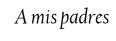
UNIVERSIDAD DE CANTABRIA

DEPARTAMENTO DE CIENCIAS Y TÉCNICAS DEL AGUA Y DEL MEDIO AMBIENTE


TESIS DOCTORAL

ESTUDIO DE LA VARIABILIDAD CLIMÁTICA DE VALORES EXTREMOS DE OLEAJE

Presentada por: CRISTINA IZAGUIRRE LASA

Dirigida por: FERNANDO J. MÉNDEZ INCERA

IÑIGO J. LOSADA RODRIGUEZ

AGRADECIMIENTOS

Después de tanto tiempo, esfuerzo, estudio, dedicación y buenos y malos momentos esta etapa llega a su fin. Ha sido una etapa en la que además de aprender sobre playas, costas, estadística, clima marítimo, cambio climático... he aprendido sobre la vida: he crecido, madurado, reído, viajado y disfrutado de cada momento (iincluso he aprendido a surfear!). Todo esto no hubiera sido posible sin la gente que me rodea y me quiere, a la que quiero agradecer su apoyo y ánimo durante este tiempo.

Primero quiero expresar mi más sincera gratitud a mis directores de tesis Fernando Méndez e Iñigo Losada. Ellos despertaron en mí la curiosidad por el mundo de la oceanografía con sus clases en cuarto de caminos y gracias a ellos he conseguido hacer este trabajo. Iñigo, gracias por haber confiado en mí desde el principio y haberme animado a entrar en este mundo. Gracias por tus consejos, tu claridad y tu buen hacer, que han dado calidad y rigor a este trabajo. Fernando, gracias por tu confianza, optimismo, buen humor, simpatía, ilusión, apoyo en los buenos y malos momentos, disponibilidad y compromiso, siempre. Gracias por transmitirme la ilusión por el mundo de las olas y la investigación, eres un excelente investigador y mejor persona.

Quiero agradecer la ayuda, el apoyo y el buen ambiente de trabajo a mis compañeros. En especial quiero dar las gracias a Melisa, Paula y Antonio Tomás por haberme dejado sus

programas, haberme transmitido sus conocimientos sobre extremos, técnicas de clasificación y oleaje en general y haberme ayudado siempre que lo he necesitado.

Para mí un apoyo muy importante han sido mis amigos, gracias a los cuales he podido disfrutar durante este tiempo y sentirme arropada, gracias a todos. Quiero dar las gracias especialmente a Romi que, a pesar de la distancia, día a día me ha animado en los buenos y malos momentos para seguir adelante. Mi otro gran apoyo ha sido Noelia, con la que llevo creciendo 24 años y con la que cada día aprendo cosas nuevas, iigracias por todo este tiempo!! Y también quiero agradecerle a Carol su apoyo y sus ánimos en estos últimos meses y a Yolanda las largas conversaciones, ánimo y cariño desde hace tantos años.

Por supuesto, mi mayor agradecimiento es para mis padres. Mi madre es la persona q me animó a probar suerte en el mundo de la investigación, por lo que esta tesis ha visto la luz por ella. Gracias a los dos por quererme tanto, valorarme y apoyarme incondicionalmente. Gracias a vosotros soy como soy y he conseguido las metas que me he propuesto. Y gracias a mis hermanos, Miguel y Leyre, por estar los tres tan unidos y apoyarnos siempre.

Y por último, quiero dar las gracias a Antonio, mi killo, mi chiki, por su cariño y comprensión. Por haberme enseñado tantas cosas sobre el mar y las playas que no se estudian en los libros. Y, sobre todo, por haberme enseñado a ver las cosas con otra perspectiva y a disfrutar de cada momento de la vida.

RESUMEN

Los fenómenos extremos de oleaje son eventos que se producen con poca frecuencia pero, sin embargo, tienen una importante repercusión desde el punto de vista socioeconómico y ambiental. El conocimiento del comportamiento de los extremos del oleaje es fundamental a la hora de diseñar rutas de barcos, infraestructuras costeras, mecanismos de extracción de energía, planes de gestión de la costa, estudiar comunidades bentónicas, etc. Estas actividades se desarrollan a distintas escalas, tanto espaciales como temporales, por lo que interesa un conocimiento del clima marítimo extremal en cada una de ellas. Esta tesis doctoral se ha centrado en el estudio de la variabilidad climática de los valores extremos de oleaje, abordando distintas escalas espaciales, en las que se tienen en cuenta los procesos físicos propios de cada una de ellas, y diferentes escalas temporales, como la estacional, interanual o el largo plazo. Para ello se han utilizado distintos modelos y técnicas estadísticas, combinándolos con el uso de modelos numéricos para el estudio en diferentes ámbitos espaciales y temporales.

La revisión del estado del arte ha puesto de manifiesto ciertas deficiencias en el estudio de la variabilidad climática de extremos del oleaje, que se han abordado a lo largo de esta tesis. En primer lugar se ha hecho una revisión y comparación de los distintos modelos estadísticos de extremos. El análisis se ha centrado en los modelos no estacionarios, con los que poder estudiar la variabilidad a distintas escalas temporales.

Se ha comparado un modelo GEV basado en máximos mensuales y un modelo Pareto-Poisson basado en el método POT a través del estudio del clima marítimo extremal en un punto del Atlántico Norte. Además, se han comparado dos modelos GEV basados en la selección de máximos de oleaje a distintas escalas temporales (mes y semana) con el objetivo de ver cuál es el más apropiado para estudiar el clima marítimo extremal en una zona compleja, como es Cádiz. Por otro lado, el uso de modelos paramétricos no estacionarios complejos ha puesto de manifiesto problemas de tiempo computacional. Para intentar reducir estos tiempos se han explorado y aplicado con éxito dos métodos automáticos de selección de parámetros, uno de los cuales reduce considerablemente los tiempos requeridos. El uso de distintas bases de datos instrumentales ha revelado la posible obtención de resultados erróneos derivados de la no homogeneidad en las series temporales de las bases de datos. Para solventar este problema se ha desarrollado un coeficiente de escala capaz de eliminar las posibles tendencias ficticias que inducen resultados erróneos. Con base en los resultados obtenidos de la comparación y análisis de distintos modelos estadísticos de extremos, se aporta una tabla de recomendaciones de uso de cada modelo en función del objetivo del estudio que se quiera llevar a cabo.

