en ella se expone un nuevo modelo
de análisis probabilista para el estudio de la seguridad de carreteras basado en Redes
bayesianas.

Las redes bayesianas emplean la estructura probabiĺıstica de una variable aleatoria
multidimensional basada en un gráfico aćıclico y un conjunto de probabilidades condi-
cionales para realizar el análisis probabiĺıstico de seguridad. Debido a las grandes venta-
jas que presentan frente a otros métodos empleados, como son los métodos de regresión
o los árboles de fallo, se han empezado a utilizar en los últimos años en muy diversos
campos: en inteligencia artificial, procesos de excavación de túneles, biomedicina, plantas
nucleares, y más recientemente en ĺıneas ferroviarias. Lo que se pretende en esta tesis es
realizar un análisis de seguridad en carreteras por lo que esta primera parte se centra en
modelos de redes bayesianas aplicados a la seguridad vial. De esta forma, se presentan
modelos con diferentes finalidades: a) predecir la frecuencia con la que ocurren accidentes
de diferente tipo, b) clasificar accidentes de tráfico en función de su severidad, c) analizar
y prevenir accidentes, d) desarrollar evaluaciones de la seguridad, etc.

Por otro lado, sin el conocimiento de ciertos aspectos sobre grafos no seŕıa posible
una correcta construcción de un modelo de redes bayesianas. Por este motivo y aśı poder
clarificar conceptos y métodos empleados se presentan diferentes ilustraciones explicativas
en las que se emplean variables utilizadas posteriormente en el modelo propuesto.

En la segunda parte se presenta un nuevo modelo para el estudio de la seguridad de
carreteras que emplea un análisis probabiĺıstico basado en redes bayesianas. El problema
del análisis de seguridad es un problema indudablemente aleatorio, ya que prácticamente
todas las variables que intervienen en el mismo lo son. Ello requiere evaluar probabilidades
de ocurrencia de sucesos y frecuencias asociadas a los diferentes elementos intervinientes.
Un primer problema surge a la hora de representar las dependencias entre las variables.
Los árboles de fallos, tienen algunas limitaciones importantes, entre las que destaca la
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de no poder representar fácilmente las causas comunes de fallos. La estructura de árbol,
es decir con ramas abiertas, no permite cerrarlas, lo que seŕıa necesario para reproducir
las causas comunes sin replicar las variables correspondientes. Por el contrario, las re-
des bayesianas no tienen esta limitación y permiten su reproducción sin necesidad de
replicar estas variables. Otra ventaja notable consiste en que, al utilizar grafos dirigidos,
pueden cerrarse y definir la probabilidad conjunta de todas las variables mediante las
probabilidades condicionales de cada nodo dados sus padres. Además, estas redes per-
miten reproducir cualquier estructura de dependencia sin producir incompatibilidades,
que pueden ocurrir cuando la definición de la probabilidad conjunta se hace con dis-
tribuciones condicionadas arbitrarias. Otra gran ventaja es que todas las probabilidades
condicionales anteriores pueden definirse independientemente. Finalmente, hay que in-
dicar que existen paquetes de software muy potentes e incluso gratuitos, que ya han sido
muy probados y que permiten implementar estas estructuras en ordenador sin grandes
esfuerzos adicionales. Todas estas ventajas son las que han conducido a elegir las redes
bayesianas como modelo óptimo para resolver este problema.

En el modelo de red bayesiana se reproducen todos los elementos existentes en la
carretera y que el conductor se encuentra cuando circula por ella. Cada elemento con-
tribuye con un conjunto de variables en función de su tipo. Por ejemplo, las curvas
incluyen su radio, longitud, sentido, etc, las señales incluyen su estado, las decisiones del
conductor al verlas, las velocidades asociadas, las distancias entre señales, etc, y aśı ocurre
con cada uno de los elementos o ı́tems establecidos. Debido a la gran importancia del error
humano en el ámbito de la seguridad, se introducen en la modelización variables asociadas
al comportamiento de los conductores, como son el cansancio y atención del conductor;
aśı como el tipo de conductor o decisión de la velocidad adoptada o ante la presencia de
una señal. Todas las variables son consideradas como aleatorias y sus dependencias son
reproducidas por la red bayesiana, de tal manera que cualquier conjunto de probabili-
dades pueda ser calculado mediante un proceso de marginalización hacia adelante. Los
conjuntos de probabilidades condicionales de las variables, dados sus padres, se estable-
cen mediante fórmulas cerradas que permiten cuantificar la red bayesiana. Para reducir
la complejidad del problema, se plantea utilizar un método que divide la red bayesiana
en pequeñas partes, tales que la complejidad del problema se convierte en lineal en el
número de elementos. Esto es crucial para tratar con casos reales en las que el número
de variables puede medirse en miles.

La probabilidad de incidentes relacionados con los diferentes tramos de carreteras se
calculan en función de un número equivalente de incidentes severos, de manera que se
puedan identificar los elementos más cŕıticos y clasificarlos por orden de importancia.
Esto permite obtener una información muy relevante para mejorar la seguridad y ahorrar
tiempo y dinero en las medidas que son necesarias adoptar para mejorar determinadas
carreteras. Además, cuando ocurre un accidente, la red bayesiana puede ayudar a identi-



RESUMEN 9

ficar sus causas por medio de un proceso de propagación de inferencia hacia atrás.

Diferentes ejemplos de carreteras españolas, A-67, N-611 y CA-182, son representados
para exponer el funcionamiento del modelo que se plantea. En particular, se realiza un
detallado estudio de las carreteras de la red autonómica de Cantabria, CA-131, CA-132
y CA-142, por medio de este nuevo método de análisis de seguridad de carreteras.
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OBJECTIVES OF THIS THESIS

The main objectives of this thesis are the following:

1. PART I. INTRODUCTION TO BAYESIAN NETWORKS.

Before starting research in a given field, we need to investigate whether or not the
research topic has been analyzed before and if the answer is positive, what solutions
to the problem being analyzed have been given by other authors.

The resolution of the problem of probabilistic analysis of road and highway safety
requires the use of powerful tools that allow the reproduction of multidimensional
random variables. Thus, Bayesian networks have been selected as the most powerful
existing tools to work with these variables.

In this part of the thesis we analyze, on one hand, some existing models that can be
found in the existing literature and, on the other hand, some tools that are needed
to work with Bayesian networks.

(a) State of the art in safety analysis of highways and roads, especially
using Bayesian networks.

i. Perform a literature review. To perform a literature review of Bayesian
networks used in probabilistic safety analysis of roads in order to identify
the main contributions and the main pending problems to identify lines of
present and future research.

ii. Identify the most adequate approaches for probabilistic safety
analysis (PSA) of roads. Since different approaches have been used in
safety analysis of roads, we aim at identifying the most convenient ones
and those who must not be used.

(b) Identification of existing problems deserving a research analysis.

i. Discover possible representation deficienciess. Some existing mod-
els have some representational problems. Our aim is to find possible ways
of overcoming these deficiencies.

ii. Identify the different types of variables used in safety analysis.
Since several Bayesian networks have been already used to solve safety
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problems in the trasportation field, they constitute a good field for inspi-
ration when deciding which variables should be included in a PSA.

iii. Definition of conditional probabilities. The definition of conditional
probabilities is difficult and complex. Thus, new methods to define these
probabilities are needed. If possible closed formulas should be investigated.

iv. Human factor. It is well known that the human factor is the most impor-
tant factor playing a role in safety. Thus, how human factor is considered
in safety analysis must be investigated.

v. Analyze the required changes in the existing models for proba-
bilistic safety analysis in order to satisfy reasonable safety levels
and simplify its use. This requires some changes in the models used
that need to be analyzed and solved.

vi. Discover the problems caused by an excess of memory and CPU
requirements. Some existing models have serious problems when the
size of the problem is of medium or large size. Our aim is to find possible
ways of reducing the complexity of the problem without a loss of quality
and rigor.

2. PART II. PROPOSED MODEL FOR PROBABILISTIC SAFETY ANAL-
YSIS OF TRAFFIC NETWORKS.

Probabilistic safety assessments are currently used in nuclear power plants and re-
peated every five years to update them to the possible changes. However, in the road
and highway industry they are not common. Since safety is a necessary requirement
in engineering works, and the number of yearly casualties in the transportation field
is very high, it appears very convenient to incorporate these techniques to it in order
to reduce substantially the social damage produced.

(a) Bayesian network structure.

i. Identify new variables. Once a list of variables has been selected based
on other models we need to investigate the need of missing and mainly
other variables relevant to safety.

ii. Identify dependence structures. The Bayesian network probabilistic
structure is based on acyclic graphs. A correct definition of this graph
is crucial in a good designed Bayesian network. We aim at providing
adequate graphs.

iii. Automatic definition of conditional probabilities. New methods to
define these probabilities in an automated form are needed. If possible
closed formulas should be investigated.

(b) Required changes in the existing models for probabilistic safety anal-
ysis.
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i. Proposal of some methods to discover the causes of incidents.
One of the common problems in safety analysis is the identification of
the causes of incidents. This thesis aims to provide some methods in this
direction.

ii. Reduce complexity. Bayesian network methods increase complexity
when the number of variables involved increase, so that the memory and
the CPU capabilities can be exhausted. Thus, there is a need for a solution
to this problem. In particular the non-linear increase of the complexity
with the number of variables involved need to be dealt with. In this thesis,
this problem is analyzed.

iii. Identification of the riskiest elements in the highway. The safety
of a line is the combination of many different elements that add risk to
provide the total line risk. Identification of the riskiest elements in the
line and sorting them is the basis for an efficient treatment and a plan of
corrective actions. We aim at the identification of those elements.

iv. Identification of the circumstances causing the riskiest incidents.
To improve safety in a highway, it is not enough to identify the riskiest
locations, but the set of circumstances leading to severe incidents. If these
circumstances are not or wrongly identified the corrective actions will not
be effective and a waste of money can be produced. Identification of these
circumstances is an important aim of this work.

v. Human factor integration. The human factor needs to be not only
analyzed but incorporated as one more factor. In addition, the interaction
with all other variables must be considered carefully.
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ORIGINAL CONTRIBUTIONS OF THIS THESIS

The main contributions of this thesis are:

1. PART I. INTRODUCTION TO BAYESIAN NETWORKS.

In this part of the thesis existing models for safety analysis of roads have been
analyzed and discussed.

(a) State of the art in safety analysis of highways and roads, especially
using Bayesian networks.

i. Literature review. A literature review of Bayesian networks used in
probabilistic safety analysis of roads has been done and its main contribu-
tions and some pending problems identified.

ii. Identify the most adequate approaches for probabilistic safety
analysis (PSA) of roads. As a consequence of the analysis done,
Bayesian networks have been identified and selected as the most powerful
tools for performing a PSA of railway lines.

(b) Identification of existing problems deserving a research analysis.

i. Discover possible representation deficienciess. Since event and fault
trees present representational problems with common causes, which are
very important and frequent in road safety, Bayesian networks have been
used.

ii. Identify the different types of variables used in safety analysis.
A selection of the most relevant variables playing a role in safety has been
done, taken into account what other authors have previously used and
based on other considerations.

iii. Definition of conditional probabilities. An important contribution of
the thesis is the use of closed formulas to define conditional probabilities.

iv. Human factor. Human factor has been considered, for the first time, in
an integrated form with the rest of variables.

v. Analyze the required changes in the existing models for proba-
bilistic safety analysis in order to satisfy reasonable safety levels
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and simplify its use. The deficiencies observed in other methods have
been resolved in several forms and the process of assigning probabilities
has been simplified.

vi. Discover the problems caused by an excess of memory and CPU
requirements. The partitioning technique proposed in this thesis makes
possible to solve the PSA in a reasonable amount of time. In fact only small
subnetworks are handled sequentially, which implies a substantial reduc-
tion in memory and CPU requirements. The use of a new methodology,
which is linear in the number of variables is an important achievement.

2. PART II. PROPOSED MODEL FOR PROBABILISTIC SAFETY ANAL-
YSIS OF TRAFFIC NETWORKS.

We have proposed that probabilistic safety assessments must be used systematically
to evaluate the road safety.

(a) Bayesian network structure.

i. Identify new variables. The list of variables needed to investigate road
safety has been identified and analyzed.

ii. Identify dependence structures. The set of parents for each variable
has been suggested and discussed.

iii. Automatic definition of conditional probabilities. New methods to
define these probabilities in an automated form have been developed. To
our knowledge, a systematic use of closed formulas is completely new.

(b) Required changes in the existing models for probabilistic safety anal-
ysis.

i. Proposal of some methods to discover the causes of incidents. A
backward analysis methodology has ben proposed to discover the causes of
incidents. It is based on the properties and main representation advantages
of Bayesian networks.

ii. Reduce complexity. Thanks to a partitioning technique, the non-linear
increase of the complexity with the number of variables involved has been
replaced by a linear increase, which implies a very important achievement.

iii. Identification of the riskiest elements in the highways or roads.
The proposed method allow us to identify the riskiest locations in the
roads and to sort their importance in order to facilitate and optimize the
corrective actions.

iv. Identification of the circumstances causing the riskiest incidents.
A novel technique to identify the most common causes or circumstances
under which the different incidents occur has been developed. It is very
relevant from the point of view of the practice.
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v. Human factor integration. The human factor has been incorporated
as one more factor. In addition, the interaction with all other variables
has been considered and analyzed.

(c) Practical application to real roads.

i. Validation of the methodology. The proposed methodology has been
applied to real roads, which proves the suitability and convenience of the
proposed methods.
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1.1 Introduction

Before starting, it is necessary to clarify that Bayesian methods have little to do with
Bayesian network (BN) models. The first group of models works with a prior distribu-
tion that accounts for the previous knowledge about the problem being dealt with and,
based on sample data, calculates a posterior distribution that subsumes both items of
knowledge and is used to perform the probabilistic safety analyses (PSA). In the case

31



32 CHAPTER 1. STATE OF THE ART ON BAYESIAN NETWORKS

of Bayesian networks no priors or posteriors are used, but the probabilistic structure of
a multidimensional random variable, based on an acyclic graph and a set of conditional
probabilities (one per variable), is built to perform the PSA. Some important examples
of the first group of models are: a probabilistic finite element model for updating struc-
tural systems by Sun and Betti (2015), a real-time system identification by Yuen and Mu
(2015), a Bayesian model for the analysis of external corrosion in underground pipelines
by Wang et al. (2015) or the application to natural hazard risk assessment in Graf et al.
(2009). Relevant methods applied to traffic problems in this group can be seen in Li
et al. (2008), Pawlovich et al. (2006), Hauer et al. (2002), Persaud and Lyon (2007) or
Scherb et al. (2015). The second group of models have been used to find solutions to
many problems, such as Larrañaga and Moral (2011) in artificial intelligence, Bielza et al.
(2011) and Bielza et al. (2015), in classification problems. Other examples are: Bayesian
network model to assess wildfire consequences of Papakosta and Straub (2013) or the dy-
namic Bayesian network model for probabilistic modeling of tunnel excavation processes
proposed by Spackova and Straub (2015). Recently, PSA models based on Bayesian net-
works have also been extended to railway lines (see for example, Castillo et al. (2016b),
Castillo et al. (2016a), Castillo et al. (2016c)) and they have been proved to provide not
only an important information about safety but a useful quantification of the probabilities
of occurrence of undesired incidents.

On the other hand, in order to improve traffic safety, the location of the black spots in
highways and roads should be precisely identified (see, for example, Elvik (2007, 2008),
so that some corrections could be implemented. Sometimes these corrections are low cost
and easy to implement but in other cases they require important investments. Thus, not
only the frequency and severity of incidents but their costs must be considered in a serious
analysis. A wide collection of works concerning traffic safety can be found in the existing
literature, however, this Thesis focuses on those studies based on Bayesian networks
(BNs) as the most adequate statistical model, due to its incredible power to reproduce
multidimensional random variables (see Castillo et al. (1997)). Bayesian networks permit
integrating all the relevant items of the road in the same model. Mahboob (2014) in his Ph.
D. thesis demonstrated that classical methods such as fault and event tree analysis are not
the most adequate techniques to analyze complex systems involving multi-dependencies
between system variables, especially when common causes are present, as it is the case
of railways and highways, and Bobbio et al. (2001) compared Bayesian networks (BNs)
with fault trees (FTs), demonstrating that any FT can be mapped into a BN and that
the corresponding inference techniques of BN can be used to obtain the reliability of any
event in the FT. In addition, they expose that some advantages can be obtained at (a) the
modeling level because some restrictive assumptions of FTs can be removed and various
kinds of dependencies (including uncertainty) among components can be incorporated,
and (b) at the analysis level because a general diagnostic analysis, allowing both forward
and backward analysis, can be performed.

Because of all of this, the attention is concentrated here on Bayesian network models
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used in traffic safety analysis and next some of them are described.

1.2 Traffic accident causality analysis in Jilin

Hongguo et al. (2010) analyse the traffic accident causality with Bayesian networks by
developing a model consisting of two parts: (a) a structure learning component and (b)
a parameter learning component.

To this aim, a training data on traffic accidents occurred in the main expressways in
the Jilin province during 2003-2006 is used. The sample consists of 3019 data items. The
data types and data items used in the analysis are shown in Table 1.1.

Table 1.1: Data types and data items used in the analysis of the traffic accidents occurred in the main
expressways in the Jilin province during 2003-2006.

Data type Data items
Environment factors Terrain, Weather, Traffic control
Road factors Road type, Pavement type, Road alignment, Type

of intersection and road section, Road cross-
section, Road condition

Traffic accident Cause of accident, Accident form, Accident type,
Number of deaths, Number of serious injuries,
Number of light injuries, Property damage

The learning process of the Bayesian network has been done using the K2 algorithm,
and consists of two stages: the first consists of learning the structure, that is, the directed
acyclic graph (DAG) and the second is the parametric structure in which the conditional
probability tables are learnt.

The result of the learning process is shown in Figure 1.1, where it can be seen that
not all items have been selected as relevant variables (compare the items in the second
column of Table 1.1 with the variables in Figure 1.1).

More precisely, the ten nodes in the DAG represent the following ten variables proposed
for this model: terrain, road type, road cross-section, cause of accident, accident form,
accident type, number of deaths, number of serious injuries, number of light injuries and
property damage. The considered sets of values for each of the 10 variables are indicated
in Table 1.2.

The Bayesian network structure indicated in Figure 1.1 shows that the conditional
probability tables to be learnt are:

P (T ), P (Rt|T ), P (Rcs|Rt), P (Af |Rt), P (At|Rt), P (Ca|Rcs),

P (Nd|At), P (Nsi|At), P (Pd|At), P (Nli|At).
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Figure 1.1: DAG resulting from the application of the K2 algorithm to the available data obtained from
the main expressways in the Jilin province during 2003-2006.

Some examples of these tables can be seen in Hongguo et al. (2010).
It is noted that this model provides the probabilities of the different accident types

for the whole traffic network but it is not applicable to a given traffic route or to evaluate
the risk associated with each location.

1.3 Study of the impacts of different factors on acci-

dents in Katowice

Krol (2014) studies the impact of different factors on the frequency distribution of streets
road accidents in Katowice, especially in the streets where most traffic events take place.

The team of Decision Systems Laboratory at the University of Pittsburg developes
the Genie package to implement a Bayesian network model with additional elements
supporting the diagnostics and decision-making. They use the data contained in the
original XML files of System of Recording the Accidents and Collisions (SEWIK) provided
by the Police Headquarter and containing the data on the road incidents and the EM
(Expectation-Maximization) algorithm in order to adjust the model parameters.

The study covers the period of two years, 2011 and 2012, and the streets under inves-
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Table 1.2: Sets of values considered for the different variables in the model of Hongguo et al.

Terrain (T ) Plains, Hills, Mountain
Road type (Rt) Expressway, Class I highway, Class II highway,

Class III highway, Class IV highway, Sub-standard
road, Urban road

Road cross-section (Rcs) Road divided by lanes and directions, Road di-
vided by lanes, Road divided by directions, Lane-
direction mixed

Cause of accident (Ca) Vehicle breakdown, Violation of motor vehicle, Vi-
olation of non-motor vehicle, passenger or pedes-
trian, Unexpected reasons, Others

Accident form (Af ) Front collision, Side collision, Rear collision,
Scraping in the opposite direction, Scraping in
the same direction, Rolling over, Rolling, Hitting
a stationary object, Hitting a stationary vehicle,
Falling, Catching fire, Others

Accident type (At) Injury, Property damage, Fatal
Number of deaths (Nd) 0, 1, 2, 3, 4 or more
Number of serious injuries (Nsi) 0, 1, 2, 3 or more
Number of light injuries (Nli) 0, 1, 2, 3 or more
Property damage (Pd) 0, 0 − 1, 000, 1, 000 − 10, 000, 10, 000 −

100, 000, more than 100, 000

tigation are: Rodzieskiego, Chorzowska, Murckowska, Kociuszki, Mikoowska, Korfantego,
Grnolska and Bocheskiego,whose characteristics are shown in Table 1.3. The variables
considered are the following: time of the year, time of the day, day of the weak, type of
road, pavement condition, type of area and geometry of the road, location of the incident,
its nature and consequences. In order to represent the relationship between them the
Bayesian network structure shown in Figure 1.2 is proposed.

After carrying out the process of learning of the Bayesian network, the study focuses
on some changes in distributions of probabilities that are significant. To this end, they
set the status of some random variables and then observe the changes in the probability
distributions of the states of other variables representing them as bar graphs. In a first
stage it is based on results depending on the time of the day, the season and the day of
the week. In a second stage, weather conditions (rain, fog, clouds and falling snow) are
also included.

Finally the incorporation of the traffic volume is proposed in order to obtain better
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Table 1.3: Characteristics of the streets under investigation.

Street Incidents Length [m] Characteristics
Rodzieskiego 852 3400 S86 expressway with additional

parallel carriageways
Chorzowska 657 4810 Dual carriageway with crossroads

and pedestrian crossings, DK 79
Murckowska 416 2400 Terrain, Dual carriageway, colli-

sion free crossroads, 3 lanes, S86
Kociuszki 391 9800 Initially a one-way street in a dense

urban area, then dual carriage-
way with crossroads and pedes-
trian crossings

Mikoowska 252 2340 Dual carriageway with crossroads
and pedestrian crossings

Korfantego 224 3940 Dual carriageway with crossroads
and pedestrian crossings

Grnolska 209 13000 A4 motorway
Bocheskiego 144 2000 Dual carriageway with crossroads

and pedestrian crossings

Time of year

Time of day

Day of week

Cause culprit

Lighting

Weather

Built up area

Road

Street

Pavement

Road geometry

Incident

Effect

Figure 1.2: Bayesian network structure (Krol).
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Table 1.4: % Traffic accidents regarding to number of vehicles and % injuries and fatalities concerning
population in the years 1997 to 2006 occurred in Iran.

Year Population Vehicles Traffic accidents per % Injuries per % Fatalities per
100 vehicles 100 inhabitants 100 inhabitants

1997 61897000 6494004 2.47 0.11 0.02
1998 62640000 6804939 2.94 0.13 0.02
1999 63392000 7115874 3.45 0.14 0.02
2000 64153000 7426809 3.94 0.17 0.03
2001 64922000 7737744 4.39 0.18 0.03
2002 65701000 8485285 5.28 0.25 0.03
2003 66490000 10364637 5.35 0.33 0.04
2004 67478000 12323989 5.07 0.36 0.04
2005 68467000 14283341 4.61 0.40 0.04
2006 70473000 16242693 3.96 0.39 0.04

results.

1.4 Prediction of vehicle traffic accidents in Iran

Alizadeh et al. (2014) provide a model for analysis and prediction of vehicle traffic acci-
dents using Bayesian networks.

The possible injuries caused by accidents are divided into three categories: minor
injuries, serious injuries and deaths.

This study is realised with accidents data from Iran and the variables are selected based
on knowledge of the potential causes of accidents, accident reports, as well as variables
derived from the literature review. They use for the model the following variables: traffic
volume, weather conditions, day of week, road type, age, sex, impact the type of accident
and severity of damage.

Table 1.4 shows the the number of traffic accidents and deaths in the years 1997 to
2006 occurred in Iran classified by injuries or deaths and in Figure 1.3 the model DAG is
shown.

1.5 Traffic analysis to predict accidents in China

Lin et al. (2011) establish a Bayesian Network traffic analysis to make probability predic-
tion and accident diagnosis. The learning process contains two components: the expert
knowledge and the K2 algorithm, first, dividing the nodes into groups of high similarity
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Figure 1.3: DAG for the Alizadeh et al. model.

with each other and then reordering the nodes by the expert experience. The data are
obtained from the Road traffic accidents information collection project list of the ministry.

The flow chart of Figure 1.4 serves as explanation of the process of Bayesian networks
modeling, which using the list of variables shown in Table 1.5, gives as result the following
Bayesian network structure represented in Figure 1.5.

They indicate that the precision of the model could be better joining more factors to
value.

1.6 Performing a transportation safety assessment

Zhang and Shi (2015) propose a method for transportation safety assessment of a moun-
tainous freeway using a Bayesian network.

The analysis is based mainly on the driver’s state, the road condition and the envi-
ronmental condition. For the model they select eight observable variables and four latent
variables to establish relations with the direct cause and the basic reason of accidents.
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Figure 1.4: Bayesian network structure for the Lin et al. (2011) model.

Table 1.5: Sets of values considered for the different variables in the Lin et al. model.

Vehicle type (t0) 0-Truck, 1-Car
Visibility (t1) 0-Within 50 m, 1-Between 50-100 m, 2-Between

100-200 m, 3- Over 200 m
Lighting condition (t2) 0- Daytime, 1-Night with street lamp, 2-Night

without street lamp
Road condition (t3) 0-Flat road, 1-Other
Weather (t4) 0-Fine, 1-Rain, 2-Cloudy
TRaffic condition (t5) 0-Crowded, 1-Uncrowded
Horizontal curve radius (t6) 0-Within 500 m, 1-Between 500-600 m, 2-Over 600

m
Gradient (t7) 0-Between 0-50 % 1-Between 50-100 % 2-Between

100-200 %
Accident type (A) 0-Unhappen, 1-Happen
Pilot tensity (P0)(Hidden) 0-Low, 1-Middle, 2-High
Road alignment reasonable de-
gree (P1)(Hidden)

0-Low, 1-Middle, 2-High

The eight observable variables are: lighting condition (S1), average daily traffic (S2), hor-
izontal curve radius (S3), longitudinal grade (S4), radius of the vertical curve (S5), sight
distance (S6), fault casualty number (S7) and weather condition (S8). The four latent
variables are the driver’s state (B1), road condition (B2), environmental condition (B3)
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Figure 1.5: Bayesian network modeling for the Lin et al. (2011) model.

and accident type (A).
The qualitative structure and the conditional probabilities are defined by fifteen ex-

perts divided in three groups and the structure of the Bayesian network proposed is shown
in Figure 1.6. In Figure 1.7 it is represented after removing the expert’s opinion.
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Figure 1.6: Bayesian network structure including expert’s opinion.
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Figure 1.7: Bayesian network structure after removing the expert’s opinion.

Table 1.6 shows the interval values taken into account in order to divide the sensitivity
extent of the index and the values to estimate P (Si|Emn).

Table 1.6: Interval values from the experts.

Degree of sensitivity significance P (Si|Emn) (High) P (Si|Emn) (Low)
Very significant 1.0-0.8 (0.9) 0.2-0.0 (0.1)

Significant 0.8-0.6 (0.7) 0.4-0.2 (0.3)
Potentially significant 0.6-0.4 (0.5) 0.6-0.4 (0.5)

Low significant 0.4-0.2 (0.3) 0.8-0.6 (0.7)
Very low significant 0.2-0.0 (0.1) 1.0-0.8 (0.9)

They do the reasoning for the model and use the following criteria shown in Table 1.7
to evaluate the safety of mountains freeway using the probability P(A=Yes).

1.7 Comparison between BN and Regresion models

Zong et al. (2013) compare Bayesian networks and Regression models for prediction of
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Table 1.7: Criteria of the mountains freeway safety.

P(A= Yes) Safety grade P(A= Yes) Safety grade
<0.1 1 0.1-0.3 2

0.3-0.5 3 >0.5 4

traffic accident severities. To this end, three indicators, number of fatalities, number of
injuries and property damage, are investigated respectively with both techniques.

The data set are obtained from police-reported traffic accident records for the Jilin
province, China, in 2010. It consists of 2,246 cases and contains information regarding to
accident severity, accident characteristics, vehicle characteristics, environmental factors
and road conditions. With these data, they analyse 17 variables as indicated in Table 1.8.

Table 1.8: Factors and variables analysed in the study of the traffic accident severities in the Jilin province
during 2010.

Factors Variables
Accident severity Number of fatalities, number of injuries, Property damage
Accident characteris-
tics

Time of day, Location-Motor vehicle lanes, Location-
Crosswalk, Location-Regular road section, Location-
Intersection

Vehicle characteristics Motorcycle involved, Bus or truck involved, Vehicle condition
Environmental factors Weather condition, Visibility distance
Roadway characteris-
tics

Pavement condition, Roadway surface condition, Road geo-
metrics, Traffic signal control

In order to get the structure of the severity prediction Bayesian network, the K2
algorithm is used. In the case of the study with Regression models, Ordered probit model
is employed in forecasting of number of injuries and property damage while for number
of fatalities a Binary Logit model is used.

In the case of the study with Regression models, Ordered probit model is employed
in forecasting of number of injuries and property damage while for number of fatalities a
Binary Logit model is used.

By comparing the two models, using Mean Absolute Percentage Error (MAPE) and
Hit ratio, they conclude that the Bayesian network models are better in accident severity
prediction than Regression models regarding modeling accuracy and they point out that
there are also differences regarding the interactions between the variables in the models.
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1.8 Classification of traffic accidents by severity

de Oña et al. (2011) study the validity of Bayesian networks to classify traffic accidents
according to their injury severity, by building three Bayesian networks using three different
score metrics based on the hill climbing search algorithm. Accident data are obtained from
the Spanish General Traffic Directorate (DGT) for rural highways in Granada, Spain, for
three years (from 2003 to 2005) and a sample of 1,536 accident real data set is used.
Variables describing conditions, such as injury severity, roadway information, weather,
accident, and drivers characteristics, are included. More precisely, the eighteen following
variables are analyzed: accident type, age, atmospheric factors, cause, day, gender, lane
width, lighting, month, number of injuries, occupants involved, paved shoulder, pavement
width, pavement markings, shoulder type, sight distance, time and vehicles involved.
In order to evaluate the performance of the three Bayesian networks several indicators
are employed: accuracy, sensitivity, specificity, the Harmonic Mean of Sensitivity and
Specificity (HMSS), the Receiver Operating Characteristic Curve (ROC) Area, the Most
Probable Explanation (MPE) and the complexity (or total number of arcs). After that,
inference is used to identify the values of the variables that are associated with killed or
severely injured in traffic accidents on Spanish rural highways.

1.9 Accident prediction on Swiss highways

Deublein et al. (2015) use a Bayesian network model to predict accident on Swiss high-
ways, divided in two groups of road types, open roads (including bridges) and tunnels
(including galleries). The model predicts the number of accidents with light personal
injury, severe and fatal injury accidents on a given highway segment and can be used to
identify segments with a high expected number of accidents. All data are provided by the
Federal Road Office (FEDRO) from 3 years (2010, 2011 and 2012), and all infrastructure
and transportation information to be used to divide the network into segments as well as
all accident data are associated to georeferenced points.

The methodology employed is the proposed by Deublein (2013) which is composed by
5 steps: (a) define homogeneous segments in which the values of the considered variables
remain constant, (b) calculate posterior accident rates, (c) perform multivariate regres-
sion analysis to include not only different risk indicators (shown in Table 1.9) into the
regression equation, but also several target variables (the accident rates of accidents with
no more than light injuries (LINJ), accidents with no more than heavy personal injuries,
(SINJ), and accidents with fatalities (FAT)), (d) develop the Bayesian network, where
the qualitative structure (represented in Figure 1.8) is fixed and identical for all accident
severities, and the conditional probability tables are built using a regression model, and
(e) determine the expected number of accidents with the posterior Bayesian network to es-
timate frequencies and with the exposure of the segments to estimate number of accidents
per year.
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Table 1.9: Risk-indicator variables in the model proposed by Deublein et al.

Variables Description
AADT Annual average daily traffic based on the 2010 traffic model

(ARE, 2010)
HGV Percentage of heavy traffic (heavy good vehicles) with respect

to the AADT based on the 2010 traffic model (ARE, 2010)
RAD Middle curve radius based on authors calculations
GRAD+ Amount of the average slope (up) based on the authors
GRAD- Amount of the average slope (down) based on the authors
SPEED Signalled maximum speed
LANES Number of lanes in each direction
EVEN Road surface texture: evenness in the longitudinal direction,

according to VSS standard SN 640 925b (VSS, 2003). In this
case, a mark between 0 and 2 is good, between 2 and 4 is
sufficient, and 5 is poor surface condition.

ROUGH Road surface texture: grip, according to VSS standard SN
640 925b (VSS, 2003). In this case, a mark between 0 and 2
is good, between 2 and 4 is sufficient, and 5 is poor surface
condition.

TYPE Distinction between open road including bridges, and tunnel
including galleries

AADT

TYPE

HGV

RAD
GRAD+ GRAD−

SPEED

EVEN

LANES

ROUGH

LINJ SINJ FAT

RISK INDICATORS

ACCIDENT EVENTS

Figure 1.8: Bayesian network Deublein et al. model structure.

1.10 Safety analysis of expressways in China

Wang et al. (2014) develop a Bayesian network model for safety analysis for expressways in
China. 949 accidents occurred on a section of freeway in mountain areas from 2009 to 2012
are analyzed and eight variables included within four influence factors: (a) driver char-
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acteristics, (b) highway characteristics, (c) vehicle characteristics, and (d) atmospheric
characteristics, are used to build the Bayesian network model using the Netica software.
Table 1.10 shows each of the variables with their possible values and the structure of the
Bayesian network is represented in Figure 1.9.

Table 1.10: Variables with their values proposed by Wang et al. model.

Variables Values
Accident type Fatality, injury and property
Lighting Dusk and daylight
Weather Bright, cloudy, fog, rainy, snow, and other
Age (18-24, 25-64, 65-inf)
Experience (0-1, 2-5, 6-10, 11-inf)
Sex Male and female
Cause Fatigue driving, not according to stipulations, unsuitable

safety distance, overspeed, wrong overtaking, improper op-
eration, and other

Vehicle type Large cars and small cars

Vehicle type

Cause

Weather

Lighting

Accident type

Age

Sex

Experience

Figure 1.9: Bayesian network Wang et al. model structure.

