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INTRODUCTION 
 
Osteoporosis and osteoarthritis (OA) are the two most common musculoskeletal conditions, 

both primarily affecting older people, but the relationship between them is still unclear. 

Whereas reduced bone mineral density (BMD) is a hallmark of osteoporosis (OP), several 

cross-sectional studies reported that OA is associated with increased BMD (1-4), but other 

studies found an inverse relation (5;6). 

OA was once considered a primary disorder of articular cartilage, but it is now generally 

thought that bone structure plays a role in the pathologic changes of OA. Typical OA 

radiographic changes are osteophytes and joint space narrowing (JSN). Sometimes, JSN is 

the only finding, whereas in other patients this is accompanied by bone formation, revealed  

in radiographs by large osteophytes and extensive subchondral bone sclerosis in response to 

cartilage loss. Thus, radiographic OA can be classified as hypertrophic or atrophic, based on 

the presence or absence of osteophytes (7) .  

Recently, an increased prevalence of radiographic hip OA and osteophytosis was observed in 

high BMD cases compared with controls, suggesting that OA in patients with high BMD  has 

a hypertrophic phenotype (8). On the other hand, it has been reported that patients with 

atrophic hip OA  have lower bone volume and thinner trabeculae  in   iliac crest biopsies (9). 

In another study, there was a significantly lower prevalence of osteophytes in patients with 

low phalangeal BMD and knee  OA, whereas  the prevalence of  JSN was higher in the 

osteopenia and osteoporosis group than in subjects with normal BMD (10). Overall, these 

results suggest that the relation between BMD and OA could vary depending on the OA 

phenotype. 

The etiology of OP and OA is multifactorial, and both genetic susceptibility and 

environmental factors (including mechanical forces and traumatic injuries, among others), 

are involved. Twin studies have shown that the influence of genetic factors accounts for  
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about 60% of disease risk in hip OA, 40% for  knee OA (11), and up to 60% of the variance 

of BMD (5). The existence of shared  genetic factors in both, OA and OP, has been suggested 

by some association studies (12). It has been speculated that the Wnt pathway could be the 

link between bone and joint alterations (13).  The activation of the Wnt  pathway induces 

activation of the osteoblasts and degradation of the cartilage matrix (14), which leads to bone 

formation and cartilage destruction, respectively. In general,  the activation of the Wnt 

pathway is considered to have an anabolic effect on bone (15). However, in the skeletal 

environment there are 19 different Wnt ligands, which act through various signalling 

pathways, as well as a number of Wnt inhibitors (16). Thus the effects of Wnt ligands may be 

rather complex. 

Polymorphisms in a number of genes that belong to this pathway have been  associated with 

skeletal traits in several candidate gene and genome-wide studies (17). In particular, WNT16 

polymorphisms have been associated with BMD, and a positive effect of WNT16 on bone 

mass has been shown in several experimental models (18-21). Recently, whole genome 

sequencing has identified a novel low frequency non coding variant near WNT16 with large 

effects on BMD (22). I a previous study we reported associations between some genes 

involved in the Wnt pathway and OA (23), but we did not find statistical evidence for 

association between OA and polymorphisms in WNT16. However, in that study the OA 

phenotype was not taken into consideration. Wnt16 appears to be involved in cartilage 

homeostasis. In fact, Wnt16 expression is increased in damaged cartilage (24) and it may 

help to support the homeostasis of progenitor cells (25). Hence, in view of the effects of 

Wnt16 on both bone and cartilage homeostasis, and the emerging interactions between bone 

and cartilage in the osteoarthritis joints, which are likely different across OA phenotypes, the 

aim of this study was to test the hypothesis that common allelic variations of  WNT16 could 

influence the OA phenotype. 
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PATIENTS  AND METHODS 
 
Subjects 
 
We analysed the radiographs of 509 Caucasian patients with OA of the large joints of lower 

limbs (363 with hip OA and 146 with knee OA), aged 46-89 years. They were part of a 

previous study, which included the collection of DNA samples from patients undergoing 

prosthetic replacement surgery due to severe hip or knee OA. Patients with secondary OA or 

with non-Spanish ancestors were excluded (23). The study was performed according to the 

principles of Helsinki Declaration; participants gave informed consent and the study was 

approved by the IRB (Comité de Etica en Investigación Clínica de Cantabria) 

Assessment of radiographs 

Antero-posterior radiographs of the pelvis were taken with the patient in standing position 

with 20º of internal rotation of the lower limbs and radiographs of the knee were taken in 

standing position too, placing the knee in a semiflexed position and a vertical X-ray beam. 

Osteoarthritis radiographic changes were graded according to the Atlas of individual 

radiographic features in osteoarthritis (26). Each joint was classified as hypertrophic or 

atrophic according to the presence or absence of osteophytes. Osteophyte grade was given by 

the highest grade. To be classified as atrophic, the joint had to be grade <2 for osteophyte and 

>2 for JSN. To be classified as hypertrophic it must be grade >2 for osteophyte whatever the 

JSN was (fig 1). These phenotypic definitions are similar to other reports (27). Two trained 

observers read the radiographies to reach consensus on the radiographic phenotype, without 

knowledge of the genotyping results. 