Uno de los principales objetivos de esta tesis ha sido el estudio de la variabilidad climática de los extremos de oleaje a escala global, regional y local. En primer lugar, se ha planteado un estudio de la variabilidad estacional e interanual de los extremos de oleaje en el globo terrestre mediante datos de satélite. Este análisis ha puesto de manifiesto patrones de oleaje extremal ligados a los procesos físicos de macroescala como huracanes o tormentas extratropicales. El estudio de la estacionalidad ha permitido obtener la variabilidad espacial de los extremos de oleaje en cada mes del año. La variabilidad interanual se ha estudiado a través de una serie de índices climáticos característicos de distintas zonas del globo, resultando la oscilación del Ártico, oscilación del Antártico y El Niño como los más influyentes en el clima marítimo extremal global.

El estudio de zonas más localizadas, donde los procesos de mesoescala son más influyentes, ha dado lugar al planteamiento del estudio a escala regional. En concreto se ha estudiado la variabilidad del clima marítimo extremal en el Sur de Europa y el Sur de América. En el Sur de Europa se han utilizado datos de satélite y se ha estudiado la variabilidad estacional e interanual, esta última a través de índices climáticos

característicos de la zona y mediante las anomalías de campos de presión a nivel del mar. El estudio del oleaje en Sudamérica se ha llevado a cabo mediante datos de reanálisis numérico, lo que ha permitido estudiar la tendencia de largo plazo media y por estaciones, además de la variación estacional.

En la escala local, el oleaje sufre una serie de procesos derivados de la propagación, como son la refracción, difracción, asomeramiento o rotura, condicionados por las características del fondo. A este nivel, se ha planteado un estudio de la variación espacial del clima marítimo extremal, por un lado, de profundidades indefinidas a profundidades reducidas y, por otro, de unas zonas a otras. Este análisis se ha aplicado en el litoral mediterráneo español y el Golfo de Cádiz. Además se ha estudiado las variaciones intra anuales y la tendencia de largo plazo en estas zonas en los últimos 20 años.

Por último, se ha planteado un nuevo enfoque del estudio de la variabilidad del clima marítimo extremal en un punto a través de la climatología sinóptica. Se han planteado tres escalas distintas para el corto, largo y muy largo plazo. En el corto plazo se combinan los tipos de tiempo de la zona de estudio, obtenidos mediante los campos de presiones medios 3-diarios y la técnica de clasificación SOM, con un modelo GEV que caracteriza el régimen extremal de oleaje correspondiente a cada tipo de tiempo. Para el estudio del largo plazo se presenta una metodología que combina los tipos de tiempo generadores de extremos de oleaje con un modelo de Pareto que caracteriza estos extremos. La agregación de las distintas funciones de distribución correspondientes a cada tipo de tiempo da lugar a la función de distribución extremal del punto de estudio. Finalmente, se plantea la escala del muy largo plazo con el objetivo de desarrollar una metodología que permita proyectar el régimen extremal de un punto a distintos escenarios de cambio climático mediante un downscaling estadístico. La metodología está basada en los tipos de tiempo de la zona de estudio y un modelo de Pareto que modela las intensidades de los extremos de oleaje. La agregación de los regímenes de las familias de oleaje que generan extremos en la zona permite obtener el régimen extremal anual del punto. Haciendo uso de las probabilidades de presentación de la SOM se puede proyectar el régimen extremal de oleaje a distintos escenarios. Las tres metodologías desarrolladas se han aplicado satisfactoriamente en tres puntos del Atlántico Norte caracterizados por distintos climas marítimos. Además, se han proyectados sus

correspondientes regímenes extremales de oleaje al siglo XXI para diversos escenarios del IPCC.

ÍNDICE

LISTA DE FIGURAS	VII
LISTA DE TABLAS	XXI
LISTA DE SÍMBOLOS	XXIII
LISTA DE ACRÓNIMOS	XXVII
CAPITULO 1: INTRODUCCIÓN	1
1.1 Marco de la tesis	1
1.1.1 Circulación general del sistema climático	2
1.1.2 Variabilidad del sistema climático	5
1.1.3 Eventos extremos	6
1.1.4 Oleaje	9
1.1.5 Motivación	9
1.2 Estado del arte	11
1.2.1 Métodos estadísticos	12
1.2.2 Variabilidad espacial y temporal del clima marítimo	47
1.2.3 Proyecciones de clima marítimo extremal	51

1.3 Oportunidad de la tesis	52
1.4 Objetivos y metodología	54
1.5 Organización de la tesis	57
CAPITULO 2: DATOS DE PARTIDA	59
2.1 Introducción	59
2.2 Variables oceanográficas	61
2.2.1 Datos históricos de oleaje. Boyas	61
2.2.2 Datos históricos de oleaje. Satélite	62
2.2.3 Datos históricos de oleaje. Modelo numérico	64
2.2.4 Datos históricos de nivel del mar. Mareógrafos	67
2.3 Variables atmosféricas	68
2.3.1 Datos históricos de viento. Modelo numérico	68
2.3.2 Datos históricos de presión a nivel del mar. Modelo numérico	70
2.3.3 Datos de proyecciones de presión a nivel del mar. Modelo numérico	70
2.4 Variables atmósfera-océano	76
2.4.1 Índices climáticos	76
2.4.2 Síntesis de series temporales de índices climáticos	89
CAPITULO 3: AVANCES EN MODELOS ESTADÍSTICOS NO	
ESTACIONARIOS	91
3.1 Introducción	91
3.2 Métodos automáticos de selección de parámetros	92
3.7.1 Selección automática del modelo no estacionario	03

