
Accepted Manuscript

Make robots Be Bats: Specializing robotic swarms to the Bat algorithm

Patricia Suárez, Andrés Iglesias, Akemi Gálvez

PII: S2210-6502(17)30633-8

DOI: 10.1016/j.swevo.2018.01.005

Reference: SWEVO 346

To appear in: Swarm and Evolutionary Computation BASE DATA

Received Date: 24 July 2017

Revised Date: 20 November 2017

Accepted Date: 9 January 2018

Please cite this article as: P. Suárez, André. Iglesias, A. Gálvez, Make robots Be Bats: Specializing
robotic swarms to the Bat algorithm, Swarm and Evolutionary Computation BASE DATA (2018), doi:
10.1016/j.swevo.2018.01.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

 © <2019>. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/

https://doi.org/10.1016/j.swevo.2018.01.005

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Make Robots Be Bats: Specializing
Robotic Swarms to the Bat

Algorithm

Patricia Suárez1, Andrés Iglesias1,2,:, Akemi Gálvez1,2

1Department of Applied Mathematics and Computational Sciences
E.T.S.I. Caminos, Canales y Puertos, University of Cantabria

Avda. de los Castros, s/n, 39005, Santander, SPAIN
2Department of Information Science, Faculty of Sciences

Toho University, 2-2-1 Miyama
274-8510, Funabashi, JAPAN

:Corresponding author: iglesias@unican.es
http://personales.unican.es/iglesias

Abstract

Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by
Prof. Xin-She Yang in 2010, with remarkable applications in industrial and scientific
domains. However, to the best of authors’ knowledge, this algorithm has never been
applied so far in the context of swarm robotics. With the aim to fill this gap, this paper
introduces the first practical implementation of the bat algorithm in swarm robotics.
Our implementation is performed at two levels: a physical level, where we design and
build a real robotic prototype; and a computational level, where we develop a robotic
simulation framework. A very important feature of our implementation is its high spe-
cialization: all (physical and logical) components are fully optimized to replicate the
most relevant features of the real microbats and the bat algorithm as faithfully as pos-
sible. Our implementation has been tested by its application to the problem of finding
a target location within unknown static indoor 3D environments. Our experimental
results show that the behavioral patterns observed in the real and the simulated robotic
swarms are very similar. This makes our robotic swarm implementation an ideal tool
to explore the potential and limitations of the bat algorithm for real-world practical
applications and their computer simulations.

Keywords: swarm computation, swarm robotics, bat algorithm, unknown target
location, behavioral patterns.

1. Introduction

1.1. Swarm Intelligence
For many years, the concept of intelligence was generally perceived to be an exclu-

sive attribute of highly sophisticated individuals. Not surprisingly, this was also the

Preprint submitted to Elsevier February 10, 2018

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

approach taken in the early days of the artificial intelligence field. However, nature
provides several examples of groups of animals that exhibit a more sophisticated social
behavior than what would be possible through the simple aggregation of individual
behavioral patterns. As a result, the social group is able to carry out complex tasks
that their individual members cannot intend for. Take, for instance, the colonies of so-
cial insects (ants, termites, bees, fireflies), and other animal formations (fish schooling,
bird flocking, animal herding, and so on). They come up with astonishingly complex
social behaviors from the combined efforts of individuals with extremely limited intelli-
gence. Amazingly, this complex collective behavior emerges from a small set of simple
behavioral rules exploiting only low-level interactions between individuals and with the
environment (stigmergy) using decentralized control and self-organization.

In this context, one of the most exciting breakthroughs in artificial intelligence during
the last decades is the adoption and subsequent popularization of this collective intelli-
gence arising from a collection of simple, unsophisticated, and generally homogeneous
agents collaborating together to solve a complex problem. This field, globally known
as swarm intelligence [5, 6], is overcoming the traditional mathematical approaches
for solving optimization problems and laying the foundations for a new computational
paradigm: the swarm computation [13, 27]. Under this new paradigm, there is no
centralized intelligence controlling the swarm, taking decisions, and dictating how the
swarm units should behave. Instead, local and (at some extent) random interactions
between simple agents lead to the emergence of global sophisticated “intelligent” be-
haviors, unknown to the individual agents.

Nowadays, swarm intelligence is attracting increasing attention from researchers and
practitioners owing to its potential applications to many problems. For instance, mil-
itary and civil applications related to the control of unmanned vehicles have been
described in [45, 46, 54]. Many other applications can also been found in the scientific
literature; see [5, 19, 63] for several illustrative examples in different fields. The inter-
ested reader is also referred to [13, 27] for a comprehensive overview about the field of
swarm intelligence, its history, main techniques, and applications.

1.2. Swarm Robotics

One of most relevant applications of swarm intelligence is robotics. Several scientific
papers and research projects have shown that self-organizing swarm robots can poten-
tially accomplish complex tasks and thus replace sophisticated and expensive robots
by simple inexpensive drones, a research subfield usually referred to as swarm robotics
[3, 14, 64]. The reader is kindly referred to [56] for some illustrative early examples
and applications of swarm robotics; see also [50] for a more updated survey on recent
advances in the field. As remarked by several authors [1, 6], swarm robotic systems
offer several interesting advantages, such as:

• Improved performance by parallelization: swarm intelligence systems are very
well suited for parallelization, because the swarm members can perform different
actions at different locations simultaneously. This feature makes the swarm more
flexible and efficient for complex tasks, as individual robots (or groups of them)
can solve different parts of a complex task independently.

2

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

• Task enablement: groups of robots can do certain tasks that are impossible or very
difficult for a single robot (e.g., collective transport of too heavy items, dynamic
target tracking, cooperative environment monitoring, autonomous surveillance of
large areas).

• Scalability: inclusion of new robots into a swarm does not require reprogramming
the whole swarm. Furthermore, because interactions between robots involve only
neighboring individuals, the total number of interactions within the system does
not increase dramatically by adding new units.

• Distributed sensing and action: a swarm of simple interconnected mobile robots
deployed throughout a large search space possesses greater exploratory capacity
and a wider range of sensing than a sophisticated robot. This makes the swarm
much more effective in several tasks: exploration and navigation (e.g., in disaster
rescue missions), nanorobotics-based manufacturing, microbotics for human body
diagnosis, and many others.

• Fault tolerance: due to the decentralized and self-organized nature of the swarm,
the failure of a single unit does not affect the completion of the given task.

All these advantages motivated a great interest in swarm robotics during the last two
decades. The reader is kindly referred to Section 2 for further details on this issue.

1.3. Nature-Inspired Metaheuristic Methods

Most of swarm intelligence methods are computational metaphors based on the dy-
namics of natural groups. A classical example is the ant colony optimization (ACO)
method, based on the behavior of colonies of ants, which are able to carry out difficult
tasks unattainable for individual ants [10, 11]. Another example is the behavior of a
flock of birds when moving all together following a common tendency in their displace-
ments, an inspiration to the particle swarm optimization (PSO) method [12, 25]. Other
examples include popular optimization methods such as artificial bee colony, firefly al-
gorithm, cuckoo search, and bat algorithm. These and many other examples lead to a
valuable set of computational intelligence techniques known as nature-inspired meta-
heuristic methods. The reader is referred to [57] for a gentle introduction to several
recent nature-inspired metaheuristic methods; see also [62, 63].

Among them, the bat algorithm is an increasingly popular swarm intelligence algo-
rithm originally proposed by Prof. Xin-She Yang in 2010 [58, 60]. The algorithm is
based on the peculiar behavior of microbats (see Section 3 for details). In our expe-
rience, the bat algorithm has shown to be a very effective method to solve complex
multimodal nonlinear continuous optimization problems involving a large number of
variables, such as data fitting through free-form parametric curves [20, 21, 23] and
surfaces [22], and multi-objective problems [59]. On the other hand, the fundamental
principle of the bat algorithm (namely, the echolocation through ultrasounds) along
with some of its most important features and parameters (operating frequency, oper-
ating time, number of cycles per bust, accuracy range, traveling range of pulses, and

3

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

so on) can readily be reproduced with current hardware (see Section 4 for details).
This makes the bat algorithm an excellent method for potential applications in swarm
robotics. Furthermore, some recent papers have reported successful applications of the
bat algorithm to some problems in robotics [15, 16]. However, these works are mostly
focused on the problem of parameter tuning of PI-controllers for optimal positioning
of robotic arms for safety and functionality, and have no direct relationship with the
area of swarm robotics. Clearly, the application of bat algorithm to swarm robotics is
a very promising yet unexplored field. In this paper we are aimed at filling this gap.
Consequently, this is the algorithm used in this paper.

1.4. Main Contributions and Structure of the Paper

Despite of its remarkable features, to the best of our knowledge, the bat algorithm
has never been applied so far in the context of swarm robotics. Aimed at filling this
gap, a previous paper in [49] presented some initial ideas about the application of the
bat algorithm to swarm robotics. However, that paper was based on very preliminary
work and strongly affected by limitations of space. This paper is a substantial extension
in several ways. The main contributions of this paper are:

1. First and utmost contribution of this work is the first practical implementation of
the bat algorithm for swarm robotics. To the best of our knowledge, no previous
application of the bat algorithm to swarm robotics has been reported so far in
the literature.

2. Our implementation is performed at two levels: we introduce both a physical
robotic prototype (described in Section 4.1) and a computational robotic simula-
tion framework (described in Section 4.2).

3. A key differential factor of our approach is its high specialization. The general
trend in swarm robotics is to create flexible drones able to support several al-
gorithms with just minor (if any) modifications. Although this approach can be
useful for comparative purposes among algorithms, it also yields biased compar-
isons since the design and components are not optimally chosen for each partic-
ular algorithm under analysis. Opposed to previous approaches in the field, our
implementation has been carefully designed to replicate faithfully almost all fea-
tures of the real bats and the bat algorithm (see Section 4.3 for details). In other
words, all our (physical and logical) components are fully optimized to follow the
bat algorithm principles as accurate as possible.