In this study three types of accidents are considered, fatality, injury, and property,
and a sensivity analysis is performed to determine the main cause of the occurrence of
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accidents on expressway in China, resulting the four main causes: cause, experience,
weather and lighting.

1.11 Modeling highway traffic safety in Nigeria

Mbakwe (2011) in his Ph. D. thesis presents a model for highway traffic safety in Nigeria
using BNs. In order to combat road safety problems it is intended to identify the ma-
jor contributing factors, including poor road condition, road obstruction, anemic use of
traffic control devices, driving under the influence, aggressive/reckless driving, mechani-
cal failure, and driver fatigue. Since Nigeria does not have a reliable and comprehensive
database of traffic incidents and fatalities, the Delphi technique is employed to generate
the required data. An important conclusion derived from this work is that the Nigerian
traffic safety would improve significantly if the existing laws and policies are enforced,
even at a very moderate level.

1.12 Predictive accident modeling in Canada

Chen (2014) classifies the main causes of highway incidents into: external environment,
operational environment, driver, and vehicle conditions and proposes a Bayesian Net-
works model to predict and continuously update the likelihood of highway incidents, by
considering a set of 28 variables or risk factors from the four principal causes. Incidents
data for the development of this accident predictive model are provided from Transport
Canada’s National Collision Database (NCDB), in particular the information of 293 high-
way accidents with fatalities is collected, in a period of 11 years (from 1999 to 2010).

Furthermore, they integrate the model with a Safety Instrumented System (SIS) and
simulate 10 scenarios with different specific states of variables to predict the probability of
fatal accident occurrence, in order to demonstrate how the integration of the BNs model
with SIS is.
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2.1 Introduction

In this Chapter basic concepts needed to build the Bayesian networks that comprise the
model proposed in this Thesis are shown. For a better understanding of the procedure to
follow, several definitions are given, as well as the description of different algorithms that
may interest us at some time. All examples shown are applied to the variables (described
and their relations established in Chapter 3 and 4) from which our initial Bayesian network
starts.

2.2 Triangulated graphs

Definition 1 (Chord of a loop.) A chord is a link between two nodes in a loop that is
not contained in the loop.

In Figure 2.1 several chords in different loops are represented. Thus, the links V is − S,
W − D, and V t − D, are chords in the loop V is −W − V t − S − D − V is. A chord
breaks the loop and decomposes it into smaller loops, V is − W − V t − S − V is and
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Figure 2.1: Example of several chords in different loops.

V is−S−D−V is for example in the case of the V is−S chord, W −V t−S−D−W and
W −D−V is−W for the W −D chord, and, V t−S−D−V t and V t−D−V is−W −V t
for the V t−D chord. On the other hand, it can be seen that these links are also chords
in other loops such as W − D link which is a chord in the loop composed by the nodes
W − S −D − It−W and V t−D in the loop V t− S −D −Dri− V t.

In the same way, Figure 2.2 illustrates other representation of chords in loops. V is−V t
is a chord in the loop V is−W −V t−S−D−V is and, W −D and V is−S, in the loop
V is−W − S −D − V is for example.

Given its structure, loops of length 3 are the only loops that can have no chords.
Therefore, these are the smallest elements in which a loop can be decomposed by the
incorporation of chords in the graph. Loops of length 3 are called triangles.

Definition 2 Triangulated graph. An undirected graph is said to be triangulated, or
chordal, if every loop of length four or more has at least one chord.

If a graph is not triangulated, it is possible to convert it into triangles by adding
chords that divide the loops. Since a loop can be broken in different ways with a chord,
triangulation is not unique, as shown in the example below, in which, the two graphs
shown in Figure 2.3 correspond to two different triangulations where all loops of length
four or more have at least one chord.

It is important to note that triangulating a graph does not consist in dividing it into
triangles. For example, the two graphs of Figure 2.3 are triangulated and, therefore, do
not need the addition of extra edges, such as the links V is− It and V t−D.

Figure 2.4 shows a triangulated graph on the right hand and the same graph but not
triangulated on the left hand side because a loop of length four, V is−W −S−D− V is,
does not have a chord.
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Figure 2.2: Illustration of different chords in loops.
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Figure 2.3: A triangulated graph in two different ways where all loops of length four or more have at least
one chord.

In order to preserve as much as possible the original topology of the graph in the
triangulation process, it is important to add as few chords as possible. In this sense, a
triangulation is said to be minimal if it contains a minimum number of chords below which
to triangulate the original graph is not possible. For this purpose, a simple algorithm
called Maximum cardinality search algorithm is introduced, defining before some necessary
concepts.
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Figure 2.4: A triangulated graph on the right hand side and not triangulated on the left.

2.3 Perfect numbering

Definition 3 Perfect numbering A given numbering, α, of the nodes of a graph is
called a perfect numbering if the subset of nodes Bnd(α(i))∩ {α(1), . . . , α(i− 1)} is com-
plete1 for i = 2, . . . , n.

Figure 2.5 shows a perfect numbering since it verifies the following conditions:
Being the nodes of the graph: α(1) = V is, α(2) = W , α(3) = D, α(4) = S, α(5) = It,

α(6) = V t, and α(7) = Dri

• For i = 2, Bnd(α(2)) ∩ {α(1)} = V nd(W ) ∩ {V is} = {V is, It,D, S, V t} ∩ {W} =
{W}, which is a trivially complete set.

• For i = 3, Bnd(α(3))∩ {α(1), α(2)} = {It,Dri, V is,W, S} ∩ {V is,W} = {V is,W}
is complete, since the link V is−W is contained in the graph.

• For i = 4, Bnd(α(4)) ∩ {α(1), α(2), α(3)} = {D, It,Dri,W, V t} ∩ {V is,W,D} =
{W,D} is also complete.

Similarly, for i = 5, . . . , 7, it can be verified that

Bnd(α(i)) ∩ {α(1), . . . , α(i− 1)}

is complete and thus, α is a perfect numbering.

The perfect numbering is not unique. For example, Figure 2.6 shows another perfect
numbering for the same previous graph and Figure 2.7 shows other graph with two differ-
ent perfect numbering. On the other hand, there are also graphs that do not admit any
perfect numbering.
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Figure 2.5: Example of a graph with a perfect numbering.
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Figure 2.6: Example of a graph with a different perfect numbering.

Theorem 1 Triangulation and perfect numbering. An undirected graph admits a
perfect numbering if and only if it is triangulated.

The Maximum Cardinality Search algorithm gives a numbering for the nodes of an
undirected graph which is a perfect numbering only if the original graph is a triangulated
graph.

1A subset of nodes is called complete if there is a link between every pair of nodes.
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Figure 2.7: Graph with two different perfect numberings.

Algorithm 1 Maximum Cardinality Search Algorithm (MCS).

• Input: An undirected graph G = (X,L) and an initial node Xi.

• Output: A numbering α of the nodes in X.

1. Initialization: Assign the first number in the numbering to the initial node Xi, that
is, α(1) = Xi.

2. Repeat the iteration step for i = 2, . . . , n.

3. Iteration i: In the ith iteration an unnumbered node Xk with the maximum number
of numbered neighbors is chosen to be numbered, that is, α(i) = Xk. Ties are broken
arbitrarily.

Theorem 2 MCS numbering. Every numbering of the nodes of a triangulated graph
obtained by the MCS algorithm is a perfect numbering.

Algorithm 2 Maximum Cardinality Search Algorithm (MCS).

• Input: An undirected graph G = (X,L) and an initial node Xi.

• Output: A fill-in L′, such that, G′ = (X,L ∪ L′) is a triangulated graph.

Initialization Steps:

1. Initially, the fill-in is empty, that is, L′ = φ.
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2. Let i = 1 and assign the first number in the numbering to the initial node Xi, that
is, α(1) = Xi.

Iteration Steps:

3. An unnumbered node Xk with a maximum number of numbered neighbors is assigned
label i, α(i) = Xk.

4. If Nbr(Xk) ∩ {α(1), . . . , α(i − 1)} is not complete, add to L′ the necessary links to
make this set complete and go to Step 2; otherwise, go to Step 5.

5. If i = n, then stop; otherwise, let i = i+ 1 and go to Step 3.

Example 1 Example of Maximum Cardinality Search Fill-In.
The algorithm is applied to the graph in Figure 2.8 which is undirected and not trian-

gulated. The node V is is chosen as the initial node.
The steps followed are described below and schematically represented in Figure 2.9.

• Step 1: L′ = φ.

• Step 2: Let i = 1 and α(1) = V is.

• Step 3: Nodes D and W have one and all other have no labeled neighbors. The node
D is chosen and is labeled 2 (α(2) = D).

• Step 4: The previous labeled neighbors form a complete set. Therefore, it is not
necessary to include any link in L′.

• Step 5: Since i 6= n, it is increased by one and Step 3 starts again.

• Steps 3 − 5: Nodes W , It and S have the same number of labeled neighbors (one)
and the others nodes do not have. The tie is undone by choosing the node W as
α(3). V nd(α(3)) ∩ {α(1), α(2)} = {W} ∩ {V is,D} is not complete. Thus, it is
necessary to add the link W −D to L’.

• Steps 3 − 5: The nodes with maximum number of neighbors now are It and S. It
is chosen as α(4). The previously numbered neighbors in this case form a complete
set, so to add any link to L′ is not necessary and the algorithm continues.

• Steps 3 − 5: Following a similar process, the nodes S, V and Dri are labeled 5, 6
and 7, respectively.

The resulting graph G′ = (X,L ∪ L′) is now a triangulated graph, and the final num-
bering is a perfect numbering.

Depending on the choice of the initial node and how the ties are undone, it is possible
to obtain several triangulations of the same graph (see Fig 2.3).
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Figure 2.8: Undirected and non-triangulated graph.

2.4 Running intersection property and Chain of cliques

Definition 4 Running intersection property. An ordering of the cliques of an
undirected graph (C1, . . . , Cm) is said to satisfy the running intersection property if the
set Ci ∩ (C1 ∪ . . .∪Ci−1) is contained in at least one of the cliques {C1, . . . , Ci−1}, for all
i = 1, . . . ,m.

This property states that the cliques of a graph can be ordered in such a way that
the nodes that are common to a given clique and the union of the preceding cliques are
also contained in at least one of the preceding cliques. An ordered sequence of cliques
satisfying the running intersection property is referred to as a chain of cliques. Some
undirected graphs have no chain of cliques, yet other undirected graphs have more than
one chain of cliques. The following theorem characterizes the graphs with at least one
chain of cliques.

Theorem 3 Chain of cliques. An undirected graph has an associated chain of cliques
if and only if it is triangulated.

Algorithm 3 Generating a Chain of Cliques

• Input: A triangulated undirected graph G = (X,L).

• Output: A chain of cliques (C1, . . . , Cm) associated with G.

1. Initialization: Choose any node to serve as an initial node, then use Algorithm 1 to
obtain a perfect numbering of the nodes, X1, . . . , Xn.
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Figure 2.9: Schematic representation of the steps followed for a perfect numbering according to the
Algorithm for Maximum Cardinality Search Fill-In.

2. Identify the cliques of the graph, C.

3. Assign to each clique the largest perfect number of its nodes.

4. Order the cliques, (C1, . . . , Cm), in ascending order according to their assigned num-
bers (break ties arbitrarily).

Example 2 Example of chain of cliques.
The algorithm 3 is applied to generate a chain of cliques associated with the triangulated

graph of perfect numbering given in Figure 2.5. The node V is has been considered as
the initial node and in Figure 2.10 the cliques of the graph are represented. They are:
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Figure 2.10: Example of a chain of cliques.

C1 = {V is,W,D}, C2 = {W,D, S, It}, C3 = {W,S, V t}, C4 = {S, V t,Dri}, and C5 =
{D,S,Dri}.

Next, the largest perfect number of its nodes is assigned to each clique. In this case the
number corresponding to the clique C1 is 3, for C2 the number is 5, 6 for the clique C3,
and 7 for the cliques C4 and C5. From clique 1 to 3 they are already ordered in ascending
order according to their assigned numbers and for the two last cliques it is possible to
choose it. Therefore, (C1, . . . , C5) is a chain of cliques for this graph.

Example 3 Example of chain of cliques.
In the same way as in the previous example it is proceeded with the triangulated graph

which perfect numbering is shown on the left side of Figure 2.7. Here the cliques of
the graph (see Figure 2.11) are: C1 = {V is,W,D}, C2 = {W,D, S}, C3 = {W,S, V t},
C4 = {V t,Dri}, and C5 = {W, It}.

The number assigned to the clique C1 is 3, being 4, 5, 6 and 7 for the cliques C2, C3,
C4, and C5, respectively. Since all the cliques are ordered in ascending order according
to their assigned numbers, the subset of cliques (C1, . . . , C5) is a chain of cliques for this
graph.

2.5 Cluster graphs

Definition 5 Cluster. A set of nodes of a graph is called a cluster.

Definition 6 Cluster graph associated with a graph. Given a graph G = (X,L)
and a set of clusters of X, C = {C1, . . . , Cm}, such that X = C1 ∪ . . . ∪ Cm, then the
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Figure 2.11: Example of a chain of cliques.

graph G′ = (C,L′) is called a cluster graph of G if L′ contains only links between clusters
containing common nodes, that is, (Ci, Cj) ∈ L′ ⇒ Ci ∩ Cj 6= φ.

Definition 7 Clique graph. A cluster graph is called a clique graph if its clusters are
the cliques of the associated graph.

Definition 8 Join, or junction, graph. A clique graph associated with an undirected
graph is called a join or junction graph if it contains all the possible links joining two
cliques with a common node.

Definition 9 Join or junction tree. A clique graph is called a join or junction tree if
it is a tree and if every node that belongs to two clusters also belongs to every cluster in
the path between them.

Theorem 4 Join tree. An undirected graph has a join tree if and only if it is triangu-
lated.

Algorithm 4 Generating a Join Tree

• INPUT: A triangulated undirected graph G = (X,L).

• OUTPUT: A join tree G′ = (C,L′) associated with G.

1. Initialization: Obtain a chain of cliques (C1, . . . , Cm) of graphG, using the algorithm
3.
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2. For each clique Ci ∈ C, choose from {C1, . . . , Ci−1} a clique Ck with maximum
number of common nodes and add the link Ci − Ck to L′ (initially empty). Break
ties arbitrarily.

Definition 10 Family tree. A family tree of a directed graph D is a join tree of some
undirected graph G associated with D in which the family of every node is contained in at
least one cluster.

Algorithm 5 Generating a Family Tree

• Input: A directed graph D = (X,L).

• Output: A family tree G′ = (C,L′) associated with D.

1. Moralize the directed graph.

2. Triangulate the resulting undirected graph using the triangulation algorithm.

3. Apply the join tree algorithm to obtain a join tree of the resulting graph.

Example 4 Example of a family tree.
In order to generate a family tree applying the algorithm 5, the directed graph of Figure

2.12 is considered. The families of its nodes are: {W}, {W,V is}, {W, It}, {V t,Dri},
{V is,D}, {W,V t}, and {W,V t,D, S}.

To moralize the graph, the parents of S, in this case W , V and D, must be joined by a
link. W and D are already linked in the initial figure, in such a way that only the W −D
edge should be added (see Figure 2.13).

The resulting moral graph is already triangulated. Otherwise, the algorithm 2 would be
used for its triangulation. Figure 2.14 shows the chain of cliques associated to the initial
directed graph with its corresponding perfect numbering.

Finally, the family tree can be obtained by applying the algorithm 4 and it is shown in
Figure 2.15.
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3.1 Introduction

One of the main concerns of our society today is the large number of accidents that occur
on roads. Thus, the studies and improvements on safety traffic analysis on roads are
considered necessary and useful. This work focuses on probabilistic safety analysis (PSA)
as it is the best technique to asses the safety level of a system. It has been widely used for
nuclear power plants and in recent years it has also been employed for railway lines (see for
example Castillo et al. (2016b) and Castillo et al. (2016a)). On the other hand, it is known
that Bayesian networks (BNs) have a great power to reproduce multidimensional random
variables and present numerous advantages with respect to other existing methods such
as fault or event trees. Nevertheless, there are few analysis of traffic infrastructures based
on them.

A probabilistic safety analysis methodology based on Bayesian networks models for the
probabilistic safety assessment (PSA) of highways and roads is proposed in this Thesis.
Next, the proposed model following this methodology is introduced and described.

Essentially, there are two main methods to define the qualitative structure of a Bayesian
network (BN):

1. Subjective or experience based method. The first method is based on our knowledge
of the problem, i.e. we decide the direct dependencies among the variables based
on the expert knowledge of the problem.
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2. Automatic or objective construction method. The second method automatically
learns the Bayesian network structure based on data.

In order to build the model the first method is used since the knowledge of the direct
dependence among variables is sufficiently well known and because the existing data are
not the most adequate to provide this information.

The construction of the Bayesian network can be based on the following steps:

1. Step 1. Selection of the items that have a relevant influence on traffic safety. This
means to analyze the highway or road, for example by recording a video from its start
to its end, in order to identify all possible items causing incidents related to traffic
safety (light signals, stop signals, pavement failures, intersections, roundabouts,
tunnels, acceleration or deceleration lines, and curves).

2. Step 2. Identification of the variables related to these items. For example, driver’s
tiredness, driver’s attention, speed, traffic lights states, weather conditions, and
traffic intensities.

3. Step 3. Identification of the direct dependencies among the variables involved. This
means a careful study and analysis of the different variables to identify dependencies
and direct relations between pairs of variables.

4. Step 4. Definition of the conditional probability tables. We need to define the
conditional probability of each variable given their parent variables for each possible
combination. If possible, closed formulas must be used to facilitate the analysis and
implementation of the Bayesian network.

Once these four steps are covered, all the information needed to evaluate the proba-
bility of any possible univariate or multivariate event is available. This is the practical
power of Bayesian networks.

The following two sections present the first steps needed to build the Bayesian network:
a) the selection of the most relevant items that have influence on traffic safety being likely
to cause incidents, and b) the identification of the variables related to these items.

3.2 Items

The identification of all possible items causing incidents related to traffic safety such as
light signals, stop signals, pavement failures, intersections, roundabouts, tunnels, and
acceleration or deceleration lines, is the first required step to build the Bayesian network.
For that, the recording of a video is analyzed along the highway or road. The selection
of the items considered of having a relevant influence on traffic safety to be included in
the proposed model are presented in Table 3.1, where the names are self-explanatory.

The considered items could lead to different hazardous situations with various severity
levels depending on the circumstances of the road at any time, as for example:
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Table 3.1: List of all sub-Bayesian network types and associated item types considered in the model.

Subnetwork Item Subnetwork Item

Initial Initial Single incident CurveIn

Signal Stop LateralEntry

Yield AccelerationLane

SpeedLimit Intersection

SpeedLimitTemp RoundAbout

GradeCrossing Overpass

PedestrianCrossing Underpass

OvertakingIn ViaductIn

Parameter value change TrafficChange ViaductOut

CurveOut TunnelIn

SlopeIn TunnelOut

SlopeOut Warning signal PermanentWarning

RoadTypeChange DistractingWarning

Continuous TemporalWarning

ContinuousOff OvertakingOut

WeatherChange Traffic light TrafficLight

WeatherModifOFF Segment without signal SegmentWSignals

1. In a segment without signal:

• Hit with elements on the track.

• Collision with crossing animals.

• Crash with other vehicles.

• Accidents with pedestrian and cyclists.

• Cuttings and slope stability.

• Pavement faults.

2. In located points which are divided by types:

• In lateral entries:
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– Improper exits or entries of vehicles.

– Road obstruction due to animals.

– Lack of visibility.

• In access lanes:

– Inadequate road incorporations.

– Driver’s distractions.

• In tunnels:

– Material detachments.

– Visibility losses at the entries or exits.

– Water or snow accumulation.

• In viaducts:

– Differential settlements.

– Wind gusts.

• In curves:

– Speed excess.

– Lack of visibility.

– Vehicle out of control.

• In slopes:

– Visibility losses.

– Speed differences among users.

• In intersections:

– Stop sign trespassing.

– Speed excess and distraction.

3. In sections of the highway or road where a decision by the driver is needed:

• Before a stop sign

– Incorrect decisions.

– Inadequate signal location.

• Before a speed limit sign

– Speed excess.

– Incorrect decision or inhibition.

• Before a traffic signal

– Traffic light trespassing.

– Incorrect location.
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3.3 Variables

As indicated, after the items related to traffic safety have been selected, the next step
to define properly the BN model is to identify all the variables which are relevant to the
problem being studied. In the present model, the following variables have been considered:

1. D: Driver’s attention. As it has been noted previously, the human error should
not be forgotten because it emerges as one of the most probable road accident
cause. This variable represents the driver’s attention levels, which in this model are
simplified to three states:

• Distracted. In this state the driver is assumed to be unaware of conduction,
thus he/she will react with no action at all.

• Attentive. In this state the driver is assumed to be paying attention to the
road and it is expected that the required actions will be correct with a high
probability, but otherwise the actions will be incorrect (erroneous).

• Alert. In this situation the driver is assumed to react with no error at all.

2. T: Driver’s tiredness. Since the driver is subject to an increase of tiredness with
driving time, a variable is needed to analyze how the driver’s tiredness changes when
travelling along the road. This element is modeled as a hidden variable, which
can modify the driver’s attention D nodes. We consider the tiredness increases

the probability of errors using a variable exp

(
− t

t0

2
)

, where t0 is a reference time

parameter and t is the driving time.

3. Sd: Driver’s speed decision. This variable represent the driver’s action in cases in
which the driver must adjust the driving speed. The assumed values of this variable
are:

• Correct. The driver adapts properly the driving speed.

• Error I. The driver fails to adjust the speed to the correct speed because he/she
is distracted.

• Error II. The driver fails to adjust the speed to the correct speed due to other
reasons.

4. Dri: Driver type. This variable refers to the driver’s quality, and can take the
following values: professional, experienced, standard and bad.

5. It: Traffic Intensity. The incidents that occur along a road are deeply influenced by
the traffic intensity. Therefore this information should be modeled as a variable. In
this network it is represented by means of the It node, which determines the traffic
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frequency along each road segment. The possible values of this variable are slight
traffic, medium traffic and heavy traffic.

6. Vis: Visualising quality. This variable refers to the driver’s visibility quality, and
can take the following values: good, medium and bad.

7. Vt: Vehicle type. The type of traveling vehicles influences significantly the fre-
quencies of incident occurrences along a road, therefore this information should also
be modeled as a variable. In this network this variable is represented by Vt with
possible values: heavy vehicle, car and motorbike.

8. S: Speed. Speed is a very relevant variable that is represented as a variable which
indicates the circulating speed at a road segment. We represent it as a discrete
variable with a finite set of values, which can change with the item location.

9. V: Vehicle failure. This variable considers the possibility of some vehicle failures
and takes values: no failure, minor failure, medium failure and severe failure.

10. P: Pavement failure. This variable reproduces possible incident occurrences because
of track deficiencies, such as bump, berm or lane deficiencies, and some undesired
incident occurrences, such as the obstruction of the road by stones or material of
cuttings, fallen trees, and blocking animals. The values of this variable are: no
failure, minor failure, medium failure and severe failure. This variable is strongly
influenced by road characteristics and depends on the environment factors which
surround the road.

11. Co: Collision. This variable represents some incident occurrences because of the
interaction with other vehicles that circulate along the road in the same or contrary
direction and can lead to important incidents, such as frontal or lateral collisions.
Its values are: no failure, minor failure, medium failure and severe failure. This
variable is clearly influenced by the traffic intensity of the road.

12. W: Weather. The weather alters the driver’s attention, conditions and tiredness
evolution, as well as track and environment behaviour. Therefore it is necessary to
consider and to model it as a variable with values: fair, medium, bad and very bad.

13. SS: Signal State. The traffic lights define the availability to trespass a concrete
point along the line, therefore its state might influence the traffic behaviour and the
incident occurrences. This variable is represented with three possible values: free,
and not free.

14. AS: Driver’s decision at a traffic light. This variable represents the driver’s action
at a traffic light, the possible values of this variable are:

• Correct. The driver takes the action that determines the traffic light.
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• Error I. The driver takes an action contrary to what it is determined by the
traffic light because he/she is not aware of the mistake.

• Error II. The driver takes an action contrary to what it is determined by the
traffic light voluntarily but she/he is aware of the signal state.

15. DS: Driver’s decision at a signal. This variable represents the driver’s action at a
mandatory signal, e.g. Stop, yield street or speed limit signals. The possible values
of this variable are:

• Correct. The driver takes the correct action.

• Error. The driver takes the wrong action.

16. TF: Technical failure. This variable represents a possible failure of the signal. The
possible values of this variable are:

• Yes. There is a technical failure.

• No. There is no technical failure.

17. I: Incident. This variable includes all possible incidents that may happen along the
track at a unique segment location and has values: no incident, minor incident,
medium incident and severe incident.

The notation used for the variables involved in the model and the corresponding sets
of values are shown schematically in Table 3.2.
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Table 3.2: List of variable types with their definitions and possible values.

VARIABLE DEFINITION VALUES

D: Driver’s attention This variable represents the driver’s attention Distracted, Attentive, Alert

T: Driver’s tiredness Measures the driver’s tiredness A positive value increasing with driving time

Sd: Driver’s speed decision It represents the driver’s action in cases in which the
driver must adjust the driving speed

Correct, Error I, Error II

Dri: Driver type This variable refers to the driver’s quality Professional, Experienced, Standard, Bad

It: Traffic Intensity This variable refers to the traffic intensity Slight traffic, Medium traffic and Heavy traf-
fic

Vis: Visualising quality This variable refers to the driver’s visibility quality Good, Medium and Bad

Vt: Vehicle type It refers to the vehicle type Heavy vehicle, Car and Motorbike

S: Speed Speed Set of positive real values

V: Vehicle failure This variable considers the possibility of some vehicle
failures

No failure, Minor failure, Medium failure and
Severe failure

P: Pavement failure This variable reproduces possible incident occurrences
because of track deficiencies and some undesired inci-
dent occurrences

No failure, Minor failure, Medium failure and
Severe failure

Co: Collision This variable represents some incident occurrences be-
cause of the interaction with other vehicles that circulate
along the road in the same or contrary direction

No failure, Minor failure, Medium failure and
Severe failure

W: Weather This variable represents the type of weather Fair, Medium, Bad, and Very bad

SS: Signal State This variable represents the signal state Free, Not free

AS: Driver’s decision at a traffic light This variable represents the driver’s decision at a traffic
light

Correct, Error I, Error II

DS: Driver’s decision at a signal This variable represents the driver’s action at a manda-
tory signal, e.g. Stop, yield street or speed limit signals

Correct, Error

TF: Technical failure This variable represents a possible failure of the signal. Yes, No

I: Incident This variable includes all possible incidents that may
happen along the track at a unique segment location

No incident, Minor incident, Medium inci-
dent, Severe incident
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4.1 Introduction

Once the items and the variables have been defined, the structure of the Markovian-
Bayesian network should be designed. The previously defined elements can be modelled
as 7 different sub-Bayesian networks with a particular structure and associated variables
with their corresponding conditional probabilities.

The subnetworks components associated with the different items are described and
shown below, where the green nodes, joined by a dashed blue square represent the nodes
of the subnetwork analyzed in each case, and the grey nodes are those nodes of other
subnetworks to which they are connected. The links of the subnetwork are indicated as
green arrows and other links appear as dashed arrows. The node types appear in the
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center of the node circles that contain the corresponding type names and all the variables
have associated initial marginal or conditional probabilities to be defined later.

4.2 Initial sub-Bayesian network

At the beginning of a road an initial subnetwork must be used so this sub-Bayesian
network reproduces the situation when a user starts the driving and contains seven nodes
that represent the following variables: a) the weather conditions W , b) the vehicle type
V t, c) the driver type Dri, d) the traffic intensity It, e) the visibility conditions V is, f)
the driver’s attention D, and g) the speed S. This is illustrated in Figure 4.1.
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P V Co
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Sp

Dp

Itp

Vtp

Initial
Point

Figure 4.1: Initial sub-Bayesian network.

The item associated in this case is the initial location.

4.3 Segment without signs sub-Bayesian network

To consider the possibility of incidents due not to particular locations but to continuous
elements in the road segment, a segment without signs sub-Bayesian network must be
located between consecutive items. It contains twelve nodes: a) the weather conditions
W , b) the vehicle type V t, c) the driver type Dri, d) the traffic intensity It, e) the
visibility conditions V is, f) the driver’s attention D, g) the speed S, h) the driver’s speed
decision Sd, i) the vehicle failure V , j) the pavement failure P , k) the collision variable
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Co, and l) the incident variable I, as shown in Figure 4.2, and is associated with segment
without sign items.
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Figure 4.2: Segment without signs sub-Bayesian network.

Despite of the fact that the driver’s attention affects significantly the incident occur-
rences and their level, even when drivers are completely alert, other types of incidents
can take place at segments without signals. In fact, vehicle and pavement failures can
cause accidents, and some collisions among vehicles in the same or contrary directions
can occur. This is what variables V , P and Co take into account.

4.4 Concentrated incident sub-Bayesian network

This structure represents cases in which a concentrated incident can occur. This subnet-
work contains only the I variable, as can be seen in Figure 4.3 and includes the following
items: a) intersection, b) roundabout, c) tunnels, d) viaducts, e) underpasses, f) over-
passes, g) lateral entries, and h) acceleration lanes.

4.5 Sign sub-Bayesian network

At locations where some action subject to error is required this structure is used. This
subnetwork has associated the following items: a) yield, b) stop, c) grade crossing, d)
pedestrian crossing, e) speed limit, and f) prohibition signs, and contains five variables:
a) driver’s attention D, b) driver’s decision at a a signal Ds, c) speed S, d) technical
failure TF , and e) incident I. This is represented in Figure 4.4.
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Figure 4.3: Single incident sub-Bayesian network.

4.6 Traffic signal sub-Bayesian network

This subnetwork is used for traffic lights, where some decision subject to error is needed.
The only associated item is the traffic light and it contains six variables: a) driver’s
attention D, b) driver’s decision at a a signal Ds, c) speed S, d) technical failure TF , e)
signal state SS, and f) incident I, as illustrated in Figure 4.5.

4.7 Warning signal sub-Bayesian network

The only variable that appears in this subnetwork is the driver’s attention D because this
structure is used to reproduce the driver changes of attention due to warning signals. The
following items are included: a) permanent warning signals, b) temporal warning signals,
c) distracting warning signals (billboards), and d) end of bans, and Figure 4.6 shows this
structure.
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Figure 4.4: Generic signal sub-Bayesian network.
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Figure 4.5: Traffic light sub-Bayesian network.
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Figure 4.6: Warning signal sub-Bayesian network.

4.8 Parameter value change sub-Bayesian network

This structure is used to reproduce the parameter changes of track, environment or traffic
characteristics among others. It includes the items: a) weather change, b) traffic intensity
change, c) road quality change, and d) terrain change, and does not add any variable.
This subnetwork can be seen in Figure 4.7.

4.9 Overtaking sub-Bayesian network

In the case of overtaking signals a first vertical signal of forbidden overtaking is usually
found and after a certain section considered, a signal of ending this prohibition. Figure 4.8
illustrates this representation showing the case of two overtaking subnetworks associated
with two no overtaking signs with all their variables (the second and fourth group of
variables) and the neighbours subnetworks (first, third and fifth).

It must be noted that there are two types of subnetworks, those associated with
segments without signs, where the risk is distributed along its length, and those associated
with signs, where the risk is associated with their locations.
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Figure 4.7: Parameter value change sub-Bayesian network.
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4.10 Insertion of the sub-Bayesian networks into the

general network

Any road considered would be represented by different subnetworks along its length that
they would be included within the general network to study the road as a whole. Figure
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4.9 illustrates how the different subnetworks are integrated into the general network. The
right subnetworks in this figure correspond to the locations where signs are located, and
the left sub-networks correspond to the segments without signs, that is, where the risk is
a function of the segment length.
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5.1 Introduction

One difficult step in the Bayesian network construction process is the definition of the
conditional probability tables. It is necessary to provide the conditional probabilities
tables of each node given their parents. As discussed below, this can be facilitated if
closed formulas can be derived. Some examples that show how this can be done are
provided in Section 5.3.

The different assumptions which must be made and the analysis of the conditional
probability tables of the Bayesian network model are explained next.

5.2 Conditional probabilities of the initial subnet-

work

In this section the assumptions made for the conditional probabilities of the nodes given
their parents for the initial subnetwork shown in Figure 4.1 are discussed.

5.2.1 Conditional probability of node W weather

Since the weather node W has no parents, its conditional probability coincides with
its marginal probability, which is assumed to be a multinomial probability with possible
values: ‘fair’, ‘medium’, ‘bad’ and ‘very bad’. The elements of this marginal probability are
parameters to be given. However, in order to facilitate its definition, a set of non-negative
values can be given instead, which indicate the relative frequencies of each possible value
of variable W . These values are automatically normalized to obtain a valid probability.

5.2.2 Conditional probability of node Vt vehicle type

Since node Vt has one parent variable, W , it is necessary to define the conditional prob-
abilities P (Vt|W ), of Vt given all values of W , which are assumed to be multinomial
variables with possible values: ‘heavy vehicle’, ‘car’ and ‘motorbike’. To this end the
conditional probability q(v) = P (Vt = v|W = ‘fair′) is defined, for all values of v, for
the case of ‘fair’ weather. To give more flexibility, we allow for a true probability (non-
negative values adding up to one) or simply non-negative values (relative frequencies),
which are adequately normalized. Next, to define P (Vt = v|W = w) for w 6= ‘fair′, that
is, for other weather values different from ‘fair’, non-negative factors fh(w) and fm(w)
are used, for heavy vehicles and motorbikes, respectively, which are the correction factors
to obtain the relative frequencies of these vehicles for all weather types w. Consequently,
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the conditional probability becomes the matrix in Table 5.1. Note that fh(‘fair’) = 1 and
fm(‘fair’) = 1 when defined or after adequate normalization.

Table 5.1: Conditional probability P (Vt = v|W = w).