3.2.2 Selección pseudo-óptima de los parámetros del modelo no estacionario	95
3.3 Influencia de la homogeneidad de las series de datos	96
3.4 Comparación entre modelos no estacionarios GEV y Pareto-Poisso	n
	100
3.4.1 Parametrización de los modelos	.103
3.4.2 Modelo GEV mensual	.104
3.4.3 Modelo POT con umbral variable	. 107
3.4.4 Comparación entre los modelos GEV mensual y POT con umbral variable	111
3.5 Comparación entre modelos no estacionarios GEV mensual y GEV	
semanal	. 115
3.5.1 Parametrización de los modelos	117
3.5.2 Modelo GEV mensual	118
3.5.3 Modelo GEV semanal	.122
3.5.4 Comparación entre los modelos GEV mensual y GEV semanal	.126
3.6 Recomendaciones de uso de los distintos modelos de extremos	128
CAPITULO 4: VARIABILIDAD ESTACIONAL, INTERANUAL Y	
TENDENCIAS DE LARGO PLAZO DEL CLIMA MARÍTIMO	
EXTREMAL	.131
4.1 Introducción	. 131
4.2 Análisis global	134
4.2.1 Datos de oleaje	
4.2.2 Modelo estadístico	. 135
4.2.3 Climatología del clima marítimo extremal global	. 137
4.2.4 Variabilidad interanual del clima marítimo extremal global	141

4.2.5 Conclusiones	152
4.3 Análisis regional: sur de Europa	153
4.3.1 Bases de datos	154
4.3.2 Modelo estadístico	155
4.3.3 Climatología del clima marítimo extremal	159
4.3.4 Variabilidad interanual del clima marítimo extremal	163
4.3.5 Conclusiones	171
4.4 Análisis regional: América del Sur	172
4.4.1 Datos de oleaje	172
4.4.2 Modelo estadístico	173
4.4.3 Climatología del clima marítimo extremal	178
4.4.4 Tendencia de largo plazo	182
4.4.5 Conclusiones	188
4.5 Conclusiones	189
CAPITULO 5: ANÁLISIS DEL CLIMA MARÍTIMO I	EXTREMAL EN
AGUAS SOMERAS	191
5.1 Introducción	191
5.2 Metodología para el estudio del clima marítimo ex	tremal en aguas
someras	192
5.2.1 Bases de datos utilizadas	194
5.2.2 Definición de las mallas	201
5.2.3 Calibración de la base de datos de oleaje	202
5.2.4 Clasificación y selección	209
5.2.5 Propagación del oleaje a aguas someras	220
5.2.6 Reconstrucción de series temporales horarias	226
5.2.7 Validación de las series temporales horarias	231

5.3 Caracterización del clima marítimo extremal	233
5.3.1 Modelo estadístico	234
5.3.2 Variación intra anual de los extremos de oleaje	239
5.3.3 Tendencia de largo plazo de los extremos de oleaje	248
5.4 Conclusiones	250
CAPITULO 6: RÉGIMEN EXTREMAL EN FUNCIÓN DE P	ATRONES
DE TIEMPO	253
6.1 Introducción	253
6.2 Puntos de estudio	255
6.3 Climatología sinóptica	257
6.3.1 Escala espacial	258
6.3.2 Escala temporal	258
6.3.3 Patrones de tiempo	259
6.4 Predicción a corto plazo: Régimen extremal de oleaje basa	do en un
modelo GEV	266
6.5 Predicción a largo plazo: Régimen extremal de oleaje basac	do en el
método POT	279
6.5.1 Selección de los eventos extremos: método POT	281
6.5.2 Situaciones sinópticas de estudio	282
6.5.3 Regímenes extremales de oleaje para cada situación sinóptica	295
6.5.4 Régimen extremal anual de oleaje	301
6.6 Predicción a muy largo plazo: Régimen extremal de oleaje	basado en
el método POT	304

6.6.1 Régimen extremal para las situaciones sinópticas generadoras de extremos de
oleaje
6.6.2 Régimen extremal anual de oleaje
6.7 Proyecciones de clima marítimo extremal
6.7.1 Escenarios de cambio climático y modelos globales
6.7.2 Proyecciones de clima marítimo extremal. Punto Norte
6.7.3 Proyecciones de clima marítimo extremal. Coruña
6.7.4 Proyecciones de clima marítimo extremal. Cádiz
6.7.5 Discusión
6.8 Conclusiones
CAPITULO 7: CONCLUSIONES Y FUTURAS LÍNEAS DE
INVESTIGACIÓN347
7.1 Conclusiones
7.1.1 Resumen de aportaciones
7.1.1 Resumen de aportaciones
7.1.1 Resumen de aportaciones 348 7.1.2 Resumen de resultados 351

LISTA DE FIGURAS

Capítulo 1

rigura 1.1	Circi	macion gene	rai de	ia atii	iosiera. Fuente	. NA3A		
Figura	1.2	Esquema	de	las	principales	corrientes	marinas.	Fuente
http://es.	wikip	edia.org/wil	ki/Cor	riente	marina			4
Figura 1.	.3 Fur	nciones de	densi	dad d	e temperatura	y precipita	ción diarias.	Fuente
Weather	and (Climate Ext	remes	in a (Changing Clim	ate (U.S. Cli	mate Change	: Science
Program,	Syntl	nesis ans Ass	sessme	ent Pr	oduct 3.3, 2008	3)		6
Figura 1.	4 Vari	aciones en	la fun	ción d	le densidad de	las variables	temperatura	diaria y
precipita	ción.	Fuente: We	eather	and (Climate Extre	mes in a Cha	anging Clima	ite (U.S
Climate (Chang	ge Science Pi	rogran	n, Synt	thesis ans Asse	ssment Prodi	act 3.3, 2008)	8
Figura 1.5	5 Serie	e temporal d	e oleaj	e proc	cedente de saté	lite		32
Figura 1.6	5 Esqu	iema concep	tual d	e la te	sis			56
Capít	ulo	2						
Figura 2.	l Loca	lización de l	las boy	yas de	las redes de Pu	iertos del Esta	ado y la red X	iom 62
Figura 2	.2 Inf	ormación so	obre 1	as dis	stintas misione	es satelitales	disponibles.	Fuente
http://wv	vw.av	iso.oceanob	s.com/	<u>/</u>				63
Figura 2.	3 Tray	ectorias del	satéli	te Geo	osat Follow-Or	n (GFO)		64