4. Our implementation has been applied to the problem of finding a target location
within unknown static indoor 3D environments. To this aim, three different
computational scenes have been considered. The first one has been recreated
from the real-world storage room where we perform our experiments with the
real robotic swarm.

5. Our experiments show that the behavioral patterns observed in both the real and
the simulated robotic swarms are very similar. Except for small deviations due
to the typical noise in real-world conditions, the behavior and evolution of the
robotic swarms at the physical and computational levels match each other fairly
accurately.

4

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

This paper is organized as follows: previous work in the field of swarm robotics
is briefly reported in Section 2. In Section 3 we provide the reader with a gentle
overview about the bat algorithm and its main rules and features. We also describe
the algorithm through its pseudocode. In Section 4 we describe the main features of
our implementation of the bat algorithm for swarm robotics in terms of hardware and
software. The analogies and differences among the real bats, the bat algorithm, and
our physical and computational swarm robotics implementation are also discussed in
that section. Some computational and real-world experiments about finding a target
location with our robotic swarm are reported in detail in Section 5. The issue of
comparison of our approach with other alternative methods in the literature is discussed
in Section 6. The paper closes with the main conclusions and some hints about our
future work in the field.

2. Previous work

In this section, some previous work on swarm robotics is briefly reported. Our
contribution spans both the physical and logical levels, so we organize our description
on previous work accordingly, with Sections 2.1 and 2.2 devoted to the robotic platforms
(physical level) and the robotic simulation frameworks (logical level), respectively.

2.1. Robotic Platforms

Swarm robotics has attracted much attention from the scientific community and the
industry during the last decades. Pioneering research projects dating back the 80s and
90s (such as CEBOT, SWARMS or ACTRESS) made just preliminary advances, yet
they set the foundations of the field. Since then, ambitious large-scale projects, such
as the European-funded projects Swarm-bots1 (2001-2005), i-Swarm2 (2004-2008) and
Swarmanoid3 (2006-2010) and initiatives from USA universities such as Harvard, MIT,
Stanford, UPenn, ASU, Texas A&M and many others, have led to a boost in swarm
robotics. As a result, several approaches have been described in the literature during
the last few years.

One of the first approaches in the field was the robot Khepera [34], developed at
the EPFL (Lausanne, Switzerland) in mid 90s. It was sold to a thousand research
labs worldwide, having served researchers for 10 years. Subsequently versions (such
as Khepera III [37]) were released for the following decade along with some simulation
platforms (see Section 2.2 for further details).

This work was later extended to a new robot, Alice [8, 9], developed by Gilles Caprari
at the Autonomous Systems Lab at EPFL. From the very beginning, Alice designed to
be autonomous, small (with just under 1 cubic inch, it featured a very amazingly small
size for its time), and relatively inexpensive, making it affordable to construct and
operate a large crowd of robots simultaneously (such as swarms of 90 robots working

1see URL: http://www.swarm-bots.org/
2see URL: http://www.i-swarm.org/
3see URL: http://www.swarmanoid.org/

5

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

cooperatively, a remarkable achievement at that time). These micro-robots were even
for sale at one time, not only for researchers but also for hobbyists. They were also
highly configurable, with numerous extension modules available for different research
purposes. Some illustrative examples of applications of Alice include navigation and
map building [7], teams of robots playing soccer cooperatively, and the embodiment of
cockroach aggregation [17]. Other interesting applications can also be found in [9].

A larger (CD size) robot was Kobot [51, 52]. It was applied to analyze the self-
organized flocking of a swarm of robots moving as a coherent group and avoiding obsta-
cles as if they were a single “super-organism”. The e-Puck was a popular cylindrical-
shaped micro-robot designed to be robust and affordable enough to allow intensive
classroom use [36]. It was quite popular for academic purposes, particularly in small
amounts. However, its size and price were limiting factors for its massive deployment,
as required for crowds in swarm robotics.

Another popular micro-robot was Jasmine4, a public open-hardware development to
create a simple and cost-effective micro-robotics platform [47]. This micro-robot has
been widely used in swarm robotics studies, such as playing the role of a honeybee
in aggregation scenarios [26]. A differential feature of Jasmine with respect to other
swarms of robots is that Jasmine only supports local communication, while long dis-
tance communication is neither intended nor implemented, making it a good testbed
for many problems. Other micro-robots well suited for swarm robotics are S-bot [35],
i-Swarm robot [53], SwarmBot [29], AMiR (Autonomous Miniature Robot) [2], Colias
[3] and its evolution, Colias-Φ [4].

Motivated by the recent trend of increasing the number of robots in the swarm,
several relevant works are focusing on scalability issues and the challenges they present.
Crowds of up to 100 robots (and even more) has been analyzed in projects, such as the
I-swarm [48] and the iRobot swarm [32] projects, by using R-one5, iRobot, SwarmBot
and other micro-robotics models [30, 31, 44]. A significant step in this regard was the
small kilobot 6, by Michael Rubenstein, at the Self Organizing Systems Research Group
at Harvard University [39]. This robot can only perform three simple tasks: respond
to light, measure a distance, and sense the presence of other robots. However, when
combined, they can organize themselves into shapes, such as grouping into clusters
based on their own color light (or that of their neighbors) or dispersing to fill a space.
Kilobots are programed all at once, as a group, using infrared light. Each kilobot
gets the same set of instructions as the next. With just a few lines of programming,
they can execute together complex natural processes, such as synchronize their flashing
lights like a swarm of fireflies, or moving together towards a light source similar to the
way bacteria search for food [40, 41]. Recently, a swarm of one thousand kilobots
has been reported in the literature [42]. With this huge amount, individual units are
not really important; it does not even matter if one or a few robots break down, as
the collective behavior of the swarm still prevails. In other words, a large robotic

4see URL: http://www.swarmrobot.org/
5see URL: http://mrsl.rice.edu/projects/r-one
6see URL: https://ssr.seas.harvard.edu/kilobots

6

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

swarm provides a lot of flexibility and robustness, as the collective tendency of the
swarm is highly immune to individual failures or breakages [43]. It also gives room
to analyze some interesting configurations; for instance, a gradient formation, where a
source robot generates a gradient value that is incremented as it propagates through
the swarm, giving each robot a metrics of the distance value from the source, or for
localization tasks, where robots determine their position in the coordinate system by
communicating with already localized robots [41, 43].

2.2. Robotic Simulation Frameworks

Swarm robotics is a very complex research area involving many different technolo-
gies including electronics, mechanics, physics, and computer hardware and software. In
real-world experiments, it is almost impossible to make all these technologies work per-
fectly together. Therefore, it is common in the field to rely on realistic simulations and
fast prototyping by software to reduce the burden in developing a swarm of physical
robotic units, make improvements on preliminary designs, and speed up the experi-
ments by focusing on the most critical aspects without wasting time and resources in
technical issues or environmental conditions. Because of these reasons, several robotic
simulation frameworks for robots and robotic swarms have been developed, with dif-
ferent user interfaces and technical features. Some have been created exclusively for
experimentation on particular robotic platforms and are not available for public use.
Others are publicly available and very popular. In this section, we describe some of the
most popular robot simulators suitable for robotic swarms. Of course, this description
is by no means exhaustive, as many other robot simulators have been developed during
the last few years. A detailed discussion on this topic is beyond the scope of this paper.

One of the first popular open source simulators for multi-robot simulation (including
swarm robotics) is Player/Stage/Gazebo [18], a freeware open-source programming
framework comprised of three main components:

• Player: a language-independent and platform-independent network server for
robot control providing a clean and simple interface to the robot’s sensors and
actuators over the IP network.

• Stage: a multi-robot simulator of a population of mobile robots, sensors and
actuators in a 2D bitmapped environment. It is often used as a Player plugin
module, providing populations of virtual devices for Player. As such, it has been
successfully applied to 2D simulations of robots (see, for instance, [55]).

• Gazebo: a multi-robot simulator for outdoor environments in 3D. Originally de-
signed as a 3D alternative to Stage, Gazebo has evolved into a powerful robot
simulator supporting 3D indoor and outdoor environments and providing access
to several physics and graphical engines. It also includes modules and support
for a variety of sensors and robot models.

Another popular multi-robot simulator is Webots [33], a cross-platform commercial
product to simulate real robots through realistic models of many of the most popu-
lar commercial robots. SwarmBot3D is a simulation tool for the S-bot robot of the

7

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Swarmbot project [32, 35]. It was developed on top of Vortex, a commercial physics
simulation engine, and describes both robots and worlds as XML text files. It also
includes all hardware functionalities (sensors and mechanics) of a real S-bot as well as
support for handling a group of robots either as independent units or in a swarm con-
figuration. Another popular robot simulation program is Microsoft Robotics Developer
Studio (Microsoft RDS for short), a Windows-based framework in C# for control and
simulation of robotic units [24].

Some of the most popular robotic platforms described in previous section are also
equipped with powerful simulation frameworks. For instance, several robot simulator
programs have been developed for Khepera III and subsequent versions of this popular
robot. Those programs include the Khepera-Lisp Interface (KHLI), Khepera Simu-
lator, YAKS, KiKS (a Khepera simulator for Matlab), and the Khepera III Toolbox
(a software toolbox for the Khepera III robot). Another example is Jasmine, with a
simulation system based on Breve, an object-oriented programming language called
Steve and sensor models for Jasmine III robot, and two robot simulators developed
at EPFL for the popular e-puck robotic platform: the ENKI system, an open source
2D physics-based robot simulator in C++, and V-REP, a 3D robot simulator based
on a distributed control architecture. Other notable examples include Mona, an open-
source open-hardware platform developed at the University of Manchester, the R-one
robotic initiative from Rice University providing an operating system and accompa-
nying software to program the R-one robotic platform, a widely used robotic kit for
educational and research purposes, Kilobot from Harvard University, and the recently
released software code of the University of Colorado Boulder crowfunding Droplets
project including a publicly accessible robot simulator.