Genotyping 

We analyzed two SNPs in WNT16, rs2707466 and rs2908004, which have previously been 

associated with BMD (19;20;28). DNA was isolated from peripheral blood or buccal swabs 

by using column-based commercial methods and quantified with the Qubit procedure 
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(Invitrogen). The loci were analyzed by a mass-array Sequenom platform at the Centro 

Nacional de Genotipado (Santiago de Compostela, Spain) or by using Taqman assays (Life 

Technologies) in our own laboratory in Cantabria University. Duplicate samples were used to 

confirm the consistency of both procedures. 

Statistical analysis  

The association between genotypes and hip or knee OA phenotype was analyzed by logistic 

regression. The possible confounding effect of other covariates, like age, sex and body mass 

index (BMI), was explored in multivariate linear regression models.  

 

RESULTS 

The demographic characteristics of the patients are summarized in Table 1. There were no 

differences in age or sex distribution between the hypertrophic and the atrophic phenotypes, 

either at the hip or the knee. There was a slight difference in BMI  (p=0.03) between  patients 

with atrophic and hypertrophic hip OA, but not between hypertrophic and atrophic knee  OA 

(p=0.52).  

Both SNPs were genotyped with a success rate over 97%. They are located on chromosome 

7, 9.2 kb apart, and they were in strong linkage disequilibrium (r2=0.99). Genotypic 

frequencies did not depart from Hardy-Weinberg equilibrium. 

When both sexes were analyzed together, we did not find a significant relationship between 

either rs2707466 or rs2908004 genotypes and the type of hip OA (p= 0.14 and p= 0.19, 

respectively), or knee OA (p=0.41 and p=0.16, respectively), assuming an additive genetic 

model. However, when the analysis was restricted to the subgroup of males, there was a 

significant difference in the genotypic frequencies of rs2707466 between  hypertrophic and 

atrophic hip OA (p=0.003), with an overrepresentation of G alleles in the hypertrophic 

phenotype (OR 2.08; 95% confidence interval, CI, 1.28-3.38) (table 2). An association in the 
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same direction was observed between these alleles and the type of knee OA, with G alleles 

being more common in the hypertrophic than in the atrophic knee phenotype (p=0.008, OR 

1.96, CI 1,19-3,19). Similar associations were found for the rs2908004 SNP (table 3), 

although it only reached statistical significance for knee OA (p=0.017, OR 0.92; CI 0.86-

0.989). All these associations were maintained in models adjusted by age and  BMI. 

 

DISCUSSION  

In this, report we analyzed if the hip and knee OA phenotype is influenced  by genetic 

variants of the Wnt ligand WNT16. To our knowledge, this is the first study attempting to 

explore the association of genetic variants with the OA phenotype. We selected two SNPs in 

the coding region of WNT16 gene which have been associated with  BMD in previous 

studies (28). Both SNPs represent missense polymorphisms (rs2707466, Thr>Ile;  rs2908004, 

Arg>Gly).   

The Wnt signalling cascades have essential roles in development, growth and homeostasis of 

joints and bones. WNT16 is produced by osteoblasts and inhibits osteoclastogenesis, both 

directly and indirectly by increasing expression of osteoprotegerin in osteoblasts (29). The 

importance of WNT16 in the homeostasis of bone mass was confirmed by a Wnt16 

cortical bones at the femur midshaft and reduced bone strength of both femur and tibia (19).  

The role of WNT16 in OA has been less defined. Nevertheless, WNT16 expression is 

increased in areas of damaged cartilage in OA joints (24). Recently, it has been shown that 

synovial overexpression of Wnt16 increased the incidence of erosive lesions in the 

superficial cartilage layer, producing similar lesions than in OA (30). However, the actual 

role of Wnt16 in joint homeostasis is unclear and may be rather complex. In fact, in a recent 

study Nalesso (25) showed that Wnt16-deficient mice developed more severe OA after 
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destabilisation of the medial meniscus than wild type mice. Somewhat surprisingly, the 

accelerated OA in Wnt16 knock-out mice was associated with excessive activation of 

canonical Wnt signalling. In vitro experiments helped to explain this paradox and confirmed 

the complexity of Wn16 effects: it activated canonical Wnt signalling by itself, but blunted 

the activated effect of Wnt3a, another Wnt ligand.  

In the present study, we found that A allele in rs2707466 was more frequent in males with 

atrophic hip and knee OA phenotype. The T allele in rs2908004 was more frequent only in 

atrophic knee OA phenotype. What mechanisms are driving this association between Wnt16 

variants and the OA phenotype? Some investigators reported an association of higher BMD 

with the hypertrophic type of OA (8-10). Thus, a direct BMD-mediated influence (with high 

BMD associated with hypertrophic OA and low BMD with atrophic OA) seems unlikely, 

because those alleles associated with atrophic OA have been previously associated with 

higher BMD (28). Therefore, we could speculate that the association between WNT16 and 

OA phenotype is not related to BMD, but to joint geometry (28) or other factors involved in 