Figura 2.4 Malla global del reanálisis GOW 1.0 (representación de la figura en
proyección Mercator)
Figura 2.5 Rejilla de la Región Mediterránea del reanálisis GOW 2.1. Resolución de
0.125° (representación de la figura en proyección Mercator)
Figura 2.6 Rejillas del litoral español del reanálisis GOW 1.0 Malla. Malla Global 1.5º \times
$1.0^{\rm o}$, Malla Iberia $0.5^{\rm o}$ y Mallas Cantábrico, Cádiz y Canarias $0.1^{\rm o}$ (representación de la
figura en proyección Mercator)67
Figura 2.7 Localización de los mareógrafos utilizados en este trabajo
Figura 2.8 Esquema de los escenarios IE-EE. Fuente: Informe Especial del IPCC
Escenarios de Emisiones 72
Figura 2.9 Emisiones anuales totales de CO2 para cada familia y grupos de escenarios
Fuente: Informe Especial del IPCC. Escenarios de Emisiones
Figura 2.10 Características de los modelos climáticos globales. Fuente
http://www.meteo.unican.es/courses/2007 cursoRegionalizacion files/2 1 Castro.pdf
76
Figura 2.11 Efecto de las fases positiva (imagen izquierda) y negativa (imagen derecha)
del AO. Fuente: NASA
Figura 2.12 EOF 1 del neopotencial de 850 hPa entre el polo sur y los 20ºS78
Figura 2.13 Anomalías de presión en el Pacífico bajo situaciones de Niño y Niña. Fuente
http://www.cpc.ncep.noaa.gov/products/analysis monitoring/ensocycle/soilink.shtml
79
Figura 2.14 Esquema de la situación de vientos y estructura oceánica en condiciones
normales del fenómeno ENSO en los meses de Diciembre a Febrero. Fuente
http://www.cpc.ncep.noaa.gov/products/analysis monitoring/ensocycle/meanrain.shtm
<u>1</u> 80
Figura 2.15 Esquema de la situación de vientos y estructura oceánica en fase Niño y fase
Niña. Fuente: http://en.wikipedia.org/wiki/El Niño-Southern Oscillation
Figura 2.16 Regiones de medida de los índices Niño. Fuente
http://www.srh.noaa.gov/jetstream//tropics/enso.htm
Figura 2.17 Evolución del índice NIÑO 3.4 (panel superior) y el SOI (panel inferior) en
el mismo período de tiempo. Fuente
http://www.srh.noaa.gov/jetstream//tropics/enso.htm82
Figura 2.18 Fases positiva (izquierda) y negativa (derecha) de la NAO 85

Figura 2.19 Fases positiva (izquierda) y negativa (derecha) del IOD. Fuente:
http://www.jamstec.go.jp/frsgc/research/dl/iod/
Figura 2.20 Anomalías de temperatura superficial del agua en el océano Índico en la fase
positiva del IOD en Noviembre de 1997. Fuente:
http://www.bom.gov.au/climate/IOD/about IOD.shtml 88
Figura 2.21 Series temporales de los índices climáticos utilizados como predictores en
esta tesis
Capítulo 3
Figura 3.1 Número de medidas para cada misión satelital
Figura 3.2 Ajuste del modelo GEV con factor de escala a distintas poblaciones de
extremos y tendencias obtenidas
Figura 3.3 Localización del punto NA (15ºW,55ºN)101
Figura 3.4 Boxplot de la H _s máxima mensual en el punto 15W55N
Figura 3.5 Serie temporal de oleaje en el punto 15ºW,55ºN (puntos grises) y máximos
mensuales (línea negra)
Figura 3.6 Máximos mensuales, parámetros de localización y escala y cuantil asociado a
un período de retorno de 20 años
Figura 3.7 Diagnóstico gráfico PP y QQ plot
Figura 3.8 Cuantil instantáneo asociado a período de retorno 50 años (línea negra) y
máximos mensuales (cruces rojas)
Figura 3.9 Umbral variable y excedencias de oleaje en el punto 15W55N108
Figura 3.10 Excedencias sobre umbral variable, parámetros de localización y escala y
cuantil asociado a un período de retorno de 20 años
Figura 3.11 Diagnóstico gráfico PP y QQ plot para el modelo de intensidades y
frecuencias
Figura 3.12 Cuantil asociado a período de retorno 50 años (línea negra) y excedencias de
altura de la (cruces rojas)
Figura 3.13 Poblaciones de datos de los modelos GEV mensual y POT con umbral
variable112
Figura 3.14 Comparación de cuantiles de período de retorno 50 años obtenidos con el
modelo GEV mensual y POT

modelo GEV mensual y POT. Años 1960-1990	4
Figura 3.16 Localización del punto CA en el Golfo de Cádiz11	5
Figura 3.17 Serie temporal de H_s (puntos grises) y máximos anuales (círculos negros) 11	6
Figura 3.18 Boxplot de la H_s máxima mensual en el punto 15W55N11	ι7
Figura 3.19 Rosa de oleaje de los eventos extremos de máximos mensuales. Cádiz. Est	te
reanálisis de oleaje está cerrado en el contorno Este (Estrecho de Gibraltar)11	9
Figura 3.20 Máximos mensuales, parámetros de localización y escala y cuantil asociad	lo
a un período de retorno de 20 años	O
Figura 3.21 Diagnóstico gráfico PP y QQ plot12	21
Figura 3.22 Cuantil instantáneo asociado a período de retorno 50 años (línea negra)	y
máximos mensuales (cruces rojas)	2
Figura 3.23 Ejemplos de campos de presiones medios semanales	23
Figura 3.24 Máximos semanales, parámetros de localización y escala y cuantil asociad	lo
a un período de retorno de 20 años	!3
Figura 3.25 Variación anual del parámetro de forma	4
Figura 3.26 Diagnóstico gráfico PP y QQ plot	25
Figura 3.27 Cuantil instantáneo asociado a período de retorno 50 años (línea negra)	y
máximos semanales (cruces rojas)	16
Figura 3.28 Comparación de cuantiles de período de retorno 50 años obtenidos con	el
modelo GEV mensual y GEV semanal	27
Figura 3.29 Comparación de cuantiles de período de retorno 50 años obtenidos con	el
modelo GEV mensual y GEV semanal. Años 1960-1990	27
Capítulo 4	
Figura 4.1 Variación espacial del parámetro de forma del modelo GEV mensual. I	La
significancia estadística menor del 10 % está representada por un asterisco en el centr	0:
de cada celda	8
Figura 4.2 Variabilidad espacial de la $H_{s_{20}}$ (m) anual, calculada para cada mes a part	ir
del modelo estacional ajustado a cada celda del dominio14	.0
Figura 4.3 Variabilidad espacial de la influencia de los índices AO y SAM en	el
parámetro de localización (cm/unidad de índice). El nivel de confianza menor del 10 °	%
está representado por un asterisco en el centro de cada celda	.2