Conditional probability P (Vt = v|W = w)
v

w ‘Heavy’ ‘Car’ ‘Motorbyke’
‘Fair’ q(1)fh(1) 1− q(1)fh(1)− q(3)fm(1) q(3)fm(1)

‘Medium’ q(1)fh(2) 1− q(1)fh(2)− q(3)fm(2) q(3)fm(2)
‘Bad’ q(1)fh(3) 1− q(1)fh(3)− q(3)fm(3) q(3)fm(3)

‘Very bad’ q(1)fh(4) 1− q(1)fh(4)− q(3)fm(4) q(3)fm(4)

5.2.3 Conditional probability of node Dri driver type

Since node Dri has one parent variable, Vt, it is necessary to define the conditional
probabilities P (Dri|Vt), of Dri given all values of Vt, which are multinomial variables.
Thus, we have

pdv = P (Dri = d|Vt = v),

where pdv are parameters to be given.
As in the case of node W , this matrix can be replaced by a matrix of non-negative

numbers, referring to the relative frequencies, because it can be adequately normalized to
become a valid conditional probability.

5.2.4 Conditional probability of node It traffic intensity

Since node It has one parent variable, W , it is necessary to define the conditional probabil-
ities P (It = i|W = w), of It given all possible values of W . To this end, the It is assumed
to have a normal density N(α(w)µ, α(w)σ), where µ and σ are the mean intensity and
its standard deviation, respectively, for the case W = w = ‘fair′, that is for α(1) = 1.
To simplify, the normal variable is discretized using two intensity threshold values Itm
and Ith, respectively, and a multinomial variable with three possible values for the traffic
intensity It: ‘slight’ (It ≤ Itm), ‘medium’ (Itm < It ≤ Ith) and ‘heavy’ (It > Ith), is
considered. Thus, the conditional probability P (It = i|W = w) becomes the one in Table
5.2 where Φ() is the cdf of the standard normal variable,

µmw = α(w)µ; σmw = α(w)σ;

w = ‘fair’, ‘medium’, ‘bad’ and ‘very bad’ (5.1)

and the α(w) are non-negative correction factors to consider the effect of weather type w.
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Table 5.2: Conditional probability P (It = i|W = w).

Conditional probability P (It = i|W = w)
i

w ‘Slight’ ‘Medium’ ‘Heavy’

‘Fair’ Φ
(
Itm − µm1

σm1

)
Φ
(
Ith − µm1

σm1

)
− Φ

(
Itm − µm1

σm1

)
1− Φ

(
Ith − µm1

σm1

)
‘Medium’ Φ

(
Itm − µm2

σm2

)
Φ
(
Ith − µm2

σm2

)
− Φ

(
Itm − µm2

σm2

)
1− Φ

(
Ith − µm2

σm2

)
‘Bad’ Φ

(
Itm − µm3

σm3

)
Φ
(
Ith − µm3

σm3

)
− Φ

(
Itm − µm3

σm3

)
1− Φ

(
Ith − µm3

σm3

)
‘Very bad’ Φ

(
Itm − µm4

σm4

)
Φ
(
Ith − µm4

σm4

)
− Φ

(
Itm − µm4

σm4

)
1− Φ

(
Ith − µm4

σm4

)

5.2.5 Conditional probability of node V is visibility

Since node V is has one parent variable, W , it is necessary to define the conditional
probabilities P (V is = v|W = w), of V is given all values of W , which are assumed
multinomial variables with possible values: ‘good’, ‘medium’ and ‘bad’. However, in order
to facilitate its definition, a set of non-negative values can be given instead, which indicate
the relative frequencies of each possible value of variable W . These values are later
normalized to obtain a valid probability.

5.2.6 Conditional probability of node D driver’s attention

Since node D has three parent variables, Dri, It, V is, it is necessary to define the condi-
tional probabilities P (D = a|Dri = b, It = c, V is = d) for each possible combination of
the conditioning variables. To this end, it is assumed initially that D is a normal random
variable N(µ, 1) for a reference combination of Dri, It, V is, which has been selected as
a ‘standard‘ driver, a ‘medium’ intensity and a ‘medium’ visibility. Given pd and pa, the
probabilities of the driver being ‘distracted’ and ‘attentive’, respectively, it is possible to
obtain two threshold values thd and tha for D as

Φ(thi − µ) = pi ⇔ thi = µ+ Φ−1(pi); i ∈ {d, a}. (5.2)

These two threshold values, thd and tha, allow us to discretize the variable D as a
multinomial variable with possible values ‘distracted’ (D ≤ thd), ‘attentive’ (thd < D ≤
tha) and ‘alert’ (D > tha).

It is also assumed that other combinations of variables Dri, It, V is modify the thresh-
old reference values, thd and tha, by means of dimensionless correction factors α(b), β(c)
and γ(d) of the driver’s type (b), the intensity (c) and the visibility level (d), respec-



5.3. CONDITIONAL PROBABILITIES OF INTERMEDIATE SUBNETWORKS 83

tively, that is, the new threshold values become thdα(b)β(c)γ(d) and thaα(b)β(c)γ(d),
respectively.

With this, the conditional probability P (D = a|Dri = b, It = c, V is = d) becomes:

(δ1a − δ2a)Φ(thdα(b)β(c)γ(d)− µ) + (δ2a − δ3a)Φ(thaα(b)β(c)γ(d)− µ) + δ3a. (5.3)

Note that, due to the chosen reference combination, we must have α(‘standard′) =
1, β(‘medium′) = 1 and γ(‘medium′) = 1; otherwise, the correction factors must be
normalized by dividing them by the adequate values.

5.2.7 Conditional probability of node S speed

Since node S has five parent variables, W , V t, Dri, It and D, it is necessary to define the
conditional probabilities P (S|W,V t,Dri, It,D) for any combination of the conditioning
variables.

To this end, it is initially assumed that the S variable is a gamma distribution G(k, θ)
with mode:

Smode(b, c, d, e) = (k − 1)θ = Smaxα(b)β(c)γ(d)ρ(e), (5.4)

where α(b), β(c), γ(d) and ρ(e) are factors to take into account the effect of weather W ,
vehicle type V t, driver’s type Dri and intensity It, respectively.

Next, the S variable is discretized as a multinomial with given values s(1), s(2), . . . , s(a∗),
where a∗ is the last index of the speed variable S, and it is obtained the following condi-
tional probability p(a, b, c, d, e, f) = P (S = a|W = b, V t = c,Dri = d, It = e,D = f):

p(a, b, c, d, e, f) = (1− δaa∗)FG(1+Smode(b,c,d,e)/θ,θ)

(
s(a) + s(a+ 1)

2

)

−(1− δa1)FG(1+Smode(b,c,d,e)/θ,θ)

(
s(a− 1) + s(a)

2

)
+ δaa∗ , (5.5)

where FG(a,b)(x) is the cdf of the gamma random variable.

5.3 Conditional probabilities of intermediate subnet-

works without signals

In this section the assumptions made for the conditional probabilities of the nodes given
their parents for intermediate subnetworks without signals, shown in Figure 4.2, are dis-
cussed. It is possible to see how due to the large number of possible combinations this
is a complicated process. For this reason, the use of closed formulas which is explained
below is proposed.
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A general way to define the conditional probabilities of the form P (A|B1, B2, . . . , Bk)
is introduced, where P(A) ≡ {B1, B2, . . . , Bk} is the set of parents of node A.

We look for valid formulas of the probabilities pab1b2...bk = P (a|b1, b2, . . . , bk), where
the lower case letters refer to the values of the corresponding upper case letters, that is,
they must be non-negative and the sum of the probabilities of all values of the son for any
combination of parent values must be one. When these sets of probabilities are generated
automatically, care should be taken to check these conditions.

Here it is proposed a formula of the form:

pa,b1,b2,...,bk =
∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2) [. . .

 ∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

 na∑
jsr

qj1,...,jsr (θj1,...,jsr )δajsr

, (5.6)

where the right hand side term is a sum of products, the index jsr , which depends on
the summand being considered, refers to the last factor in each summand, na is the
cardinal of the set of values of node A, θj1,j2,...,jst are vectors of parameters, and all
qj1,j2,...,jst ; t = 1, 2, . . . , r are non-negative valued functions of a subset of parents of node
A, that is, whose arguments are a subset of {b1, b2, . . . , bk}, and they must satisfy∑

jt

qj1,...,jt(θj1,...,jt) = 1; ∀j1, j2, . . . , jt; t = 1, 2, . . . , sr. (5.7)

Note that the last and only the last summation contains the son values a. This
guarantees that pa,b1,b2,...,bk is a valid conditional probability table, because all terms are
non-negative, there are no minus signs and we have

na∑
a=1

pa,b1,b2,...,bk =
na∑
a=1

∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2 [. . .

 ∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

 na∑
jsr

qj1,...,jsr (θj1,...,jsr )δajsr


=
∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2)

. . .
∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

 na∑
jsr

qj1,...,jsr (θj1,...,jsr )
na∑
a=1

δajsr

 = 1, (5.8)

where it has been taken into account that
na∑
a=1

δajsr = 1 and the set of constraints (5.7).

Next, several examples that clarify the meaning of the qj1,...,jsr functions are given. Fig-
ures 5.2 to 5.8 will show these functions for the particular cases of driver’s speed decision,
vehicle failure, collision, pavement failure, curves, and traffic lights nodes, respectively.
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5.3.1 Conditional probability of node W weather

Since the node W has a parent Wp, its conditional probability P (W = w|Wp = wp) must
be obtained for all values of Wp. It is assumed that W is a multinomial variable with
possible values: ‘good’, ‘medium’, ‘bad’, and ‘very bad’ and the conditional probability
is calculated with the rates in Table 5.3, where α1 and α2 are two factors which are
different from zero when a weather deterioration occurs and whose values are the factors
that should be used for one and two stages of deterioration, respectively, β1 and β2 are
two factors that are different from zero when a weather improvement takes place and
whose values are the factors that should be used for one and two stages of improvement,
respectively, and the parameters λ are the different rates.

Table 5.3: Rates used to calculate the conditional probability P (W = w|Wp = wp).

Rates used for conditional probability P (W = w|Wp = wp)
w

wp ‘Fair’ ‘Medium’ ‘Bad’ ‘Very bad’
‘Fair’ 0 α1λ2 α2λ3 0

‘Medium’ β1λ1 0 α1λ3 α2λ4

‘Bad’ β2λ1 β1λ2 0 α1λ4

‘Very bad’ 0 β2λ2 β1λ3 0

5.3.2 Conditional probability of node Vt vehicle type, Dri driver
type, and It traffic intensity

Since the type of vehicle Vt, the type of driver Dri and the traffic intensity It have a parent
Vtp, Drip and Itp, respectively, their conditional probabilities P (Vt|Vtp), P (Dri|Drip),
and P (It|Itp), must be calculated for all values of the conditioning variables. Since these
variables do not change within a link, the type of vehicle, the type of driver, and the traffic
intensity are the same along the segment. This means that the conditional probability
tables P (Vt|Vtp), P (Dri|Drip), and P (It|Itp) coincide with the identity matrix.

5.3.3 Conditional probability of node V is visibility

Since node V is has one parent variable, W , it is necessary to define the conditional
probabilities P (V is = v|W = w), of V is given all values of W , which are assumed
multinomial variables with possible values: ‘fair’, ‘medium’ and ‘bad’. However, in order
to facilitate its definition, a set of non-negative values can be given instead, which indicate
the relative frequencies of each possible value of variable W . These values are later
normalized to obtain a valid probability.
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5.3.4 Conditional probability of node D driver’s attention

Since any nodeD at any intermediate subnetwork has four parent variables, Dp, Dri, It, V is,
the conditional probabilities P (D = a|Dp = b,Dri = c, It = d, V is = e) for each possible
combination of the conditioning variables need to be defined.

Before analyzing the conditional probability, the Markov model for the driver’s atten-
tion is discussed.

Markov’s model for driver’s attention

In this subsection how the driver’s attention changes with time or traveled distance is
discussed.

In order to reproduce the driver and the vehicle behaviour at a segment without
signals, discrete or continuous Markov processes can be used (see references Benjamin
and Cornell (1970), Doob (1953) or Kijima (1997)). In the present model the continuous
case is only considered, because it seems to be more appropriate.

Distraído    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
AvanzadaDistracted

    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada

Atent

    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
Avanzada
    Señal 
AvanzadaAlert

η/at

γ1 at

γ3at

γ2 at

Figure 5.1: Markov model of driver’s attention states: Markov model illustrating the transitions among
different attention levels and the corresponding probabilities.

In this case we have the differential equation associated with a standard Markov model
(see Figure 5.1):

 p′0(t∗, t− t0)
p′1(t∗, t− t0)
p′2(t∗, t− t0)

 =

−η/at∗ γ1at∗ γ2at∗
η/at∗ −γ1at∗ γ3at∗

0 0 −(γ2 + γ3)at∗

×
p0(t∗, t− t0)
p1(t∗, t− t0)
p2(t∗, t− t0)

 , (5.9)

where p0(t∗, t), p1(t∗, t) and p2(t∗, t) are the probabilities associated with the three
driver’s states (distracted, attentive and alert), t, t0 and t∗ are a given time, the segment
starting time and the segment center time, respectively. η/at∗ is the time rate of recovering
attention when the driver is distracted after a time t∗ from the beginning of the trip,
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γiat∗ ; i = 1, 2 are the time rates of becoming distracted when being attentive and alert,
respectively, and γ3at∗ is the time rate of becoming attentive when the driver is alert,
which leads to the model p0(t∗, t− t0)

p1(t∗, t− t0)
p2(t∗, t− t0)

 = M`(t
∗, t− t0; η,γ1, γ2, γ3)

 p0
0

p0
1

p0
2

 , (5.10)

where ` is the segment length and p0
i = pi(t

∗, 0); i = 1, 2, 3.
Formula (5.10) permits us to calculate how the probabilities of each of the three states

(distracted, attentive and alert) evolve with time t− t0.
Thus, the conditional probabilities for node D given node Dp are given by pa,b =

P (D = a|Dp = b):

(
δa,1 δa,2 δa,3

)
M`(t

∗, tend − t0; η,γ1, γ2, γ3)

 δb,1
δb,2
δb,3

 , (5.11)

where tend is the segment exit time.
The pa,b probabilities allow us to calculate the marginal probabilities pd and pa of the

driver being ‘distracted’ and ‘attentive’, respectively.
Next, the threshold values thd and tha associated with pd and pa are calculated, that

is
thi = α(b)β(c)γ(d) + Φ−1(pi); i ∈ {d, a}, (5.12)

Finally, the conditional probability

p(a, b, c, d, e) = P (D = a|Dp = b,Dri = c, It = d, V is = e)

becomes:

p(a, b, c, d, e) = (δ1a − δ2a)Φ(thdα(b)β(c)γ(d)− µ)
+(δ2a − δ3a)Φ(thaα(b)β(c)γ(d)− µ) + δ3a. (5.13)

5.3.5 Conditional probability of node Sd driver’s speed decision

Since the driver’s speed decision node Sd has one parent Dp, its conditional probability
P (Sd|Dp) must be defined for all values of Dp. For that, the following assumptions are
made:

1. There is no action if the driver is in the ‘distracted’ state, that is, the error is of
type I.
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2. If the driver is in the ‘attentive’ state, there is a probability τat of making an error
and this error will be of type I with probability κ and of type II, otherwise, where
at is the factor used to correct the probability τ of making an error due to driver’s
tiredness.

3. There is no error in the decision if the driver is in the ‘alert’ state.

With these assumptions, the conditional probability P (Sd = a|D = b) becomes as given
in Table 5.4. This probability is also represented in Figure 5.8 by means of a closed
formula as explained previously. Here it can be seen that the conditional probability is
of the form (5.6) and, the q functions can be identified and Formula (5.14) obtained, by
simply adding the contributions of all branches.

Table 5.4: Conditional probability P (Sd = a|Dp = b).

Conditional probability P (Sd = a|Dp = b)
a

b ‘correct’ ‘Error I’ ‘Error II’
‘distracted’ 0 1 0
‘attentive’ 1− τat τatκ τat(1− κ)

‘alert’ 1 0 0

P (Sd = a|D = b) = δb1δa2 + δb2 [τ (κδa2 + (1− κ)δa3) + (1− τ)δa1] + δb3δa1.(5.14)

5.3.6 Conditional probability of node V vehicle failure

Since node V has three parent variables, V t, D and S, the conditional probabilities
P (V = a|V t = b,D = c, S = d) for any combination of the conditioning variables need to
be defined. To this end, first the probability Z of a vehicle failure is calculated assuming
that there is a failure rate zt per unit length, which depends on the track type, and also on
the variables vehicle type V t and driver’s attention D, that is, the probability of failure
Z becomes:

Zb,c = LztγV t(b)γD(c), (5.15)

where L is the distance between the previous and the actual locations, zt is a failure
rate dependent on the track type, γV t(b) and γD(c) are correction factors to consider the
vehicle type V t and the driver’s attention D, respectively.

Since given that a vehicle failure has occurred, the severity of the incident depends
on its speed. Thus, the following different speed cases are considered next: low (Sp < 30
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Error

Distracted

Driver’s
Attention

= δb1

P(Sd|D)=δb1δa2+δb2 (τ(kδa2+(1-k)δa3)+(1-τ)δa1))+δb3δa1

Driver’s decision

q1

Attentive Alert

= δb2q2

= δb3q3

q12 = 1
q11 =           q13= 0

q31 = 1
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δb2(1-τ)δa1 δb2(1-k)τδa3 δb3δa1

Figure 5.2: Illustration of the closed formula for the driver’s speed decision conditional probability table.

km/h), medium (30 ≤ Sp < 55 km/h), high (55 ≤ Sp < 80 km/h) and very high (Sp ≥ 80
km/h), where the following threshold values for the speed S have been selected:

th(1) = 30; th(2) = 55; th(3) = 80; th(4) =∞. (5.16)

Next, it is assumed that the speed S is a normal random variable with mean the
actual speed S = a corrected by a factor ρD(c) and a coefficient of variation cv, that is, a
N(SρD(c), cvSρD(c)).

With this, the conditional probabilities p(a, b, c, d)=P (V = a|V t = b,D = c, S = d)
become:

p(a, b, c, d) = Zb,cδa1Φ

(
th(a)− dρD(c)

cvdρD(c)

)
+ Zb,cδaa∗

(
1− Φ

(
th(a− 1)− dρD(c)

cvdρD(c)

))

+Zb,c(1−δaa∗−δa1)Φ

(
th(a)−dρD(c)

cvdρD(c)

)

−Zb,c(1−δaa∗−δa1)Φ

(
th(a− 1)−dρD(c)

cvdρD(c)

)
+ (1− Zb,c)δa1. (5.17)
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Vehicle
Failure

Speed Yes No

Z

Driver’s
Attention

Road
Characteristics

Minor MediumNo incident

Vehicle Failure
Severity

δa3δa1 δa4δa2

δa1

Pv(a|b,c,d)=Z (δa1 P1+δa2 P2+δa3 P3+δa4 P4)+(1-Z) δa1

Z δa3 P3

Z δa4 P4Z δa2 P2
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Driver’s
Attention
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Pv(a|b,c,d)=P(V=a|Vt=b,D=c,S=d)

S
D

Vt

 V

Vehicle Failure

q21=1
q22=0
q23=0
q24=0

 Severe

q2= 1-Z(b,c)q1=   (b,c)

q11=P1(c,d)q12=P2(c,d) q13=P3(c,d) q14=P4(c,d)

Figure 5.3: Illustration of the closed formula for the vehicle failure conditional probability table.

In the same way as in the previous subsection, the conditional probability of occurrence
of a vehicle failure can be expressed in the form (5.6). In Figure 5.3 the q functions can
be identified and Formula (5.18) can be obtained by simply adding the contributions of
all branches.

P (V = a|V t = b,D = c, S = d) = Z(δa1p1 + δa2p2 + δa3p3 + δa4p4)

+(1− Z)δa1. (5.18)

5.3.7 Conditional probability of node Co collision

Since node Co has five parent variables, V t, It, V is, D and S, it is necessary to define
the conditional probabilities P (P = a|V t = b, It = c, V is = d,D = e, S = f) for any
combination of the conditioning variables.

To this end, the probability Z of a collision is calculated first, assuming that there is
a collision rate ut per unit length, which depends on the track type, and on the variables
traffic intensity It, visibility V is and driver’s attention D, and the speed excess over the
maximum speed at the site, that is, the probability of failure Z is assumed to be of the
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form
Z(c, d, e, f) = LuthIt(c)hV is(d)hD(e)hex(f), (5.19)

where L is the segment length, ut is a failure rate dependent on the track type, hIt(c),
hV is(d), hD(e) and hex(f) are correction factors to consider the traffic intensity It, visi-
bility V is, driver’s attention D and the speed excess, respectively.

Since given that a collision failure has occurred, the severity of the incident depends
on its speed. Thus, as before, the following different speed cases are considered next: low
(Sp < 30 km/h), medium (30 ≤ Sp < 55 km/h) high (55 ≤ Sp < 80 km/h) and very
high (Sp ≥ 80 km/h), where the following threshold values for the speed S = f have been
selected:

th(1) = 30; th(2) = 55; th(3) = 80; th(4) =∞. (5.20)

Next, it is assumed that the speed S is a normal random variable with mean the actual
speed S = f corrected by a factor wV t(b), which depends on the vehicle type V t = b and
a coefficient of variation cv, that is, a N(fwV t(b), cvfwV t(b)).

With this, the conditional probabilities p(a, b, c, d, e, f)= P (P = a|V t = b, It =
c, V is = d,D = e, S = f) become (see figure 5.4):

Z(δa1p1 + δa2p2 + δa3p3 + δa4p4) + (1− Z)δa1, (5.21)

where

p1 = Φ

(
th(a)− fwV t(b)

cvfwV t(b)

)
(5.22)

p4 = 1− Φ

(
th(a− 1)− fwV t(b)

cvfwV t(b)

)
(5.23)

pa = Φ

(
th(a)−fwV t(b)
cvfwV t(b)

)
−Φ

(
th(a− 1)−fwV t(b)

cvfwV t(b)

)
(5.24)

for a = 1, 2.
Note again that the conditional probability (5.21) is of the form (5.6). In Figure 5.4

the q functions can be identified and Formula (5.21) can be obtained by simply adding
the contributions of all branches.

5.3.8 Conditional probability of node P pavement failure

This node P has six parent variables, W , V t, It, V is, D, and S. In this way, the
conditional probabilities P (P = a|W = b, V t = c, It = d, V is = e,D = f, S = g) for any
combination of the conditioning variables need to be defined. For this, the probability
Z of pavement failure is calculated first, assuming that there is a failure rate dt per unit
length, which depends on the track type, and also on the variables weather W , traffic
intensity It, visibility V is, and driver’s attention D, that is, the probability of failure Z
becomes:
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Figure 5.4: Illustration of the closed formula for the collision conditional probability table.

Zb,d,e,f = LdtnW (b)nIt(d)nV is(e)nD(f), (5.25)

where L is the distance between the previous and the actual locations, dt is a failure rate
dependent on the track type, nW (b), nIt(d), nV is(e), and nD(f) are correction factors
to consider the weather W , the traffic intensity It, the visibility V is, and the driver’s
attention D, respectively.

Since given that a pavement failure has occurred, the severity of the incident depends
on its speed. In this way, as in the previous cases, the following different speed cases are
considered: low (Sp < 30 km/h), medium (30 ≤ Sp < 55 km/h), high (55 ≤ Sp < 80
km/h) and very high (Sp ≥ 80 km/h), where the following threshold values for the speed
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S have been selected:

th(1) = 30; th(2) = 55; th(3) = 80; th(4) =∞. (5.26)

Then, it is assumed that the speed S is a normal random variable with mean the actual
speed S = g corrected by a factor wV t(b), which depends on the vehicle type V t = b and
a coefficient of variation cv, that is, a N(fwV t(b), cvfwV t(b)).

With this, the conditional probabilities p(a, b, c, d, e, f, g)=
P (P = a|W = b, V t = c, It = d, V is = e,D = f, S = g) become (see figure 5.5):

Z(δa1p1 + δa2p2 + δa3p3 + δa4p4) + (1− Z)δa1, (5.27)

where

p1 = Φ

(
th(a)− fwV t(c)

cvfwV t(c)

)
(5.28)

p4 = 1− Φ

(
th(a− 1)− fwV t(c)

cvfwV t(c)

)
(5.29)

pa = Φ

(
th(a)−fwV t(c)
cvfwV t(c)

)
−Φ

(
th(a− 1)−fwV t(c)

cvfwV t(c)

)
(5.30)

for a = 1, 2.
Being the conditional probability of the form (5.6) and being identified the q functions

in Figure 5.5, Formula (5.27) can be obtained by adding the contributions of all branches.

5.3.9 Conditional probability of node incident I at a curve

In this case we have the conditional probability P (I = a|W = b, V t = c,D = d, S = e).
However, to calculate these probabilities it is necessary to analize the curve stability
problem first.

Curve stability

When vehicles circulate along curves they are subject to several types of incidents. The
forces acting on the vehicles are the centrifugal force, Fc, its own weight, mg, the forces
normal to the wheels, N1 and N2 and the friction forces, transversal to the wheel contacts
with the pavement, R1 and R2 (see Figure 5.6). To increase safety at curves cambers are
used, that is, banked roads.

The sliding and the overturning of the vehicle are considered as possible failure modes.
The sliding critical condition (see figure 5.6) is given by:

v2 = rg(p± ft), (5.31)
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Pavement 
Failure

Speed Yes No

1-Z

Vehicle
Type

No incident

Z

Visibility Tra�c
Intensity

Driver’s
Attention

Road
Characteristics

Minor Medium Severe
P2

No incident

Pavement F.
Severity

P1 P3 P4
δa3

δa1 δa4δa2 δa1

Ppa(a|b,c,d,e,f,g)=Z (δa1 P1+δa2 P2+δa3 P3+δa4 P4)+(1-Z) δa1

Z δa3 P3

Z δa4 P4Z δa2 P2

Z δa1 P1 (1-Z) δa1 

Weather

Ppa(a|b,c,d,e,f,g)=P(P=a|W=b,Vt=c,It=d,Vis=e,D=f,S=g)

W

Vis

S

D
It Vt

P

Pavement 
Failure

Figure 5.5: Illustration of the closed formula for the pavement failure conditional probability table.
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Figure 5.6: Illustration of all forces acting on a vehicle at a curve.

where v is the vehicle speed, r is the curve radius, g is the gravity acceleration, ft is the
friction coefficient, p is the slope and the plus and minus signs refer to outward or inward
directions of the slide.



5.3. CONDITIONAL PROBABILITIES OF INTERMEDIATE SUBNETWORKS 95

The overturning critical condition (see figure 5.6) is given by:

b

2
(N2 −N1) = ±h(R1 +R2) = ±fth(N1 +N2), (5.32)

where b is the width of the track, h is the height of the vehicle gravity center with respect
to the pavement and the plus and minus signs refer to outward or inward directions of
the overturning.

In fact, there are four types of failure modes:

1. Outward slide: When the vehicle slides in the outward direction of the curve due to
insufficient friction or slope, to a small curve radius or to a high vehicle speed. This
failure occurs when

v2 > rg(p+ ft). (5.33)

2. Inward slide: When the vehicle slides in the inward direction of the curve due to
insufficient friction, to a high slope or to a low vehicle speed. This failure occurs
when

v2 < rg(p− ft). (5.34)

3. Outward overturning: When the vehicle overturns in the outward direction of the
curve due to insufficient width of the track or to a high location of the gravity center.
This failure occurs when N1 = 0, that is, when

ft >
b

2h
. (5.35)

4. Inward overturning: When the vehicle overturns in the inward direction of the curve
due to high width of the track or to a high location of the gravity center. This failure
occurs when N2 = 0, that is, when

ft >
b

2h
. (5.36)

The design curve radius and the camber values as a function of the speed were defined
using the Spanish code (3.1-IC).

Next, the critical speed vsl against outside sliding is calculated, given by (5.31):

vsl =
√
rg(p+ ft). (5.37)

If the actual speed v is smaller than vsl sliding does not occur and a severity level
0 is considered, otherwise, the severity of the sliding is classified depending on the ratio
(v/vsl)

2. If 1 < (v/vsl)
2 ≤ 1.5 a severity level 1 is considered, if 1.5 < (v/vsl)

2 ≤ 2 the
severity level is 2 and if (v/vsl)

2 > 2 the severity level is 3.



96 CHAPTER 5. CONDITIONAL PROBABILITY TABLES. CLOSED FORMULAS

Assuming a sliding at severity level `, there can be an incident, with probability pp`,
or not, with probability 1− pp`.

Next, to consider the effect of the vehicle type variable V t on the incident severity, it
is assumed that the severity is a normal random variable

Sev ∼ N((v − vsl)fV t(c), (v − vsl)fV t(c)cv(c)),

that is, with mean equal to the speed excess over the critical one vsl and a coefficient
of variation cv(c), and we associate light, medium and severe incident levels with the
intervals Sev < 20Km/h, 20 ≤ Sev < 45Km/h and Sev ≥ 45Km/h, respectively.

Finally, in the case of no sliding, the case of a driver’s distraction leading to an
incident with probability pp is considered too. Similarly, it is assumed that the severity is
a normal random variable Sev ∼ N(vfV t(c), vfV t(c)cv(c)) and we associate light, medium
and severe incident levels to Sev < 20Km/h, 20 ≤ Sev < 45Km/h and Sev ≥ 45Km/h,
respectively.

With all this, the conditional probability

P (Ic = a|W = b, V t = c,D = d, S = e)

becomes:

δslid

(
(1− pp)δa1 + pp

(
δa2Φ

(
s(a− 1)− (v − vsl)fV t(c)

(v − vsl)fV t(c)cv(c)

)

+(1− δa1 − δa2)

(
Φ

(
s(a− 1)− (v − vsl)fV t(c)

(v − vsl)fV t(c)cv(c)

)
−Φ

(
s(a− 2)− (v − vsl)fV t(c)

(v − vsl)fV t(c)cv(c)

))))

+(1− δslid)
(

(1− δd1)δa1 + δd1

(
(1− pp)δa1 + pp

(
δa2Φ

(
s(a− 1)− vfV t(c)

vfV t(c)cv(c)

)

+(1− δa1 − δa2)

(
Φ

(
s(a− 1)− vfV t(c)

vfV t(c)cv(c)

)
−Φ

(
s(a− 2)− vfV t(c)

vfV t(c)cv(c)

)))))
. (5.38)

In Figure 5.7 the formula for this conditional probability and how it is obtained are
illustrated, where δex is one if there is speed excess and zero, otherwise, α1 and α2 are
the probabilities of an incident at the curve under no speed excess and speed excess,
respectively, p2, p3 and p4 are the probabilities of occurrence of a light, medium and
severe incident, respectively, under an speed excess and once the incident is produced and
p′2, p

′
3 and p′4 are the probabilities of occurrence of a light, medium and severe incident,

respectively, under no speed excess and once the incident is produced.
The probabilities α1 and α2 are calculated by the formula

α1(b, d, e) = ρ1(b, d, e), (5.39)

α2(b, d, e) = ρ1(b, d, e) + βρ2(b, d, e)

(
1 +

vex(b, d, e)

vcrit(b)

)γ
, (5.40)
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where ρ1 and ρ2 are the probabilities of incident at the curve under no speed excess
and speed excess, respectively, and β and γ are two parameters to consider the relative
difference of the speed excess vex with respect to the critical speed at the curve vcrit.
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Figure 5.7: Illustration of the closed formula for an incident at a curve conditional probability table.

5.3.10 Conditional probability of node Its incident at a traffic
signal

Since node Is in some cases has five parent variables, W , Dri, SS, S and Tf , we need
to define the conditional probabilities P (Is = a|W = b,Dri = c, SS = d, S = e, Tf = f)
for any combination of the conditioning variable.

This incident node includes the traffic light, stop, yield, grade and pedestrian crossing,
for which we define a target speed Starget(b, c, f) and an incident probability α1(b, c, f),
both dependent on the type and state of signal, the weather (b), the driver’s type (c) and
the possibility of a technical failure (f). For example, the target speed for a stop signal is
zero and in a free light signal is the maximum speed of the road. Similarly, the incident
probabilities for these two signals are the probabilities of having an incident when they
are not respected.
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Figure 5.8: Illustration of the closed formula for an incident at a light signal conditional probability table.

Since the incident occurrence and its severity are related to the speed excess over the
target speed Starget at the signal location and depends on the weather W and the driver
type Dri, this speed is calculated and modified S∗target as follows:

S∗ex(b, c, e) = abs(e− Starget)fW (b)fDri(c), (5.41)

where fW (b)f and fDri(c) are correction factors due to the W and Dri variables.
Then, it is assumed that if the signal is violated, the probability of an incident is

α1, and that the corrected excess speed with respect to the target is a normal random
variable N(S∗ex, cvS

∗
ex), where cv is a coefficient of variation which depends on the S∗ex

level. In order to determine the severity of the incidence, three threshold values for the
S∗ex: th = (10, 30, 60,∞) km/h are considered, so that there is no incident if S∗ex ≤ 10
km/h, a light incident if 10 < S∗ex ≤ 30 km/h, a medium incident if 30 < S∗ex ≤ 60 km/h
and a severe incident if S∗ex ≥ 60 km/h. This allows us to calculate the probabilities of
Its using the cdf of the normal distribution if no technical failure occurs (δf1).

If a technical failure occurs (1− δf1), we consider that an incident occurs and then the
above probabilities are truncated, that is, the probability of S∗ex ≤ 10 km/h is distributed
among the other cases.
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With this, the conditional probabilities

P (Is = a|W = b,Dri = c, SS = d, S = e, Tf = f)

denoted p(a, b, c, d, e, f) become (see figure 5.8):

δd1δa1 + (1− δd1) (δex (α1 (δf1 (δa1p1 + δa2p2 + δa3p3 + δa4p4)

+(1−δf1)
(
δa1p

′
1 + δa2p

′
2 + δa3p

′
3 + δa4p

′
4

))
+ (1− α1)δa1

)
+ (1− δex)δa1), (5.42)

where

th∗(a) =
th(a)− th(1)

1− th(1)
(5.43)

p1 = Φ

(
th(1)− S∗ex

cvS∗ex

)
(5.44)

p4 = 1− Φ

(
th(a− 1)− S∗ex

cvS∗ex

)
(5.45)

p′4 =

(
1− Φ

(
th∗(a− 1)− S∗ex

cvS∗ex

))
(5.46)

and for a = 2, 3 we have

pa =

(
Φ

(
th(a)−S∗ex
cvS∗ex

)
−Φ

(
th(a− 1)−S∗ex

cvS∗ex

))
(5.47)

p′a =

(
Φ

(
th∗(a)−S∗ex

cvS∗ex

)
−Φ

(
th∗(a− 1)−S∗ex

cvS∗ex

))
(5.48)
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Chapter 6

Network partition and
representation
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6.1 Introduction

As it has been seen, each and every one of the elements involved in the safety of the road
are reproduced in the model. Each element involves a series of variables that generate
subnetworks that are assembled to define the global Bayesian network that constitutes
the model of probabilistic safety of the highway or road. The analysis of the dependencies
between the variables is very important, especially the behaviour of the driver. In this
way, a structure that allows to quantify the frequency of occurrence of incidents along
the road considering all its elements together is obtained. In Figure 6.1 the dependence
relations among the variables are represented.