3. The Bat Algorithm

The bat algorithm is a bio-inspired swarm intelligence algorithm originally proposed
by Xin-She Yang in 2010 to solve optimization problems [58, 60]. The algorithm is based
on the echolocation behavior of bats. The author focused particularly on microbats, as
they use a type of sonar called echolocation, with varying pulse rates of emission and
loudness, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
In this paper we also adhere to this approach, so (unless otherwise stated) the term
bats should be understood to refer to microbats henceforth. The interested reader is
referred to the general paper in [61] for a comprehensive, updated review of the bat
algorithm, its variants and applications.

3.1. Basic rules

The idealization of the echolocation of microbats can be summarized as follows (see
[58] for details):

1. Bats use echolocation to sense distance and distinguish between food, prey and
background barriers.

2. Each virtual bat flies randomly with a velocity vi at position (solution) xi with
a fixed frequency fmin, varying wavelength λ and loudness A0 to search for prey.

8

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

As it searches and finds its prey, it changes wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission r, depending on the proximity
of the target.

3. It is assumed that the loudness will vary from an (initially large and positive)
value A0 to a minimum constant value Amin.

In order to apply the bat algorithm for optimization problems more efficiently, some ad-
ditional assumptions are strongly advisable. In general, we assume that the frequency
f evolves on a bounded interval rfmin, fmaxs. This means that the wavelength λ is also
bounded, because f and λ are related to each other by the fact that the product λ.f
is constant. For practical reasons, it is also convenient that the largest wavelength
is chosen such that it is comparable to the size of the domain of interest (the search
space, for optimization problems). For simplicity, we can assume that fmin “ 0, so
f P r0, fmaxs. The rate of pulse can simply be in the range r P r0, 1s, where 0 means no
pulses at all, and 1 means the maximum rate of pulse emission. With these idealized
rules indicated above, the basic pseudo-code of the bat algorithm is shown in Algorithm
1. It is described in next paragraphs.

3.2. The algorithm

Basically, the algorithm considers an initial population of P individuals (bats). Each
bat, representing a potential solution of the optimization problem, has a location xi

and velocity vi. The algorithm initializes these variables (lines 1-2) with random
values within the search space. Then, the pulse frequency, pulse rate, and loudness are
computed for each individual bat (lines 3-4). Then, the swarm evolves in a discrete
way over generations (line 5), like time instances (line 19) until the maximum number
of generations, Gmax, is reached (line 20). For each generation g and each bat (line 6),
new frequency, location and velocity are computed (lines 7-8) according to the following
evolution equations:

f g
i “ f g

min ` βpf
g
max ´ f

g
minq (1)

vg
i “ vg´1

i ` rxg´1
i ´ x˚s f g

i (2)

xg
i “ xg´1

i ` vg
i (3)

where β P r0, 1s follows the random uniform distribution, and x˚ represents the current
global best location (solution), which is obtained through evaluation of the objective
function at all bats and ranking of their fitness values. The superscript p.qg is used to
denote the current generation g.

The best current solution and a local solution around it are probabilistically selected
according to some given criteria (lines 9-12). Then, search is intensified by a local
random walk (line 13). For this local search, once a solution is selected among the
current best solutions, it is perturbed locally through a random walk of the form:

xnew “ xold ` εAg (4)

9

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Require: (Initial Parameters)
Population size: P
Maximum number of generations: Gmax

Loudness: A
Pulse rate: r
Maximum frequency: fmax

Dimension of the problem: d
Objective function: φpxq, with x “ px1, . . . , xdq

T

Random number: θ P Up0, 1q
1: g Ð 0
2: Initialize the bat population xi and vi, pi “ 1, . . . , nq
3: Define pulse frequency fi at xi

4: Initialize pulse rates ri and loudness Ai

5: while g ă Gmax do
6: for i “ 1 to P do
7: Generate new solutions by adjusting frequency,
8: and updating velocities and locations //eqns. (1)-(3)

9: if θ ą ri then
10: sbest Ð sg //select the best current solution

11: lsbest Ð lsg //generate a local solution around sbest

12: end if
13: Generate a new solution by local random walk
14: if θ ă Ai and φpxiq ă φpx˚q then
15: Accept new solutions
16: Increase ri and decrease Ai

17: end if
18: end for
19: g Ð g ` 1
20: end while
21: Rank the bats and find current best x˚

22: return x˚

Algorithm 1: Bat algorithm pseudocode

where ε is a random number with uniform distribution on the interval r´1, 1s and
Ag “ă Ag

i ą, is the average loudness of all the bats at generation g.
If the new solution achieved is better than the previous best one, it is probabilistically

accepted depending on the value of the loudness. In that case, the algorithm increases
the pulse rate and decreases the loudness (lines 14-17). This process is repeated for
the given number of generations. In general, the loudness decreases once a bat finds
its prey (in our analogy, once a new best solution is found), while the rate of pulse
emission decreases. For simplicity, the following values are commonly used: A0 “ 1
and Amin “ 0, assuming that this latter value means that a bat has found the prey

10

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

and temporarily stop emitting any sound. The evolution rules for loudness and pulse
rate are as follows:

Ag`1
i “ αAg

i (5)

rg`1
i “ r0

i r1´ expp´γgqs (6)

where α and γ are constants. Note that for any 0 ă α ă 1 an any γ ą 0 we have:

Ag
i Ñ 0, rgi Ñ r0

i , as g Ñ 8 (7)

In general, each bat should have different values for loudness and pulse emission rate,
which can be computationally achieved by randomization. To this aim, we can take
an initial loudness A0

i P p0, 2q while the initial emission rate r0
i can be any value in the

interval r0, 1s. Loudness and emission rates will be updated only if the new solutions
are improved, an indication that the bats are moving towards the optimal solution.
As a result, the bat algorithm applies a parameter tuning technique to control the
dynamic behavior of a swarm of bats. Similarly, the balance between exploration and
exploitation can be controlled by tuning algorithm-dependent parameters.

4. Bat Algorithm-Based Implementation for Swarm Robotics

In this section we report our implementation of the bat algorithm described above
for swarm robotics by using a swarm of simple and identical robotic units. This im-
plementation is performed at two levels: the robotic platform (physical level) and the
robotic simulation framework (computational level). They are described in Sections
4.1 and 4.2, respectively.

4.1. Robotic Platform for Bat Algorithm

Our robotic swarm for bat algorithm consists of a set of identical wheeled robots.
Figure 1 shows two robots of the swarm along with some of their most distinctive com-
ponents. Each robot is equipped with a kit of simple yet powerful hardware components
that replicate the most relevant features of the bat algorithm (the others being repli-
cated by software). The hardware and software implementation of the robotic platform
are described in Sections 4.1.1 and 4.1.2, respectively.

4.1.1. Hardware implementation

The robots were assembled by the authors on a rigid chassis, shown in green in Figure
1. The chassis and other mechanical parts (such as the wheels and holders) have been
generated by 3D printing from a 1.75 mm PLA (polylactic acid) filament by using
a fully enclosed domestic desktop FFF Witbox 3D printer by Spanish manufacturer
QB. The robot moves through two side wheels driven by two continuous rotation servo
motors. The chassis also hosts the battery holders with their board connectors (cables
terminated with a standard 5.5ˆ2.1mm, center positive barrel jack connector) and the
electronics of our robotic unit. The main electronic components are:

11

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 1: Identical wheeled robots used for our implementation of the bat algorithm and main compo-
nents: a single-board microcontroller Freaduino UNO (for programming and connectivity), ultrasound
sensors (for collision avoidance), magnetometer (for spatial orientation), and bluetooth card (for wire-
less data exchange and communication).

1. a single-board microcontroller: in our implementation we use the popular mi-
crocontroller Freaduino UNO, an Arduino-compatible board based on Arduino
UNO Rev3 design and manufactured by ElecFreaks. We choose Freaduino UNO
because it provides a very good combination of small size, affordable price, and
reasonable computing power. It is not only fully compatible with Arduino UNO
Rev3 (including all shields, programs and IDE), but also more powerful and flex-
ible, cheaper, and easier to use. For instance, it operates at both 3.3V and 5V,
while Arduino UNO operates at 5V exclusively. This feature allows us to con-
nect several 3.3V modules (such as Xbee, Bluetooth transmitters, LCD screens,
accelerometers, gyroscopes, and many others), as we actually do in this paper.
Its range for external input voltage is wider as well: 7V to 23V for Freaduino
UNO compared to 7V to 12V for Arduino UNO. It also provides a much easier

12

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

access to some valuable components: for instance, the reset button and LED
are easy to press and always visible respectively, while when plug in shield in
Arduino UNO, they turn hard to press and invisible, respectively. Furthermore,
Freaduino UNO includes some additional interesting features with respect to Ar-
duino UNO, such as the UART/IIC and SPI interface breakout and a standard
mini USB connector (a type B female USB connector is used in Arduino UNO
instead). Finally, although both boards use a single-chip microcontroller ATmega
328 by Atmel (a 8-bit RISC-based microcontroller at a clock speed of 16MHz),
the version in Freaduino UNO (SMD ATmega 328P) is more reliable than the
ATMega 328 (DIP) from Arduino UNO board.
We found our choice to be fully suitable to meet our needs. We remark however
that other microcontrollers in the market can also be used for this work (includ-
ing the original Arduino UNO and others from the Arduino family), although
additional components might be required in some cases for extra connectivity
and other tasks.
The single-board micro-controller is responsible for all programming tasks and the
connectivity among the different components of the robot. We also added a pro-
toshield and a mini breadboard for further connectivity of electronic components.
The protoshield is plugged on top of the board microcontroller to gain access to
all microcontroller pins. The mini solderless breadboard, shown in white in Fig-
ure 1(bottom, left and right), can be used for tasks such as temporary circuits
(e.g., removable sensors) and fast prototyping.