Figura 3.15 Comparación de cuantiles de período de retorno 50 años obtenidos con el

Figura 4.4 Variabilidad espacial de la influencia de los índices NINO3, PNA, WP y
EP/NP en el parámetro de localización (cm/unidad de índice). El nivel de confianza
menor del 10 % está representado por un asterisco en el centro de cada celda144
Figura 4.5 Variabilidad espacial de la influencia de los índices NAO, EA, EA/WR y SCA
en el parámetro de localización (cm/unidad de índice). El nivel de confianza menor del
10 % está representado por un asterisco en el centro de cada celda146
Figura 4.6 Variabilidad espacial de la influencia de los índices IOD y QBO en el
parámetro de localización (cm/unidad de índice). El nivel de confianza menor del 10 %
está representado por un asterisco en el centro de cada celda148
Figura 4.7 Variabilidad espacial de la influencia del índice NIÑO 3 con diferentes
desfases ($\tau = +4, +2, 0, -2, -4$ meses) en el parámetro de localización (cm/unidad de
índice). El nivel de confianza menor del 10 % está representado por un asterisco en el
centro de cada celda
Figura 4.8 Localización del área de estudio del sur de Europa
Figura 4.9 Boxplot de H_s máxima mensual en una celda del área de estudio156
Figura 4.10 Máximos mensuales de $H_{\rm s}$, parámetro de localización (línea gris) y
parámetro de localización más escala (línea negra) ajutados para los datos de la celda
situada en la esquina superior izquierda del dominio (30°W, 48°N) 157
Figura 4.11 Variabilidad espacial mes a mes del parámetro de localización del modelo
GEV mensual
Figura 4.12 Variabilidad espacial mes a mes del parámetro de escala del modelo GEV
mensual
Figura 4.13 Diagnóstico gráfico del ajuste del modelo estacional para los datos de la
celda situada en la esquina superior izquierda del dominio (30°W, 48°N)161
Figura 4.14 Variabilidad espacial del $H_{s_{30}}$ mensual (m)
Figura 4.15 Series temporales de los índices NAO, EA, EA/WR y SCA164
Figura 4.16 EOFs de las anomalías de presión a nivel del mar en el área del Atlántico
norte. Los números entre paréntesis representan el porcentaje de varianza explicada por
cada modo
Figura 4.17 PCs estandarizadas de las anomalías de presión a nivel del mar en el área del
Atlántico norte
Figura 4.18 Variabilidad espacial de la influencia de los índices climáticos en el
parámetro de localización (cm/unidad de índice)

Figura 4.19 Variabilidad espacial de la influencia de las PCs de las anomalías de presión
a nivel del mar en la zona NA en el parámetro de localización (cm/unidad de índice).169
Figura 4.20 Localización de 6 puntos en la zona de estudio para un primer análisis
descriptivo
Figura 4.21 Máximos mensuales de H_s (DEF=azul, MAM=verde, JJA=rojo y
SON=marrón), parámetro de localización (línea negra discontinua) y parámetro de
localización más escala (línea negra) en 6 puntos del dominio
Figura 4.22 Ejemplo del efecto que produce la onda en la tendencia de largo plazo 178
Figura 4.23 Variación espacial del parámetro de forma (ξ_0). Solo están representados
los puntos cuya significancia estadística es menor del 5 %
Figura 4.24 Variabilidad espacial de la $H_{s_{100}}$ (m) anual, calculada para cada mes a partir
del modelo estacional ajustado a cada punto del dominio
Figura 4.25 Diagnóstico gráfico del modelo estacional ajustado en el punto de las
Malvinas
Figura 4.26 Tendencia media de largo plazo (cm/año) en los puntos con significancia
estadística igual o superior al 95%
Figura 4.27 Diagnóstico gráfico del modelo con tendencia de largo plazo lineal ajustado
en el punto de Florianópolis
Figura 4.28 Variación de la tendencia de largo plazo en el parámetro de localización a lo
largo del año (línea negra) y los valores medios por estación (DEF=azul, MAM=verde,
JJA=rojo, SON=marrón)185
Figura 4.29 Tendencia de largo plazo media por estaciones (cm/año) en los puntos con
significancia estadística igual o superior al 95%
Figura 4.30 Diagnóstico gráfico del modelo con tendencia de largo plazo lineal ajustado
en el punto de Guayaquil
Capítulo 5
Figura 5.1 Metodología para la transferencia de oleaje de aguas profundas a aguas
someras y caracterización del clima marítimo extremal
Figura 5.2 Batimetría utilizada
Figura 5.3 Localización de las boyas utilizadas en el estudio
Figura 5.4 Series temporales horarias de altura de ola significante, periodo medio,
periodo de pico y dirección del pico de la boya de Tordera