With this methodology, whose most relevant steps are shown in Figure 6.2, it is possible
to perform a joint scanner of the road (examples of scanners of twoo different segments
of a road can be seen in Figure 6.3), identify the points where accidents are most likely
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Figure 6.1: Example of how the dependence of variables is reproduced in the Bayesian network.

and most dangerous of the road, quantify the risks and obtain the list of the most likely
incidents. In this way, special attention can be given to the critical points to avoid them
in order to improve safety and optimize improvement actions, defining the solutions and
analyzing their benefits.

The analysis of the hazardous points of roads is done through the probabilistic risk
analysis, using the concept of expected number of equivalent severe incidents (ENSI),
in which taking as reference the associated social costs it is considered that: 230 minor
incidents are equivalent to 1 severe incident and 6.4 medium incidents amounted to 1
severe incident (these values are represented in Figure 6.4). ENSI values are used to
determine the most risky points of the road and to evaluate their level of safety. The
points that generate a major risk by individually producing an elevated ENSI can lead to
severe incidents with a high frequency. It is estimated that points with an ENSI greater
than 1e − 9 should be improved, and those where the probability of severe incidents
exceeds the values 1e− 7, 1e− 6 or 1e− 5 should be remedied with an increasing degree
of celerity.

The results are obtained for the whole road, however, the line representation has been
divided into short segments, with the aim of obtaining a more detailed information. Fur-
thermore, for the propagation of uncertainty, a specific partition of the Bayesian network
is made, which is explained in Section 6.2. In Section 6.3 the software development of the
model is described and the provided information explained and shown in more detail.
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Figure 6.2: Main steps of the proposed methodology.

6.2 Network partition

Since Bayesian networks (BNs) associated with real cases imply a very high number of
variables (many thousands), it is necessary to reduce the complexity of the calculations;
otherwise, the memory and the CPU requirements will exhaust the computer capacity.
Thus, some solution to this problem must be found if the proposed method is to be
applicable to very large networks.
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Figure 6.4: Illustration of how the expected number of equivalent severe incidents (ENSI) is obtained.

To solve this problem, the Bayesian network (BN) is partitioned into a series of, as
small as possible subnetworks, such that the results of the computations are not modified
and 100 % equivalent. This is the aim of the method described below. In fact the
subnetworks will contain a very reduced number of variables (in the neighbourhood of 20
variables each).

Figure 6.5 shows an example, in which the acyclic graph of the BN of a segment of a
road is given (upper plot). It has been partitioned into three subnetworks (lower plot),
denoted A, B and C, that can be identified by their different background colors.
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The partitions are selected based on the conditional independence property shown in
Figure 6.5, where it can be seen that the nodes in set C are independent of the nodes
of set A given the nodes in B, because any path from set A to set C passes by set B in
the moral graph of the set A ∪ B ∪ C and its ancestors (see Castillo et al. (1997)). This
means that the variables in B contain all the information the variables in A have on the
variables in C. Consequently, variables in A are not needed to get information on the
variables in C given the variables in B. This is some kind of a Markov property, which
is not an assumption but a consequence. In fact, the partitioning technique is based on
finding parts of the network satisfying this assumption.

Let {A1, A2, . . . , An} be one of such a sequence and let {A1
k, A

2
k} be a partition of the

nodes in subnetwork Ak. We look for partitions such that the nodes of Ak+1 become
independent of the nodes of A1, A2, . . . , Ak−1 and A1

k given the nodes of A2
k. This implies

that the information on the nodes in Ak+1 contained in the nodes in A1, A2, . . . , Ak−1 and
A1
k is already contained in the nodes of A2

k. The set of nodes in A2
k is called a separator

of the initial BN and they must be included in the two adjacent subnetworks. Then, the
selected partition is composed by the sequence of Bayesian subnetworks:

A∗1 = A1, A
∗
2 =

{
A2

1, A2

}
, . . . , A∗n =

{
A2
n−1, An

}
.

It can be easily shown that Bayesian subnetwork Ak+1 is independent of the nodes in
BN {A1, A2, . . . , A

1
k}, given the nodes in the separator A2

k for k = 1, 2, . . . , n − 1. This
can be done using the graphical method given in Castillo et al. (1997) pages 181–184.

The lower plot in Figure 6.5 shows the partitions associated with the BN in the upper
plot in Figure 6.5 and the separator (middle figure). Note that the separator nodes have
been duplicated and included in both subnetworks because they must belong to both
subnetworks to transmit the required information throughout the separator nodes. The
corresponding subnetworks are shown with all its nodes and links. In particular, A and
C contain nodes W271 to I300 and D301 to D314, respectively, and the separator B
contains nodes W289 to It292, D294 and S296.

A corresponds to the two subnetworks A∗1 and A∗2 associated with the first partition.
Note that the six artificial nodes in B = A2

1 have been duplicated from the previous
subnetworks and added to the second subnetwork. We note that some software packages
provide only marginals of nodes involved in a clique.

The selected partition is not arbitrary at all. The key property for a partition to
be valid is to contain a set of separators (subsets of nodes) such that the conditional
probability of the posterior nodes becomes independent on the previous nodes given the
separator subset. Consequently, the separator subset and the partitions have been selected
to satisfy this condition.

Note that the separator B when marrying the parents with common children becomes
a complete set, that is, all pairs of nodes are connected, as indicated in the lowest B set,
where the discontinuous lines correspond to married parents. This means that the joint
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Figure 8. Illustration of how a BN can be partitioned into a sequence of Bayesian subnetworks to obtain the marginal probabilities (forward process).

We note that this fourth option is much more complicated than
the second one because the derivative implies an infinitesimal
increment in the parameter and this means that the actual values
of all variables or nodes in the network are known. However,
when finite changes are produced, the values of all the variables
must be determined again. For example, one increment in the
speed limit value of a given signal implies changes in the speeds
of many variables located after such a signal until another speed
limit change occurs. This means that analyzing the set of all
variables or nodes changing their conditional probability tables
is difficult and costly.

Thus, the partitioning technique acquires a relevant role in
sensitivity analysis because only a small portion of the BN
need to be used in the calculations. More precisely, we need to
recalculate a subnetwork starting at the location of the parameter
with respect to which we calculate the sensitivity and ending at

the node or variable whose sensitivity we look for. This implies
a very important reduction in the evaluation time due to the
partitioning technique.

We optimize the partitioning technique for sensitivity analy-
sis, we can use the following process:

1) Step 1. Decide the parameters whose sensitivity is looked
for. This means selecting the set of parameters with
respect to which we want to perform a sensitivity analysis.

2) Step 2. Select the partitions adequately. Since we are
interested in using small partitions, we can select the
partitions to include both the parameters and the variables
whose sensitivity is desired.

3) Step 3. Perform the probabilistic safety analysis of the BN
storing the relevant information for sensitivity analysis.
We must store the information of the relevant subnetworks
to be used later (in our software we store the BNT and

Figure 6.5: Illustration of how a BN can be partitioned into a sequence of Bayesian subnetworks to obtain
the marginal probabilities (forward process).

probability of the separator nodes can be obtained from the first partition by the BN
software.

In addition, the artificial links W289−D294, V t290−D294, W289− It292, V t290−
It292, Dri291− It292, W289−Dri291, V t290−Dri291 and W289− V t290 have been
added to the separator in A2

1 in the right partition for it to become a clique, so that any
joint probability, in particular the one obtained from the left partition can be assigned to
the clique.
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Using this partition methodology and its important independence properties, the
marginal densities of the nodes in the initial BN can be obtained using the following
process:
Step 1. Obtain the joint density of the separator. The joint density of the separator
B = A2

k is obtained using some standard methods for BNs. Since the separator has been
forced to be a complete set, its joint probability function P (W,V t,Dri, It,D, S) can be
easily obtained without a high computational cost. This is not true for joint probabilities
of nodes not in a complete set.
Step 2. Obtain the conditional probabilities of the nodes in the separator set. For the sepa-
rator with nodesW , V t, Dri, It, D and S, the conditional probabilities P (S|D, It,Dri, V t,W ),
P (D|It,Dri, V t,W ), P (It|Dri, V t,W ), P (Dri|V t,W ), P (V t|W ), and P (W ) are calcu-
lated based on the previous joint probability using the conditional probability definition,
that is,

P (V t|W )=
P (V t,W )

P (W )
; P (Dri|V t,W )=

P (Dri, V t,W )

P (V t,W )
. . . (6.1)

These probabilities are needed to be transferred to the following partitions.
Step 3. Build the BN A∗k. The BN Ak is built considering not only all its nodes and links
but the separator nodes and some extra links to allow for reproducing the dependence
structure in the separator node, which is exported from the previous sub-network. The
added links are used to convert the separator into a clique (saturated set) so that any
joint probability can be passed to Ak from Ak−1.

This partition procedure leads to a computation time linear in the length of the road
or highway. Consequently, the CPU times are reduced substantially. This means that
some small cases (with 7,000 variables) requiring some hours of CPU, could be calculated
in a few minutes and this time reduction is even more impressive for larger networks.

6.3 Software development

The computer software developed by our group to implement the model proposed has
been written in Matlab with calls to Latex, JavaBayes and BNT software.

It requires as data input a sequential description of all the items encountered when
travelling along the highway.

Each line of the code refers to one single item, which can be any of the item types
described in Table 3.1. Apart from the item type it is necessary to provide its location
(Kilometer Point, KP) and in some cases some extra information (see examples below).

In addition to the highway description, the parameter values used in the calculations
need to be given. Most of them are parameters used to calculate the conditional prob-
ability matrices of each node given its parents. The list of parameters is not provided
here because it is a long list and their estimation and validation are explained in the next
chapter.
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The program has been done taking into account the desired information and in such
a way that it is easy to understand it. Thus, the detailed scheme of the appearance
received for a fraction of a road is represented in Figure 6.6, where A) is the segment
acyclic graph of the Bayesian network, B) the graphical representation of traffic signs and
track elements, C) the segment characteristics, and D) a cumulated risk chart.
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Figure 6.6: Example of the information supplied by the computer program.

The computer program developed is able to solve the following problems:

1. Checks the given data for errors. The code scans the lines looking for errors or
inconsistencies (for example a ‘TunnelIn’ line without a ‘TunnelOut’ line or vice
versa).

2. Builds the acyclic graph of the Bayesian network. This means that all variables
involved in the problem are constructed and the direct dependencies are identified,
that is, all directed links between two nodes.

3. Builds the conditional probability tables. These tables are built using the closed
formulas derived for these conditional probabilities, using the directed connections
of the acyclic graph and the provided parameter values.

4. Calculates the incident probabilities. This means that it calculates the marginal
probabilities of all nodes of type ‘incident’.
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5. Evaluates the expected number of equivalent severe incidents (ENSI) of incidence
nodes. The ENSI values are evaluated for all nodes of type incident.

6. Provides a table of the ENSI frequencies for all items. Obtains a table with the
ENSI frequencies of all items in their KP sequence.

7. Sorts ENSI values by importance. Provides a table with the ENSI frequencies of all
items in decreasing order of importance.

8. Provides the sorted list of expected number of incidents. Provides the expected
number of incidents sorted by total associated ENSI, in decreasing order.

9. Plots the segments Bayesian subnetworks. Returns a plot (in pdf) for each segment
of the highway or road corresponding to a given number of items. This plot includes:
(a) the acyclic subgraph associated with the segment, (b) a graphical representation
of the highway or road, showing the different items represented by their icons (signal
icons, etc.) and the corresponding KP locations, and (c) a plot of the cumulated
ENSI, showing graphically where the unsafest items are (see the examples below).

10. Gives the ‘JavaBayes’ code. A set of files are given with the code necessary to
run the ‘JavaBayes’ software of the whole Bayesian network model or each of the
segments. This means that we have direct access to the possible values of any node
and to the conditional probability table of any node given its parents. In addition,
backward analysis can be done, by providing any type of evidence and recalculating
the corresponding marginal probabilities of any set of nodes.

11. Gives the ‘BN’ code. A set of files are given with the code necessary to run the ‘BN’
matlab software of the whole Bayesian network model or any Bayesian subnetwork
of the segments.

12. Provides a report file. A pdf file with all the plots and tables above indicated is
given.

The following examples provide some figures where is possible to see how the program
works and what can be obtained from it.

6.3.1 Tabular information

With the aim of clarifying the information that can be obtained from the program, several
tables with a brief explanation of what is shown are presented, thus, in the following
examples it is explained exactly what is being represented.

For location of the most risky items a plan site of the road with the 5 most critical
points for Natinal road N-611 is given in Figure 6.7, with Table 6.1 in which the hazardous
rank, KP, item type, node and ENSI values of each item are represented.
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Figure 6.7: Plan site of the National road N-611 with the 5 most critical points.

Table 6.1: Representation of the hazardous rank, KP, item type, node and ENSI values of each item.

Rank Item Item name KP Node Local ENSI

1 341 CurveIn 199.300 I4613-199300Cv 1.01e-08
2 346 CurveIn 199.500 I4676-199500Cv 8.9e-09
3 163 CurveIn 191.380 I2245-191380Cv 6.83e-09
4 173 CurveIn 191.630 I2370-191630Cv 4.61e-09
5 472 Yield 204.229 I6397-204229Yl 2.67e-09

Table 6.2 provides the information of the elements within its segment. It represents
the following information of each item, sorted by location order, item number, KP, name,
incident node identification and their corresponding local and accumulated ENSI values.

Once the segments of the whole line are displayed individually, Table 6.3 is generated,
which presents the information of all items sorted by location and represents the joint
information of the above individual segment tables.

With the aim of facilitating the safety assessment and management, Table 6.4 repre-
sents only the items whose local risk (local ENSI) excesses a given threshold. The items
are still sorted by location.
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Table 6.2: Information of the elements with their local and accumulated ENSI values within its segment.

ENSI
Item KP Item name Node Local Cumulated

1 208.000 Initial Start 0 0
2 207.995 SegWSignals I19-207995S 7.39e-14 7.39e-14

TrafficLight I25-207995TL 1.2e-12 1.28e-12
3 207.935 SegWSignals I37-207935S 3.68e-13 1.64e-12

LateralEntry I38-207935LE 7.46e-11 7.63e-11

Table 6.3: All items sorted by location representing the joint information of the previous individual
segment tables.

ENSI
Item KP Item name Node Local Cumulated

1 208.000 Initial Start 0 0
2 207.995 SegWSignals I19-207995S 7.39e-14 7.39e-14

TrafficLight I25-207995TL 1.2e-12 1.28e-12
3 207.935 SegWSignals I37-207935S 3.68e-13 1.64e-12

LateralEntry I38-207935LE 7.46e-11 7.63e-11
4 207.915 SegWSignals I50-207915S 1.4e-13 7.64e-11

Intersection I51-207915Int 2.68e-11 1.03e-10

In Table 6.5 the riskiest items sorted by risk level (the first is the most hazardous
point) are given. It shows: the item rank, the item number, the item name, the item KP,
the node and its ENSI value.

In addition, the total potential ENSI values per year considering the existing traffic
are generated. This is an estimate of the potential number of severe incidents per year,
at each location along the road.

With the purpose of obtaining a brief assessment of all the elements along a road,
Table 6.6 represents the cumulated ENSI by type of incident, with the numbers of times
that they appear in the network. They are sorted by decreasing risk level order.
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Table 6.4: Items whose local risk (local ENSI) excesses a given threshold sorted by location.

ENSI
Item KP Item name Node Local Cumulated

5 207.900 CurveIn I64-207900Cv 6.63e-09 6.73e-09
24 207.160 Intersection I329-207160Int 1.37e-10 7.22e-09
55 205.354 Yield I774-205354Yl 1.25e-09 8.53e-09
62 205.235 Yield I878-205235Yl 1.66e-09 1.03e-08
69 205.005 LateralEntry I974-205005LE 1.12e-10 1.06e-08

Table 6.5: Riskiest items sorted by risk level and total potential ENSI values per year.

ENSI
Rank Item Item name KP Node Local

1 440 CurveIn 190.390 I5963-190390Cv 3.44e-07
2 5 CurveIn 207.900 I64-207900Cv 6.63e-09
3 449 Yield 189.945 I6083-189945Yl 3.46e-09
4 89 Yield 204.567 I1256-204567Yl 2.7e-09
5 177 Yield 201.724 I2489-201724Yl 2.59e-09

ENSI per year
Local
0.565
0.0109
0.00568
0.00444
0.00425

Table 6.6: Cumulated ENSI by type of incident.

Incident Local
types Frequency ENSI
Curve 35 3.52e-07
Yield 19 3.04e-08

Lateral Entry 79 6.9e-09
Intersection 97 1.07e-09
Roundabout 15 9.45e-10

Pedestrian Crossing 19 1.92e-10
Overpass 6 8.89e-11

Overtaking 13 3.86e-11
Underpass 4 3.67e-11

Traffic Light 29 2.84e-11
Speed Limit 36 1.73e-11
SegWSignal 585 1.39e-11

Viaduct 2 9.81e-12
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6.4 Examples of application

6.4.1 A-67 Highway

In this example a A-67 highway segment of 27.7 Km, from KP 105.3 to KP 133.0, with
an Average Daily Traffic (ADT) of 10, 068 vehicles is considered. A brief example of how
the items are introduced in the program is shown below.

InitialRT=’Highway’;

IniMaxSpeed=120;

ItLink=[10068, 1850];

initialVt=[0.0044,0.8288,0.1669];

LinkTrip={{’Initial’, 133.00 },

{’DistractingWarning’, 132.995, ’Autovia’,’Good’},

{’Yield’, 132.873, 0, ’Good’},

{’DistractingWarning’, 132.705, ’River’, ’Good’ },

{’ViaductIn’, 132.700, 0, ’Rio izarilla’},

{’ViaductOut’, 132.690, 0, ’Rio izarilla’},

{’DistractingWarning’, 132.400, ’Information’, ’Good’},

{’PermanentWarning’,132.330, ’Animals’,’Good’},

{’PermanentWarning’, 132.260, ’Straight’, ’Good’},

...

{’DistractingWarning’ 106.150, ’Mountain’,’Good’,’Palen’},

{’CurveIn’, 106.100, 675, ’R’},

{’Overpass’, 105.840, ’R’,0},

{’CurveOut’, 105.300, 675}

};

Figures 6.8 and 6.9 show: (a) the plots of the two acyclic sub-graphs corresponding to
two segments in their upper parts; (b) the graphical representation of the highway or road
segments, in their intermediate parts, and (c) the plots of the cumulated ENSI frequencies
in their lowest parts. In addition, a table with all the items, their KP locations, their
names and associated node names and the ENSI values (local and cumulated) associated
with each item of the segments are provided.

The relative importance of the different items can be easily identified by comparing
the discontinuities (jumps) of the graphs.

In order to improve safety at KP 129.500 and KP 125.590 curves, the speed limit at
KP 130.408 has been changed from 120 to 100 km/h and added a speed limit signal (100
Km/h) at KP 125.690, respectively, as shown in Figure 6.10. The resulting improvements
in the reduction of the ENSI values have been boldfaced in the last column of Table 6.7
which shows the item numbers and names, the corresponding KP locations, the node
names and the local ENSI values of the initial (previous) and corrected line (after per-
forming these two changes). It can be also easily seen that ‘curves’, ‘acceleration lanes’
and a ‘yield’ sign are the most critical items and the beneficial effect of these small changes
can be appreciated since after correction no ENSI exceeds the value 1× 10−9.

Table 6.8 gives the same information as Table 6.7, but showing the annual frequencies,
that is, considering the average yearly traffic.

Finally, it is indicated that this Bayesian network has 129 items and 1, 704 variables.
The required CPU time to build the Bayesian network, calculate all incident probabilities,
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Figure 6.8: A-67 Highway example. Probabilities of the incident nodes between nodes 236 and 316.

plot all figures and write the report was 177 sec with an Intel(R) Core TM i7-4712HQ
CPU @ 2.30GHz and 8.00 GB of RAM memory.

Thanks to the partitioning technique mentioned, the required CPU time is linear in
the number of variables, with a mean number of 13 variables per item. Finally, note that
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Figure 6.9: A-67 Highway example. Probabilities of the incident nodes between nodes 556 and 633.

changing conditions implies only changes in the parameter values but not in the number
of variables.
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Figure 6.10: Improved safety in A-67 Highway example.
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Table 6.7: A-67 Highway example. Sorted list of the items sorted by ENSI, showing the corresponding
locations and their associated ENSI values.

Local ENSI
Rank Item Item name KP Node Previous Corrected

1 22 CurveIn 129.500 I291-Cv 5.08e-09 1.52e-11
2 47 CurveIn 125.590 I620-Cv 1.01e-09 9.48e-11
3 91 AcelerationLane 117.250 I1192-AL 6.75e-10 6.26e-10
4 68 AcelerationLane 122.085 I895-AL 6.56e-10 6.56e-10
5 97 AcelerationLane 116.240 I1268-AL 6.46e-10 6.45e-10
6 42 AcelerationLane 126.879 I556-AL 5.95e-10 5.95e-10
7 46 AcelerationLane 125.600 I607-AL 5.85e-10 2.65e-10
8 60 AcelerationLane 123.190 I791-AL 5.79e-10 5.79e-10
9 3 Yield 132.873 I37-Yl 5.6e-10 5.6e-10
10 93 CurveIn 117.100 I1217-Cv 4.03e-10 3.28e-10

Table 6.8: A-67 Highway example. Sorted critical list by annual ENSI values, of incident items with the
corresponding KP and nodes.

ENSI per year
Rank Item Item name KP Node Previous Corrected

1 22 CurveIn 129.500 I291-Cv 0.0187 5.58e-05
2 47 CurveIn 125.590 I620-Cv 0.00371 0.000348
3 91 AcelerationLane 117.250 I1192-AL 0.00248 0.0023
4 68 AcelerationLane 122.085 I895-AL 0.00241 0.00241
5 97 AcelerationLane 116.240 I1268-AL 0.00237 0.00237
6 42 AcelerationLane 126.879 I556-AL 0.00219 0.00219
7 46 AcelerationLane 125.600 I607-AL 0.00215 0.000975
8 60 AcelerationLane 123.190 I791-AL 0.00213 0.00213
9 3 Yield 132.873 I37-Yl 0.00206 0.00206
10 93 CurveIn 117.100 I1217-Cv 0.00148 0.0012

6.4.2 N-634 National road

In this example the N-634 National road from KP 260.945 to KP 264.870, with a daily
mean intensity of 2,145 vehicles is analyzed.

Figures 6.11, 6.12 and 6.13 show for the N-634 road, the same information already
described in Figures 6.8 and 6.9 for the A-67 highway. The relative importance of the
different items can be identified by comparing the discontinuities of the graphs.

In a similar way, in Tables 6.9 and 6.10 the same information as in Tables 6.7 and 6.8,
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Figure 6.11: N-634 National road example. Probabilities of the incident nodes between nodes 76 and 158.

respectively, is given. It can be easily seen that a ‘curve’ and a ‘lateral entry’ (see Table
6.9) are the most critical items.

In order to improve safety at the KP 262.210 (curve) and KP 262.416 (lateral entry),
a speed limit signal (40 Km/h) at KP 262.184 and other with limit 50 Km/h at KP
262.275 have been added, as shown in Figure 6.14. The resulting improvements in the
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21 262.010 SegWSignals I273-SCr 4.57e-14 2.2e-10

OvertakingIn I278-Oti 4.58e-11 2.66e-10
22 262.180 SegWSignals I290-SOC 1.74e-13 2.66e-10
23 262.185 SegWSignals I302-SOv 8.69e-15 2.66e-10
24 262.190 SegWSignals I314-SOS 1.1e-14 2.66e-10

Figure 6.12: N-634 National road example. Probabilities of the incident nodes between nodes 235 and
315.

reduction of the ENSI values have been boldfaced in the last column of Table 6.10, where
the beneficial effect of this change at the curve but small for the case of the lateral entry
can be appreciated. This means that the action must be done on the vehicles using the
lateral entry, for example, by adding a stop or yield signal.

Finally, note that this Bayesian network has 76 items and 992 variables. The required
CPU time to build the Bayesian network, calculate all incident probabilities, plot all
figures and write the report was 102 sec with the same computer.



120 CHAPTER 6. NETWORK PARTITION AND REPRESENTATION

D315

W316
Vt317

Dri318

It319

Vis320

D321
Sd322

S323

V324
P325Co326

I327 I328

W329
Vt330

Dri331

It332

Vis333

D334
Sd335

S336

V337
P338Co339

I340 I341

W342
Vt343

Dri344

It345

Vis346

D347
Sd348

S349

V350
P351Co352

I353

D354

Ds355
S356

TF357
I358

W359
Vt360

Dri361

It362

Vis363

D364
Sd365

S366

V367
P368Co369

I370

D371

W372
Vt373

Dri374

It375

Vis376

D377
Sd378

S379

V380
P381Co382

I383 I384

W385
Vt386

Dri387

It388

Vis389

D390
Sd391

S392

V393
P394Co395

I396

D397

 26
2.1

90
 

 26
2.2

10
 

 26
2.2

55
 

50

 26
2.2

75
 

 26
2.2

76
 

 26
2.2

78
 

 26
2.3

28
 National Road

0

0.5

1

1.5

2
x 10−9

)I
S

N
E( )stnedicni ereves(

E

ENSI =1.71e−09

N634
1

ENSI
Item KP Item name Node Local Cumulated

25 262.210 SegWSignals I327-SOS 2.58e-14 2.66e-10
CurveIn I328-Cv 1.63e-09 1.9e-09

26 262.255 SegWSignals I340-Sall 5.94e-14 1.9e-09
LateralEntry I341-LE 4.07e-11 1.94e-09

27 262.275 SegWSignals I353-Sall 3.1e-14 1.94e-09
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28 262.276 SegWSignals I370-Sall 2.38e-16 1.94e-09
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LateralEntry I384-LE 3.85e-11 1.98e-09
30 262.328 SegWSignals I396-Sall 1.72e-14 1.98e-09

Figure 6.13: N-634 National road example. Probabilities of the incident nodes between nodes 315 and
397.
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Table 6.9: N-634 National road example. Sorted critical list by local ENSI values of incident items with
the corresponding KP and nodes.

Local ENSI
Rank Item Item name KP Node Previous Corrected

1 25 CurveIn 262.210 I328-Cv 1.63e-09 1.87e-14
2 35 LateralEntry 262.416 I464-LE 1.12e-10 9.92e-11
3 8 CurveIn 261.060 I102-Cv 5.42e-11 5.42e-11
4 11 OvertakingIn 261.609 I145-Oti 4.59e-11 4.59e-11
5 21 OvertakingIn 262.010 I278-Oti 4.58e-11 4.58e-11
6 26 LateralEntry 262.255 I341-LE 4.07e-11 4.07e-11
7 49 LateralEntry 263.710 I643-LE 3.87e-11 3.87e-11
8 29 LateralEntry 262.278 I384-LE 3.85e-11 3.85e-11
9 50 OvertakingIn 263.750 I660-Oti 3.42e-11 1.43e-11
10 2 SpeedLimit 260.955 I24-Sl 3.28e-11 3.28e-11

Table 6.10: N-634 National road example. Sorted critical list by annual ENSI values of incident items
with the corresponding KP and nodes.

ENSI per year
Rank Item Item name KP Node Previous Corrected

1 25 CurveIn 262.210 I328-Cv 0.00128 1.46e-8
2 35 LateralEntry 262.416 I464-LE 8.75e-05 7.77e-05
3 8 CurveIn 261.060 I102-Cv 4.24e-05 4.24e-05
4 11 OvertakingIn 261.609 I145-Oti 3.59e-05 3.59e-05
5 21 OvertakingIn 262.010 I278-Oti 3.59e-05 3.59e-05
6 26 LateralEntry 262.255 I341-LE 3.19e-05 3.19e-05
7 49 LateralEntry 263.710 I643-LE 3.03e-05 3.03e-05
8 29 LateralEntry 262.278 I384-LE 3.01e-05 3.01e-05
9 50 OvertakingIn 263.750 I660-Oti 2.67e-05 1.12e-05
10 2 SpeedLimit 260.955 I24-Sl 2.57e-05 2.57e-05



Chapter 7

Parameter estimation and validation

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Observed accident rate and potential accidents in CA-131 . . . 125

7.3.2 Observed accident rate and potential accidents in CA-132 . . . 127

7.3.3 Observed accident rate and potential accidents in CA-142 . . . 130

7.1 Introduction

One of the most critical parts of the proposed model is the parameter estimation and
validation procedure. Since the behaviour of drivers is very difficult if not impossible to
know exactly, some of the parameters cannot be estimated with precision because they are
related to human errors. Similarly, other parameters, such as those related to slope and
embankment stability are very costly to be estimated. Finally, some parameters cannot
be estimated because they are very unfrequent and there are no data.

Thus, to obtain some reliable estimates the collaboration of miscellaneous groups of
experts is required to improve the power, the credibility of the results and the efficiency
of the method. As a positive part the long experience in nuclear power plants can be
highlighted, which has allowed us to agree on the frequency values of some very unfrequent
events, that cannot be estimated from data because they do not exist.

A validation procedure will require to measure data as speeds at different locations,
weather conditions at different locations, frequencies of driver’s errors, driver types, traffic
intensities, visibilities at different locations, frequencies of vehicle failures and locations,
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pavement condition at different locations, frequencies of red and green at traffic signals,
and accident frequencies.

It is also necessary to test the resulting incident frequencies with observed values.
However, where there are no sufficient data, for the comparison only global and general
data such as mean number of incidents at curves, intersections, and lateral entries have
been used from the roads of our study and other roads too. In this way, several parameters
have been undergoing changes as it has been advanced in the model and having more data.

For the moment, the results provided by the proposed model have shown that the
method can detect some critical locations in highway and conventional roads by selecting
parameter values by common sense, experience in road traffic and a global validation that
is based on fitting the incident observations with the model predictions. In particular,
the model facilitates the comparison of different incident types and different locations and
allows important savings in maintenance operations and accident reduction policies.

7.2 Parameter estimation

The construction of the Bayesian networks model has required the estimation of a large
number of parameters. Most of them are parameters used to calculate the conditional
probability matrices of each node given its parents and all have been determined by our
working group, thanks to previous engineering knowledge and common sense, the help of
works and opinions of other experts, and the experience and knowledge that have been
applied before in nuclear power plants.

In this Thesis the whole list of parameters is not included since it is an extensive list
in which to see the values of each parameter out of context would not be very useful.

Therefore, specifying certain parameters when they are named or appear in different
formulas of this document has been considered more convenient. In this way it is much
more practical and understandable.

The estimation process has led to different steps to the current results. These results
obtained by the presented model can be considered acceptable for the analysis of road
safety due to the validation made and shown graphically in the following section.

7.3 Validation

Three roads analyzed with this model are presented in a graphical form to show the
validation of the obtained results. For that, the observed accident rate on these roads
between the years 2006 and 2016 (data that have been provided to us and later have been
represented graphically), as well as the potential accidents, those that would be expected
to occur (obtained with the Bayesian networks model) have been represented in the layout
with the purpose of comparing the similarity of the results and performing an acceptable
validation.
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7.3.1 Observed accident rate and potential accidents in the Au-
tonomic road CA-131.

A summary of the most relevant information on the observed accident rate of the Auto-
nomic road CA-131 is shown in Table 7.1, which gives the types of accidents recorded,
their severity (severe (Sev) medium (Med) or minor (Min)) and their frequency. Headings
A, D, N and S refer to ascending, descending, north and south directions, respectively.

Note that this table is only a summary of all accidents produced.

Table 7.1: List of possible types of accidents, directions and frequencies by severity (severe (Sev), medium
(Med) and minor (Min)) in the Autonomic road CA-131.

A D N S Total

Accident type Sev Med Min Sev Med Min Sev Med Min Sev Med Min Sev Med Min

Run over animals 0 0 23 0 0 15 0 0 3 0 0 0 0 0 41

Run over pedestrians 0 1 3 0 2 1 0 0 0 0 0 0 0 3 4

Collision of vehicles with obstacle in road: another object or material 0 0 3 0 0 3 0 0 0 0 0 0 0 0 6

Collision of vehicles with obstacle in road: parked or broken vehicle 0 0 1 0 0 1 0 0 1 0 0 1 0 0 4

Collision of vehicles underway: reach 1 0 28 0 0 16 0 0 0 0 0 0 1 0 44

Collision of vehicles underway: head on collision 0 0 3 0 1 3 0 0 0 0 1 4 0 2 10

Collision of vehicles underway: front-to-side collision 1 3 19 0 2 11 0 0 2 1 0 6 2 5 38

Collision of vehicles underway: lateral 0 0 12 0 0 6 0 0 0 0 0 3 0 0 21

Collision of vehicles underway: multiple 0 0 13 0 0 11 0 0 1 0 0 0 0 0 25

Other type of accident 0 1 3 0 1 7 0 0 0 0 0 1 0 2 11

Crash on the right 0 0 18 0 0 16 0 0 0 0 0 0 0 0 34

Crash on the right with free fall 0 0 3 0 0 1 0 0 0 0 0 0 0 0 4

Crash on the right with overturning 0 0 6 0 0 4 0 0 0 0 0 0 0 0 10

Crash on the right plain land 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2

Crash on the right, others 0 0 3 0 0 3 0 0 0 0 0 0 0 0 6

Crash on the right, other crash type 0 0 3 0 0 2 0 0 1 0 0 0 0 0 6

Crash on the left 1 0 1 0 0 4 0 0 0 0 0 0 1 0 5

Crash on the left into kerb 0 0 2 0 0 2 0 0 0 0 0 0 0 0 4

Crash on the left into building 0 0 4 0 0 0 0 0 0 0 0 0 0 0 4

Crash on the left into tree or post 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the left, others 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the left, other crash type 0 0 8 0 0 6 0 0 1 0 0 0 0 0 15

Overturning 0 0 2 0 0 1 0 0 0 0 0 0 0 0 3

In order to analyze the results in a much faster and more effective way, the trajectory
and the accident rate corresponding to the two directions (ascending and descending)
have been graphically plotted (see lower part of Figure 7.1), differentiating between minor
(Min), medium (Med) or severe (Sev) incidents, according to the classification provided.
The points where incidents have been observed have been indicated with circles whose
diameter is proportional to the square root of their frequency and whose colors indicate
the severity of the incidents (light yellow in minor, orange, medium and red, severe). They
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significantly facilitates the identification of the most dangerous points and the sections of
greater concentration of accidents that require an immediate action.