2. an ultrasound sensor: in this work, we use the ultrasound sensor HC-SR04, also
manufactured by ElecFreaks. It is an ultrasonic sensor operating at 5V DC that
uses sonar to compute the distance to an object, much like bats or dolphins
actually do. Each HC-SR04 module includes an ultrasonic transmitter, a receiver
and a control circuit, with 4 pins for power, trigger (transmitter), echo (receiver),
and ground. Some other technical features will be discussed in detail in Section
4.3. The ultrasound sensor is used for collision avoidance with static and dynamic
objects (including other robots in the swarm) as well as with the boundaries of
the physical 3D environment.

3. a magnetometer: in this work, we use the triple-axis magnetometer board HMC-
5883L. This user-friendly compass is a 3.3V max chip with added circuitry to
make it 5V-safe logic and power, so that it can be connected to either 3 or 5V
microcontrollers. It uses I2C serial bus for easy interface to communicate. Its
internal functioning is based on the anisotropic magnetoresistive (AMR) technol-
ogy by Honeywell, with AMR directional sensors having a full range of ˘8 gauss
an a resolution of up to 2 milligauss. The magnetometer is used in this work
for global spatial orientation of the robotic units of the swarm regardless their
physical environment.

4. a Bluetooth card: we use the HC-05 Bluetooth sub-module, which uses short-
wavelength UHF radio waves for wireless communication. This card is used for
wireless communication and data exchange over short distances (about a range of
10 meters) among the robots of the swarm and with a central server for tracking

13

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

purposes.

All these components are connected to different I/O pins in a rather standard way.
The detailed description of these connections is out of the scope of this paper and will
be omitted here to keep the paper to a manageable size.

4.1.2. Sofware implementation

The robotic platform described in previous section was programmed by using several
software libraries and tools. All our source code was implemented on a personal com-
puter through the open-source Arduino IDE. Then, it was compiled with AVR-GCC,
a compiler for Atmel AVR microcontrollers. The software library AVR Libc was also
used for compilation. Other external libraries and files have been used for control-
ling the servomotors, communication via Bluetooth and with I2C devices, and other
tasks. The resulting binary code (in HEX format) from compilation is transferred to
the microcontroller through a RS232 serial port to TTL converter for final loading and
execution.

4.2. Robotic Simulation Framework for Bat Algorithm

The bat algorithm-based robotic swarm has also been simulated graphically by using
a framework specifically developed by the authors for this work. The framework has
been created in Unity 5, a popular multiplatform game engine especially praised by
its portability, supporting all personal computer operating systems and video game
consoles as well as most of mobile devices and websites. This game engine comes with
many different features and tools for the accurate simulation of 3D scenes, including
high-quality graphics (e.g., lighting, shadows, textures, and materials) for advanced
photo-realistic rendering, a powerful physics engine with realistic rigid/soft body simu-
lations and forward/inverse kinematics, powerful navigation tools, advanced algorithms
for collision detection, and so on. It also provides a nice graphical editor with different
windows and workspaces for the project, scene view, game view, hierarchy, toolbars,
inspector, and many other features.

Unity 5 supports the programming languages C# and JavaScript. All programming
code for our robotic simulation framework has been created in JavaScript using the
Visual Studio integrated programming environment (IDE). This source code can be fur-
ther compiled to generate standalone applications that can be executed autonomously
under different hardware configurations and operating systems. For this work, we have
generated versions for Mac OS X and Windows 10, both sharing similar visual ap-
pearance and functionalities7. They contain three buttons to access three different
pre-computed 3D scenes and a fourth button to exit the application. The 3D scenes,
labelled as Level 1 to Level 3 in increasing order of geometric complexity, are displayed

7A preliminary version of this application was on show last February during the ICHSA 2017
conference. It was installed in a laptop publicly available to conference attendees for live execution.
At that time, we received very positive comments and valuable feedback from several conference
delegates. The new version keeps the same computing kernel; the modifications concern mostly to the
enhanced graphical output.

14

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 2: Graphical representation of the three 3D scenes (labelled as Level 1 to Level 3 from top to
bottom, respectively).

15

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Real Bat Our robotic
microbats algorithm swarm approach

No centralized behavior: X X X
No vision abilities: X N.A. X
Ultrasound based: X X X
Operating frequency: 25–150 kHz X 40 kHz
cycles burst: 10–20 N.A. 8
Operating time: in milliseconds N.A. „60 milliseconds
Accuracy range: mm„cm N.A. „3 mm
Traveling range of pulses: meters N.A. 0.02„5 meters
Loudness tuning: X X X
Pulse rate tuning: X X X
Flying abilities: X N.A.

Ś

Table 1: Analogies and differences among the real microbats, the bat algorithm and our implementa-
tion for several features, arranged in rows (see the main text for full interpretation of the table).

in Figure 2 (top to bottom). They correspond to different spatial configurations of a
closed storage room with several cardboard boxes stacked in a very messy way (even
occasionally forming structures such as tunnels and passageways the robots can take
advantage of). In all scenes, a blue spherical-shaped point of light is used to represent
the target point, subsequently used in our experiments in Section 5. Further details
about these scenes and their use for finding a target location can be found in Section
5.

4.3. Analogies of Our Implementation with the Real Bats and the Bat Algorithm

As mentioned above, all physical components of our implementation of a robotic
swarm have been carefully chosen to replicate the most relevant features of the real
bats and the bat algorithm by either hardware or software. This section discusses the
analogies and differences found in the process. Our discussion is briefly summarized in
Table 1, where we compare the real microbats, the bat algorithm, and our implementa-
tion (arranged in columns) for different features (arranged in rows). For each feature,
the symbol X indicates that it is supported; otherwise, the symbol

Ś

is used. N.A.
stands for Not Applicable, meaning that this particular feature does not apply for the
analyzed approach.

The most important features replicated by hardware are:

1. No centralized behavior: Microbats in nature neither have a leader of the group
nor take centralized decisions. Instead, they synchronize their individual decisions
for many important issues such as switching communal roosts, communal nursing,
communal breeding, social thermoregulation (mutual warming), and so on [28].
In fact, microbats are excellent examples of non-centralized, communal decision-
making. This is also a fundamental ingredient of the bat algorithm. As any

16

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

other swarm intelligence approach, there is not a centralized system controlling
the swarm behavior. The same happens in our implementation. There is a
central server, but it does not control the system at all; it is used for tracking and
monitoring purposes only, but it does not take any decision about how to move or
whatever. All robotic units move and behave on an individual (yet coordinated)
basis. In our case, the bat algorithm is encoded in the microcontroller board and
executed locally. The robots communicate relevant information (such as location,
velocity, and frequency) to other swarm members but the dynamics of any robot
is computed locally.

2. No vision abilities: Similar to some microbats, our robots are not provided with
vision abilities at all; to this purpose, we refrain from including a camera or
any other device for vision (including infrared sensors, thermal cameras, and
the like). This is opposed to many usual approaches in swarm robotics, which
tend to support as many sensors as possible to make more powerful robots, able
to simulate a wide range of algorithms. In our philosophy, we should adhere
exclusively to the principles of the bat algorithm, so this option is both unintended
and unacceptable.

3. Ultrasound based: To faithfully replicate real bats and the bat algorithm, our
robots must rely on echolocation. This is what we do in our implementation. As
described in Section 4.1.1, our ultrasound sensors are based on sonar technology
for collision avoidance and interaction with other robots and the environment,
much like the real bats do.

4. Operating frequency: Although the actual range can vary depending on the mi-
crobat specie (and there are about 930 microbat species recognized so far), their
typical frequencies oscillate in the range 25-150 kHz. Each ultrasound pulse of our
robots operates at a constant frequency of 40 kHz, well within the range or real
bats. Furthermore, it is well-known that many microbats use constant-frequency
signals for echolocation, which is similar to what our robots actually do. Other
microbats can use short, frequency-modulated signals to sweep through about an
octave. We are currently considering options to modify the ultrasound sensor by
hardware so that it can behave approximately that way as well.

5. # of cycles of burst: Again, this value depends on the particular microbat specie
(and also on environmental conditions), with the typical range about 10-20 cycles
of burst. Our robots have small ultrasound sensors sending an 8 cycle burst of
ultrasound pulses, very similar to the typical value of real bats.

6. Operating time: Our robots capture its echo with signals lasting in the order
of milliseconds, exactly as the real bats actually do. For our sensor, the manu-
facturer advises to consider over 60 ms measurement cycle, in order to prevent
trigger signal to the echo signal.

7. Accuracy range: The accuracy range of the sensor is about 3 millimeters, very
similar to that of some real bats.

8. Traveling range of pulses: in our robots this value is between 2–500 centimeters,
similar to the range of a few meters of several bats.

17

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Other interesting bat algorithm features are difficult to replicate by hardware, so they
have been replicated by software to ensure the highest fidelity of our robotic swarm to
the bats and the original bat algorithm. These features include:

1. Loudness tuning: The loudness can readily be modulated in the source program-
ming code (as expected, since our source code is actually an implementation of
the bat algorithm).

2. Pulse rate tuning: The pulse rate of our ultrasound signals can be modified by
software to adapt to different conditions, as it typically happens with bats in the
real world and in good agreement with the bat algorithm.

Finally, there an important feature of the real bats that we do not emulate in our
approach: the ability to fly. While it is not really required (from a mathematical point
of view) for the bat algorithm (although somehow assumed in the description of the
method), this is a serious drawback towards the realism of our robotic units, especially
regarding 3D environments, as they are the natural niche of microbats in real life.
However, research in this area is still in its early infancy and this problem is clearly
beyond the scope of this paper; more details on this issue will be discussed in Section
6.

5. Computational and Real-World Experiments

As described above, the major goal of this paper is to design and build a robotic
swarm replicating the real bats and the bat algorithm as faithfully as possible. Once
built, our robotic swarm is applied to some experiments about the problem of finding
a target location, where the objective is to reach an unknown target location within
an unknown static 3D indoor scene. This section is devoted to describe these compu-
tational and real-world experiments. The discussion starts with the description of the
problem to be solved and the implementation issues in Sections 5.1 and 5.2, respectively.
Then, the obtained results are discussed in detail in Section 5.3. Finally, the important
issues of the parameter tuning, convergence of the method, and computational times
are discussed in Sections 5.4, 5.5, and 5.6, respectively.