Figura 5.5 Distribución espacial de diversas bases de datos de satélites198
Figura 5.6 Localización de los mareógrafos utilizados en este trabajo198
Figura 5.7 Mallas de propagación
Figura 5.8 Puntos calibrados
Figura 5.9 Datos de satélite (puntos azules) utilizados para la calibración de un punto
de Ibiza (punto rojo)
Figura 5.10 Cuantiles de altura de ola seleccionados para la calibración en el punto de
Ibiza
Figura 5.11 Rosa de calibración de H_s obtenida para GOW en el punto seleccionado de
Ibiza207
Figura 5.12 Diagramas QQplot con las alturas de ola instrumentales (satélite) versus
GOW calibrado y sin calibrar. Punto de Ibiza
Figura 5.13 Valor medio del coeficiente de corrección y valor máximo de altura de ola
(línea negra) por direcciones. Punto de Ibiza
Figura 5.14 Puntos de oleaje y viento utilizados en la selección de los casos
representativos del clima marítimo en profundidades indefinidas mediante MaxDiss
para el caso de la malla GM02 del GOW 2.1
Figura 5.15 Distribución de los casos seleccionados correspondientes a los datos del
punto 5 de oleaje y punto 2 de viento de los utilizados en la selección con MaxDiss 217
Figura 5.16 Casos seleccionados con el algoritmo MaxDiss en la malla GM02218
Figura 5.17 Esquema del proceso de selección de los casos representativos del clima
marítimo con variabilidad espacial en indefinidas
Figura 5.18 Propagación del Caso 1 de la selección MaxDiss de la malla GM02 del Golfo
de Cádiz. Resultados de la altura de ola significante (m) y dirección media del oleaje
224
Figura 5.19 Propagación del Caso 2 de la selección MaxDiss de la malla GM02 del Golfo
de Cádiz. Resultados de la altura de ola significante (m) y dirección media del oleaje 225
Figura 5.20 Interpolación RBF definida como una combinación de funciones radiales.
Ejemplo en dos dimensiones (x_1,x_2) . La superficie superior es la función
$RBF(x_1, x_2) \qquad 226$

Figura 5.21 Validación de las series temporales de los parámetros H_s T_p y θ_m en la
posición de la boya de Cádiz correspondientes al año 2007 y gráficos de dispersión y
cuantiles de H_s T_p y θ_m
Figura 5.22 Validación de las series temporales de los parámetros H_s y T_p en la posición
de la boya de Cabo de Gata correspondientes al año 1998. Serie GOW reconstruida
(rojo) y registro boya (azul)
Figura 5.23 Validación de las series temporales de los parámetros H_s y T_p en la posición
de la boya de Cap de Pera correspondientes al año 2003. Serie GOW reconstruida (rojo)
y registro boya (azul)
Figura 5.24 Localización de los puntos de estudio (naranja=puntos en reducidas y
verdes-puntos alejados de la costa) y las mallas de propagación
Figura 5.25 Localización de 3 puntos de la zona de estudio sobre los que se va a hacer un
primer análisis descriptivo (negro-puntos en reducidas, rojo-puntos alejados de
costa)
Figura 5.26 Series temporales de altura de ola significante en profundidades indefinidas
en los puntos de Cádiz, Carboneras y Delta del Ebro
Figura 5.27 Población de datos de H_s (puntos grises), umbral (línea discontinua) y
excedencias independientes (cruces negras) en las aguas alejadas de la costa (I) y aguas
someras (R) y de tres puntos de la zona de estudio
Figura 5.28 Variación espacial del parámetro de forma en profundidades indefinidas y
reducidas. Sólo están representados los valores significativos al 95 %
Figura 5.29 Evolución anual del parámetro de localización (línea discontinua gris),
parámetros de localización+escala (línea negra), umbral (línea negra discontinua) y
excedencias sobre el umbral (cruces negras) en las aguas alejadas de la costa (I) y
someras (R) de tres puntos de la zona de estudio
Figura 5.30 Tasa de eventos empírica (histograma) y del modelo (línea negra) en las
aguas alejadas de la costa (I) y someras (R) de tres puntos de la zona de estudio (se
representa la totalidad de los eventos)
Figura 5.31 Variación espacial de los cuantiles (m) asociados a 20, 50 y 100 años de
período de retorno
Figura 5.32 Diagnóstico gráfico del ajuste del modelo Pareto-Poisson en el punto de
Carboneras en aguas indefinidas

Figura 5.33 Diagnóstico gráfico del ajuste del modelo Pareto-Poisson en el punto de
Carboneras en aguas reducidas
Figura 5.34 Variación espacial de la tendencia de largo plazo (cm/año) en el período
1989-2008. La escala de colores está acotada a ±5 cm/año
Figura 5.35 Evolución del parámetro de localización (línea negra), la población de
extremos utilizada (cruces negras), el umbral (línea discontinua gris) y el cuantil de 20
años de período de retorno (línea roja) en las profundidades indefinidas (I) y
profundidades reducidas (R) del punto de Cádiz
Capítulo 6
Figura 6.1 Localización de los puntos de estudio
Figura 6.2 Primeros 6 EOF correspondientes a las presiones medias 3-diarias en el área
geográfica del Atlántico Norte (anomalías de presión, mb)
Figura 6.3 Evolución temporal de los 6 primeros modos temporales estandarizados de
las presiones medias 3-diarias en el área geográfica del Atlántico Norte
Figura 6.4 Tipos de tiempo de presiones medias 3-diarias (mb) del Atlántico Norte261
Figura 6.5 Probabilidades de ocurrencia en la SOM de los tipos de tiempo del Atlántico
Norte
Figura 6.6 Probabilidades de ocurrencia por estaciones en la SOM de los tipos de
tiempo del Atlántico Norte
Figura 6.7 Situaciones sinópticas (mb) correspondientes a las celdas 10 y 100 de la SOM
de tipos de tiempo
Figura 6.8 Situaciones sinópticas (mb) correspondientes a las celdas 54 y 63 de la SOM
de tipos de tiempo
Figura 6.9 Probabilidades de ocurrencia por meses en la SOM de los tipos de tiempo del
Atlántico Norte
Figura 6.10 Metodología de predicción del régimen extremal de oleaje a corto plazo . 266
Figura 6.11 Ventana de tiempo de 14 días de la serie temporal de oleaje, con los máximos
3-diarios y el campos de presiones medio 3-diario (958–1068 mb)
Figura 6.12 Histograma de alturas de ola significante máxima 3-diaria de la celda 1 de la
SOM de oleaje del Punto Norte
Figura 6.13 Histogramas de las poblaciones de datos de altura de ola significante
máxima 3-diaria para cada tipo de tiempo (el eje de abscisas representa alturas de ola