OA pathogenesis. However, further studies are needed to elucidate the mechanisms actually 

involved.  Also, it is worth mentioning that we studied end stage OA, whereas bone status 

may change during the development of OA. Animal models indicate that in early OA there is 

resorption of subchondral bone, which is followed by an over-exuberant repair process that 

leads to sclerosis of subchondral bone, as well as new bone formation in the form of 

osteophytes (31). In humans, subchondral cortical bone in early OA of the knee shows 

changes of osteoporosis, and it is only later in the disease that cortical sclerosis appears, 

usually after joint space narrowing has become apparent radiographically (32). As OA 

progresses, the subchondral cortical bone becomes sclerotic, and osteophytes form at both the 

medial and lateral margins of the tibio-femoral joint (33). Adding more complexity, although 

some investigators suggested that thicker bones may limit the ability of subchondral bone to 
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cushion and absorb physical forces, thus increasing cartilage strain and degradation, others 

found that osteoporotic bone may accelerate the development of experimental OA (34).  

WNT16 alleles may influence joint homeostasis and the development of OA by a variety of 

other mechanisms besides bone mass. Human and rodent studies suggest that Wnt16 may 

have a stronger effect on cortical bone than on trabecular bone (35). Thus,  the association 

between WNT16 and OA might involve  bone and joint geometry instead of BMD (36;37). 

In addition, as previously mentioned, Wnt16 appears to have direct effects on cartilage 

homeostasis, influencing protease activity and cell apoptosis (30;38;39)..  

This study has some limitations and should be regarded as exploratory. The number of 

patients was limited, especially regarding those with knee OA, and we only included 

Caucasian patients. Also, we used routine clinical x-rays for the phenotyping, a method that 

is less accurate than others, such as MRI. Third, given the strong linkage between both SNPs, 

we cannot establish with certainty which one is actually driving the association. 

In conclusion, we found that two SNPs of the WNT16 gene, previously associated with 

BMD, are associated with the hip and knee OA phenotype in a sex-dependent manner. 

Further studies are needed to know if these results are generalizable to other populations and 

the mechanisms involved at the different joint components. Nevertheless, they provide a 

first-ever suggestion of the involvement of the Wnt pathway in determining the OA 

phenotype. Additionally, these results imply that future genetic association studies of OA 

must take the OA subtype into consideration. 
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TABLE 1   Demographic characteristics. Continuous variables are summarized as the mean 

±SD  
 

 
HIP OA KNEE OA 

HYPERTROPHIC ATROPHIC HYPERTROPHIC ATROPHIC 

Men, n (%) 121 (69.9) 52 (30.1) 20 (38.5) 32 (61.5) 

Women, n (%) 129 (67.9) 61 (32.1) 38 (40.4) 56 (59.4) 

Age, years 69±8 71±8 71±7 71±7 

BMI,  kg/m2 29.0±4.5 30.2±4.6 32.2±3.9 31.7±4.9 
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TABLE 2 Genotypic frequencies of rs2707466 across OA phenotypes. 
 

rs2707466 
HYPERTROPHIC ATROPHIC 

GG AG AA GG AG AA 

HIP 
 n (%) 

All  88 (35.6)  116 (47)  43 (17.4)  36 (32.7)  46 (41.7)  28 (25.5) 

Men  43 (36.4)  57( 48.3)  18 (15.3)  11 (21.2)  24 (46.2)  17 (32.7) 

Women  45 (34.9)  59 (45.7)  25 (19.4)  25 43.1)  22 (37.9)  11 (19) 

KNEE 
n (%) 

All  23 (40.4)  18 (31.6)  16 (28.1)  22 (32.2)  45 (51.7)  14 (16.1) 

Men  9 (47.4)  4 (21.4)  6 (31.6)  4 (12.9)  22 (71)  5 (16.1) 

Women  14 (36.8)  14 (36.8)  10 (26.3)  24 (42.9)  23 (41.1)  9 (16.1) 
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TABLE 3 Genotypic frequencies of rs2908004 across OA phenotypes. 
 

rs2908004 
HYPERTROPHIC ATROPHIC 

CC CT TT CC TC TT 

HIP 
n (%) 

All 87 (34.8)  120 (48) 43 (17.2) 36 (30,5) 55 (46,6) 27 (22.9) 

Men 43 (35.5)  60 (49,6) 18 (14.9) 11 (21.6) 24 (47.1) 16 (31.4) 

Women 44 (34.1)  60 (46.5) 25 (19.4)  25 (41)  25 (41.0)  11 (18.0) 

KNEE 
n (%) 

All 22 (40.0)   18 (32.7) 15 (27.3) 28 (32.5) 44 (51.2) 14 (16.3) 

Men 9 (47.4) 4 (21.1) 6 (31.6) 4 (13.3) 21 (70.0) 5 (16.7) 

Women 13 (36.1) 14 (38.9) 9 (25.0) 24 (42.9) 23 (41.1) 9 (16.1) 
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FIGURE LEGENDS 
 
Figure 1. Typical x-rays of patients with atrophic (left) and hypertrophic (right) OA.  Arrows 

point to osteophytes. 
 
Figure 2. Frequency of hip OA phenotypes across rs2707466 genotypes in males.  
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