5.1. Problem to be Solved

In this work we consider the problem of finding an unknown target location, a prob-
lem where a swarm of n robots, tBiui“1,...,n, is deployed within an unknown static
3D indoor environment, S, at initial random locations txip0qui“1,...,n. The goal of the
swarm is to reach an unknown target location ∆ within S. We assume that the robots
can freely move on a region Ω Ă R2 defined as the connected set of points of the ground
that are fully walkable for the robots (i.e., excluding obstacles and the boundaries of
the indoor environment). We also assume that the trajectory of each robot Bi can be
defined mathematically as a parametric curve xipsq Ă Ω, where s is the parametric
variable. Therefore, if ∆ P Ω there is always a continuous path connecting xip0q and
∆ in finite time Ti, so that xipTiq “ ∆. In that case, the Euclidean distance between

18

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

these two points on Ω, represented onwards as dΩ, can be computed as:

dΩpxip0q,∆q “

Ti
ż

0

a

||x1ipsq||
2 ds (8)

Note that the distance can only be computed on the regions where the robots actually
move, discarding static and/or dynamic objects (e.g., other robots) on the way.

Similarly, at each time instance t, the distance between xiptq and ∆ on Ω is given
by:

dΩpxiptq,∆q “

Ti
ż

t

a

||x1ipsq||
2ds (9)

Consider now the vector of distances Φptq “ pφ1ptq, φ2ptq, . . . , φnptqq, where φiptq “
dΩpxiptq,∆q, defined as in Eq. (9). Then, the goal is to minimize the total distance
Ξ∆ptq of the swarm to the target ∆, that is:

minimize rΞ∆ptqs “ minimize

»

–

n
ÿ

i“1

¨

˝

Ti
ż

t

a

||x1ipsq||
2ds

˛

‚

fi

fl (10)

In this problem, it is assumed that the robots have neither knowledge about the
location of ∆ nor about the possible paths leading to it. However, in order to define a
proper fitness function for the experiments, each robot Bi is provided with the numerical
value of its distance to the target point, φiptq.

Solving the continuous optimization problem in Eq. (11) is a difficult task for the
robots, because they have no clue about the physical area around them or where to
move (being thus impelled to explore the environment). For instance, it might happen
that the path in front of a moving robot is blocked by an object in the environment
(static obstacle), or by another moving robot of the swarm (dynamic obstacle). Since
the robot cannot see the obstacle, it keeps moving forward until the distance is small
enough to be detected by the short-range ultrasound sensor, at which point, different
behavioral patterns can emerge (see Section 5.2). For instance, it is not always clear
for the robot how to avoid the obstacle: move to the left, to the right, or back. In fact,
sometimes the robot changes the plan several times in a very short time being unable
to find the optimal decision (see, for instance, the robot in pink for seconds 26–30 of
Video 1). In this situation, the use of a robotic swarm becomes very advantageous, due
to its wider exploratory capacity with respect to a single robot. Ideally, each robot of
the swarm explores its surrounding area and communicates its position, velocity, and
frequency to the other members of the swarm, improving the global efficiency of the
whole swarm to find the target.

5.2. Implementation Issues
In this paper, the experiments are performed at computational and real-world levels.

Next paragraphs discuss our implementation process for both levels in detail. We

19

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 3: Navigation mesh (in green) representing the walkable areas for the three scenes (from top
to bottom) in Figure 2: (left) isometric view; (right) top view.

start with the computational implementation in Section 5.2.1; then, the real-world
implementation is discussed in Section 5.2.2.

20

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.2.1. Computational implementation

In order to apply the bat algorithm to the continuous optimization problem in Eq.
(11), we firstly need to determine some definitions in Section 5.1 in our implementation.
For instance, it is important to determine the walkable areas of the scenes for the
computational experiments. Our game engine is particularly useful in this regard:
Unity 5 provides powerful options to compute and handle such areas through a tool
called navigation mesh (or navmesh), a collection of non-overlapping two-dimensional
convex polygons defining areas of the map fully traversable by the robots. Figure 3
shows the navigation meshes (in green) associated with the three scenes (from top to
bottom) in this paper. We show both the isometric view (left) and the top view (right)
for full visualization of all scene features. Note that the different objects in the scene
(mostly cardboard boxes piled up in a messy way) are surrounded by a security area (in
vanilla color) defined by a threshold value of the normal distance from the object. This
is used to prevent collisions between the objects and the moving robots. It corresponds
to a threshold value for the ultrasound sensor in real-life experiments, which can be
set as low as 2cm and as high as 400cm.

Once the navigation mesh of the scene is obtained, it is stored in memory to be
subsequently used for the objective function. In our computational experiments, we
compute the distance between the current position of each robot at iteration step
j and the target location as: φj

i “ dΩpx
j
i ,∆q, where the superscript j is used to

indicate the iteration. Then, we consider the vector of discrete candidate solutions
Φj “ pφj

1, φ
j
2, . . . , φ

j
nq. From it, the fitness function to be minimized is given by:

Ξj
∆ “

n
ÿ

i“1

φj
i “

n
ÿ

i“1

dΩpx
j
i ,∆q (11)

where φj
i is calculated as the total length of a polyline connecting xj

i and ∆.
All bats are initialized at random positions on the domain Ω. However, we found

that even a small population of about 10 bats might be excessive for a scene with a
relatively small area, where the initial locations for some robots might be very close to
the target point. Therefore, to make the problem more challenging, we initialize the
robots in the areas farthest from the target. Such areas are then subdivided in smaller
non-overlapping rectangular regions of size rua, ubs ˆ rvc, vds on the parametric domain
Ω, and the robots are randomly initialized with a uniform distribution on such regions.
Of course, the number of robots and the number of regions are not equal in general;
as a result, depending on such numbers, some regions might be empty while others
can host more than robot at once. This initialization strategy ensures that all search
space can be visited while preventing solving the problem too quickly for small area
(or highly populated) scenes.

For our computational experiments, we generated two similar standalone applications
for both Mac OS X and Windows 10, each running on a different computer. In the
first case, we use a Apple iMac Pro, with a 4.2 GHz quad-core Intel Core i5, with 8GB
of 2400MHz DDR4 memory, 2TB Fusion Drive hard disk and a graphical card Radeon
Pro 580 with 8GB of VRAM. For the Windows version, we use a 3.8 GHz quad-core

21

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Intel Core i5, with 16 GB of DDR3 memory, and a graphical card AMD RX580 with
8GB of VRAM.

5.2.2. Real-world implementation

Our real-world experiments have been carried out by using a swarm of 10 real robots
distributed on a real-world indoor environment. The environment was a closed storage
room in our department used to store many cardboard boxes of our devices (computers,
printers, photocopying machines, and so on) and other stuff (paper, toner, etc). The
storage room is no longer in use, and the boxes are stacked in a very messy way. These
features make it a challenging yet controlled environment to carry out our real-world
simulations. However, some previous work was needed to make the environment fully
usable. After cleaning the room, we modified the spatial configuration of the boxes
to create several complex and irregular paths where the robots can really move. We
then created a map of the room for this new spatial configuration. This map has been
generated in our computer simulation framework by using handheld electronic distance
measurement (EDM) devices from the surveying department (similar to ours, located
in the Civil Engineering School of our university). In this way, we can register all
corners in the scene to define the navigation mesh for the robots with high accuracy.
As a result, three different configurations have been generated. They correspond to
the three maps displayed in Figure 2.

The next step concerns the deployment of the robots in this environment. Firstly,
we place the robots in the scene at will and record their actual position through trian-
gulation (by using the global positions of the surrounding corners, already registered in
our computer model of the scene). Then, to make sure that the robots are initialized
at random locations, we generate a random distribution by computer in the simulated
map of the scene, a very accurate replica of the real room. These initial random loca-
tions are transmitted to the robots via wireless communication through the Bluetooth
card. Then, the robots move automatically to their initial locations using the mag-
netometer for spatial orientation when following a precomputed route from the initial
point where we placed them. At the end of the process, all robots are located at the
generated random locations. The magnetometer also allows us to define the orientation
of the robot, determined by the angle with respect to the North magnetic pole of the
Earth. This value is also randomly initialized. All these random values are also saved
in a file to be subsequently used in the computer simulations, thus ensuring that both
the computational and the real-world experiments are carried out for the same initial
conditions.

5.3. Our Results

A series of experiments have been conducted at both computational and real-world
levels. For the former, we carried out series of 200 computer executions for each of the
three different scenes displayed in Figure 2, where the initial locations of the robots are
set randomly for each individual execution. Regarding the real-world level, we carried
out just 20 simulations instead of 200 because of battery constraints, using the three
scenes. Unfortunately, the large size (with respect to the robot size) of the real room

22

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 4: Computational and real-world experiment about the problem of finding a target location for
swarm robotics: general view (top-left), top view (top-right) and selected regions of interest (bottom-
middle & right).

and the boxes within do not allow us to take wide range pictures, only close-up (mostly
uninformative) photos. Due to this reason, we rely on computer simulations to show
our results.

First and most important observation of our experiments is that the behavior of the
robotic swarm is amazingly similar for both the computer and real-world experiments,
provided that we use the same scene, number of robots, and initial locations. For
illustration, Figures 4 and 5 shows two screenshots of one execution of the computer
experiment for the second scene along with the pictures of its real-world counterpart.
We selected these particular screenshots to show some interesting features for compar-
ison between the computer and real-world simulations. Figures 4 and 5 share a similar
structure: the upper part of the figure shows the computer simulation of the full scene
with isometric view, while the image on the top-right part shows the top view. Ten
robots were deployed in each scene with initial random locations and they evolved ac-
cording to the bat algorithm, as described above. The virtual robots were graphically
generated by the authors in open-source modeler Blender from real pictures and then
exported to Unity for realistic graphical representation in the computer simulations.

23

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 5: Computational and real-world experiment about the problem of finding a target location for
swarm robotics: general view (top-left), top view (top-right) and selected regions of interest (bottom-
left & right).