KP  Final
KP  Initial

Legend
Severe incid.

Medium 

Minor incid.

KP  Initial

KP  Final

LEGEND

Severe inc

Medium inc

Minor inc

Figure 7.1: At the top, the graphical representation of the incident prediction for the Autonomic road
CA-131 is shown, indicating the frequencies of level incidents (yellow), medium (orange) and severe (red)
by circles of diameter proportional to the square root of the frequency of the incidents at said points. It
is also shown, in the lower part, the observed accidents so that their similarity can be observed.

In addition, the observed accident rate is used to compare the potential accidents
resulting from the proposed Bayesian network model and to identify possible discrepancies,
which would motivate possible improvements to be introduced in the model.

The accidents observed between 2006 and 2016 includes 4 severe incidents, 12 medium
and 299 minor, making a total of 315 incidents. The observation leads to the identification
of nine different sections that will be described in detail in the chapter of the study of
real cases.

The purpose of this section is to show the similarity between the observed accidents for
a period of 10 years and the potential accidents. Thus, both are shown together in Figure
7.1. At the top of Figure the potential accidents obtained with the program of Bayesian
networks can be appreciated and in its lower part the observed accidents. To make the
subsequent comparison, the same stretches that are used to describe the observed accident
rate can be identified in the potential accidents, being possible to see how the similarity
that they present serves to proceed with the validation of the results.

Table 7.2 shows the different types of incidents, sorted by their frequency in decreasing
order, and these are differentiated by level of severity (severe, medium and minor), as well
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as totals.
This table shows that incidents on road are the most frequent (78.45), followed by those

caused by collisions at intersections (75.67) and road (65.50), run over animals (53.54)
and at the lateral entries (34.86). It also indicates that the severe incidents expected are
5.57, the medium 21.18 and the minor 319.03, with a total of 345.78 incidents.

Table 7.2: Potential incidents by type: List of points with potential incidents in CA− 131, discretized by
type of incident.

Severity
Accident Type Severe Medium Minor Total
Incident on road 1.20 3.94 73.32 78.45

Intersection 0.00 3.11 72.56 75.67
Collision 2.02 1.03 62.45 65.50

Run over animals 2.36 4.28 46.91 53.54
Lateral entry 0.00 1.01 33.85 34.86

Curve 0.00 2.09 17.11 19.21
Pedestrian crossing 0.00 4.54 2.48 7.03

Roundabout 0.00 1.17 4.65 5.83
Traffic Light 0.00 0.00 3.40 3.40

Run over pedestrians 0.00 0.00 2.30 2.30
Total 5.57 21.18 319.03 345.78

7.3.2 Observed accident rate and potential accidents in the Au-
tonomic road CA-132.

In the same way as in the previous case it is proceeded with the Autonomic road CA-132.
Figure 7.2 shows the similarity between the accidents observed between the years 2006
and 2016 and the potential accidents predicted by the model, in addition to pointing out
some information about the type of incidents that appear without going into detail since
as discussed above, this will be analyzed in another chapter.

Table 7.3 shows a summary of the most relevant information of the observed acci-
dent rate on this road giving the types of accidents recorded, their severity (severe (Sev)
medium (Med) or minor (Min)) and their frequency.

The graphical representation of these data is given in Figure 7.2, which on the right
side shows the places where the incidents have occurred, their frequency, indicated by the
size of the circles, with a radius proportional to the square root of their frequency, and
their severity, indicated by the color (light color in minor incidents, orange, in medium
and red, in severe). There were not severe incidents, 11 medium, and 164 minor, that is,
a total of 175 incidents. Three different sections can be distinguished.

On the left of Figure 7.2 the accident prediction obtained with the Bayesian network
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KP  Initial
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Minor inc. (171.3)

KP  Final
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Figure 7.2: On the left it is the graphical representation of the incident prediction for the CA-132, which
shows the frequencies of level incidents (yellow), medium (orange) and severe (red) by means of circles of
proportional diameter to the square root of the frequency of the incidents at said points. It is also shown,
on the right side, the observed accidents so that their similarity can be observed.

program is shown.
Table 7.4 shows the different types of incidents, sorted by their frequency in decreasing



7.3. VALIDATION 129

Table 7.3: List of possible types of accidents, directions and frequencies by severity (severe (Sev), medium
(Med) and minor (Min)) in the Autonomic road CA-132.

A D N S Total

Accident type Sev Med Min Sev Med Min Sev Med Min Sev Med Min Sev Med Min

- 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Run over animals 0 0 3 0 0 5 0 0 0 0 0 0 0 0 8

Run over pedestrians 0 1 1 0 3 2 0 0 0 0 0 0 0 4 3

Collision of vehicles with obstacle in road: another object or material 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Collision of vehicles underway: reach 0 1 36 0 2 18 0 0 0 0 0 0 0 3 54

Collision of vehicles underway: head on collision 0 1 1 0 1 1 0 0 0 0 2 5 0 4 7

Collision of vehicles underway: front-to-side collision 0 0 15 0 0 7 0 0 1 0 0 3 0 0 26

Collision of vehicles underway: lateral 0 0 4 0 0 5 0 0 0 0 0 1 0 0 10

Collision of vehicles underway: multiple 0 0 16 0 0 11 0 0 0 0 0 1 0 0 28

Other type of accident 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2

Crash on the right 0 0 9 0 0 3 0 0 0 0 0 0 0 0 12

Crash on the right, others 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Crash on the right, other crash type 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Crash on the left into building 0 0 7 0 0 1 0 0 0 0 0 0 0 0 8

Crash on the left, other crash type 0 0 2 0 0 2 0 0 1 0 0 0 0 0 5

order, and these are differentiated by level of severity (severe, medium and minor), as well
as totals.

This table shows that incidents at intersections are the most frequent (83.26), followed
by those caused by collisions (46.39), incidents on roads (35.69) and at lateral entries
(18.25). It also indicates that severe incidents are not expected and that 6.03 medium
and 184.90 minor are expected, with a total of 190.92 incidents.

Table 7.4: Potential incidents by type: List of points with potential incidents in CA− 132, discretized by
type of incident.

Severity
Accident type Severe Medium Minor Total

Intersection 0.00 6.03 77.24 83.26
Collision 0.00 0.00 46.39 46.39

Incident on road 0.00 0.00 35.69 35.69
Lateral entries 0.00 0.00 18.25 18.25

Run over animals 0.00 0.00 4.11 4.11
Traffic Light 0.00 0.00 2.22 2.22

Run over pedestrians 0.00 0.00 1.00 1.00
Total 0.00 6.03 184.90 190.92
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7.3.3 Observed accident rate and potential accidents in the Au-
tonomic road CA-142.

Proceeding in the same way on the Autonomic road CA-142, the following data stand
out.

Table 7.5: List of possible types of accidents, directions and frequencies by severity (severe (Sev), medium
(Med) and minor (Min) in the Autonomic road CA-142.

A D N S Total

Accident type Sev Med Min Sev Med Min Sev Med Min Sev Med Min Sev Med Min

Run over flocks 0 0 1 0 0 2 0 0 0 0 0 0 0 0 3

Run over animals 0 0 36 0 0 34 0 0 3 0 0 3 0 0 76

Run over pedestrians 0 0 5 0 2 2 0 0 0 0 1 0 0 3 7

Collision of vehicles with obstacle in road: another object or material 0 0 7 0 0 8 0 0 1 0 0 1 0 0 17

Collision of vehicles with obstacle in road: parked or broken vehicle 0 0 0 0 0 7 0 0 1 0 0 0 0 0 8

Collision of vehicles underway: reach 0 1 45 0 2 51 0 0 1 0 0 3 0 3 100

Collision of vehicles underway: head on collision 0 1 3 1 0 2 0 0 2 1 2 9 2 3 16

Collision of vehicles underway: front-to-side collision 0 3 30 0 1 34 0 0 4 1 3 17 1 7 85

Collision of vehicles underway: lateral 0 0 21 0 0 18 0 0 2 0 0 15 0 0 56

Collision of vehicles underway: multiple 0 0 11 0 1 10 0 0 1 0 0 4 0 1 26

Other type of accident 0 0 6 0 0 4 0 0 4 0 0 4 0 0 18

Crash on the right 0 2 25 0 4 24 0 0 0 0 0 0 0 6 49

Crash on the right with free fall 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the right with overturning 0 0 5 0 0 5 0 0 0 0 0 0 0 0 10

Crash on the right plain land 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Crash on the right, others 0 0 1 0 0 3 0 0 0 0 0 0 0 0 4

Crash on the right, other crash type 0 0 7 0 0 1 0 0 0 0 0 1 0 0 9

Crash on the left 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the left with kerb 0 1 4 0 1 8 0 0 0 0 0 0 0 2 12

Crash on the left into building 0 1 6 0 0 9 0 0 0 0 0 0 0 1 15

Crash on the left into tree or post 0 0 2 0 0 3 0 0 0 0 0 1 0 0 6

Crash on the left with free fall 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the left with overturning 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Crash on the left, others 0 1 2 0 0 0 0 0 1 0 0 0 0 1 3

Crash on the left, other crash type 0 1 11 0 1 12 0 0 0 0 0 0 0 2 23

Overturning 0 1 2 0 0 3 0 0 0 0 0 1 0 1 6

The most relevant information provided on the observed accident rate is in Table 7.5,
which gives the types of accidents recorded, their severity (severe (Sev), medium (Med)
or minor (Min)) and their frequency.

These same data are represented graphically in Figure 7.3, which on the right side
the places where the incidents have occurred, their frequency, indicated by the size of the
circles with a radius proportional to the square root of its frequency, and their severity,
indicated by the color (in light color are the minor incidents, in orange, the medium and
in red, the severe) are shown. Between these years 3 severe incidents ocurred and there
were 30 medium and 552 medium. Thus, on the road can be identified 7 sections. On the
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left, the prediction of potential accidents obtained with the Bayesian networks program
is shown, being possible to distinguish the same 7 sections.

KP  Final

KP  Initial

Legend

Severe inc. (4.0)

Medium inc. (38.6)

Minor inc. (556.3)

KP  Final

KP  Initial

Legend

Severe inc. (3.0)

Medium inc. (30.0)

Minor inc. (552.0)

Figure 7.3: On the left hand side the graphical representation of the accident prediction for the CA-142
is, showing the frequencies of level incidents (yellow), medium (orange) and severe (red) by circles of
diameter proportional to the square root of the frequency of the incidents at said points. On the right side
it is also shown the observed accidents to be able to observe their similarity.
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Table 7.6 shows the different types of incidents, sorted by their frequency in decreasing
order, and these are differentiated by level of severity (severe, medium and minor), as well
as totals.

Table 7.6: Potential incidents by type: List of points with potential incidents in CA− 142, discretized by
type of incident.

Severity
Accident type Severe Medium Min Total

Collision 0.00 3.21 140.42 143.63
Incident on road 0.00 4.07 126.68 130.75
Lateral entries 0.00 5.71 80.19 85.89

Intersection 0.00 3.99 66.76 70.75
Run over animals 0.00 2.87 62.23 65.10

Curve 0.00 2.04 20.55 22.59
Run over pedestrians 0.00 0.00 1.00 1.00

Total 0.00 21.88 497.83 519.71

This Table shows that the incidents due to collisions are the most frequent (143.63),
followed by incidents on road (130.75) and those at lateral entries (85.89) and at inter-
sections (70.75). It also indicates that severe incidents are not expected, 21.88 medium
and 497.83 minor, with a total of 519.71 incidents.

With all this data and Figure 7.3, the similarity between the observed accident rate
on the road in the years analyzed and the prediction of potential accidents can be seen,
considering acceptable for validation the results obtained.
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8.1 Sensitivity analysis

Apart from providing some estimates of the probabilities of occurrence of relevant un-
desired events, to analyze how sensitive and/or robust the estimates are to the assumed
values of the parameters is very important. This can be done using well known techniques
such as sensitivity analysis. For a general view of some sensitivity analysis methods see
Sobol (2001), Saltelli (2002), Saltelli et al. (2004), or Castillo et al.(2006a) and for some
particular applications to Civil engineering see, for example, Castillo et al. (2004, 2009),
and Kala and Puklicky (2009).

In order to know the way in which the parameters can affect the model and how they
vary, to perform a sensitivity analysis is very useful .

There are several options to develop this type of analysis. Below some of them are
listed:

1. Global sensitivity analysis. This provides a global view of how the parameter affects
the result for a wide range of values or combination of values with other parameters
(see Saltelli et al. (2004)).

2. Local sensitivity analysis. This method provides the local derivatives of the result
with respect to the parameter (see Castillo et al. (2006)).

3. Discrete sensitivity analysis. In this case a discrete set of values for the parameter
is selected and the calculations are done for each of them.
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4. Continuous sensitivity analysis. Here a continuous range of values for the parameter
is selected and a curve is given showing the result for all parameter values in the
given interval.

In this Thesis the Continuous sensitivity analysis is performed. For that, 10 ≤ n ≤ 40
equally spaced values are taken for the parameter and a spline is interpolated to plot the
curves. In addition, splines that conserve the increasing or decreasing character of the base
points are used, since it is a very important property to maintain in the interpolations.

Be noted that this fourth option is much more complicated than the second one because
the derivative implies an infinitesimal increment in the parameter and this means that
the actual values of all variables or nodes in the network are known. However, when
finite changes are produced, the values of all the variables must be determined again.
For example, one increment in the speed limit value of a given signal implies changes
in the speeds of many variables located after such a signal until another speed limit
change occurs. This means that analyzing the set of all variables or nodes changing their
conditional probability tables is difficult and costly.

Thus, the partitioning technique explained in Section 6.2 acquires a relevant role in
the sensitivity analysis because only a small portion of the BN need to be used in the
calculations. More precisely, it is necessary to recalculate a subnetwork starting at the
location of the parameter with respect to which the sensitivity is calculated and ending
at the node or variable whose sensitivity is looked for. This implies a very important
reduction in the evaluation time.

The partition technique for the sensitivity analysis performed can be optimized by
using the following process:

1. Step 1. Decide the parameters whose sensitivity is looked for. This means selecting
the set of parameters with respect to which a sensitivity analysis is wanted to be
performed.

2. Step 2. Select the partitions adequately. Since there is interest in using small parti-
tions, the partitions can be selected to include both the parameters and the variables
whose sensitivity is desired.

3. Step 3. Perform the probabilistic safety analysis of the BN storing the relevant infor-
mation for sensitivity analysis. The information of the relevant subnetworks to be
used later must be stored (in our software the BNT and the JavaBayes subnetworks
are stored).

4. Step 4. Perform the sensitivity analysis using only the subnetworks. This can be
done with an independent computer program without the need of repeating the
probabilistic safety analysis of the BN again.

The following is an example of a Spanish secondary road in which this method has
been used to develop a sensitivity analysis of some parameters of the model.
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8.2 Example of application: CA-182 secondary road

The case of the Spanish secondary road CA-182 between KP 8.501 and KP 15.250 with
a daily mean intensity of 558 vehicles is considered in this example and it is shown in
Figure 8.1.

Figure 8.1: CA-182 secondary road trace from KP 8.150 to 15.400, showing the three riskiest points.

Table 8.1 shows the critical list of items of the road with the largest ENSI (Expected
Number of equivalent Severe Incidents) values and the corresponding KP, incident nodes
and local probabilities, where three curves can be identified as the main responsible for
the risks at KP 9.995, KP 9.909 and KP 13.200. The plant location of these curves can
be seen in Figure 8.1 at points 1, 2 and 3 respectively, distinguishing each point by colors
according to the severity obtained in the ENSI values.

Table 8.1: Critical list of items of the CA− 182 road with the largest ENSI values and the corresponding
KP, incident nodes and local probabilities.

Local
Rank Item Item name KP Node ENSI

1 90 CurveIn 9.995 I1202-9995Cv 1.02e-06
2 92 CurveIn 9.909 I1227-9909Cv 9.5e-07
3 35 CurveIn 13.200 I466-13200Cv 8.89e-08

ENSI∗ Sorted list of Expected Number of Severe Incidents

Figures 8.2 and 8.3 show the graphical representation of two road segments (specifically
the segments in which the three highest risk curves are included), in their upper parts,
and the plots of the cumulated ENSI frequencies in their lower parts. In addition, a table
with the ENSI values associated with each item of the segments is provided at the figure
bottom.
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Figure 8.2: Cumulative ENSI graphs for the most risky zone of CA-182 road, showing that two curves
are responsible for the high ENSI values.

The relative risks associated with the different items can be identified (the two riskiest
curves in Figure 8.2 and the third one in Figure 8.3) by comparing the discontinuities of
the graphs.

Figure 8.4 shows the cumulative ENSI graphs corresponding to a segment in which
signs are not the main causes of risk, but segment without signs. They correspond to the
KP 10.884 to KP 10.005, where the slope of the graph is the highest.
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Figure 8.3: Cumulative ENSI graphs showing the ENSI values due to the curve at KP 13.200.

Table 8.2 shows the ENSI values associated with the groups of identical items, such
as curves, intersections, and underpasses, so that we can have an idea of the influence of
these types of items on the global safety of the road. It is clear that curves are the type
of items leading to the highest risks in this road segment.

To solve the problem with the two curves at KP 9.995 and KP 9.909, it has been
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Figure 8.4: Cumulative ENSI graph corresponding to a segment in which segment without signs are the
main causes of risk (KP 10.884 to KP 10.005).

considered to move the 40 km/h speed limit sign from KP 9.875 to KP 10.200 and to
reduce the speed limit to 70 km/h at KP 10.884, thereby significantly reducing the risk
of a severe incident.

Figure 8.5, which shows a comparison of the previous and the corrected plots illustrates
the important improvement produced with this correction.

When a new evaluation of risks with these changes is performed, Figure 8.6 is obtained,
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Table 8.2: Grouped incident list: List of items of CA-182 road with their frequencies and total ENSI
values.

Incident Local
types Frequency ENSI
Curve 17 2.1e-06

SegWSignal 129 7e-10
Lateral Entry 25 5.49e-10
Intersection 11 3.82e-10
Underpass 1 8.07e-12

Pedestrian Crossing 4 2.86e-16
ENSI∗ Expected Number of Severe Incidents
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Figure 8.5: Illustration of the improvements after correcting the speed limit signs.

in which the most risky locations after the corrections are shown. Note that the two
previous curves are not listed and only the third curve remains with an ENSI value larger
than 10−9.
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Figure 8.6: CA-182 secondary road trace from KP 8.150 to KP 15.400, showing the most risky locations
after making the corrections.

Finally, to illustrate the sensitivity analysis method, the example in Figure 8.1 is
considered. It is a simple example consisting of two curves, one at KP 9.995 with radius
80 m and another at KP 9.909 with radius 90 m with a previous speed limit sign of 90
km/h at KP 10.884.

The sequence of traffic signs of this example and the associated KPs of their locations
are indicated in the upper plot in Figure 8.2 and the bottom of the plot shows the
cumulated ENSI values. Finally, the lower part is a table with all the relevant information,
showing that the ENSI at the first curve is 1.02× 10−6 and the ENSI at the second curve
is 9.5× 10−7.

As indicated in Figure 5.7 the more relevant parameters analyzing a curve incident
are, the relative to the characteristics of the curve, in this case the curve speed limit at
KP 10.884 and the curve radius, and the parameters ρ1, ρ2, β and γ in Formula (5.40).
To illustrate the sensitivity analysis, the ENSI values when these parameters are changed
one by one, are calculated .

Figure 8.7 shows these changes. These plots permit us to study the changes due
to parameters ρ1, ρ2, β and γ in Equation (5.40), being ρ1 and ρ2 the probabilities of
incident at the curve under no speed excess and speed excess, respectively, and β and γ
two parameters to consider the relative difference of the speed excess vex with respect to
the critical speed at the curve vcrit. In addition, the sensitivities with respect to the curve
radius and the speed limit are calculated. These are non-linear which means that the
changes in the ENSI value can be immediately recalculated when one of the parameters
is modified without any recalculation and that the changes due to small changes can be
easily estimated in several parameters with simple calculations based on the gradients.

The knowledge of these sensitivity curves is very useful because they provide the
necessary corrections to obtain reasonable ENSI values. For example, it can be seen that
an increase of the curve radius from 80 m to 120 m implies a reduction of the ENSI value
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Figure 8.7: Upper plots: sensitivities of the ENSI at the curve with respect to parameters ρ1 and ρ2 in
Equation (5.40). Medium plots: sensitivities of the ENSI at the curve with respect to curve radius and
speed limit. Lower plots: sensitivities of the ENSI at the curve with respect to β and γ in Equation (5.40).
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to one half. Similarly, a reduction of the speed limit from 90 Km/h to 77 km/h implies a
reduction of the ENSI value to another half (see medium plots of Figure 8.7).

A change in ρ1 implies almost no reduction and a reduction of ρ2 from 3 to 1.5 implies
a reduction of one half of ENSI values (see upper plots of Figure 8.7). If β changes from
2 to 1 the ENSI value is reduced in one half and when there is a reduction of γ from 3
to 2 the same reduction of ENSI value is produced (see lower plots of Figure 8.7). It is
also noted that ENSI values change linearly with ρ1, ρ2 and β, while the changes with the
curve radius, the speed limit and γ are non linear.
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Prognosticate and causes of incidents
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9.1 Prognosticate incident occurrence

Once the most critical locations of the road or highway have been identified, it is important
to obtain the most important combinations of variable values, that is, the circumstances
leading to severe incidents. In other words, the characteristics of the incidents at given
locations are wanted to be known, that is, we would like to know answers to questions
such as, for example, did the incidents occur in good or bad weather?, were the vehicles
involved cars, motorcycles or trucks?, were the drivers attentive or distracted? and, was
the road traffic intensity low or high?

To answer these and similar questions multi-dimensional marginal probabilities of
selected subsets of variables must be worked with.

Of special interest are the joint probabilities of the subset of variables involved in
the conditional probability tables. For example, consider the case of an incident I at a
curve and its conditional probability P (I|W,V t,D, S), where W,V t,D, S refer to weather,
vehicle type, driver’s attention and speed, respectively. Since

P (I|W,V t,D, S) =
P (I,W, V t,D, S)

P (W,V t,D, S)
, (9.1)

the joint probability of (I,W, V t,D, S) is obtained as

P (I,W, V t,D, S) = P (I|W,V t,D, S)P (W,V t,D, S), (9.2)

143
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from which the ENSI values can be achieved.
It is noted that calculation of the joint probability (9.2) is not a problem because it

involves members of a family (a child I and its parents W , V t, D and S).
If the ENSI(W,V t,D, S) values are sorted in decreasing order of magnitude, the

combinations of the random variables W,V t,D and S leading to the most probable se-
vere incidents can be identified. This permits, not only to enumerate the most relevant
sequences of events with serious hazards and to quantify their probabilities of occurrence,
but to have a picture of the most frequent situations leading to those incidents and con-
sequently to address the corrective actions to the most frequent causes of each incident.

Thanks to the inference engine of the BN, it is possible to determine the most likely
combinations of variables that give rise to each incident analyzed. To illustrate this, an
example of a Spanish road is exposed below.

9.1.1 Example of application: Prognosticate of incidents on the
National road N-611

This illustrative example of the Spanish National road N-611 from Santander to Tor-
relavega, from KP 208.000 to KP 184.560, with total length of 23.440 km (see Figure
9.1), in addition to showing results obtained with the presented methodology, explains
the part of the prognosticate incident occurrence in a practical way. It has been modelled
with 586 items and 7917 variables. Figure 9.1 shows the road plant where the positions
of the most hazardous locations and black spots are represented, highlighting two areas
(rectangles) which represent the main critical segments of the road. The lower part of this
figure shows the riskiest item locations, three curves at KP 207.550, KP 190.390 and KP
207.900 with ENSI values of 2.05e− 07, 1.96e− 07 and 6.66e− 08, respectively1, and a T
intersection located at KP 207.160 with ENSI = 1.42e−08, together with their associated
yearly ENSI values, 0.337, 0.332, 0.109 and 0.0234, respectively2.

The critical list table of the road which represents the ENSI values corresponding to
a single trip of the road and which contains the list of the items sorted by their incident
risk levels with their corresponding KP, node identifications and local probabilities is
represented in Table 9.1. Note that only the items whose ENSI values exceed 1.0e − 9
are listed and the most hazardous locations of the road can be immediately identified. It
can be seen that the first four most critical items correspond to the three curves and the
T intersection mentioned above. The remaining items in the list correspond to curves,
lateral entries, yield signs and intersections.

Table 9.2 contains the list of ENSI values grouped by item types and sorted by de-
creasing order of ENSI values. It reveals that the 35 curves, the 79 lateral entries, the 97
intersections and the 19 yield signs are those contributing more to the N-611 road risks.

1This refers to the expected number of severe incidents each time we travel this road.
2This refers to the expected number of severe incidents suffered by all vehicles using this road during

one year.
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Rank Item Item name KP Node Local Probability ENSI per year

1 14 CurveIn 207.550 I185-207550Cv 2.05e-07 0.337
2 440 CurveIn 190.390 I5876-190390Cv 1.96e-07 0.322
3 5 CurveIn 207.900 I64-207900Cv 6.66e-08 0.109
4 24 Intersection 207.160 I329-207160Int 1.42e-08 0.0234

Figure 9.1: Plant of the N-611 road, from Santander to Torrelavega, showing the four riskiest locations.

To display the results of the analysis the model builds some figures such as Figure
9.2, 9.3 and 9.4, which show the acyclic graph, the schematic representations of the road
segments, the graph of the cumulated ENSI values, and also include tables at the bottom
of the figures with the details of the item locations and their ENSI values, local and
cumulated for the segment considered.

Figure 9.2 shows, in particular, the acyclic graph corresponding to the segment ranging
between KP 207.770 and KP 207.500 and the corresponding road items.

Figure 9.3 also represents the segment ranging between KP 207.770 and KP 207.500
and the corresponding road items, in which the most hazardous point, the curve of radius
240 m at KP 207.550 appear, with a table at the bottom of the figure with the details of
the item locations and their ENSI values, local and cumulated for this segment. Finally,
Figure 9.4 represents the same information for the most hazardous intersection, a T
intersection at KP 207.160.

This collection of figures, graphs and tables for all segments provides a detailed profile
of the road, which permits a clear and precise probabilistic assessment of its safety to be
performed.
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Table 9.1: National road N-611. Critical list of items sorted by their incident risk levels with their
corresponding KP, nodes and local ENSI values.

ENSI
Rank Item Item name KP Node Local

1 14 CurveIn 207.550 I185-207550Cv 2.05e-07
2 440 CurveIn 190.390 I5876-190390Cv 1.96e-07
3 5 CurveIn 207.900 I64-207900Cv 6.66e-08
4 24 Intersection 207.160 I329-207160Int 1.42e-08
5 467 CurveIn 189.520 I6248-189520Cv 7.5e-09
6 430 CurveIn 190.690 I5748-190690Cv 5.75e-09
7 408 CurveIn 191.510 I5467-191510Cv 3.71e-09
8 449 Yield 189.945 I5996-189945Yl 3.57e-09
9 6 LateralEntry 207.895 I77-207895LE 2.68e-09
10 3 LateralEntry 207.935 I38-207935LE 2.61e-09
11 361 LateralEntry 193.162 I4871-193162LE 2.41e-09
12 177 Yield 201.724 I2456-201724Yl 2.17e-09
13 127 Yield 203.451 I1767-203451Yl 2.17e-09
14 89 Yield 204.567 I1234-204567Yl 2.11e-09
15 7 LateralEntry 207.785 I90-207785LE 2.06e-09
16 548 Intersection 186.068 I7364-186068Int 1.91e-09
17 299 LateralEntry 196.665 I4078-196665LE 1.79e-09
18 349 LateralEntry 193.770 I4717-193770LE 1.79e-09
19 115 Intersection 203.854 I1604-203854Int 1.58e-09
20 495 LateralEntry 188.654 I6626-188654LE 1.53e-09
21 294 LateralEntry 197.060 I4013-197060LE 1.47e-09
22 166 LateralEntry 202.185 I2302-202185LE 1.44e-09
23 62 Yield 205.235 I860-205235Yl 1.43e-09
24 293 LateralEntry 197.140 I4000-197140LE 1.41e-09
25 448 LateralEntry 189.985 I5979-189985LE 1.4e-09
26 81 Intersection 204.732 I1124-204732Int 1.3e-09
27 490 LateralEntry 188.949 I6562-188949LE 1.23e-09
28 120 LateralEntry 203.716 I1674-203716LE 1.17e-09
29 164 LateralEntry 202.315 I2276-202315LE 1.17e-09
30 21 LateralEntry 207.255 I280-207255LE 1.1e-09
31 19 LateralEntry 207.350 I254-207350LE 1.07e-09
32 34 Intersection 206.565 I465-206565Int 1.02e-09

ENSI∗ Expected Number of Severe Incidents
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Table 9.2: National road N-611. Grouped incident list of items with their frequencies and total ENSI
values.

Incident Local
types Frequency ENSI
Curve 35 4.87e-07

Lateral Entry 79 5.15e-08
Intersection 97 3.5e-08

Yield 19 2.02e-08
SegWSignal 585 1.58e-09
Traffic Light 29 9.28e-10
Roundabout 15 1.21e-10

Overpass 6 8.76e-11
Pedestrian Crossing 19 7.09e-11

Underpass 4 2.06e-11
Viaduct 2 9.87e-12

ENSI∗ Expected Number of Severe Incidents
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Figure 4. National road N-611. Acyclic graph corresponding to segment ranging between KP 207.770 and KP 207.500.

from which we can obtain the ENSI values.
We note that calculation of the joint probability (3) is not a

problem because it involves members of a family (a child I and
its parents W , V t, D and S).

If the ENSI(W,V t,D, S) values are sorted in decreasing
order of magnitude, the combinations of the random variables
W,V t,D and S leading to the most probable severe incidents
can be identified. This permits us not only to enumerate the
most relevant sequences of events with serious hazards and to
quantify their probabilities of occurrence but to have a picture
of the most frequent situations leading to those incidents and
consequently address our corrective actions to the most frequent
causes of each incident.

Thanks to the inference engine of the BN, it is possible to
determine the most likely combinations of variables that give
rise to each incident analyzed. To illustrate, we use the most
critical point of the illustrative example, a curve of 240 m at KP
207.550 with the speed limit of 90 km/h (road maximum speed).
Thus, the risk of a severe incident at this location results in
2.05e-07 ENSI per trip or 0.337 ENSI per year for all circulating
vehicles. It was represented in Figure 2.

When we analyze the most likely combinations of variable
values that give rise to incidents I185−207550Cv at the curve
located at KP 207.550, we obtain Table III which represents the
most frequent combinations of values for the variables weather
W , vehicle type V t, Driver’s attention D, Speed S that lead to
incidents at the curve with frequencies indicated by the ENSI
values and the contributions of each combination given in %.

It is quite surprising that the most likely combinations corre-
spond to rainy days (medium weather) and not to bad or very
bad weather, for example snow, and with drivers attentive or
alert to driving and not distracted. This is due to the fact that
bad and very bad weather are much less likely than good and
medium weather and to the fact that the distracted state is less
likely than the attentive one, so that a higher probability of a
severe incident with very bad weather with respect to medium
weather is compensated with the fact that the bad weather is

Table III
ENSI TABLE. MAIN VARIABLE COMBINATION VALUES CONTRIBUTING TO
THE TOTAL ENSI VALUE OF NODE I185-207550CV (ENSI=2.05454E-07)

n Weather Veh. type Attention Speed ENSI % ENSI
1 medium car attentive 108 1.15e-07 55.82
2 medium car attentive 90 5.29e-08 25.77
3 medium car alert 108 1.64e-08 8.00
4 medium car alert 90 8.71e-09 4.24
5 medium car attentive 121.5 3.11e-09 1.51
6 medium heavy attentive 90 3.07e-09 1.50
7 bad car attentive 90 2.06e-09 1.00
8 medium heavy alert 90 1.19e-09 0.58
9 medium motorcycle attentive 108 1.19e-09 0.58

10 bad car alert 90 5.88e-10 0.29

much less frequent than the medium one.
Since incidents imply a complex evaluation of all combi-

nations of values of a large set of variables, engineers are
not able to have a correct intuition about which combination
of variable values leads to more frequent incidents. Thus, the
Bayesian network inference engine becomes crucial to help
us identify these combinations and proceed consequently to
choose the adequate actions or interventions to improve safety
when needed. Discovering the real causes of incidents and
their associated frequencies is very relevant to reduce risk
and save maintenance costs. If we believe, for example, that
incidents are caused mainly by novice drivers with bad weather
when traffic intensity is high, we will orient our actions to
them instead of addressing the corrections to the most frequent
combinations leading to a reduction in the efficiency of the
correction procedure. All this shows the relevance of a correct
identification of combinations of events leading to incidents.

Because we can determine the most determinant factors that
produce such an incident, we can act accordingly, considering
that in this case there is a speed excess problem at the curve.