entre 0 y 17 m) y SOM de alturas de ola significante máxima media (m). Punto Norte
(NA)269
Figura 6.14 Histogramas de las poblaciones de datos de altura de ola significante
máxima 3-diaria cada tipo de tiempo (el eje de abscisas representa alturas de ola entre 0
y 17 m) y SOM de alturas de ola significante máxima media (m). Coruña (CO) 270
Figura 6.15 Histogramas de las poblaciones de datos de altura de ola significante
máxima 3-diaria para cada tipo de tiempo (el eje de abscisas representa alturas de ola
entre 0 y 17 m) y SOM de alturas de ola significante máxima media (m). Cádiz (CA) . 271
Figura 6.16 SOM de los parámetros de la GEV para el Punto Norte (NA)273
Figura 6.17 SOM de los parámetros de la GEV para Coruña (CO)273
Figura 6.18 SOM de los parámetros de la GEV para Cádiz (CA)273
Figura 6.19 Regímenes extremales de oleaje para cada tipo de tiempo. Punto Norte 274
Figura 6.20 Tipo de tiempo correspondiente a la celda 100 y régimen extremal de oleaje
quegenera. Punto Norte (NA)275
Figura 6.21 Tipo de tiempo correspondiente a la celda 1 y régimen extremal de oleaje que
genera. Punto Norte
(NA)276
Figura 6.22 Regímenes extremales de oleaje para cada tipo de tiempo. Coruña277
Figura 6.23 Regímenes extremales de oleaje para cada tipo de tiempo. Cádiz 278
Figura 6.24 Metodología de predicción del régimen extremal de oleaje a largo plazo . 280
Figura 6.25 Excedencias de altura de ola (cruces negras) sobre el umbral (línea
punteada) y máximos de oleaje 3-diarios para cada uno de los puntos de estudio 282
Figura 6.26 Tipos de tiempo de presiones medias 3-diarias (mb) generadores de los
eventos extremos de oleaje en el Punto Norte
Figura 6.27 Probabilidades de ocurrencia en la SOM de los tipos de tiempo generadores
de los oleajes extremos en el Punto Norte
Figura 6.28 Tasas de ocurrencia en la SOM de los tipos de tiempo generadores de los
oleajes extremos en el Punto Norte
Figura 6.29 Probabilidades de ocurrencia por estaciones en la SOM de los tipos de
tiempo generadores de los oleajes extremos en el Punto Norte
Figura 6.30 Probabilidades de ocurrencia por meses en la SOM de los tipos de tiempo
1 11 1 1
generadores de los oleajes extremos en el Punto Norte
generadores de los oleajes extremos en el Punto Norte

Figura 6.32 Probabilidades de ocurrencia en la SOM de los tipos de tiempo generadores
de los oleajes extremos en Coruña
Figura 6.33 Tasas de ocurrencia en la SOM de los tipos de tiempo generadores de los
oleajes extremos en Coruña 289
Figura 6.34 Probabilidades de ocurrencia por estaciones en la SOM de los tipos de
tiempo generadores de los oleajes extremos en Coruña
Figura 6.35 Probabilidades de ocurrencia por meses en la SOM de los tipos de tiempo
generadores de los oleajes extremos en Coruña
Figura 6.36 Tipos de tiempo de presiones medias 3-diarias (mb) generadores de los
eventos extremos de oleaje en Cádiz
Figura 6.37 Probabilidades de ocurrencia en la SOM de los tipos de tiempo generadores
de los oleajes extremos en Cádiz
Figura 6.38 Tasas de ocurrencia en la SOM de los tipos de tiempo generadores de los
oleajes extremos en Cádiz
Figura 6.39 Probabilidades de ocurrencia por estaciones en la SOM de los tipos de
tiempo generadores de los oleajes extremos en Coruña
Figura 6.40 Probabilidades de ocurrencia por meses en la SOM de los tipos de tiempo
generadores de los oleajes extremos en Cádiz
Figura 6.41 SOM de las excedencias medias sobre el umbral de oleaje del Punto
Norte
Figura 6.42 Histogramas y funciones de densidad (línea roja) de Pareto para cada
población de excedencias de la SOM del Punto Norte
Figura 6.43 SOM de las excedencias medias sobre el umbral de oleaje de Coruña 298
Figura 6.44 Histogramas y funciones de densidad de Pareto para cada población de
excedencias de la SOM de Coruña
Figura 6.45 Diagnóstico gráfico mediante QQ plot de los modelos de Pareto ajustados a
cada población de excedencias en la SOM de Coruña
Figura 6.46 Diagnóstico gráfico mediante PP plot de los modelos de Pareto ajustados a
cada población de excedencias en la SOM de Coruña
Figura 6.47 SOM de las excedencias medias sobre el umbral de oleaje de Cádiz 300
Figura 6.48 Histogramas y funciones de densidad de Pareto para cada población de
excedencias de la SOM de Cádiz
Figura 6.49 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbral
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Punto Norte 302