They are also textured and displayed in different colors for easier identification. We
remark, however, that their colors do not match in general those of the real robots
(unfortunately, we had only three colors available for the 3D printed robotic chassis:
green, red and yellow). A rectangle (in red and pink in Figs. 4 and 5, respectively)
shows a selected region of interest (ROI) in both pictures. These regions are further
enlarged (as indicated by arrows of similar colors) for better visualization. The ROis
contain some robotic units highlighted with dashed circles of different colors in the im-
ages for easier identification. We also show a picture of the same real-world experiment
with the same robots for better visual comparison.

We remark that the computational and the real-world simulations are performed in
a completely independent way, but for the same scene and the same initial locations for
the real and the simulated robots. We noticed a very similar behavior of the robotic
swarm in both experiments. Their positions and motions match very well, as shown in
those pictures.

Another important observation is that the evolution of the robotic swarms in com-
puter and real-world experiments (albeit globally very similar) is not really identical.

24

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 6: (top-bottom, left-right) Four screenshots of Video 1 showing some interesting behavioral
patterns (see the main text for details). The pictures have been edited for arrows.

In our experiments, we noticed that the actual positions of the real and the simulated
robots do not match exactly frame-by-frame during the simulation timeline, because of
several factors. In some cases, the real-world robotic swarm is advanced or delayed with
respect to the computer robotic swarm. In other cases, the evolution of the robots is
not exactly the same, probably due to technical factors (such as the sensor sensitivity,
a different position of an object in the computational and real-world scene, or others).
Yet, the general dynamics of the swarm is surprisingly similar in most cases.

Our experimental results have shown that the bat algorithm is very well suited for
this problem, actually much better than expected. We found a number of interesting
behavioral patterns to be further explored. Some of them are reported in the accom-
panying material submitted with this paper. It consists of six short videos, numbered
from 1 to 6, corresponding to the three scenes of the paper (videos 1 & 2 for the first
scene, videos 3 to 5 for the second scene, and video 6 for the third scene). The images
in the videos show the screenshots recorded from a single illustrative execution. The
window is divided into three parts, with the main (isometric) view on the left, the top
view (top-right) and the convergence diagram of the different robots (bottom-right).

Video 1 shows some illustrative examples about the difficulties of some robots to
decide the direction to take in order to approach the target location. This is clearly
shown by the robot in pink on the left at the beginning of the simulation. The robot

25

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 7: (top-bottom, left-right) Four screenshots of Video 2 showing some interesting behavioral
patterns (see the main text for details). The pictures have been edited for arrows.

moves to the left and right several times in sequence, unable to determine the best
strategy for a while. This behavior is graphically captures in four screenshots in Figure
6, corresponding to the seconds 26, 27, 28 and 30 of the animation. A similar wandering
motion pattern can be found for the robot in purple in lower middle part. The video
also shows the ability of the robots to find the target location through different paths.
Similar behavioral patterns can be found for the second scene in Video 3.

Video 2 shows an interesting example of a bifurcation behavior, represented in the
four screenshots of Figure 7. Initially, the robots in black and purple take two different
directions, represented respectively by the yellow and green arrows (top-left), but they
suddenly change their directions (top-right) while advancing towards the target. Then
again, they interchange their directions (bottom-left), constantly seeking for the most
promising path to the target until finally reaching their goal (bottom-right). Similar
(and even more intriguing and complex) behavioral patterns can be found for the
second scene in Video 4.

Video 5 shows several sophisticated and complex behavioral patterns. For instance,
in our prior opinion, the robots should get trapped in challenging configurations such
as U and V shapes (where the robotic units would be forced to come back), in cases of
traffic jam owing to overcrowding, or in cases of narrow passages and corridors where
only a single robot could advance at once. However, the swarm always find a way
to escape from these configurations. The video shows two very illustrative situations,

26

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

which are also displayed in Figures 4 and 5. In the first case, the first robot of the
formation enters into a narrow dead end, while the next robots in the formation simply
follow it. At the end, they get trapped inside and, because of the collision with the
boundaries of the corridor and amongst the robots of the swarm, they cannot go back
anymore. However, the robots at the queue of the formation are actually outside the
corridor, so they can turn around and look for an alternative path. As soon as the first
moving robot approaches to the target, it becomes the new global best, thus attracting
other members of the swarm to these new promising areas of the search space. In the
second case, the formation gets cornered in an irregular convex U shape. The robots
in the formation try to turn left and right in order to get rid of this trap, but are
affected by the constraints given by the collisions with their neighbors. However, these
local perturbations can eventually lead to some robots to find a escape route, a kind
of local search method that prevents the robots to get trapped in these challenging
shapes. A similar situation can be found for the third scene in Video 6. That video
is also very helpful in showing that the robots do not actually know the path leading
the target. Take the robot in pink for a very illustrative example: initially, the robot
moves towards the swarm, which is gathering in a location far away from the target.
At some point, the robot turns back and moves in the opposite direction, approaching
the target until reaching a bifurcation point where the path splits. Suddenly, the robot
chooses the wrong way. However, since the other members of the swarm are very far
from it, this robot is still the global best and hence, the formation follows its way, even
if that means to get trapped in a dead end room. After a while, some members of the
swarm find a way to exit the room, and approach the target location, dragging the
rest of the swarm with them until eventually reaching the target. Other interesting
behaviors have also been found in other videos and executions. They are omitted here
to keep the paper and accompanying material at reasonable size.

5.4. Parameter Tuning

A critical issue when working with nature-inspired metaheuristic methods is the pa-
rameter tuning. It is well-known that the performance of these methods is strongly
dependent on the choice of suitable values for their parameters. Moreover, such values
are problem-dependent, making it hard to determine good values in advance. There-
fore, although there are some papers describing suitable values for some problems,
our choice must be necessarily empirical. To this purpose, we carried out numerous
computer simulations for different parameter values. The different parameters used in
this paper are arranged in rows in Table 2. For each parameter, the table shows (in
columns) its symbol, meaning, range of values, and the parameter value chosen in this
paper.

The most important parameters in the bat algorithm are:

• population size: in general, increasing the number of individuals decreases the
number of required iterations, but it also increases the number of function eval-
uations. Therefore, a trade-off between both situations must be achieved for
better performance. In this work, we tested populations ranging from 10 to 20

27

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Symbol Meaning Range of Values Selected Value
P population size 10´ 20 10

g
maximum number

100´ 300 200
of generations

A0 initial loudness p0, 2q 0.5
Amin minimum loudness r0, 1s 0
r0 initial pulse rate r0, 1s 0.25
fmax maximum frequency r0, 10s 2
α multiplicative factor p0, 1q 0.5
γ exponential factor r0, 1s 0.4

Table 2: Bat algorithm parameters and their values in this paper.

robots and found that increasing the number of individuals reduces the required
time for convergence, but some of the interesting behaviors reported above were
lost because of fast convergence (with 15–20 robots in a relatively small room,
there is a large probability that at least one is randomly initialized very near
to the target). Therefore, we finally decided to set this value to 10 robots for
comparative purposes with the real-world experiments, in which we use actually
10 robots.

• maximum number of iterations: we tested our method for values of this parameter
in the range 100 ´ 300 and found that the method converged in less than 200
iterations in all our executions, so we finally set this parameter to 200 iterations.
To prevent wasting computation time, we also stop the execution when the swarm
achieves convergence (i.e., all units of the swarm reach the target point).

• initial and minimum loudness and parameter α: they are set to 0.5, 0, and
0.5, respectively. However, from our computer experiments we noticed that our
results do not change significantly for values of the initial loudness in the whole
range p0, 2q, meaning that this parameter is very robust against variations on
that interval. We used α “ 0.5 as suggested in some previous papers, but did
not check other values for this parameter in detail.

• initial pulse rate and parameter γ: of these two parameters, the initial pulse rate
is the most relevant. In fact, parameter γ only affects the very early iterations.
We set their values to 0.25 and 0.4, respectively.

With this choice of parameter values, we run the bat algorithm iteratively. Positions
and velocities of the robots are computed and ranked according to our fitness function
explained above. The iterative process stops once either all robots of the swarm have
arrived at the target point successfully or the maximum number of iterations is reached,
whatever comes first.

28

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 8: Convergence diagram for the execution in Video 5 and Figures 4 and 5.

5.5. Convergence Issues

An important issue of our approach is the convergence of the robotic swarm to the
target point. To test this issue, we modified the spatial configuration of the three scenes
in this paper in many different ways (adding new obstacles in the map, moving the
location of some objects, removing objects, and so on) to get hundreds of variations of
different geometric complexity.

After thousands of simulations, we did not find any configuration unsolvable for the
robots so far, provided that at least one 2D solution exists. Our experiments show that
the bat algorithm is very well suited for this task. It also shows that our implementation
for robotic swarms performs extremely well, actually much better than we anticipated.

Of course, the convergence time of the process can vary a lot for each individual
execution, depending on the geometry of the scene, initial location of the robots, pop-
ulation of the swarm, and other factors. Just for illustration, Figure 8 shows the
convergence diagram for a single execution on the second scene displayed in Video 5
and in Figures 4 and 5. The diagram displays the numerical value of the distance to the
target for the best member of the swarm (vertical axis) over the number of iterations
(horizontal axis). Five tags at different times are used to indicate different stages of the
process, represented graphically by screenshots in Figure 9 for better visualization: ini-
tial random distribution of the robots in the scene, high value of fitness function (stage
1); initial swarming around the current global best without a clear idea about where
the target is, fitness function decreasing steadily but very slowly (stage 2); approach-
ing to (but still far from) the target, then the formation gets temporarily trapped in a
narrow dead end, so the fitness function even increases slightly (stage 3); the swarm is
slowly approaching to the target, until getting trapped in a U-shape configuration for
a while, then the group finds a way to escape from it and the fitness function decreases
again (stage 4); the swarm advances until achieving the target point, fitness function
decreases until convergence (stage 5).