If the severity of the incident and the probability instead of
the ENSI values are included in the table, a different picture of

Figure 9.2: National road N-611. Acyclic graph corresponding to segment ranging between KP 207.770
and KP 207.500.
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Item KP Item name Node Local Cumulated
8 207.770 SegWSignals I102-207770SCr 3.28e-11 7.5e-08

TrafficLight I108-207770TL 2.52e-12 7.5e-08
9 207.750 SegWSignals I120-207750SCr 4.27e-11 7.51e-08
10 207.690 SegWSignals I133-207690SCr 2.52e-11 7.51e-08

Intersection I134-207690Int 4.56e-10 7.56e-08
11 207.680 SegWSignals I146-207680SCr 4.49e-12 7.56e-08
12 207.650 SegWSignals I158-207650S 2.98e-12 7.56e-08

Overpass I159-207650Ov 4.78e-12 7.56e-08
13 207.630 SegWSignals I171-207630S 2.02e-12 7.56e-08

LateralEntry I172-207630LE 5.35e-10 7.61e-08
14 207.550 SegWSignals I184-207550S 9.5e-12 7.61e-08

CurveIn I185-207550Cv 2.05e-07 2.82e-07
15 207.520 SegWSignals I197-207520SCr 2.8e-11 2.82e-07

Intersection I198-207520Int 5.05e-10 2.82e-07
16 207.500 SegWSignals I210-207500SCr 1.87e-11 2.82e-07

TrafficLight I216-207500TL 4.62e-13 2.82e-07

Figure 9.3: National road N-611. Data corresponding to segment ranging between KP 207.770 and KP
207.500.
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16 207.500 SegWSignals I210-207500SCr 1.87e-11 2.82e-07
TrafficLight I216-207500TL 4.62e-13 2.82e-07

17 207.480 SegWSignals I228-207480SCr 5.39e-11 2.82e-07
18 207.470 SegWSignals I240-207470S 3.29e-12 2.82e-07

LateralEntry I241-207470LE 6.64e-10 2.83e-07
19 207.350 SegWSignals I253-207350S 1.17e-11 2.83e-07

LateralEntry I254-207350LE 1.07e-09 2.84e-07
20 207.270 SegWSignals I266-207270S 9.05e-12 2.84e-07
21 207.255 SegWSignals I279-207255S 2.26e-12 2.84e-07

LateralEntry I280-207255LE 1.1e-09 2.85e-07
22 207.220 SegWSignals I292-207220S 5.82e-12 2.85e-07

TrafficLight I298-207220TL 6.24e-13 2.85e-07
23 207.180 SegWSignals I310-207180S 5.88e-12 2.85e-07

TrafficLight I316-207180TL 2.03e-13 2.85e-07
24 207.160 SegWSignals I328-207160S 5.25e-12 2.85e-07

Intersection I329-207160Int 1.42e-08 2.99e-07

Figure 9.4: National road N-611. Data corresponding to segment ranging between KP 207.500 and KP
207.160.
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In order to show how the prognosticate incident occurrence is employed by the pro-
posed model, the most critical point of this illustrative example, a curve of 240 m at KP
207.550 with a speed limit of 90 km/h (road maximum speed), is analyzed. The point is
represented in plant as point 1 in Figure 9.1 where the risk of a severe incident at this
location results in 2.05e-07 ENSI per trip3 or 0.337 ENSI per year4 for all circulating
vehicles and it can be appreciated in Figure 9.3.

When the most likely combinations of variable values that give rise to incidents at the
curve located at KP 207.550 are evaluated, Table 9.3 which represents the most frequent
combinations of values for the variables weather W , vehicle type V t, driver’s attention D,
and speed S, that lead to incidents at the curve with frequencies indicated by the ENSI
values and the contributions of each combination given in % is obtained.

It is quite surprising that the most likely combinations, that is, 55.822 of the times,
correspond to rainy days (medium weather) and not to bad or very bad weather, for
example snow, and with drivers attentive or alert to driving and not distracted. This is
due to the fact that bad and very bad weather are much less likely than good and medium
weather. Additionally, under these weather conditions drivers would not circulate unless
necessary, which implies a low traffic intensity and a small driver distraction probability.

Since incidents imply a complex evaluation of all combinations of values of a large set of
variables, engineers have not a correct intuition about which combination of variable values
leads to more frequent incidents. Thus, the Bayesian network inference engine becomes
crucial to help us identify these combinations and proceed consequently to choose the
adequate actions or interventions to improve safety when needed. Discovering the real
causes of incidents and their associated frequencies is very relevant to reduce risk and
save maintenance costs. If it is believed, for example, that incidents are caused mainly by
novice drivers with bad weather when traffic intensity is high, the actions will be oriented
to them instead of addressing the corrections to the most frequent combinations leading
to a reduction in the efficiency of the correction procedure. All this shows the relevance
of a correct identification of combinations of events leading to incidents.

If the severity of the incident and the probability per trip instead of the ENSI values
are included in the table, a different picture of the problem can be obtained. By analyzing
the severity of the potential incidents, frequent occurrence not only of severe but medium
or minor incidents can be detected too. This is the case of Table 9.4 in which the 5th case
corresponds to a frequent potential medium incident. Note that the occurrence probability
of the 5th case is larger than those of the 3rd and 4th cases, but the opposite is true for
the ENSI values.

Since a speed excess problem at the curve located at KP 207.550 has been identified,
it is decided to change the speed limit sign at KP 207.800 from 90km/h to 60km/h.
A recalculation of probabilities shows that the ENSI value at the curve located at KP
207.550 drops considerably down to 7.41e-11, see Figure 9.5, and its most likely causes

3That is, two incidents every 10,000,000 trips
4This means one severe incident every three years
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Table 9.3: ENSI Table. Combination of main variable values contributing to the total ENSI value of
incident at the riskiest curve Node (ENSI=2.05454e-07).

n Weather Veh. type Attention Speed ENSI % ENSI

1 medium car attentive 108 1.15e-07 55.82
2 medium car attentive 90 5.29e-08 25.77
3 medium car alert 108 1.64e-08 8.00
4 medium car alert 90 8.71e-09 4.24
5 medium car attentive 121.5 3.11e-09 1.51
6 medium heavy attentive 90 3.07e-09 1.50
7 bad car attentive 90 2.06e-09 1.00
8 medium heavy alert 90 1.19e-09 0.58
9 medium motorcycle attentive 108 1.19e-09 0.58
10 bad car alert 90 5.88e-10 0.29

Table 9.4: Combination of main variable values contributing to the total ENSI value at the riskiest curve
Node (ENSI=2.05454e-07) including the severity of incident and the probability per trip.

n Weather Veh. type Attention Speed Incident Probability % ENSI

1 medium car attentive 108 severe 1.14e-07 55.71
2 medium car attentive 90 severe 4.97e-08 24.17
3 medium car alert 108 severe 1.64e-08 7.98
4 medium car alert 90 severe 8.17e-09 3.98
5 medium car attentive 90 medium 3.27e-08 1.59
6 medium car attentive 121.5 severe 3.11e-09 1.51
7 medium heavy attentive 90 severe 2.95e-09 1.44
8 bad car attentive 90 severe 2.02e-09 0.98
9 medium motorcycle attentive 108 severe 1.19e-09 0.58
10 medium heavy alert 90 severe 1.15e-09 0.56
11 bad car alert 90 severe 5.78e-10 0.28
12 medium car alert 90 medium 5.38e-09 0.26

also change significantly, as shown in Table 9.5.
The curious result is that now severe incidents are mainly caused by driver distraction,

unfavorable weather conditions, and medium and minor incidents correspond to attentive
drivers5. Hence, with this intervention (a speed limitation to 60 km/h) the risk associated
with the curve becomes reasonable because:

5It can be seen that with the previous speed limit incidents cannot be due to drivers, while with the
new speed limit reduction, incidents are caused by drivers (speed and distraction).
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8 207.785 SegWSignals I104-207785SCr 7.41e-12 2.21e-09
LateralEntry I105-207785LE 7.42e-10 2.95e-09

9 207.770 SegWSignals I117-207770SCr 1e-12 2.95e-09
TrafficLight I123-207770TL 9.62e-13 2.95e-09

10 207.750 SegWSignals I135-207750SCr 3.99e-11 2.99e-09
11 207.690 SegWSignals I148-207690SCr 8.93e-13 2.99e-09

Intersection I149-207690Int 8.51e-11 3.08e-09
12 207.680 SegWSignals I161-207680SCr 1.51e-13 3.08e-09
13 207.650 SegWSignals I173-207650S 1.01e-13 3.08e-09

Overpass I174-207650Ov 4.75e-12 3.09e-09
14 207.630 SegWSignals I186-207630S 7.15e-14 3.09e-09

LateralEntry I187-207630LE 1.95e-10 3.28e-09
15 207.550 SegWSignals I199-207550S 3.28e-13 3.28e-09

CurveIn I200-207550Cv 7.41e-11 3.35e-09
16 207.520 SegWSignals I212-207520SCr 9.91e-13 3.36e-09

Intersection I213-207520Int 9.04e-11 3.45e-09

Figure 9.5: Data corresponding to segment ranging between KP 207.770 and KP 207.500 after installing
a speed limit sign (60 km/h) at KP 207.800.

• Global ENSI has dropped from 2.05e-07 to 7.41e-11 (2770 times safer).

• Severe incidents have decreased significantly, emerging only medium and minor in-



9.1. PROGNOSTICATE INCIDENT OCCURRENCE 153

Table 9.5: Combination of main variable values contributing to the total ENSI value at the riskiest curve
Node (ENSI=7.41208e-11) after installing a speed limit sign at KP 207.800.

n Weather Veh. type Attention Speed Incident Probability % ENSI

1 medium car attentive 81 medium 2.47e-10 33.29
2 medium car distracted 90 severe 2.02e-11 27.25
3 medium car distracted 81 severe 1.9e-11 25.60
4 medium car attentive 81 minor 1.31e-09 3.53
5 medium car attentive 90 severe 1.1e-12 1.48
6 bad car distracted 90 severe 9.23e-13 1.25
7 medium car alert 81 medium 6.97e-12 0.94
8 medium motorcycle attentive 81 medium 6.03e-12 0.81
9 fair car distracted 72 severe 5.55e-13 0.75
10 bad car distracted 81 severe 5.13e-13 0.69
11 fair car distracted 81 severe 4.1e-13 0.55

cidents.

• Severe incidents originate only from distracted drivers.
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Figure 9.6: Possible conflict point in a T intersection (left) and T with median intersection (right).

Next, the T intersection at KP 207.160 (see Figure 9.4) is considered and the associ-
ated most likely causes are shown in Table 9.6. Unexpectedly, in this case the accidents
frequently occur with good and slightly rainy days (fair and medium weather), with at-
tentive or alert car drivers and high and very low speeds. The low speed vehicles are
those turning at the intersection. Hence, the conclusions that can be extracted from the
analysis made are that severe incidents can occur due to (a) lateral or frontal collisions
of high speed vehicles circulating across the main road with those entering or leaving the
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Table 9.6: Combination of main variable values contributing to the total ENSI value at the riskiest
intersection Node (ENSI=1.42428e-08).

n Weather Veh. type Attention Speed ENSI % ENSI

1 fair car alert 120 1.85e-09 12.97
2 fair car attentive 120 1.51e-09 10.60
3 medium car alert 36 1.49e-09 10.49
4 medium car alert 120 1.47e-09 10.32
5 fair car alert 36 1.32e-09 9.27
6 medium car attentive 120 9.63e-10 6.76
7 medium car attentive 36 9.58e-10 6.73
8 fair car attentive 36 8.62e-10 6.05
9 bad car alert 36 3.16e-10 2.22
10 bad car alert 120 3.09e-10 2.17
11 very bad car alert 36 2.68e-10 1.88
12 very bad car alert 120 2.62e-10 1.84
13 fair heavy alert 36 2.25e-10 1.58
14 fair heavy alert 120 2.2e-10 1.54
15 fair car alert 99.4987 1.82e-10 1.28
16 medium heavy alert 36 1.73e-10 1.22
17 medium car alert 99.4987 1.71e-10 1.20
18 medium heavy alert 120 1.69e-10 1.19
19 fair car attentive 99.4987 1.43e-10 1.00
20 bad car attentive 36 1.1e-10 0.77
21 medium car attentive 99.4987 1.09e-10 0.76
22 bad car attentive 120 1.07e-10 0.75
23 fair heavy attentive 36 9.14e-11 0.64
24 fair heavy attentive 120 8.93e-11 0.63
25 medium heavy attentive 36 5.74e-11 0.40

main road or (b) rear collisions with vehicles circulating too slowly when incorporating
or getting off the secondary road.

After an analysis of this situation it is concluded that one way of reducing the risk
at the intersection is to reduce the speed and change the intersection type, from a T
intersection to a T with median, which limits considerably the traffic switch, as shown in
Figure 9.6. The result is that the risk decreases from 1.42e− 08 to 1.85e− 09 (7.68 times
safer) as it can be seen in Figure 9.7.

The most likely causes after the correction are shown in Table 9.7, from which it can be
concluded that incident occurrences decrease due to a speed reduction, but the incidents
still take place by speed excesses with attentive or alert drivers and in not bad weather
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17 207.500 SegWSignals I225-207500SCr 7.2e-13 3.45e-09
TrafficLight I231-207500TL 4.21e-13 3.45e-09

18 207.480 SegWSignals I243-207480SCr 6.13e-11 3.51e-09
19 207.470 SegWSignals I255-207470S 2.69e-12 3.51e-09

LateralEntry I256-207470LE 1.88e-10 3.7e-09
20 207.350 SegWSignals I268-207350S 5.46e-13 3.7e-09

LateralEntry I269-207350LE 3.9e-10 4.09e-09
21 207.270 SegWSignals I281-207270S 3.92e-13 4.09e-09
22 207.255 SegWSignals I294-207255S 9.44e-14 4.09e-09

LateralEntry I295-207255LE 4e-10 4.49e-09
23 207.220 SegWSignals I307-207220S 2.55e-13 4.49e-09

TrafficLight I313-207220TL 6.91e-13 4.49e-09
24 207.180 SegWSignals I325-207180S 1.54e-12 4.49e-09

TrafficLight I331-207180TL 1.76e-13 4.49e-09
25 207.160 SegWSignals I343-207160S 6.18e-12 4.5e-09

Intersection I344-207160Int 1.85e-09 6.34e-09

Figure 9.7: Data corresponding to segment including the riskiest intersection (KP 207.160) after im-
provements.

days.
In summary, this tool could be very useful for determining the conditions under which

potential accidents occur and for organizing corrective actions in a rational and efficient
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Table 9.7: Combination of main variable values contributing to the total ENSI value at the riskiest
intersection Node (ENSI=1.84514e-09) after improvements.

n Weather Veh. type Attention Speed ENSI % ENSI

1 fair car alert 107 2.19e-10 11.89

2 fair car attentive 107 2.15e-10 11.65

3 medium car alert 107 2.01e-10 10.87

4 medium car attentive 107 1.59e-10 8.64

5 fair car alert 24 1.3e-10 7.04

6 fair car attentive 24 1.28e-10 6.95

7 medium car alert 24 1.18e-10 6.38

8 medium car attentive 24 9.35e-11 5.07

9 fair car attentive 90 5.98e-11 3.24

10 fair car alert 90 5.97e-11 3.23

11 medium car alert 90 5.34e-11 2.89

12 bad car alert 107 4.32e-11 2.34

13 medium car attentive 90 4.24e-11 2.30

14 very bad car alert 107 3.68e-11 2.00

15 fair heavy alert 107 3.03e-11 1.64

16 bad car alert 24 2.53e-11 1.37

17 medium heavy alert 107 2.36e-11 1.28

18 very bad car alert 24 2.2e-11 1.19

19 bad car attentive 107 1.84e-11 1.00

20 fair heavy alert 24 1.78e-11 0.96

21 fair heavy attentive 107 1.56e-11 0.84

22 fair car alert 72 1.4e-11 0.76

23 fair car attentive 72 1.39e-11 0.75

24 medium heavy alert 24 1.38e-11 0.75

25 bad car alert 90 1.15e-11 0.62

26 bad car attentive 24 1.08e-11 0.59

27 very bad car alert 90 9.99e-12 0.54

28 medium heavy attentive 107 9.82e-12 0.53

29 medium car alert 72 9.5e-12 0.51

30 fair heavy attentive 24 9.13e-12 0.50

31 medium car attentive 72 8.14e-12 0.44

32 fair heavy alert 90 8.07e-12 0.44

manner.
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9.2 Analysis of the causes of accidents by backward

analysis

Another helpful possibility offered by the Bayesian network is backward inference. When
an event (for example, a severe accident with specific characteristics) occurs at a certain
place, the network modifies the probabilities of all variables and allows us to identify its
causes, which would be difficult to detect without the help of this tool.
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Figure 9.8: Segment of road to illustrate the backward propagation to determine the causes of accidents.

A simple segment represented in Figure 9.8 is used to show how it works. The ENSI
value associated with the curve at KP 15.450 is 4.1× 10−9, showing that the probability
of an incident at this location is very low (tables of conditional probability are shown in
Figure 9.9). However, if a severe incident with a motorcycle and on a rainy day (medium
weather) is observed at the curve, the most likely circumstances causing the incident are
the following (see Figure 9.10):

• A vehicle circulating at an excessive speed (121.5 km/h) at the curve.

• A bad or novice driver.



158 CHAPTER 9. PROGNOSTICATE AND CAUSES OF INCIDENTS

W1−163

Vt2−163

Dri3−163

It4−163

Vis5−163

D6−163

S7−163

W8−1533

Vt9−1533

Dri10−1533

It11−1533

Vis12−1533

D13−1533
Sd14−1533

S15−1533

V16−1533

P17−1533 Co18−1533

I19−1533

D20−1533

Ds21−1533

S22−1533

W23−1545

Vt24−1545

Dri25−1545

It26−1545

Vis27−1545

D28−1545
Sd29−1545

S30−1545

V31−1545

P32−1545

Co33−1545

I34−1545 I35−1545

W36−1630

Vt37−1630

Dri38−1630

It39−1630

Vis40−1630

D41−1630
Sd42−1630

S43−1630

V44−1630

P45−1630 Co46−1630

I47−1630

   1.636 

60

  15.336   15.450   16.300 

No incidence 0.99999999
Minor 1.16E-10

Medium 2.09E-09
Severe 3.89E-09

Incident  I-35

22.5 4.1E-04
36 2.8E-02

58.5 1.1E-01
72 2.4E-01
90 3.8E-01

108 2.3E-01
121.5 1.6E-02
135 3.3E-04

Speed S-30

heavy 0.049
car 0.939

motorcycle 0.013

Veh. Type Vt-24

fair 0.505
medium 0.393

bad 0.062
very bad 0.040

Weather W-23

distracted 1.4E-04
attentive 6.3E-01

alert 3.7E-01

Driver's attention D-28

professional 0.092
experienced 0.144

standard 0.619
bad 0.145

Driver's Type Dri-25

slight 0.314
medium 0.543

high 0.143

Intensity Type It-26
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Figure 9.9: Tables of conditional probability before the evidence of an incident.

• An attentive driver.

• A low traffic intensity.

A bad driver causing the severe incident due to an excessive speed and a low traffic
intensity may have been expected perhaps because it allows for higher speed, but it
is not clear that an attentive driver’s condition, for example, would have been expected.
Consequently, the Bayesian network inference engine plays an important role in identifying
these situations.

With this small example it is possible to see how the tables of conditional probability
are recalculated after evidence of the severe incident with specific characteristics and these
values are different from the initial (see Figure 9.9 and 9.10).

If, in addition, a severe incident with a motorcycle, on a rainy day (medium weather)
and an excessive speed is identified now, the most likely circumstances become (see Figure
9.11):

• A bad (dare) driver.

• An attentive driver.

• A low traffic intensity.
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   1.636   15.336   15.450   16.300 

Figure 9.10: Tables of conditional probability recalculated after evidence of a severe incident of a motor-
cycle and a medium weather.

Finally, if the severe incident involves a motorcycle running at an excessive speed on
a good day, the conclusions would be different because the most likely events would be
(see Figure 9.12):

• A bad driver.

• A low traffic intensity.

• The almost certainty that the driver was distracted.

This type of analysis can only be done if the possibility of having access to the sub-
networks such as the one indicated in Figure 9.9 and 9.10 are available. The software
package that has been developed, in addition to providing a complete report with the
acyclic graphs, a road graphical description and the accumulated ENSI values and their
locations, provides the code for the JavaBayes of each of the sub-Bayesian network in
which the initial Bayesian network is partitioned. This means that these analyses can be
done at wish. Providing this information is considered an important original contribution
and a relevant change for what information a safety report must contain. This extends
safety analysis into a new direction.
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Figure 9.11: Tables of conditional probability recalculated after evidence of a severe incident of a motor-
cycle one day with medium weather and a speed of 121.5 km/h.
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Figure 9.12: Tables of conditional probability recalculated after evidence of a severe incident of a motor-
cycle one day with good weather and a speed of 121.5 km/h.
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Learning the Bayesian network
model

Contents
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.2 Categorical conditional probability tables . . . . . . . . . . . . 163

10.2.1 The categorical distribution . . . . . . . . . . . . . . . . . . . . 163

10.2.2 Natural conjugate of a categorical distribution . . . . . . . . . 163

10.2.3 Learning the categorical conditional probabilities . . . . . . . . 164

10.2.4 Categorical conditional probability tables of the model . . . . . 165

10.3 Learning the saturated model . . . . . . . . . . . . . . . . . . . 170

10.1 Introduction

In this section the problem of parametric learning in the Bayesian network model is
adressed. There are two types of learning in probability models, namely, structural learn-
ing and parametric learning. Structural learning is concerned with learning the acyclic
graph whose topology can be used to determine the qualitative relationships among a set
of variables. More precisely, it is concerned with identifying which links must be included
in the acyclic graph and which ones must not be incorporated. Bayesian networks usually
contain many conditional independence relationships which lead to a substantial reduc-
tion (parsimony) in the number of links of the graph compared with other more general
models. Contrary, parametric learning is concerned with estimating the conditional prob-
ability tables once the acyclic graph is given. This is the only learning type that has been
considered in this chapter.
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The likelihood function of the Bayesian network can be written as

L(x1, x2, . . . , xn; θ1, θ2, . . . , θn) =
n∏
k=1

Pk(xk|Pk; θk), (10.1)

where θk are vectors of parameters, in fact, those associated with node k, Pk refers to
the parents of node Xk and Pk(xk|Pk; θk) refers to the conditional probability of node Xk

given its parents.
Then, the likelihood of an i.i.d. sample of size m is given by

L =
m∏
j=1

L(x1j, x2j, . . . , xnj; θ1, θ2, . . . , θn)

=
m∏
j=1

n∏
k=1

Pk(xkj|Pkj ; θk), (10.2)

and the log-likelihood of the sample can be written as

logL =
m∑
j=1

logL(x1j, x2j, . . . , xnj; θ1, θ2, . . . , θn)

=
m∑
j=1

n∑
k=1

logPk(xkj|Pkj ; θk)

=
n∑
k=1

 m∑
j=1

logPk(xkj|Pkj ; θk)


=

n∑
k=1

m∑
j=1

l∑
yjn=1

logPk(xkj|yjk; θk) (10.3)

where Pkj refers to the parent values of the j-th sample data point and yjn is the set of
values of Pkj .

Equation (10.3) demonstrates that the log-likelihood of the sample is the sum of the
log-likelihoods associated with the conditional probabilities of all nodes. Since different
conditional distributions refer to different situations, to simplify, it can be assumed that
the parameter vectors θ1, θ2, . . . θn appear each in only one conditional probability. Then,
maximization of the log-likelihood of the sample is equivalent to maximization of each of
the sample likelihoods associated with each conditional probability and the problem is sep-
arable. This has a high practical relevance from the point of view of complexity and CPU
time required. The importance of maximizing conditional likelihoods was demonstrated
by Grossman and Domingos (2004).

However, defining the conditional probability associated with any node Xk means
that it is necessary to provide a large number ` of conditional probabilities. This ` is
the number of possible combinations of the parent Pk values for each node Xk, but the
important fact is that they can be given independently.
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10.2 Categorical conditional probability tables

Before explaining the categorical conditional probability tables of the model, a brief ex-
planation of concepts needed for its understanding is made.

10.2.1 The categorical distribution

The categorical distribution cat(p1, p2, . . . , ps), which is a generalization of the Bernoulli
distribution is a discrete distribution with probability mass function defined by

P (X = i) = pi; i = 1, 2, . . . , s, (10.4)

where
s∑
i=1

pi = 1. It is used when an experiment with only s possible events, which are

mutually exclusive, is dealt with.

10.2.2 Natural conjugate of a categorical distribution

Bayesian statisticians often work with conjugate priors, which are parametric families of
distributions such that their associated priors and posteriors belong to the same families.
The practical rationale is that the posterior parameters can be easily obtained from the
prior parameters and the sample. The parameters of the conjugate family, are referred to
as hyperparameters.

Arnold et al. (1993) and Arnold et al. (1996) show that, in addition to the classical
conjugate families given by DeGroot and Schervish (2002), many others are possible
and they characterize the most general family of conjugate distributions for exponential
families, which include the categorical, multinomial and Dirichlet distributions.

The conjugate distribution of the categorical distribution is the Dirichlet distribution,
this means that if the prior distribution of a categorical family Cat(p1, p2, . . . , pk) is Dirich-
let D(θ1, θ2, . . . , θk), then the posterior distribution is also a Dirichlet D(θ′1, θ

′
2, . . . , θ

′
k),

where
θ′i = θi + ni, (10.5)

being ni the number of observations with value i in a sample of size n =
k∑
i=1

ni.

The posterior predictive probability mass function is given by

P (X = i|D) =
θ′i
k∑
i=1

θ′i

=
θi + ni
k∑
i=1

θi + n
, (10.6)

where D refers to data.
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It is noted that when n goes to infinity it is had

lim
n→∞

P (X = i|D) = lim
n→∞

θi + ni
k∑
i=1

θi + n
=
ni
n
, (10.7)

that is, when there is a lot of information, the prior information has no influence and the
predictive values approach the observed ones.

10.2.3 Learning the categorical conditional probabilities

Here how the Bayesian method above to learn all categorical conditionals can be used is
shown. It is assumed that it is started with a prior set of conditional probabilities and
that information from passing vehicles is obtained sequentially. To illustrate the learning
and updating method for the conditional probability table P (V1|V2, . . . , V`) of node V1

when one observation is available, it is necessary to distinguish between three cases:

1. The observation is complete. This means that all variables V1 = a, V2 = b, . . . , V` = c
involved in a conditional probability table have been observed. In this case, only
the conditional probability table with parents and values V2 = b, . . . , V` = c are
updated and the observation to the particular observed value V1 = a and no
observation to V1 6= a are assigned, that is, the corresponding conditional probability
p(a|b, . . . , c) = P (V1 = a|V2 = b, . . . , V` = c) is updated, using the formula

p(x|b, . . . , c) =



θa;b,...,c + 1∑
a
θa;b,...,c + 1

if x = a

θa;b,...,c∑
a
θa;b,...,c + 1

if x 6= a

∀b, . . . , c. (10.8)

Note that only conditional probability tables with parents and values V2 = b, . . . , V` =
c are updated and that each table requires updating

∑
a

1 values. In fact, only the

parameter θa;b,...,c needs to be updated, using the formula

θa;b,...,c = θa;b,...,c + 1. (10.9)

Once the parameters are updated, the conditional probabilities become

p(a|b, . . . , c) =
θa;b,...,c∑
a
θa;b,...,c

. (10.10)
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2. The observation is incomplete but V1 is observed. Let |Uobs|, |Obs| and |V1| be
the numbers of possible combinations of values for the unobserved variables, the
observed variables and V1, respectively. Since in this case there are some variables
in the set V2, . . . , V` that have not been observed, it is necessary to consider the
joint probability mass q(b, . . . , c) of V2, . . . , V` and modify Formula (10.8) as

p(x|b, . . . , c) =



θa;b,...,c + βUobs∑
a
θa;b,...,c + 1

if x = a

θa;b,...,c∑
a
θa;b,...,c + 1

if x 6= a

∀Uobs, (10.11)

where

βUobs = P (Uobs|Obs) =
q(b, . . . , c)∑

SUobs

q(b, . . . , c)
, (10.12)

being SObs and SUobs the subsets of {b, . . . , c} associated with the observed and
unobserved variables, respectively.

In this case, it is necessary to update |Uobs| conditional probability tables and for
each table, |V1| probabilities. However, if only the parameters are updated, it is
necessary to update only |Uobs| parameters.

It is noted that the joint probability q(b, . . . , c) can be easily obtained because the
parents of a node are contained in a family of the Bayesian network.

3. The observations are incomplete and V1 is not observed. In this case nothing is up-
dated because the parameters and the conditional probability tables do not change.

10.2.4 Categorical conditional probability tables of the model

Since it is worked with categorical data, each conditional probability table is categorical.
Though arbitrary sets of conditional probabilities cannot be given independently because
they can lead to inconsistencies (see Arnold et al. (2001)), the set of conditional proba-
bilities used by BN always leads to compatible models. All this means that they can be
learned independently without compatibility concerns.

A formula for the conditional probability pa,b1,b2,...,bk of a child node X given its parents
is proposed as follows

pa,b1,b2,...,bk =
∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2) [. . .

 ∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

na∑
jsr

qj1,...,jsr(θj1,...,jsr )δajsr

 , (10.13)



166 CHAPTER 10. LEARNING THE BAYESIAN NETWORK MODEL

where δ is the Kronecker’s delta, a refers to the child node X, and b1, b2, . . . , bk to its
parents, and the right hand side term is a sum of products, the index jsr , which depends
on the summand being considered, refers to the last factor in each summand, na is the
cardinal of the set of values of the child node X, θj1,j2,...,jst are vectors of parameters, and
all qj1,j2,...,jst ; t = 1, 2, . . . , r are non-negative valued functions of a subset of parents of the
child node X, that is, whose arguments are a subset of {b1, b2, . . . , bk}, and they must
satisfy ∑

jt

qj1,...,jt(θj1,...,jt) = 1; ∀j1, j2, . . . , jt; t = 1, 2, . . . , sr. (10.14)

Note that the last, and only the last summation, contains the child values a. This
guarantees that pa,b1,b2,...,bk is a valid conditional probability table, because all terms are
non-negative, there are no minus signs and they add up to one, that is, it is had

na∑
a=1

pa,b1,b2,...,bk =
na∑
a=1

∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2 [. . .

 ∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

 na∑
jsr

qj1,...,jsr (θj1,...,jsr )δajsr



=
∑
j1

qj1(θj1)

∑
j2

qj1,j2(θj1,j2)

. . .
∑
jsr−1

qj1,...,jsr−1
(θj1,...,jsr−1

)

 na∑
jsr

qj1,...,jsr (θj1,...,jsr )
na∑
a=1

δajsr

 = 1, (10.15)

where it has been taken into account that
na∑
a=1

δajsr = 1 and the set of constraints (10.14).

For each conditional probability function some particular interesting cases can result.
Saturated models. All qj1,j2,...,jr functions are the identity function, that is, they corre-

spond to direct parameters. In this case all degrees of freedom are exploited and all the
conditional probabilities P (XK |Pk) are independent leading to the most general possible
model. Since they must satisfy constraint (10.14), a model that depends on (sk−1)

∏
r∈Pk

sr

independent parameters, which can be denoted θka;Pk ; a = 1, 2, . . . , sk; ∀Pk results. These

models incorporate to the likelihood function factor terms of the form
(
θkxk;Pk

)nk
xk;Pk , where

nkxk;Pk is the number of observed vehicles in the sample such that Xk = xk and the parent

values of Xk in the sample are Pk.
Marginal models. All qj1,j2,...,jr functions are independent on the parent variables.

In this case the conditional probabilities degenerate to marginal probabilities and the
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likelihood of the Bayesian network incorporates factors of the form

(
θt
)nk

t;Pk and

1−
sk−1∑
r=1

θr

nk
sk;Pk

; t < sk.

Intermediate models. Some of the qj1,j2,...,jr functions contain non-identity functions
hj(P̃k;θkj ); j = 1, 2, . . . , t of one or several parameters, where P̃k is a subset of the parents

of node Xk and θk is a vector of parameters. These models incorporate to the likelihood
function factor terms of the form

(
hj(P̃k;θkj)

)nk
xk;Pk and

1−
∑
j

hj(P̃k;θkj)
nk

xk;Pk

.

It is advanced that in all these three cases the parameters involved in these subsets
of factors can be learned independently. For example, by the maximum likelihood or
Bayesian conjugate methods (see Persaud and Lyon (2007)). See also Mu and Yuen
(2016).

Next, several examples that clarify the meaning of the qj1,j2,...,jsr functions are given,
but before, in Table 10.1 a list of some of the conditional probability tables that are
used in our model and the number of parents which are observable and unobservable
are provided, together with the number of total conditional probability tables and the
number of tables and parameters to be updated. It can be seen that some tables cannot
be learned because they involve non observable childs, such as those for nodes D (driver’s
attention), Sd (Driver’s speed decision), Dri (driver type), Ds (Driver’s decision at a
sign), V (vehicle failure) and Tf (thechnical failure). Other tables can be learned with
complete data, such as It, V is, V t,W and SS, and some that are partially observable
with incomplete data, such as S, P, Co and I.

Example 5 (Conditional probabilities for the collision node) The conditional prob-
ability p(a, b, c, d, e, f)= P (P = a|V t = b, It = c, V is = d,D = e, S = f) of a collision
node can be

p(a, b, c, d, e, f)=z(c, d, e, f ; θz)(δa2p2(b, f ; θp)+δa3p3(b, f ; θp)

+δa4p4(b, f ; θp))+(1−z(c, d, e, f ; θz))δa1,

(10.16)

where z is the collision probability and p1 to p4 are the probabilities of no incident, minor,
medium and severe incident, respectively. Thus, the contribution of the collision node to
the log-likelihood of the sample is given by

δa1

∑
{1.cdef}

log(1− z(c, d, e, f ; θz))
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Table 10.1: List of nodes showing observable and unobservable parents, number of possible values of the
child node, number of different conditional probability tables, and numbers of conditional probability tables
and parameters to be updated.

Parents Total Updating
Node Observable Unobservable Child values # of tables # of tables Parameters
D It, V is Dp, Dri 3 108 12 36
Sd D 3 3 - -
Dri Drip 4 4 - -
It Itp 3 3 1 3
V is W 3 4 1 4
V t V tp 3 3 1 3
S Sp, V t,W, It Dri, Sd,D 8 10368 36 288
V V t, S D 4 72 - -
P It,W, V is, V t, S D 4 2592 3 12
Co It, V is, V t, S D 4 648 3 12
W Wp 4 4 1 4
SS 3 1 1 3
Ds D 2 3 - -
Tf 2 1 - -
I P, Co V 4 64 4 16
I W, V t, S D 4 384 3 12

+
∑
{..cdef}

log z(c, d, e, f ; θz)

δa2

∑
{2b...f}

log p2(b, f ; θp)

+δa3

∑
{3b...f}

log p3(b, f ; θp) + δa4

∑
{4b...f}

log p4(b, f ; θp)

, (10.17)

where the summations are extended over the indices {abcdef} using subsets of indices of
the type {..cdef}, where the dots refer to all values of the corresponding index and the
individual letters to the particular values.