29

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 9: Individual pictures of the stages in the convergence diagram of Figure 8: (top) stage 1;
(middle) stage 2; (bottom) stage 3.

30

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 9: (cont’d) Individual pictures of the stages in the convergence diagram of Figure 8: (top)
stage 4; (bottom) stage 5.

5.6. Computational Times

Regarding the computational times, Table 3 reports our results on a total of 200
independent executions per model. For each scene (arranged in rows), the table reports
the following items (in columns): the average CPU time (measured in seconds) taken
by the bat algorithm to finish the execution (excluding rendering, collision detection,
and other issues); the average CPU time to finish all processes; the range of minimum
and maximum values for the number of iterations along with the mean value; the
percentage of success and the average CPU time for each bat algorithm iteration.

First observation is that the bat algorithm performs very well in terms of CPU time.
All executions are very fast, typically taking only a few hundredths of a second. This
can be explained by two factors: the small population of bats used in this work, and
the low number of iterations required for convergence. Also, from the third column in
the table it becomes clear that most of the CPU time in our system is used for tasks

31

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Model
Average Time (in sec.) # of Iterations % of Average Time

Only BA rendering Range Mean Success of BA Iteration
Scene 1 1.793E´2 2.107 13–82 43.8 100 4.093E´4
Scene 2 2.016E´2 2.598 21–163 47.4 100 4.253E´4
Scene 3 3.401E´2 6.872 39–187 81.7 100 4.162E´4

Table 3: Computational times for the scenes used in this paper.

other than the bat algorithm, mainly collision detection, distance determination, and
rendering. Collision detection is a potential bottleneck for highly populated swarms,
as the potential number of collisions scales as OpN2q in the worst case (i.e., without
any heuristics to reduce this load), N being the number of robots. On the other hand,
rendering can take a significant time with respect to the bat algorithm, but this is
something difficult to determine as it also involves the GPU in addition to the CPU
(see Section 5.2.1 for the description of the hardware used in this work). Anyway, even
with all these processes, a typical run takes only a few seconds to finish. The process is
so fast that it is difficult to follow at real speed. In fact, we had to pause our executions
tenths of a second for each iteration during the production of our videos to allow our
viewers to grasp the visual details of the animations.

6. Comparison with Other Alternative Approaches

It is a common practice in swarm robotics to carry out comparative analysis about
the performance of a robotic swarm implementation for different swarm intelligence
methods. But while this question makes full sense for general-purpose robotic units, it
does not apply to the implementation introduced in this paper. Since our robotic units
are specifically designed for the bat algorithm, we cannot expect a good performance
for any other swarm intelligence method. The real comparison should be done with
other robotic implementations for the bat algorithm or its variations.

As we previously mentioned in Section 1.4, to the best of our knowledge, this is
the first practical implementation of the bat algorithm for swarm robotics. This fact
prevents any comparative work with previous approaches in the field. It is not, however,
the first implementation of robots to replicate relevant features of real bats. A very
recent paper introduced Bat Bot [38], an autonomous flying robot aimed at replicating
the flight of real bats in a physical environment8. Aerial robots based on insects
and birds had already been described in the literature, but the bats are particularly
challenging because of their complex body skeleton (compared to birds and insects)
and highly irregular flying patterns. The wings of Bat Bot are simplified versions
of the original: instead of over 40 joints of the original bats, Bat Bot contains only
nine joints (five of them controlled by mini-motors and four that are merely passive)
made of lightweight carbon fibre, combined with an ultra-thin silicone membrane that

8Visit also the URL: http://resolver.caltech.edu/CaltechAUTHORS:20170201-201024724 for very
interesting supplementary material, including some videos, about that work.

32

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

mimics the bat skin covering each wing. As a result, the robot weighs only 93 grams
and is controlled using tiny motors in its backbone. It also has onboard sensors to
measure the angle of the joints for adjustment during the flight. This design brings
significant improvements over current aerial robots in terms of energy efficiency due
to their articulated soft wing architecture, and the fact that wing flexibility amplifies
the motion of the robot’s actuators. Complex movements involving asymmetric wing
folding of the main flexible wings to control the heading of the robot are also possible.
Furthermore, the Bat Bot does not use high-speed rotors, making it less noisy and
intrusive than other flying robots. Note, however, that the design is exclusively focused
on replicating the flying pattern of bats. In other words, it does not address any issue
about the collective behavior of bats as a swarm. Although several Bat Bots could
fly on the same environment, they neither communicate nor cooperate together for a
common task. As impressive as it is, it is not actually related to swarm robotics or the
bat algorithm in any way.

7. Conclusions and Future Work

In this paper we introduced the first practical implementation of the bat algorithm for
swarm robotics. Our implementation is performed at two different and complementary
levels: a physical real-world level, where we design and build a real robotic prototype;
and a computational level, where we develop a robotic simulation framework for the
bat algorithm in swarm robotics. A very important feature of our implementation is
its high specialization at both levels. Our implementation has been carefully designed
to replicate the most relevant features of the real microbats and the bat algorithm as
faithfully as possible. To this purpose, all our (physical and logical) components are
fully optimized to follow the bat algorithm principles as much as possible. The paper
describes our implementation at both levels in enough detail so that any interested
reader can replicate our approach with reasonable effort. We also discuss the analogies
and differences among the real microbats, the bat algorithm, and our approach.

Our implementation has been tested by its application to a problem of the prob-
lem of finding a target location within unknown static indoor 3D environments. Our
experimental results show that the behavioral patterns observed in the real and the
simulated robotic swarms are very similar. In most cases, the behavior and evolution
of the robotic swarms at the physical and computational levels match each other fairly
accurately. They are not identical, however, due to some technical and environmental
issues. From our experimental results, we have been able to identify several interest-
ing behavioral patterns. They show that the robotic swam units follow some kind of
(non trivial and difficult to grasp at first sight) intelligent behavior in order to solve
the intended problem. This makes our robotic swarm implementation an ideal tool
to explore the potential and limitations of the bat algorithm for real-world practical
applications and their computer simulations (actually one of the main purposes of this
research).

This work can be extended in many different ways. On one hand, although some
behavioral patterns have already been discussed here, they probably represent only a

33

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

small subset of all possible patterns to be discovered and analyzed. Several strategies
for additional experiments (such as modification of the current 3D scenes, consideration
of other 3D locations, along with other different problems) can arguably lead to the
emergence of a bulk of new, exciting intelligent behavioral patterns for the swarm.
One of the reviewers suggested us to link the observed patterns and behaviors to the
reasons behind why the bat algorithm allows them happen and to identify the relevant
parameters involved in such processes. We certainly agree with the reviewer that this
is a very relevant question, and are very interested to analyze this issue in deep detail
as part of our future work in the field.

On the other hand, we would like to improve our physical robotic units towards their
miniaturization. Better physical components (sensors, actuators, etc.) would arguably
improve the performance of the robotic swarm, although is it still not clear to us at
what extent. A critical issue towards the realism of our robotic swarm for the bat
algorithm concerns its ability to fly. This is currently a very hot field of research. The
most recent advances on this subject open the door for more realistic implementations
of bat-based flying robots, which might be paired with swarm intelligence for better
performance. We would like to investigate further on this issue. The development and
deployment of larger robotic swarms, in line with recent research work in the area of
swarm robotics, is also part of our plans for future work.

Accompanying Material

In addition to this paper, the reader is kindly invited to take a look at the six videos
submitted with this work. The videos, in MPEG-4 format, can be reproduced with
popular media players such as VLC, QuickTime, KMP, and many others.

Acknowledgments

This research has been kindly supported by the Computer Science National Pro-
gram of the Spanish Research Agency (Agencia Estatal de Investigación) and Euro-
pean Funds, Project #TIN2017-89275-R (AEI/FEDER, UE), the project EVOLFOR-
MAS Ref. #JU12, jointly supported by public body SODERCAN of the Regional
Government of Cantabria and the European funds FEDER, the project PDE-GIR of
the European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie Actions grant agreement #778035, Toho University (Fun-
abashi, Japan), and the University of Cantabria (Santander, Spain). The authors are
particularly grateful to the Department of Information Science of Toho University for
all the facilities given to carry out this work. Special thanks are also due to the Editors
and the three anonymous reviewers for their encouraging and constructive comments
and very helpful feedback that allowed us to improve our paper significantly.

Bibliography

[1] Arkin, C.R.: Behavior-Based Robotics. MIT Press, Cambridge, Mass, USA (1998).

34

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[2] Arvin, F., Samsudin, K., Ramli, A. R.: Development of a miniature robot for swarm
robotic application. International Journal of Computer and Electrical Engineering,
1, 436–442 (2009).

[3] F. Arvin, F., Murray, J.C., Shi, L., Zhang, C., Yue, S.: Development of an au-
tonomous micro robot for swarm robotics. In: Proc. IEEE International Conference
on Mechatronics and Automation, Tianjin, 635–640 (2014).

[4] F. Arvin, Yue, S., Xiong, C.: Colias-Φ: an autonomous micro robot for artificial
pheromone communication. International Journal of Mechanical Engineering and
Robotics Research, 4(4), 349–353 (2015).

[5] Blum, C., Merkle, D. (eds.): Swarm Intelligence: Introduction and Applications.
Natural Computing Series. Springer Berlin Heidelberg (2008).

[6] Bonabeau, E., Dorigo, M., Theraulaz. G: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999).

[7] Caprari, G., Balmer, P., Piguet, R., Siegwart, R.: The autonomous micro robot
”Alice”: a platform for scientific and commercial applications. Proc. of Int. Sym-
posium on Micromechatronics and Human Science, MHS ’98, 231–235 (1998).

[8] Caprari, G., Estier, T., Siegwart, R.: Fascination of down scaling - Alice the sugar
cube robot. Journal of Micro-Mechatronics, 1(3), 177–189 (2002).

[9] Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. Proceedings
of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems
–IROS 2005. Edmonton, Canada, 3845–3850 (2005).

[10] Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Dipar-
timento di Elettronica, Politecnico di Milano, Milan, Italy (1992).