This means that the log-likelihood can be divided into independent summands where
different subsets of parameters can be included and then, estimated independently by max-
imizing the corresponding summands separately. This implies a substantial reduction in
the computation time of the likelihood function.

For example, in expression (10.17) the first two summands and the last four summands
can be considered independently to estimate the parameters θz contained in term z and
the parameters θp contained in p2 to p4, respectively.

Example 6 (Conditional probabilities at a decision node) Consider for example the
conditional probability of node Sd Driver’s decision, given the driver’s attention (see Fig-
ure 10.1)

P (Sd = a|D = b) = δb1δa2 + δb2 [τ (κδa2 + (1− κ)δa3)
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+(1− τ)δa1] + δb3δa1, (10.18)

Error

Distracted

Driver’s
Attention

= δb1

P(Sd|D)=δb1δa2+δb2 (τ(kδa2+(1-k)δa3)+(1-τ)δa1))+δb3δa1

Driver’s decision

q1

Attentive Alert

= δb2q2

= δb3q3

q12 = 1
q11 =           q13= 0

q31 = 1
q32=           q33 = 0

NoYes

q22 = 1−τq21 = τ

q221 = 1
q222 =           q223 = 0q2123= 1

q2121=           q2122= 0
q2112 = 1

q2111=         q2113= 0
 δa2  δa2  δa3  δa1  δa1

q211= κ q212= 1− κ

Error I Error II

δb2k τδa2 δb1δa2

D

SD

 Error I Correct Correct

δb2(1-τ)δa1 δb2(1-k)τδa3 δb3δa1

Figure 10.1: Illustration of the q functions and how the conditional probability is obtained for node Sd.

where τ is the probability of the driver to make an error and κ is the probability of
ignoring that a decision must be made (Error I) once the error has occurred.

In this case the contribution of the conditional probability of node Sd Driver’s decision
to the likelihood of the sample is (see (10.18))∑

{.2}
log τ +

∑
{12}

log(1− τ) +
∑
{22}

log κ+
∑
{32}

log(1− κ). (10.19)

And then, the maximum likelihood estimates of parameters τ and κ are the proportions
of sample values in which an error is made and those in which this error is Error I,
respectively.
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10.3 Learning the saturated model

Let {X1, X2, . . . , Xs} be the set of variables of the Bayesian network, which are de-
noted by capital letters. Consider a sample of m vehicles circulating by the road and
let {x1i, x2i, . . . , xsi}; i = 1, 2, . . . ,m be the sample values, where lower case letters have
been used to refer to the particular values of the corresponding variables in the sample.

Let θkXk;Pk = P (Xk|Pk) be the conditional probabilities of the node Xk given their

parents Pk, which are considered the parameters of the Bayesian network to be estimated.
For the parameters to be a valid conditional probability they must satisfy the constraints

sk∑
a=1

θka;Pk = 1; ∀Pk, (10.20)

where sk is the number of possible values of node Xk.
Then, the likelihood of the sample is given by

L(x;θ)=
m∏
i=1

∏
Pk

s∏
k=1

sk∏
xk=1

θkxki;Pk
i

=
∏
Pk

s∏
k=1

sk∏
xk=1

(
θkxk;Pk

)nk
xk;Pk , (10.21)

where xki and Pki are the values of the node Xk and its parents in sample data i, and
nkxk;Pk is the number of observed vehicles in the sample such that Xk = xk and the parent

values of Xk in the sample are Pk.
The log-likelihood of the sample becomes

logL(x;θ) =
∑
Pk

s∑
k=1

sk∑
xk=1

nkxk;Pk log θkxk;Pk

=
s∑

k=1

∑
Pk

 sk∑
xk=1

nkxk;Pk log θkxk;Pk

 . (10.22)

Equation (10.22) reveals that the maximization of the log-likelihood function is equiv-
alent to the maximization of the summands corresponding to the different conditional
probabilities of the nodes one by one and separately. More precisely, it is necessary to
maximize

sk∑
xk=1

nkxk;Pk log θkxk;Pk ; ∀Pk, ∀k = 1, 2, . . . , n, (10.23)

which implies a very important reduction in complexity and CPU time.
In addition, given that the parameters must satisfy the constraints in (10.20), the

maximization of the expressions in (10.23) leads to

θ̂kxk;Pk =
nkxk;Pk

sk∑
xk=1

nkxk;Pk

; ∀Pk, ∀k = 1, 2, . . . , n, (10.24)
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which are the well known classical estimates, that is, the sample proportions.
If Bayesian estimated associated with the Dirichlet conjugate distributions are consid-

ered, the following expression can be obtained:

θ̂kxk;Pk =
nkxk;Pk + nk0

xk;Pk

sk∑
xk=1

nkxk;Pk +N0

; ∀Pk, ∀k = 1, 2, . . . , n, (10.25)

where nk0
xk;Pk are the prior parameters and N0 =

sk∑
xk=1

nk0
xk;Pk .

If there are no observable parents, Formula (10.25) must be replaced by the following
formula

θ̂k
xk;Pk,P̂k =

nkxk;PkP (P̄k) + nk0
xk;Pk∑̄

Pk

sk∑
xk=1

nkxk;PkP (P̄k) +N0

;

∀Pk, ∀k = 1, 2, . . . , n, (10.26)

where now Pk and P̄k refer to the subsets of parents which are observed and unobserved,
respectively, and P (P̄k) is the joint probability of the unobserved parents of node Xk,
which can be easily obtained from the Xk-parents clique.

It is clear from expression (10.26) that the effect of the prior information nk0
xk;Pk and

N0 on the parameter estimates θ̂k
xk;Pk,P̂k of the observable nodes becomes negligible when

the sample size is large. However, this can take place only for very large sample sizes if
the true values of the parameter is very small.

There are important particular cases in which the functions qj1,j2,...,jst depends only on
single parameters. In this case, terms of the following form result∑

j1,j2,...,jt

log θj1,j2,...,jt , (10.27)

with ∑
j1,j2,...,jt

θj1,j2,...,jt = 1, (10.28)

which implies that one parameter, say the last one, is one minus the sum of the rest of
parameters in this set.

In this case, the maximum likelihood estimate of the parameter is the observed fre-
quency in the sample, so that closed and simple formulas result for the parameter esti-
mates.
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Real cases studies
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11.1 Introduction

This chapter presents the most relevant data obtained when applying the model proposed
in this Thesis for the study of three specific cases of Autonomic roads in Cantabria, Spain.
These are the Autonomic road CA-131, which goes from Torrelavega to the National Road
N-634 near San Vicente de la Barquera, the road CA-132 that connects Viveda with
Suances and CA-142 between Astillero and Selaya. Firstly, the accident data observed
on the three roads are analyzed. For that, the statistics of accidents corresponding to the
period 2006-2016, that the Council of Public Works of Cantabria has provided us have
been used. For a more detailed analysis of specific accidents, other data are available, such
as the moment of occurrence of the incident, type of intersection, direction of movement,
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type of vehicle, luminosity, pavement condition (dry and wet), atmospheric factors (good
weather, rain, and fog), circulation (fluid and dense), type of road, that serve to analyze
the specific causes of each one. This allow the establishment of accidents and the division
of these into different sections. In addition, the causes of these incidents have been
identified by comparing the environment in which they occurred with the characteristics
of each of them. Since the interest of this Thesis is to see the value of the model and the
results that can be obtained by it, it will not go into detail in this aspect. Simply add, as
discussed in Chapter 7, that the same division of sections has been used for the validation
of the results when analyzing the prediction of the accidents. Thus, by applying the
Bayesian networks model, the prediction of potential incidents is obtained. Conclusions
regarding to global safety and local safety are made. From each road the 20 riskiest
points are indicated and illustrative examples are given of some of the points particularly
showing their characteristics.

11.2 Preliminary considerations to the analysis of the

results

In order to carry out a complete safety analysis of the roads considered, it is necessary
to make a detailed study of them with the help of the information provided by the prob-
abilistic safety analysis resulting from the Bayesian networks model. This allows us to
analyze three important aspects:

• Risk of the road per trip. Obtaining the cumulative values of ENSI, every time
the road is traveled and per kilometer, allows to assess the intrinsic risk of the road in
general and per unit of length, and therefore to evaluate its level of safety regardless
of the number of vehicles that run through it. This is of interest to users, who
may know the risks they can have each time they use it. To do this the cumulative
probabilities of incidents when traveling the road in each direction are determined.
In the case of a large difference, it could be due to design errors, to an incorrect or
unbalanced road signaling or to the fact that the two directions are clearly different
with respect to their conditions, what happens in some cases, for example, in the
case of strong slopes. The cumulative overall probabilities of incidents considering
both directions are done by adding the risks of the two directions.

• Risk associated with the road and its users per year. This will be of interest
to those responsible for traffic safety in general, as they should consider all users of
the road in question. In this way the annual ENSI is analyzed, which is obtained
by multiplying the ENSI per trip of each one of its sections by the corresponding
number of users and adding the contributions of all its sections. There are points
that, although having a lower probability of individual ENSI (for a trip), result in a
high annual ENSI due to the high number of users that circulate through it, or also
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those that, having a lower ENSI value, have a high frequency of minor or medium
incidents. It is therefore appropriate to focus improvements on those points whose
annual ENSI values are the highest, since when acting at those points, the potential
reduction in the number of incidents and their severity after the improvements will
be greater and, therefore,the investment made will be more profitable.

• Causes or typical circumstances of each incident. After locating those points
with elevated ENSI, it is possible to determine the causes or the type of circum-
stances that give rise to such potential incidents. Thanks to this evaluation, the
solutions to these can be accurately defined, since the most probable causes of the
incidents will be known.

These methods, applied to each road and each direction, allow to generate a precise
description of the global safety and will serve to detect the riskiest points, determining the
conditions or situations more likely to have potential incidents, in order to avoid them.
In this case, the joint risk has been considered in both directions and the 20 points with
the highest ENSI per year have been identified.

11.3 Autonomic road CA-131

The first thing that has been done for the safety study of this road is to analyze the
observed data of accidents in the period 2006 to 2016. For this, the data provided have
been represented in values of ENSI, in the layout of the road. The points where incidents
have been observed have been indicated with circles whose diameter is proportional to
the square root of their frequency and their colors indicate the severity of the incidents
(light yellow in minor, orange, medium and red, severe). This information can be seen in
Figure 11.1 where the top shows the accident rate observed, and at the bottom, the road
has been divided into sections of similar accidentality.

The same division of sections of the route has been used to make the prediction of
points that have the greatest potential for occurring accidents. The following is a brief
description of each segment and possible incidents that may occur.

1. Section between KP 0.000 and KP 0.800. It is between Barreda and the
KP 0.800 located near Viveda. It is a segment with medium expected incidents in ten
years only in the roundabout at the starting point (1.17) and especially at the pedestrian
crossing at KP 0.045 (4.54), at the lateral entry at KP 0.215 (1.01) and collision on road
in the area of KP 1.028 (1.03).

2. From KP 0.800 to KP 11.000. KP 0.800 is located in Viveda and KP 11.000
after the intersection with the CA-920. In this section, severe incidents due to collisions
on road and run over animals can be predicted at KP 7.902 (1.00) and KP 8.635 (1.00),
respectively. Others medium potential incidents occur at the intersection at KP 2.295
(1.11), KP 5.372 (1.74) and KP 7.266 (1.03) because of collisions on road, the curve at
KP 7.902 (1.04) and run over animals near KP 6.390 (1.04) and KP 9.126 (1.21).
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Figure 11.1: At the top the graphical representation of the observed accident rate on the Autonomic road
CA-131, which shows the frequencies of minor accidents (light yellow color), medium (orange color) and
severe (red color) and the diameter of the circles is proportional to the square root of their frequency, is
shown. At the bottom, the road has been divided into sections of similar accidents.
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Figure 11.2: Potential accidents of the Autonomic road CA-131.

3. The next section goes between KP 11.000, after the intersection with
the Autonomic road CA-920 and Volao (KP 12.800). There is a low accident rate
here, the incidents are minor and principally referred to run over animals, collisions on
road and some curves.

4. The segment between KP 12.800 and KP 15.000 goes from Volao to
Cóbreces. The prediction includes only severe incidents at the curve located at KP
14.030 (1.05), being the rest minor incidents of low frequency.
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5. The section between KP 15.000 and KP 18.000 takes place between
Cóbreces and Paderna. Severe incidents are expected near KP 15.917 due to run over
animals (1.36) and collisions on road (1.20), medium because of run over animals (1.00)
in the area of KP 15.160. The rest are minor incidents of low frequency.

6. Paderna and Casasola villages are located between KP 18.000 and KP
21.300. The only severe prediction of this section corresponds to collisions on road (1.02)
at the zone of KP 18.651. There are also predictions of medium incidents at KP 20.073,
where there is an intersection (4.06) and in the area of KP 20.485 where incidents are
collisions on road (1.17). The rest are minor incidents, highlighting three intersections,
with minor severity, at KP 20.443 (4.65), KP 20.073 (4.055), and KP 19.696 (2.875), and
a lateral entry at KP 18.2548 (2.65).

7. Section between KP 21.300 and KP 24.000. It includes Casasola and
the entrance to Rubárcena. A low accident rate without anything outstanding can
be predicted, except the possibility of running over animals.

8. Section between KP 24.000 and KP 27.000. It is from Rubárcena to the
Capitan River. It has a low risk. There are minor incidents at the intersections at KP
24.444 (2.14) and KP 25.376 (2.46) and at the lateral entry at KP 26.750 (2.71) and also
the possibility of incidents due to run over animals.

9. The final segment includes the kilometers between KP 27.000 and KP
31.200 which correspond to Capitan River and the intersection at KP 31.200
with the National road N-634. It is a low risk section in which intersections can be
highlighted at KP 27.210 (3.22), KP 29.953 (2.62) and KP 30.920 (2.10). Furthermore,
there is a possibility of incidents due to run over animals.

11.3.1 Road safety analysis

After performing the probabilistic safety analysis of the Autonomic road CA-131 in both
directions, the following conclusions regarding to the safety of the road can be drawn.

Global risk

When studying the cumulative risk, an annual global ENSI of 0.613 is obtained upwards
and 0.418 downwards, resulting a total anual ENSI value of 1.031. Because this road has
a length of 31.05 km, the value per km in ascending direction is 0.020, 0.013 in downward
direction and 0.033 the global value. From these values the following conclusions can be
derived:

• The risk in the upward direction differs slightly from the downward direction. A
clear negative difference will be observed in comparison with the downward direction
below.
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• The overall values of anual ENSI per km, which determine the level of safety of the
road, do not have a value higher than 0.0924. Thus, the road can be considered to
have a reasonable level of safety.

Local risk

Although the road is considered to have an acceptable level of safety at a global level, 209
road points are identified (120 upwards and 89 downwards, coinciding many of them in
the same KP) as potential points to improve their safety.

As it can be seen in Table 11.1, most incidents would be located at curves or along
certain segments of the road, but it should also be noted that there are points with
a significant ENSI value at roundabouts, intersections or, particularly, at a pedestrian
crossing on the first part of the road.

Table 11.1: Table of the riskiest points of the CA−131 road divided in upwarding direction and downward,
with their probability of incidents sorted by level of risk, with their corresponding KP, nodes and ENSI
local values.

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

Ascending direction

1 5 PedestrianCrossing 0.045 I71-45Pc 0.0756 0.00433 0.454 0.0499

2 11 CurveIn 0.132 I159-132Cv 0.0412 0.0344 0.0374 0.208

3 2 RoundAbout 0.001 I22-1Rd 0.03 0.0157 0.0822 0.34

4 267 CurveIn 7.726 I4051-7726Cv 0.0232 0.0195 0.0216 0.069

5 14 LateralEntry 0.215 I203-215LE 0.0189 0.0037 0.0776 0.718

6 595 Intersection 20.073 I9057-20073Int 0.0104 0.00466 0.0309 0.204

7 265 CurveIn 7.600 I4022-7600Cv 0.00892 0.00661 0.0134 0.0494

8 261 CurveIn 7.491 I3963-7491Cv 0.00817 0.00582 0.0137 0.0488

9 392 RunoverAnimals 12.779 A5951-12779SSC 0.00647 0.00484 0.00949 0.0339

10 397 CurveIn 12.891 I6029-12891Cv 0 .00631 0.00543 0.00504 0.0209

11 34 RoundAbout 0.823 I513-823Rd 0.00606 0.000179 0.0351 0.0923

12 567 CurveIn 18.996 I8634-18996Cv 0.00557 0.0029 0.0141 0.105

13 383 RunoverAnimals 12.390 A5819-12390Sall 0.00522 0.00392 0.00763 0.0268

14 13 Collision 0.210 Co187-210Sall 0.00488 0.000215 0.0235 0.228

15 383 Collision 12.390 Co5821-12390Sall 0.00487 0.00452 0.000772 0.0527

16 16 TrafficLight 0.250 I237-250TL 0.00477 0.00357 0.00383 0.137

17 392 Collision 12.779 Co5953-12779SSC 0.0047 0.00435 0.000826 0.0511

18 17 CurveIn 0.255 I252-255Cv 0.00463 0.00343 0.00419 0.124

19 437 RunoverAnimals 14.531 A6625-14531Sall 0.00422 0.00316 0.00616 0.0218

20 389 CurveIn 12.495 I5910-12495Cv 0.00414 0.0034 0.0041 0.0248

21 399 RunoverAnimals 13.160 A6055-13160Sall 0.00414 0.00311 0.00605 0.0213

Continued on next page
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Table 11.1 – continued from the previous page

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

22 602 Intersection 20.443 I9161-20443Int 0.004 0.000112 0.0182 0.238

Downward direction

1 647 CurveIn 7.910 I9829-7910Cv 0.0174 0.0141 0.0198 0.0649

2 895 Intersection 0.250 I13595-250Int 0.0146 2.42e-06 0.0494 1.59

3 822 CurveIn 2.200 I12496-2200Cv 0.0137 0.0106 0.0182 0.0563

4 651 CurveIn 7.724 I9888-7724Cv 0.0133 0.0111 0.013 0.0455

5 481 CurveIn 14.030 I7315-14030Cv 0.0127 0.00997 0.0164 0.0441

6 658 CurveIn 7.450 I9991-7450Cv 0.0114 0.00823 0.0189 0.049

7 544 CurveIn 11.480 I8251-11480Cv 0.00948 0.00777 0.0102 0.0274

8 512 CurveIn 13.160 I7781-13160Cv 0.00948 0.00837 0.00642 0.0248

9 328 Intersection 20.073 I4962-20073Int 0.00841 0.00243 0.0327 0.201

10 654 CurveIn 7.595 I9932-7595Cv 0.00828 0.00609 0.0127 0.0471

11 322 Intersection 20.443 I4872-20443Int 0.00606 0.000564 0.0289 0.226

12 528 Collision 12.161 Co8015-12161Sall 0.00573 0.00537 0.000722 0.0562

13 516 CurveIn 12.870 I7840-12870Cv 0.00533 0.00433 0.00559 0.0288

14 815 Intersection 2.295 I12393-2295Int 0.00521 0.000658 0.0266 0.0922

15 523 CurveIn 12.405 I7944-12405Cv 0.00455 0.0035 0.00601 0.0267

16 477 Collision 14.292 Co7254-14292SSC 0.0042 0.00398 0.000353 0.0383

17 520 Collision 12.545 Co7898-12545Sall 0.00409 0.00386 0.000365 0.0394

18 533 Collision 11.840 Co8087-11840Sall 0.00409 0.00383 0.000551 0.0414

19 528 RunoverAnimals 12.161 A8013-12161Sall 0.00403 0.00193 0.0124 0.0382

ENSI∗ Expected number of equivalent severe incidents
Frequency of severe incident > 9.2

Frequency of medium incident > 0.92
Frequency of minor incident > 0.092

11.3.2 Specific points where safety must be improved

In order to reduce the likelihood of severe incidents, and thus the global risk of the road,
it is considered necessary to act on the 20 riskiest points, considering the joint risk of
both directions, as shown in Table 11.2 and represented in Figure 11.3.

Next, two of these specific points are illustrated. They are analyzed and their char-
acteristics and the most probable circumstances that give rise to such high potential risk
are defined.
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Figure 11.3: Riskiest points of the CA-131 road.

Table 11.2: Riskiest points of the CA− 131 road considering the two directions.

Annual ENSI Annual ENSI
Rank Item type KP Total Ascending Downward

1 PedestrianCrossing 0.045 0.078 0.076 0.002

2 CurveIn 0.132-0.210 0.041 0.041 3.57E-08

3 CurveIn 7.726-7.910 0.041 0.023 0.017

4 RoundAbout 0.001 0.031 0.030 0.001

5 CurveIn 7.600-7.724 0.022 0.009 0.013

6 LateralEntry 0.215 0.020 0.019 0.001

7 Intersection 0.25 0.019 0.005 0.015

8 Intersection 20.073 0.019 0.010 0.008

9 CurveIn 7.491-7.595 0.016 0.008 0.008

10 CurveIn 12.891-13.160 0.016 0.006 0.009

11 CurveIn 2.100-2.200 0.014 2.30E-07 0.014

12 CurveIn 13.899-14.03 0.013 1.47E-06 0.013

13 CurveIn 7.291-7.450 0.011 3.80E-07 0.011

14 Intersection 20.443 0.010 0.004 0.006

15 CurveIn 11.250-11.48 0.010 4.46E-05 0.009

16 RunoverAnimals 12.545-12.779 0.009 0.007 0.003

17 CurveIn 18.996-19.260 0.008 0.006 0.002

18 RoundAbout 0.823 0.007 0.006 0.001

19 Intersection 19.696 0.003 3.86E-04 0.003

20 Intersection 17.815 0.003 0.001 0.001

21 Intersection 1.229 0.003 0.001 0.001

22 Intersection 27.21 0.002 0.001 0.001

23 Intersection 25.376 0.002 0.001 0.001

24 LateralEntry 26.75 0.001 0.001 0.001

25 Intersection 5.84 0.001 0.001 3.15E-04
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Point 1: Pedestrian crossing at KP 0.045

These are incidents that may occur at the pedestrian crossing located at KP 0.045, shown
in Figure 11.4. To improve the knowledge about these types of incidents, the most proba-
ble circumstances or situations that lead to incidents at this point are determined. Table
11.3 shows these circumstances provided by the Bayesian networks model and the follow-
ing conclusions can be drawn for this case:

1. In spite of being a pedestrian crossing, the incidents are mainly caused not by run
over pedestrians but by collision or by reaching between vehicles that are giving
way to pedestrians and/or are in the process of continuing driving, in days of good
weather or slightly rainy, mainly by standard conductors and at relatively high
speeds.

2. Due to the high heavy vehicles traffic or to an unexpected speed reduction, these
collisions can lead to incidents of greater severity due to the fact that most of them
are medium incidents.
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Figure 11.4: Detail of the incident at the riskiest point (pedestrian crossing at KP 0.045).
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Table 11.3: Combination of main variable values contributing to the total ENSI value at the riskiest point
(pedestrian crossing at KP 0.045).

n Weather Driver type Tech. failure Speed Incident Probability % ENSI

1 Fair Standard No 66 Medium 2.04e-08 14.61
2 Fair Standard No 54 Medium 1.79e-08 12.82
3 Medium Standard No 66 Medium 1.67e-08 12.00
4 Medium Standard No 54 Medium 1.47e-08 10.53
5 Fair Bad No 66 Medium 7.13e-09 5.11

Point 2: Curve between KP 0.132 and KP 0.210.

These are the potential incidents that can occur at the curve of 125 m radius between
KP 0.132 and KP 0.210, which is shown in Figure 11.5. Firstly, it should be noted that
the greatest risk, see Table 11.4, comes from the upward direction, thus, it is necessary
to focus mainly on this.

In order to determine the circumstances that give rise to such potential incidents,
Table 11.4 separates the ENSI into the main components. According to this it can be
said that:
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Figure 11.5: Detail of the incident at the riskiest curve (at KP 0.132).
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Table 11.4: Main variable combination values contributing to the total ENSI value of incident at the
riskiest curve (KP 0.132).

n Weather Veh. type Attention Speed Incident Probability % ENSI

1 Medium Car Alert 90 Severe 3.52e-09 29.67
2 Medium Car Alert 108 Severe 2.17e-09 18.27
3 Medium Car Attentive 90 Severe 1.7e-09 14.32
4 Medium Car Attentive 108 Severe 1.13e-09 9.53
5 Medium Car Alert 90 Medium 5.72e-09 7.53
6 Medium Car Attentive 90 Medium 2.76e-09 3.64

1. These incidents occur mainly on rainy, foggy or drizzle days.

2. There are potentially medium or severe incidents, due to cars driving with speed
excess which, despite not being distracted, due to a loss of adhesion to the pavement,
there are cars running off the road.

11.4 Autonomic road CA-132

In this section the prediction of potential accidents in the Autonomic road CA-132 which
links Viveda with Suances and has a length of 5.95 km is analyzed.

The same sections that were used previously for dividing the observed accidents (rep-
resented on the left side of Figure 11.6 are analyzed below for the potential accidents (see
Figure 11.6).

1. Section between KP 0.000 and KP 1.000. It is between Viveda and Munios.
With respect to the prediction of medium accidents of this section the intersection located
at KP 0.380 (2.57) can be highlighted. The rest corresponds to predictions of minor
incidents, such as those produced at the lateral entries located at KP 0.250 (4.69), KP
0.478 (2.95) and KP 0.932 (2.29) and at the intersections of KP 0.380 (14.99) and KP
0.057 (3.80).

2. The following section includes from the area of Munios, KP 1.000, to
La Carreada, KP 5.000. Here the prediction of medium accidents includes only the
intersection located at KP 1.863 (2.43). The other potential accidents are minor, being
among them the intersections at KP 1.488 (4.59), KP 1.673 (8.22), KP 1.863 (11.52), KP
3.867 (2.82), KP 3.970 (2.97), KP 4.252 (2.37) and KP 4.390 (2.27), susceptible mainly
of collisions and incidents on the road due to an excess of speed.

3. The final segment is between KP 5.000 and KP 5.95. It runs between La
Carreada and Suances. In this section, the intersection located at KP 6.005 is highlighted
with 1.03 expected medium incidents and 3.27 minor in 10 years.
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Figure 11.6: On the left the different sections in which the observed accidents of the road CA-132 have
been divided are shown. On the right the graphical representation of the incident prediction for the same
road is given, which shows the frequencies of level incidents (yellow), medium (orange) and severe (red)
by means of circles of proportional diameter to the square root of the frequency of the incidents at said
points.
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11.4.1 Road safety analysis

The following conclusions concerning the road safety of the Autonomic road CA-132 can
be made after performing the probabilistic safety analysis in both directions.

Global risk

When studying the accumulated risk, an annual global ENSI of 0.104 is obtained in the
ascending direction and 0.111 in the downward direction, resulting in a total annual ENSI
value of 0.215. Since this road has a length of 6.005 km, the value of the ENSI per km
turns out to be 0.017 upwarding, 0.018 downwarding and 0.036 in total. Thus, it can be
said that:

• The risks in the two directions are similar, so that there are no notable differences
in one direction and its opposite.

• The global annual ENSI per km values do not reach a value greater than 0.092,
which is the threshold chosen, therefore considering that the road CA-132 has a
good safety level.

Local risk

At the global level the road is considered to have an acceptable level of safety, however,
21 points of the road (11 in the ascending direction and 10 in the descending direction)
are indicated as potential points to be improved. Many of them coincide in KP for being
collisions at intersections in opposite directions.

As it can be seen in Table 11.5, the main problem of this road is the potential number
of collisions at intersections, which are much higher than any other type of incidents, due
to the high circulation of vehicles on this road and the confluence of drivers of this and
those circulating by the different localities.

Table 11.5: Table of the riskiest points of the CA−132 road divided in ascending and descending directions,
with their probability of incidents sorted by level of risk, with their corresponding KP, nodes and ENSI
local values.

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

Ascending direction

1 22 Intersection 0.380 I322-380Int 0.0104 0.000149 0.0454 0.718

2 109 Intersection 1.863 I1627-1863Int 0.00866 0.000133 0.0378 0.603

3 102 Intersection 1.673 I1524-1673Int 0.00658 0.000116 0.0301 0.406

4 87 Intersection 1.488 I1298-1488Int 0.00603 0.000141 0.0311 0.237

5 236 Intersection 3.970 I3533-3970Int 0.00471 2.58e-05 0.0262 0.139

Continued on next page
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Table 11.5 – continued from the previous page

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

6 130 Intersection 2.190 I1949-2190Int 0.00465 7.15e-05 0.0203 0.322

7 6 Intersection 0.057 I80-57Int 0.00401 5.78e-05 0.0175 0.279

8 215 Intersection 3.651 I3215-3651Int 0.00307 4.42e-05 0.013 0.227

9 7 TrafficLight 0.071 I100-71TL 0.00294 0.00131 0.00901 0.0498

10 141 Intersection 2.320 I2115-2320Int 0.00293 7.11e-05 0.0154 0.107

11 145 Intersection 2.390 I2174-2390Int 0.00288 7.01e-05 0.0151 0.103

Downward direction

1 359 Intersection 0.380 I5396-380Int 0.0144 0.000355 0.068 0.781

2 273 Intersection 1.863 I4106-1863Int 0.0135 0.000627 0.0673 0.55

3 3 Intersection 6.005 I37-6005Int 0.00687 0.000227 0.0334 0.326

4 280 Intersection 1.673 I4210-1673Int 0.00595 9.12e-05 0.0259 0.416

5 295 Intersection 1.488 I4435-1488Int 0.00572 0.000134 0.0296 0.222

6 252 Intersection 2.190 I3785-2190Int 0.00525 8.12e-05 0.0236 0.342

7 140 Intersection 3.970 I2113-3970Int 0.00389 8.34e-05 0.0199 0.158

8 241 Intersection 2.320 I3619-2320Int 0.00325 7.69e-05 0.0172 0.11

9 162 Intersection 3.651 I2444-3651Int 0.00304 4.37e-05 0.0133 0.21

10 234 Intersection 2.390 I3514-2390Int 0.00275 5.89e-05 0.0141 0.112

ENSI∗ Expected number of equivalent severe incidents
Frequency of severe incident > 9.2

Frequency of medium incident > 0.92
Frequency of minor incident > 0.092

11.4.2 Specific points where safety must be improved

It is considered necessary to act on the 20 riskiest points considering the two directions
(shown in Table 11.6 and represented in Figure 11.7), in order to reduce the likelihood of
severe incidents, and thus the global risk of the road. As an example, the riskiest point is
presented below, with its particular incident characteristics and conditioning factors for
it to occur.

Table 11.6: Riskiest points of the CA− 132 road considering the two directions.

Annual ENSI Annual ENSI
Rank Item type KP Total Ascending Downward

Continued on next page

1 Intersection 0.38 0.025 0.010 0.014

2 Intersection 1.863 0.022 0.009 0.014

3 Intersection 1.673 0.013 0.007 0.006
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Table 11.6 – continued from the previous page

Annual ENSI Annual ENSI
Rank Item type KP Total Ascending Downward

4 Intersection 1.488 0.012 0.006 0.006

5 Intersection 2.19 0.010 0.005 0.005

6 Intersection 3.97 0.009 0.005 0.004

7 Intersection 6.005 0.007 2.88e-05 0.007

8 Intersection 2.32 0.006 0.003 0.003

9 Intersection 3.651 0.006 0.003 0.003

10 Intersection 2.39 0.006 0.003 0.003

11 Intersection 0.057 0.005 0.004 0.001

12 Intersection 1.434 0.004 0.002 0.002

13 LateralEntry 0.25 0.004 0.002 0.002

14 Intersection 0.996 0.004 0.002 0.002

15 Intersection 3.867 0.004 0.002 0.002

16 Intersection 4.252 0.003 0.002 0.002

17 Intersection 3.126 0.003 0.002 0.001

18 Intersection 3.052 0.002 0.001 0.001

19 Intersection 1.93 0.002 0.001 0.001

20 Intersection 3.171 0.002 0.001 0.001

21 TrafficLight 0.071 0.001 0.001 7.78e-05

22 Intersection 4.063 0.001 0.001 0.001

23 LateralEntry 0.478 0.001 0.001 0.001

24 Collision 1.294-1.356 0.001 2.36e-04 3.80e-04

25 Collision 1.742-1.809 0.001 2.62e-04 3.39e-04

Point 1: Intersection at KP 0.380

These are incidents that can occur at the ”T” intersection located at KP 0.380, shown in
Figure 11.8. Table 11.7 shows the circumstances that can cause these potential incidents
in this location:

1. Front or front-to-side collisions, between those vehicles that are using the inter-
section and those that have been circulating along the road, occurring in adverse
climatology and their consequences can become medium or severe incidents.

2. Incidents between vehicles operating at the intersection, such as reach collision and
small front collisions, which, although more frequent, are less severe and, when they
occur on days with a good or medium weather, they allow drivers to react as much
as possible, to avoid an incident of worse consequences.
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Figure 11.7: Riskiest points of the CA-132 road.

11.5 Autonomic road CA-142

The Autonomic road CA-142 links El Astillero with Selaya and has a length of 27.150
km. On the left side of Figure 11.9 the accidents observed are represented on the road
layout divided in different sections. This same division is used to analyze the prediction
of potential accidents (represented on the right of Figure 11.9) which can be described as
follows:
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Figure 11.8: Detail of the incident at the riskiest point of the Autonomic road CA-132 (intersection at
KP 0.380).

11.5.1 Road safety analysis

As before, the road has been divided into several sections.
1. Section between KP 0.000 and KP 3.300. It takes place between El Astillero

at its intersection with the National road N-635 to the area of Bofetán. The riskiest point
is found at the intersection located at KP 0.098 (1.3), being the rest of the predictions
minor incidents especially at the intersections located at KP 1.940 (2.12) and KP 3.190
(2.16). In addition there are several lateral entries of lower severity that together with
the collisions on the road, can lead to various incidents.

2. The segment from KP 3.300 to KP 7.000 runs between the area of
Bofetán and the main entrance of Parque de Cabárceno. The area between KP
3.300 and KP 4.000 can be highlighted for its severity and collision risks. The lateral
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Table 11.7: Combination of main variable values contributing to the total ENSI value at the riskiest point
of the Autonomic road CA-132 (intersection at KP 0.380).

n Weather Veh. type Attention Speed Probability % ENSI

1 Bad Car Alert 24 5.32e-10 16.38
2 Very bad Car Alert 24 3.93e-10 12.11
3 Medium Car Alert 24 3.46e-10 10.67
4 Very bad Car Alert 15 2.27e-10 7.01
5 Fair Heavy Alert 24 2.24e-10 6.90
6 Medium Heavy Alert 24 1.84e-10 5.66
7 Fair Car Alert 48 1.7e-10 5.23
8 Medium Car Alert 39 1.44e-10 4.43
9 Medium Car Alert 48 1.29e-10 3.98
10 Fair Car Alert 39 1.11e-10 3.42

entries at KP 3.500 (2.03), KP 5.169 (2.31), KP 6.128 (2.10), KP 6.483 (2.32), KP 6.790
(2.68), and KP 6.800 (3.05) as well as the intersections at KP 3.990 (4.64), KP 4.240
(2.71), KP 4.553 (2.27), KP 5.850 (6.85) and KP 6.556 (3.69) can be pointed as potential
locations of possible minor incidents, and in addition, diverse collisions on road can be
produced too.

3. The next segment goes from Parque de Cabárceno, KP 7.000, to Santa
Maŕıa de Cayón, KP 12.300, crossing the road A-42. The intersection at KP 7.362
(2.70), the lateral entries at KP 8.791 (1.05), KP 9.470 (3.66), KP 9.587 (2.41) and KP
11.057 (2.61), collisions at KP 8.342 (1.13), incidents on road at KP 11.230 (1.02), and
run over animals near KP 12.071 (1.00) are the riskiest potential incidents. Incidents at
KP 7.065 (9.78) and KP 7.362 (11.87), collisions at KP 8.013 (2.67), KP 8.158 (3.07),
KP 9.126 (2.19), KP 9.232 (2.14), at the whole segment between KP 9.683 and KP 9.817
(more than 30), the lateral entries at KP 8.660 (2.74), KP 8.791 (3.78), KP 9.17 (5.59),
KP 9.325 (2.25) and KP 9.47 (27.36), and incidents caused by the presence of curves,
speed excesses and risky overtakings can be highlighted as candidate to possible minor
incidents.

4. Section between KP 12.300 and KP 18.500. It is between Santa Maŕıa
de Cayón and El Pindio. According to the prediction, medium incidents are due to the
presence of a curve at KP 14.181 (1.02), possible incidents on road at KP 16.492 (1.00)
and collisions at KP 17.895 (1.04). The rest of potential incidents are minor and related
to run over animals, curves and speed excesses.

5. Section between El Pindio, KP 18.500, and Santibáñez, KP 22.300. The
expected medium incidents here are related to run over animals at KP 19.746 (1.86),
incidents on road around KP 20.613 (1.01) and a lateral entry at KP 21.635 (1.00). As
minor incidents, the intersections at KP 21.085 (2.29) and KP 21.453 (2.37), the lateral
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Figure 11.9: On the left hand side the different sections in which the observed accidents of the CA-142
road have been divided are shown. On the right the graphical representation of the incident prediction
for the same road is given, which shows the frequencies of level incidents (yellow), medium (orange)
and severe (red) by means of circles of proportional diameter to the square root of the frequency of the
incidents at the corresponding points.

entry at KP 21.635 (3.01) and possible run over animals, collisions and incidents on road,
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the presence of some risky curves and speed excess can be pointed out.
6. Section between KP 22.300 and KP 23.700. It goes from Santibáñez to

La Granja. The risk is minor in this section. Only the intersection at KP 23.205 (3.55)
must be highlighted. Run over animals and possible speed excess can also lead to risks
producing collisions.

7. The final section is between KP 23.700 (La Granja) and KP 27.150
(Selaya). The riskiest point corresponds to the curve at KP 27.043 (1.01). Among the
incidents of lower risk, the intersection at KP 24.056 (2.82) and possible collisions on road
near KP 27.036 deserve to be mentioned.

Once the probabilistic analysis has been carried out in the two directions of the Au-
tonomic road CA-142 the following conclusions are obtained:

Global risk

When studying the cumulative risk, an annual global ENSI value of 0.387 is obtained for
the ascending direction and 0.477 for the descending one, resulting a total value of 0.866.
This road has a length of 27.045 km, thus, the value of annual ENSI per km is 0.014
upwards, 0.018 downwards and 0.032 in total. From these values it can be concluded
that:

• The risk in the upward direction differs slightly from the one in the downward
direction, being greater in the downward direction than in the opposite direction.

• The global values of annual ENSI per km, which determine the safety level of the
road, have values much smaller than 0.152; thus, this road can be considered to
have a good level of safety.

Local risk

Although the road at the global level is considered to have an acceptable level of safety, 98
points of the road have been identified (44 upwards and 54 downwards coinciding many
of them at KP) that are potential points to be improved.

As it can be seen in Table 11.8, most accidents will be located at curves or along
sections of the road, because of run over animals or incidents with other users of the
road. However, it should be noted that there are also points with a significant ENSI
value, identified at intersections, lateral entries, or with special relevance at a pedestrian
crossing, at the first part of the road.
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Table 11.8: Table of the riskiest points of the CA − 142 road divided in the upward and downward
directions, with their probability of incidents sorted by risk level, with their corresponding KP, nodes and
local ENSI values.

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

Ascending direction

1 400 LateralEntry 9.470 I6021-9470LE 0.0404 0.00107 0.216 1.3

2 3 PedestrianCrossing 0.025 I42-25Pc 0.0158 0.000894 0.0949 0.0104

3 8 Intersection 0.098 I117-98Int 0.0114 0.00374 0.0429 0.209

4 328 Intersection 7.362 I4950-7362Int 0.0103 0.000176 0.0473 0.627

5 582 CurveIn 14.181 I8797-14181Cv 0.00729 0.0051 0.0127 0.046

6 318 Intersection 7.065 I4800-7065Int 0.00692 9.44e-05 0.0301 0.491

7 592 CurveIn 14.472 I8941-14472Cv 0.00655 0.00442 0.0122 0.0488

8 588 CurveIn 14.340 I8884-14340Cv 0.00636 0.00431 0.0118 0.0477

9 884 Intersection 24.056 I13270-24056Int 0.00589 0.00167 0.023 0.144

10 877 CurveIn 23.501 I13167-23501Cv 0.00549 0.00429 0.00724 0.0164

11 359 CurveIn 8.373 I5413-8373Cv 0.00487 0.00327 0.00737 0.104

12 578 CurveIn 14.001 I8740-14001Cv 0.0048 0.00322 0.00886 0.0439

13 559 CurveIn 13.354 I8458-13354Cv 0.00475 0.00317 0.00887 0.0441

14 696 CurveIn 18.655 I10461-18655Cv 0.00466 0.00353 0.00672 0.0187

15 376 LateralEntry 8.791 I5662-8791LE 0.00463 0.000708 0.0199 0.188

16 301 Intersection 6.556 I4543-6556Int 0.0043 0.000242 0.0209 0.183

17 278 Intersection 5.850 I4197-5850Int 0.00388 3.94e-05 0.0147 0.355

18 820 CurveIn 21.780 I12329-21780Cv 0.00333 0.00221 0.00592 0.0438

19 496 Intersection 11.602 I7505-11602Int 0.00299 0.000252 0.0156 0.0687

20 372 LateralEntry 8.660 I5603-8660LE 0.00275 0.00045 0.0122 0.0913

21 400 Incident 9.470 P6018-9470Ssl 0.00267 0.000684 0.01 0.0979

22 366 Collision 8.545 Co5514-8545Sall 0.00266 0.000471 0.0105 0.125

23 867 Intersection 23.205 I13019-23205Int 0.00264 5.11e-05 0.0117 0.176

24 13 CurveIn 0.173 I190-173Cv 0.00262 0.0012 0.0073 0.0653

25 351 Collision 8.211 Co5294-8211Sall 0.00253 0.000446 0.00992 0.122

26 404 LateralEntry 9.587 I6079-9587LE 0.00252 0.000386 0.011 0.0951

27 375 CurveIn 8.745 I5647-8745Cv 0.00242 0.0021 0.00171 0.0137

28 351 Incident 8.211 P5293-8211Sall 0.00223 0.000473 0.00804 0.116

29 347 Collision 8.075 Co5236-8075Sall 0.00219 0.000381 0.00856 0.108

30 332 Incident 7.458 P5009-7458Sall 0.00206 0.000801 0.00759 0.0159

31 333 Collision 7.529 Co5025-7529Sall 0.00203 0.000277 0.00839 0.101

32 368 CurveIn 8.615 I5545-8615Cv 0.00199 0.00166 0.0018 0.0101

33 347 Incident 8.075 P5235-8075Sall 0.00195 0.000416 0.00704 0.1

34 185 Intersection 3.990 I2779-3990Int 0.00193 2.23e-07 0.00609 0.225

35 818 LateralEntry 21.635 I12299-21635LE 0.0019 8e-05 0.00797 0.133

Continued on next page
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Table 11.8 – continued from the previous page

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

36 366 Incident 8.545 P5513-8545Sall 0.00187 0.000393 0.00673 0.0977

37 400 Collision 9.470 Co6019-9470Ssl 0.00181 0.000895 0.000206 0.202

38 450 Intersection 10.352 I6792-10352Int 0.00165 1.09e-06 0.00852 0.0734

39 553 CurveIn 13.070 I8371-13070Cv 0.00164 0.00131 0.0017 0.0154

40 333 Incident 7.529 P5024-7529Sall 0.00162 0.000343 0.00584 0.0836

41 350 Collision 8.133 Co5279-8133Sall 0.00159 0.000275 0.00625 0.078

42 681 CurveIn 18.046 I10241-18046Cv 0.00158 0.000811 0.00425 0.0242

43 511 Intersection 11.922 I7736-11922Int 0.00155 3.93e-07 0.00662 0.119

44 391 LateralEntry 9.170 I5887-9170LE 0.00152 3.17e-07 0.00192 0.281

Downward direction

1 636 LateralEntry 9.470 I9559-9470LE 0.0349 0.00526 0.15 1.44

2 4 CurveIn 27.043 I50-27043Cv 0.0301 0.0243 0.0326 0.154

3 706 Intersection 7.362 I10596-7362Int 0.0177 0.000405 0.0952 0.56

4 667 CurveIn 8.742 I10023-8742Cv 0.0123 0.0109 0.00818 0.036

5 455 CurveIn 13.930 I6783-13930Cv 0.00985 0.00728 0.015 0.0544

6 240 CurveIn 20.862 I3587-20862Cv 0.00771 0.00506 0.0155 0.0541

7 717 Intersection 7.065 I10761-7065Int 0.00764 0.000118 0.0346 0.488

8 447 CurveIn 14.275 I6667-14275Cv 0.00737 0.00507 0.0134 0.0469

9 689 Collision 8.085 Co10343-8085Sall 0.00608 0.00111 0.0238 0.288

10 440 CurveIn 14.446 I6567-14446Cv 0.00606 0.00408 0.0114 0.0466

11 436 CurveIn 14.572 I6510-14572Cv 0.006 0.00409 0.011 0.0451

12 450 CurveIn 14.111 I6711-14111Cv 0.00591 0.00403 0.0106 0.0498

13 138 Intersection 24.056 I2079-24056Int 0.0057 0.00163 0.0222 0.138

14 673 CurveIn 8.550 I10110-8550Cv 0.00516 0.0035 0.00768 0.106

15 663 LateralEntry 8.791 I9964-8791LE 0.00501 0.000732 0.0221 0.19

16 625 Collision 9.763 Co9396-9763SSC 0.00483 4.76e-10 1.95e-06 1.11

17 692 Collision 7.940 Co10386-7940Sall 0.00439 0.000754 0.0173 0.214

18 697 CurveIn 7.602 I10461-7602Cv 0.00412 0.00272 0.00618 0.1

19 732 Intersection 6.556 I10987-6556Int 0.00411 0.000223 0.0197 0.186

20 402 CurveIn 15.957 I6005-15957Cv 0.00398 0.00293 0.00617 0.0205

21 693 Collision 7.789 Co10400-7789SOS 0.00396 0.000718 0.0153 0.198

22 182 CurveIn 22.415 I2726-22415Cv 0.00376 0.00245 0.00723 0.0422

23 627 Collision 9.728 Co9425-9728Ssl 0.00324 7.97e-11 1.22e-06 0.745

24 689 Incident 8.085 P10342-8085Sall 0.00312 0.000668 0.0112 0.16

25 756 Intersection 5.850 I11357-5850Int 0.00301 3.58e-07 0.0101 0.331

26 146 CurveIn 23.632 I2198-23632Cv 0.00296 0.0021 0.00511 0.0127

27 657 Incident 8.920 P9874-8920Sall 0.0027 0.00069 0.0101 0.0997

28 693 Incident 7.789 P10399-7789SOS 0.00265 0.000571 0.00956 0.134

Continued on next page
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Table 11.8 – continued from the previous page

ENSI Severity
Rank Item Item type KP Node Local Severe Medium Minor

29 692 Incident 7.940 P10385-7940Sall 0.00261 0.000558 0.00942 0.134

30 632 LateralEntry 9.587 I9501-9587LE 0.00242 0.000365 0.0104 0.0997

31 686 Collision 8.230 Co10300-8230Sall 0.00242 0.000426 0.00962 0.113

32 668 Collision 8.660 Co10036-8660SSC 0.00236 0.000398 0.00941 0.114

33 668 LateralEntry 8.660 I10038-8660LE 0.00233 0.000357 0.00999 0.0945

34 991 CurveIn 1.080 I14922-1080Cv 0.00229 0.000956 0.00547 0.11

35 724 LateralEntry 6.800 I10867-6800LE 0.0022 1.47e-05 0.00898 0.18

36 158 Intersection 23.205 I2377-23205Int 0.00216 2.39e-05 0.00868 0.179

37 845 Intersection 3.990 I12708-3990Int 0.00207 2.58e-07 0.00658 0.239

38 683 CurveIn 8.321 I10257-8321Cv 0.00201 0.00168 0.00183 0.0104

39 632 Collision 9.587 Co9499-9587Ssl 0.00197 0.000179 0.00809 0.121

40 523 Intersection 11.922 I7815-11922Int 0.00195 1.09e-06 0.00904 0.123

41 684 Collision 8.278 Co10270-8278Sall 0.00189 0.000358 0.00735 0.0875

42 624 Collision 9.806 Co9381-9806SSC 0.00187 5.36e-12 6.87e-12 0.431

43 676 Collision 8.440 Co10153-8440Sall 0.00186 0.000266 0.0077 0.0909

44 683 CurveIn 23.480149 I2242-23480Cv 0.00186 0.00153 0.00181 0.0117

45 659 CurveIn 8.852 I9905-8852Cv 0.00182 0.00155 0.00144 0.0111

46 681 Collision 8.375 Co10226-8375Sall 0.0018 0.000315 0.00722 0.0827

47 636 Collision 9.470 Co9557-9470Ssl 0.0018 0.000218 0.00709 0.108

48 683 Collision 8.321 Co10255-8321SOS 0.00162 0.000274 0.0065 0.076

49 588 Intersection 10.352 I8824-10352Int 0.0016 1.06e-06 0.00827 0.0713

50 627 LateralEntry 9.728 I9427-9728LE 0.00155 0.00035 0.00738 0.0108

51 657 Collision 8.920 Co9875-8920Sall 0.00154 0.000758 0.000175 0.174

52 629 Collision 9.694 Co9454-9694Ssl 0.00154 1.45e-06 0.00552 0.155

53 664 Collision 8.745 Co9977-8745SSC 0.00153 0.000279 0.00598 0.0735

54 689 RunoverAnimals 8.085 A10341-8085Sall 0.00152 0.000391 0.00525 0.0701

ENSI∗ Expected number of equivalent severe incidents
Frequency of severe incident > 9.2

Frequency of medium incident > 0.92
Frequency of minor incident > 0.092

11.5.2 Specific points where safety must be improved

In the same way as done in the other two roads, it has been considered necessary to act
on the 20 riskiest points taking into account the two directions, which are shown in Table
11.9 and represented in Figure 11.10, to reduce the likelihood of severe incidents, and thus
the global road risk. Next, the riskiest point of this road, a lateral entry, is analyzed in
detail.
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Table 11.9: Riskiest points of the CA− 142 road considering the two directions.

Annual ENSI Annual ENSI
Rank Item type KP Total Ascending Downward

Continued on next page

1 LateralEntry 9.47 0.075 0.040 0.035

2 CurveIn 27.015-27.043 0.030 1.46e-05 0.0301

3 Intersection 7.362 0.028 0.010 0.018

4 PedestrianCrossing 0.025 0.016 0.016 0.000

5 CurveIn 14.181-14.275 0.015 0.007 0.007

6 Intersection 7.065 0.015 0.007 0.008

7 CurveIn 8.615-8.742 0.014 0.002 0.012

8 CurveIn 14.472-14.572 0.013 0.007 0.006

9 CurveIn 14.34-14.446 0.012 0.006 0.006

10 Intersection 0.098 0.012 0.011 0.001

11 Intersection 24.056 0.012 0.006 0.006

12 CurveIn 14.001-14.111 0.011 0.005 0.006

13 CurveIn 8.373-8.550 0.010 0.005 0.005

14 CurveIn 13.820-13.93 0.010 1.32e-05 0.00985

15 LateralEntry 8.791 0.010 0.005 0.005

16 CurveIn 23.501-23.632 0.008 0.005 0.003

17 Intersection 6.556 0.008 0.004 0.004

18 CurveIn 20.730-20.862 0.008 1.38e-05 0.00771

19 Intersection 5.85 0.007 0.004 0.003

20 Collision 7.94-8.060 0.006 0.002033 0.00439

21 Collision 8.085-8.220 0.006 2.69e-04 0.00608

22 LateralEntry 8.66 0.005 0.003 0.002

23 Collision 9.763-9.806 0.005 2.53e-05 0.00483

24 CurveIn 13.354-13.660 0.005 0.005 1.18e-05

25 CurveIn 18.655-18.797 0.005 0.005 2.63e-08

Point 1: Lateral entry at KP 9.47

In this section we analyze the accidents that can occur at the confluence of the lateral
entry located at KP 9.47, which is shown in Figure 11.11. To determine the circum-
stances leading to these potential accidents it is possible to extract from Table 11.10 the
information concerning the following types of incidents:

1. Collisions between vehicles of all types (heavy, car and motorcycle) that access or
leave the lateral entry and collide side or front-to-side with vehicles that circulate
along the main road. These incidents do not occur under special climatic conditions
and their consequences can become severe. It is convenient to note that it may
mainly be caused by an incorrect action of vehicles entering or exiting the road
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Table 11.10: Combination of main variable values contributing to the total ENSI value at the riskiest
point of the Autonomic road CA-142 (lateral entry at KP 9.47).

n Weather Veh. type Attention Speed Incident Probability % ENSI

1 Medium Car Alert 45 Medium 2.7e-08 29.52
2 Good Car Alert 45 Medium 9.57e-09 10.47
3 Very bad Car Alert 45 Medium 8.99e-09 9.83
4 Bad Car Alert 45 Medium 8.49e-09 9.28
5 Medium Motorcycle Alert 45 Medium 4.81e-09 5.26
6 Good Heavy Alert 45 Medium 3.55e-09 3.88
7 Medium Car Attentive 45 Medium 2.86e-09 3.13
8 Medium Heavy Alert 45 Medium 2.78e-09 3.04
9 Good Car Alert 67.5 Minor 9.2e-08 2.80
10 Medium Car Alert 67.5 Minor 7.97e-08 2.43

CA-142. It may also be attributable to the drivers disruption driving through the
CA-142 road, but this event is less likely.

2. There may also be caused by collisions of lower severity but with a greater probabil-
ity of occurrence, which due to favorable climatic conditions allow drivers to react
and avoid more serious consequences in front-to-side or side collisions, or reach col-
lisions because of the occasional dismissal of a driver. This type of accident has
minor consequences and can occur in days with good or humid weather.
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Legend
Incidence >  0.00152 (20) 

KP  Final

KP  Initial

Figure 11.10: Riskiest points of the CA-142 road.
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Figure 11.11: Characteristics of the incident at the riskiest point of the Autonomic CA-142 road (lateral
entry at KP 9.47).
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12.1 Conclusions and future work (in English)

The following conclusions can be drawn from the content of this thesis:

1. Bayesian network models provide an important tool and appear to be the most
adequate tools to reproduce and to perform a probabilistic safety assessment of
highways and roads. Clearly, they are more powerful than fault and event trees
used in nuclear power plants, especially when common causes are present, which
is the case (for example, driver’s attention, weather, and speed, are some common
causes). This means that Bayesian networks can help to improve the safety of
highways and roads.

2. The acyclic graph defining the network can be easily constructed by reproducing all
the items found when travelling the road or highway. This means that all possible
items encountered by the cars and drivers along the road and related to safety must
and can efficiently be incorporated into the analysis. A video taken from the cars
becomes an essential and obvious tool to this purpose.

3. The proposed model permits: (a) to include all the variables involved in the problem,
(b) to reproduce their qualitative dependencies and (c) to quantify the probabilities
of any possible marginal or conditional probabilities. This implies reproducing the
probabilistic structure of the associated multivariate random variable associated
with the highway or road segments. More important, the model permits to quantify

203
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any probability no matter it refers to univariate or multivariate marginals or to
conditional probabilities.

4. The construction of the nodes (variables) and the structure of the Bayesian network
is very natural because all the items encountered when the vehicles travel along the
road are reproduced. A simple list of items can be given for a computer program
to build the acyclic graph associated with the Bayesian network automatically. The
closed form formulas given in this thesis permit us adding the conditional proba-
bilities in a simple way. Consequently, the practical application of the proposed
methodology to real cases is possible and relatively simple.

5. The application of the proposed methodology to real examples with 76 and 129
items and 992 and 1704 variables proves that the method can be applied to very
large segments of highways and shows the power of the method to identify sequences
of events leading to severe incidents and to quantify their probabilities.

6. Some of the particular examples analyzed show that the method is able to identify
the most relevant incident causes and quantify their probabilities of occurrence.

7. As shown with the detailed examples included in this thesis, the conditional prob-
ability tables required to quantify the Bayesian network can be defined by closed
formulas in general. In particular it has been proven that the resulting conditional
probabilities are valid. The proposed method of definition of these tables using
trees permits a better understanding of these probabilities and a more organized
way of analyzing the different combinations of values of the variables involved and
the possibility of automating the obtention of closed form expressions for them.

8. The proposed partitioning technique permits reducing the CPU time drastically.
More precisely, using this technique the required CPU time increases linearly with
the number of variables instead of the non-linear character of the alternative meth-
ods. This makes the proposed method valid to be applied in real cases, where the
number of variables can be several thousands. With this technique we can reduce
CPU times of hours to minutes.

9. A sensitivity analysis can be easily done with the help of the partitioning technique.
This implies that the sensitivity analysis can be done with small subnetworks, that
is, in a very reduced time. Range sensitivity analysis plots provide much more
information than local sensitivity analysis. More precisely, a sensitivity analysis
of a parameter A with respect to another parameter B provides the exact changes
of parameter A when the values of parameter B change within a selected interval,
while local sensitivity gives only the partial derivative of parameter A with respect
to B at the design point. This has important implications from a practical point of
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view. In particular it is very important to calibrate the parameters of the Bayesian
network.

10. The real examples discussed show that the method can identify relevant incidents,
quantify their probabilities of occurrence and find explanations about their causes
and a picture of the most frequent situations in which these incidents take place.
Once they have been identified, some changes to reduce the associated risks can be
done and evaluated from the point of view of safety.

11. The parameter estimation and calibration processes are the most critical parts of the
proposed model. To this aim, the collaboration of miscellaneous groups of experts
is needed to improve the quality, the credibility of the results and the efficiency of
the method. A serious probabilistic safety assessment must put a great effort on
this parameter estimation and calibration process.

12. The main limitations of the proposed method come from the difficulty in estimating
rare events and the high number of parameters that need to be estimated for each
particular item in the road. This takes time and experience.

13. The possibilities of a backward analysis offered by Bayesian networks permits us
to investigate the causes of given incidents by forcing them to have probability
one (their occurrence) and a recalculation of the probabilities of the remaining
events, which can also be observed up to we obtain a satisfactory explanation of the
occurrence of the target event. The main advantage of this process consists in that
events are quantified and can be sorted by their probabilities.

14. The Bayesian network model can also identify the combination of variable values
that contribute more frequently to given events. In other words the circumstances
under which critical events occur can be identified. This permits us to orient the
adequate corrective actions to them and avoid loss of resources that will be produced
if we orient these actions in the wrong direction.

15. Some learning techniques have also been given that allow us considering the expert-
group based Bayesian network as a prior that is later corrected when data become
available. Conjugate Bayesian methods appear to be the key star in this methodol-
ogy.

16. We end by mentioning some future work that could include: (a) an improvement
of the formulas for obtaining the conditional probabilities, (b) automatic learning
and updating techniques, for example, methods based on Bayesian categorical and
Dirichlet families conjugate methods or log-linear models, and (c) application to
many other real lines that deserve a careful probabilistic safety analysis.
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12.2 Conclusiones y trabajo futuro (in Spanish)

Del contenido de esta tesis pueden extraerse las siguientes conclusiones:

1. Los modelos de redes bayesianas constituyen una herramienta importante y parecen
ser las herramientas más adecuadas para reproducir y realizar una evaluación de
seguridad probabiĺıstica de carreteras y autopistas. Es evidente que son mucho
más potentes que los árboles de fallos y de sucesos que se utilizan en las centrales
nucleares, especialmente cuando hay causas comunes, como es el caso, por ejemplo,
de la atención del conductor, el tiempo atmosférico, la velocidad, etc. Esto significa
que las redes bayesianas pueden ayudar a mejorar la seguridad de las autopistas y
carreteras.

2. El gráfico aćıclico que define la red se puede construir fácilmente reproduciendo
todos los elementos que se encuentran al recorrer la carretera o autopista. Esto
significa que todos los elementos encontrados por los veh́ıculos y los conductores al
recorrer la carretera y relacionados con la seguridad deben y pueden ser incorporados
eficientemente al análisis. Un v́ıdeo tomado desde los veh́ıculos se convierte en una
herramienta esencial y obvia para este propósito.

3. El modelo propuesto permite: (a) incluir todas las variables involucradas en el
problema, (b) reproducir sus dependencias cualitativas y (c) cuantificar las proba-
bilidades de cualesquiera probabilidades marginales o condicionales. Esto implica
reproducir la estructura probabiĺıstica de la variable aleatoria multivariada asociada
a los segmentos de carretera o autopista. Más importante aún, el modelo permite
cuantificar cualquier probabilidad, independientemente de si se trata de marginales
univariadas o ultivariadas o de probabilidades condicionales.

4. La construcción de los nodos (variables) y la estructura de la red bayesiana es muy
natural porque se reproducen todos los elementos encontrados cuando los veh́ıculos
viajan por la carretera. Una simple lista de elementos basta para que un programa de
ordenador construya el gráfico aćıclico asociado a la red bayesiana automáticamente.
Las fórmulas de forma cerrada dadas en el trabajo permiten agregar las probabili-
dades condicionales de una manera automática y simple. En consecuencia, la apli-
cación práctica de la metodoloǵıa propuesta a casos reales es posible y relativamente
sencilla.

5. La aplicación de la metodoloǵıa propuesta a ejemplos reales con 76 y 129 items y 992
y 1704 variables demuestra que el método puede aplicarse a segmentos muy grandes
de carreteras y muestra la potencia del método para identificar secuencias de eventos
que conducen a incidentes graves, cuantificando además sus probabilidades.
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6. Algunos de los ejemplos particulares analizados en este documento muestran que el
método es capaz de identificar las causas de incidentes más relevantes y cuantificar
sus probabilidades de ocurrencia.

7. Como se muestra con los ejemplos detallados inclúıdos en este documento, las tablas
de probabilidad condicional requeridas para cuantificar la red bayesiana pueden
definirse por fórmulas cerradas en general. En particular, se ha probado que las
probabilidades condicionales resultantes son válidas. El método propuesto de
definición de estas tablas mediante árboles permite una mejor comprensión de estas
probabilidades y una forma más organizada de analizar las diferentes combinaciones
de valores de las variables implicadas y la posibilidad de automatizar la obtención
de las mismas.

8. La técnica de partición propuesta permite reducir drásticamente el tiempo de CPU.
Más precisamente, utilizando esta técnica, el tiempo de CPU requerido aumenta
linealmente con el número de variables en lugar del carácter no lineal de los métodos
alternativos. Esto hace que el método propuesto sea válido para ser aplicado en casos
reales, donde el número de variables puede llegar a varios miles. Con esta técnica
se puede reducir los tiempos de CPU de horas a minutos.

9. Se puede hacer fácilmente un análisis de sensibilidad con la ayuda de la técnica
de partición. Esto implica que el análisis de sensibilidad se puede realizar con
pequeñas subredes, es decir, en un tiempo muy reducido. Las gráficas de análisis
de sensibilidad de rango proporcionan mucha más información que el análisis de
sensibilidad local. Más precisamente, un análisis de sensibilidad de un parámetro
A con respecto a otro parámetro B proporciona los cambios exactos del parámetro
A cuando los valores del parámetro B cambian dentro de un intervalo seleccionado,
mientras que la sensibilidad local da sólo la derivada parcial del parámetro A con
respecto a B en el punto de diseño. Esto tiene implicaciones importantes desde un
punto de vista práctico. En particular, es muy importante calibrar los parámetros
de la red bayesiana.

10. Los ejemplos reales discutidos en este documento muestran que el método puede
identificar incidentes relevantes, cuantificar sus probabilidades de ocurrencia y en-
contrar explicaciones sobre sus causas y una imagen de las situaciones más frecuentes
en las que ocurren estos incidentes. Una vez que se han identificado, algunos posi-
bles cambios para mejorar la seguridad, pueden ser hechos y evaluados de nuevo
para comprobar que ya se alcanzan los niveles de fiabilidad deseados.

11. La estimación de parámetros y los procesos de calibración son las partes más cŕıticas
del modelo propuesto. Para ello, se necesita la colaboración de diversos grupos de
expertos para mejorar la calidad, la credibilidad de los resultados y la eficiencia



208 CHAPTER 12. CONCLUSIONS

de los métodos propuestos. Una evaluación de seguridad probabiĺıstica seria debe
poner un gran esfuerzo en este proceso de estimación de parámetros y calibración.

12. Las principales limitaciones del método propuesto vienen de la dificultad de estimar
los eventos raros y el alto número de parámetros que deben estimarse para cada
ı́tem particular en la carretera. Esto requiere tiempo y experiencia.

13. Las posibilidades de un análisis retroactivo ofrecido por las redes bayesianas per-
miten investigar las causas de incidentes dados forzándolos a tener una probabilidad
uno (su ocurrencia) y recalculando las probabilidades de los sucesos restantes, que
también pueden observarse hasta obtener una explicación satisfactoria de la
ocurrencia del evento objetivo. La principal ventaja de este proceso consiste en
que las probabilidades de ocurrencia de los eventos son cuantificados y pueden ser
ordenados por sus probabilidades respectivas.

14. El modelo de red bayesiano también puede identificar la combinación de valores
variables que contribuyen con mayor frecuencia a eventos dados. En otras palabras,
las circunstancias bajo las cuales ocurren los eventos cŕıticos pueden ser identifi-
cadas. Esto permite orientar las acciones correctivas adecuadas y evitar la pérdida
de recursos que se producirán si se orientan estas acciones en la dirección equivocada.

15. También se han dado algunas técnicas de aprendizaje que nos permiten considerar
la red bayesiana basada en un grupo de expertos como una información “a priori”,
que luego se corrige cuando los datos están disponibles. Los métodos bayesianos
conjugados parecen ser la estrella clave en esta metodoloǵıa.

16. Se concluye mencionando algunos trabajos futuros que podŕıan incluir: (a) una
mejora de las fórmulas para obtener las probabilidades condicionales, (b)
desarrollo de técnicas automáticas de aprendizaje y actualización, por ejemplo,
métodos basados en métodos categóricos Bayesianos y métodos conjugados de fa-
milias de Dirichlet o modelos log-lineales, y (c) aplicación a muchas otras ĺıneas
reales que merecen un cuidadoso análisis probabiĺıstico de seguridad.
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Larrañaga, P. and Moral, S. (2011). Probabilistic graphical models in artificial intelligence.
Applied Soft Computing, 11(2):1511–1528.

Li, W., Carriquiry, A., Pawlovich, M., and Welch, T. (2008). The choice of statistical
models in road safety countermeasure effectiveness studies in Iowa. Accident Analysis
& Prevention, 40(4):1531–1542.

Lin, F., Jiang, Y., Xu, Z. X., and Dai, L. (2011). The Analysis and Prevent in Traf-
fic Accidents Based on Bayesian Network. In Emerging Engineering Approaches and
Applications, volume 1 of Advanced Engineering Forum, pages 21–25. Trans Tech Pub-
lications.

Mahboob, Q. (2014). A Bayesian Network Methodology for Railway Risk, Safety and
Decision Support. Ph. {d}. thesis, Technische {U}niversität {D}resden, Dresden.

Mbakwe, A. C. (2011). Modeling highway traffic safety in Nigeria using Bayesian network.
Ph. {d}. thesis, Morgan State University, Baltimore.



214 BIBLIOGRAPHY

Mu, H.-Q. and Yuen, K.-V. (2016). Ground motion prediction equation development by
heterogeneous Bayesian learning. Computer-Aided Civil and Infrastructure Engineering,
31(10):761–776.

Papakosta, P. and Straub, D. (2013). A Bayesian network approach to assessing wild-
fire consequences. In 11th International Conference on Structural Safety & Reliability
ICOSSAR, New York. Columbia University.

Pawlovich, M., Li, W., Carriquiry, A., and Welch, T. (2006). Experience with Road
Diet Measures: Use of Bayesian Approach to Assess Impacts on Crash Frequencies and
Crash Rates. TRR: Journal of the Transportation R. B., 1953:163–171.

Persaud, B. and Lyon, C. (2007). Empirical Bayes before-after safety studies: Lessons
learned from two decades of experience and future directions. Accident Analysis &
Prevention, 39(3):546–555.

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3):1–
12.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity Analysis in
Practice: A Guide to Assessing Scientific Models. John Wiley and Sons, New York.
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