[11] Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66 (1997).

[12] Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications
and resources. Proceedings of the 2001 Congress on Evolutionary Computation, 81–
86 (2001).

[13] Engelbretch, A.P.: Fundamentals of Computational Swarm Intelligence. John Wi-
ley and Sons, Chichester, England (2005).

[14] Faigl, J., Krajnik, T., Chudoba, J., Preucil, L., Saska, M.: Low-cost embedded
system for relative localization in robotic swarms. In: Proc. of IEEE Int. Conf. on
Robotics and Automation - ICRA’2013, 993–998 (2013).

[15] Fister, S., Safaric, R., Fister Jr., I, Fister, I.: Parameter tuning of PI-controller
with bat algorithm. Informatica, 40 109–116 (2016).

35

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[16] Fister, S., Fister Jr., I, Fister, I., Safaric, R.: Parameter tuning of PID controller
with reactive nature-inspired algorithms. Robotics and Autonomous Systems, 84
64–75 (2016).

[17] Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal,
A., Theraulaz, G.: The embodiment of cockroach aggregation behavior in a group
of micro-robots. Artificial Life, 14, 387–408 (2008).

[18] Gerkey, B.P. Vaughan, R.T., Howard, A.: The player/stage project: Tools for
multirobot and distributed sensor systems. In: Proceedings of the International
Conference on Advanced Robotics. Coimbra, Portugal, 317–323 (2003).

[19] Hassanien, A. E., Emary, E.: Swarm Intelligence, Principles, Advances, and Ap-
plications. CRC Press, Portland, USA (2015).

[20] Iglesias, A., Gálvez, A., Collantes, M.: Bat algorithm for curve parameterization
in data fitting with polynomial Bézier curves. In: Proc. of Cyberworlds 2015, Visby
(Sweden), IEEE Computer Society Press, Los Alamitos, CA, 107–114 (2015).

[21] Iglesias, A., Gálvez, A., Collantes, M.: Global-support rational curve method
for data approximation with bat algorithm. In: Proc. of Int. Conference Artificial
Intelligence and Applications - AIAI’2015, Bayonne (France). IFIP Advances in
Information and Communication Technology, 458 191–205 (2015).

[22] Iglesias, A., Gálvez, A., Collantes, M.: Iterative sequential bat algorithm for free-
form rational Bezier surface reconstruction. Int. J. Bio-Inspired Computation (in
press).

[23] Iglesias, A., Gálvez, A., Collantes, M.: Multilayer embedded bat algorithm for
B-spline curve reconstruction. Integrated Computer-Aided Engineering, 24(4), 385–
399 (2016).

[24] Jackson, J.: Microsoft robotics studio: a technical introduction. IEEE Robotics
and Automation Magazine, 14(4) 82–87 (2007).

[25] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Inter-
national Conference on Neural Networks, Perth, Australia. IEEE Computer Society
Press, Los Alamitos, CA, 1942–1948 (1995).

[26] Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honey-
bee aggregation behavior in an artificial micro-robotic system. Adaptive Behavior,
17(3), 237–259 (2009).

[27] Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco (2001).

[28] Kerth, G.: Causes and consequences of sociality in bats. BioScience, 58(8), 737–
746 (2008).

36

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[29] JMcLurkin, J.: Stupid robot tricks: a behavior-based distributed algorithm li-
brary for programming swarms of robots. M.S. thesis, Massachusetts Institute of
Technology (2004).

[30] McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environ-
ments using a swarm of autonomous mobile robots. In: Distributed Autonomous
Robotic Systems, 6, Springer, 399–408 (2007)

[31] McLurkin, J., Lynch, A. Rixner, S. Barr, T. Chou, A.,. Foster, K., Bilstein, S.:
A low-cost multi-robot system for research, teaching, and outreach. in: Distributed
Autonomous Robotic Systems, 83, Springer, 597–609 (2013).

[32] McLurkin, J., Smith, J. Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speak-
ing swarmish: Human-robot interface design for large swarms of autonomous mobile
robots. In: AAAI spring symposium, 72–75 (2006).

[33] Michel, O.: Webots: professional mobile robot simulation. Journal of Advanced
Robotics Systems, 1(1) 39–42 (2004).

[34] Mondada, F. Franzi, E., Guignard, A.: The development of Khepera. Proceed-
ings of the 1st International Khepera Workshop, HNI-Verlagsschriftenreihe, Heinz
Nixdorf Institut, 64, 7–14 (1999).

[35] Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.-L.,
Dorigo, M.: The cooperation of swarm-bots: physical interactions in collective
robotics. IEEE Robotics and Automation Magazine, 12(2), 21–28 (2005).

[36] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-Puck, a robot designed
for education in engineering. In: Proceedings of the 9th conference on autonomous
robot systems and competitions, 1(1), 59–65 (2009).

[37] Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A fast onboard relative
positioning module for multirobot systems. IEEE/ASME Transactions on Mecha-
tronics, 14(2), 151–162 (2009).

[38] Ramezani, A., Chung, S.J., Hutchinson, S.: A biomimetic robotic platform to
study flight specializations of bats. Science Robotics, 2(3). Art. No. eaal2505,
(2017).

[39] Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot sys-
tem for collective behaviors. In: IEEE International Conference on Robotics and
Automation – ICRA’2012, 3293–3298 (2012).

[40] Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpa, N.l:
Collective transport of complex objects by simple robots: theory and experiments.
International conference on Autonomous Agents and Multi-Agent Systems – AA-
MAS 2013: 47–54 (2013).

37

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[41] Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, N.: Kilobot: A low
cost robot with scalable operations designed for collective behaviors. Robotics and
Autonomous Systems, 62(7), 966–975 (2014)

[42] Rubenstein, M., Cornejo, A., Nagpal, N.: Programmable self-assembly in a
thousand-robot swarm. Science, 345(6198), 795–799 (2014).

[43] Gauci, M., Ortiz, M.E., Rubenstein, M., Nagpa, N.l: Error Cascades in Collective
Behavior: A Case Study of the Gradient Algorithm on 1000 Physical Agents. In-
ternational conference on Autonomous Agents and Multi-Agent Systems – AAMAS
2017, 1404–1412 (2017).

[44] Sahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Swarm robotics. Lecture Notes in Computer Science, 3342, 10–20 (2005).

[45] Sauter, J. A., Matthews, R., Parunak, H. V. D., Brueckner, S. A.: Effectiveness
of digital pheromones controlling swarming vehicles in military scenarios. Journal
of Aerospace Computing, Information, and Communication, 4(5) 753–769 (2007).

[46] Saska, M., Vonasek, V., Krajnik, T., Preucil, L.: Coordination and navigation of
heterogeneous MAVUGV formations localized by a hawk-eye-like approach under a
model predictive control scheme. International Journal of Robotics Research, 33(10)
1393–1412 (2014).

[47] Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G,. Kernbach, S., Szyman-
ski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-
to-robot collisions. Autonomous Agents and Multi-Agent Systems, 18(1), 133–155
(2009).

[48] Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The i-
swarm project: intelligent small world autonomous robots for micro-manipulation.
In: Swarm robotics. Lecture Notes in Computer Science, 3342, 70–83 (2005).

[49] Suarez, P., Iglesias, A.: Bat algorithm for coordinated exploration in swarm
robotics. In: Del Ser, J. (ed.): Int. Conf. on Harmony Search Algorithm – ICHSA
2017. Advances in Intelligent Systems and Computing, 514. Springer, Singapore
134–144 (2017).

[50] Tan, Y., Zheng, Z.Y.: Research advance in swarm robotics. Defence Technology
Journal, 9(1) 18–39 (2013).

[51] Turgut A.E., Celikkanat, H., Gokce, F., Sahin E.: Self-organized flocking with a
mobile robot swarm. Int. Conf. on Autonomous Agents and Multiagent Systems –
AAMAS 2008, 39–46 (2008).

[52] Turgut A.E., Celikkanat, H., Gokce, F., Sahin E.: Self-organized flocking in mobile
robot swarms. Swarm Intelligence, 2(2) 97–120 (2008).

38

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[53] Valdastri, P. Corradi, P., Menciassi, A., Schmickl,T., Crailsheim, K., Seyfried, J.,
Dario, P.: Micromanipulation, communication and swarm intelligence issues in a
swarm microrobotic platform. Robotics and Autonomous Systems, 54(10) 789–804
(2006).

[54] Vasarhelyi, G., Virgh, C., Tarcai, N., Somorjai, G., Vicsek, T.: Outdoor flocking
and formation flight with autonomous aerial robots. In: Proc. of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems - IROS 2014, 3866–3873
(2014).

[55] Vaughan, R.: Massively multi-robot simulation in Stage. Swarm Intelligence, 2(2-
4), 189–208 (2008).

[56] Wagner, I., Bruckstein, A.: Special Issue on Ant Robotics. Annals of Mathematics
and Artificial Intelligence, 31(1-4) (2001).

[57] Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms (2nd. Edition). Luniver
Press, Frome, UK (2010).

[58] Yang, X.S.: A new metaheuristic bat-inspired algorithm. Studies in Computational
Intelligence, Springer Berlin, 284, 65–74 (2010).

[59] Yang, X. S..: Bat algorithm for multiobjective optimization. Int. J. Bio-Inspired
Computation, 3(5), 267-274 (2011).

[60] Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineer-
ing optimization. Engineering Computations, 29(5), 464–483 (2012).

[61] Yang, X.S.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired
Computation, 5(3), 141–149 (2013).

[62] Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier (2014).

[63] Yang, X.S.: Nature-Inspired Computation in Engineering. Studies in Computa-
tional Intelligence Series, 637. Springer Switzerland (2016).

[64] Zahugi, E.M.H., Shabani, A.M., Prasad, T.V.: Libot: Design of a low cost mobile
robot for outdoor swarm robotics. In: Proc. of IEEE International Conference on
Cyber Technology in Automation, Control, and Intelligent Systems - CYBER’2012,
342–347 (2012)

39