Figura 6.50 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbral
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Coruña 303
Figura 6.51 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbra
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Cádiz304
Figura 6.52 Metodología de predicción del régimen extremal de oleaje a muy largo
plazo305
Figura 6.53 Histograma y función de densidad de Pareto de las excedencias sobre el
umbral en aquellas celdas en las que se ha hecho el ajuste. Punto Norte
Figura 6.54 Histograma y función de densidad de Pareto de las excedencias sobre el
umbral en aquellas celdas en las que se ha hecho el ajuste. Coruña
Figura 6.55 Diagnóstico gráfico mediante QQ plot de los modelos de Pareto ajustados a
cada población de excedencias. Coruña
Figura 6.56 Diagnóstico gráfico mediante PP plot de los modelos de Pareto ajustados a
cada población de excedencias. Coruña
Figura 6.57 Histograma y función de densidad de Pareto de las excedencias sobre el
umbral en aquellas celdas en las que se ha hecho el ajuste. Cádiz311
Figura 6.58 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbra
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Punto Norte 313
Figura 6.59 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbra
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Coruña314
Figura 6.60 Regímenes extremales estacionales de oleaje. Coruña
Figura 6.61 Régimen extremal de oleaje (línea gris) y excedencias sobre el umbra
(puntos negros) y bandas de confianza al 95 % (sombreado gris). Cádiz
Figura 6.62 Primeros 6 modos espaciales correspondientes al análisis por componentes
principales del Atlántico Norte. Datos históricos de NCEP (1960-1990, anomalías de
presión, mb)
Figura 6.63 Primeros 6 modos espaciales correspondientes al análisis por componentes
principales del Atlántico Norte. Datos proyectados en 20C3M modelo ECHAM 5
(1960-1990, anomalías de presión, mb)
Figura 6.64 Primeros 6 modos espaciales correspondientes al análisis por componentes
principales del Atlántico Norte. Datos proyectados en 20C3M modelo CNRM CM3
(1960-1990, anomalías de presión, mb)

Figura 6.65 Primeros 6 modos espaciales correspondientes al análisis por componentes
principales del Atlántico Norte. Datos proyectados en 20C3M modelo UK-HadCM3
(1960-1990, anomalías de presión, mb)
Figura 6.66 Probabilidades de ocurrencia de las proyecciones de las presiones medias 3-
diarias de los datos históricos de NCEP y de los modelos climáticos ECHAM 5, CNRM
CM3 y UK-HadCM3 en el período 1960-1990
Figura 6.67 Probabilidades de ocurrencia de las proyecciones de las presiones medias 3-
diarias de DEF de los datos históricos de NCEP y de los modelos climáticos ECHAM 5,
CNRM CM3 y UK-HadCM3 en el período 1960-1990
Figura 6.68 Probabilidades de ocurrencia de las proyecciones de las presiones medias 3-
diarias de MAM de los datos históricos de NCEP y de los modelos climáticos ECHAM
5, CNRM CM3 y UK-HadCM3 en el período 1960-1990
Figura 6.69 Probabilidades de ocurrencia de las proyecciones de las presiones medias 3-
diarias de JJA de los datos históricos de NCEP y de los modelos climáticos ECHAM 5,
CNRM CM3 y UK-HadCM3 en el período 1960-1990
Figura 6.70 Probabilidades de ocurrencia de las proyecciones de las presiones medias 3-
diarias de SON de los datos históricos de NCEP y de los modelos climáticos ECHAM 5,
CNRM CM3 y UK-HadCM3 en el período 1960-1990327
Figura 6.71 Régimen extremal de oleaje obtenido a partir de NCEP (línea negra) y a
partir del ensemble de los modelos climáticos globales (ínea gris). Punto Norte 329
Figura 6.72 Proyecciones de los regímenes extremales de oleaje en los períodos 2010-
2040, 2040-2070 y 2070-2100 a los escenarios AlB (línea azul), A2 (línea roja) y Bl
(línea verde) y régimen extremal de oleaje en el período 1960-1990 en el escenario
20C3M (línea gris). Punto Norte
Figura 6.73 Cuantiles de períodos de retorno de 20 (línea continua), 50 (línea
discontinua) y 100 (línea punteada) años de las proyecciones a los escenarios A1B
(azul), A2 (rojo) y B1 (verde) en los períodos de tiempo 2010-2040, 2040-2070 y 2070-
2100. Punto Norte
Figura 6.74 Régimen extremal de oleaje obtenido a partir de NCEP (línea negra) y a
partir del ensemble de los modelos climáticos globales (ínea gris). Coruña333
Figura 6.75 Proyecciones de los regímenes extremales de oleaje en los períodos 2010-
2040, 2040-2070 y 2070-2100 a los escenarios AlB (línea azul), A2 (línea roja) y Bl
(línea verde) y régimen extremal de oleaje en el período 1960-1990 en el escenario
20C3M (línea gris). Coruña

Figura 6.76 Cuantiles de períodos de retorno de 20 (línea continua), 50 (línea
discontinua) y 100 (línea punteada) años de las proyecciones a los escenarios A1B
(azul), A2 (rojo) y B1 (verde) en los períodos de tiempo 2010-2040, 2040-2070 y 2070-
2100. Coruña
Figura 6.77 Régimen extremal de oleaje obtenido a partir de NCEP (línea negra) y a
partir del ensemble de los modelos climáticos globales (ínea gris). Cádiz337
Figura 6.78 Proyecciones de los regímenes extremales de oleaje en los períodos 2010-
2040, 2040-2070 y 2070-2100 a los escenarios AlB (línea azul), A2 (línea roja) y Bl
(línea verde) y régimen extremal de oleaje en el período 1960-1990 en el escenario
20C3M (línea gris). Cádiz
Figura 6.79 Cuantiles de períodos de retorno de 20 (línea continua), 50 (línea
discontinua) y 100 (línea punteada) años de las proyecciones a los escenarios A1B
(azul), A2 (rojo) y B1 (verde) en los períodos de tiempo 2010-2040, 2040-2070 y 2070-
2100. Cádiz
Figura 6.80 Población de extremos utilizada (cruces negras), umbral (línea discontinua
gris) y cuantil de 50 años de período de retorno (línea roja) extrapolado al año 2040 en
cada punto de estudio
Figura 6.81 Diferencias entre la $H_{s_{50}}$ del período 2010-2040 y 1960-1990 para los
escenarios AlB (azul), A2 (rojo) y B1 (verde) y diferencias entre la $H_{s_{50}}$ de 2040 y 1990
obtenidas mediante la extrapolación de tendencias (negro)

LISTA DE TABLAS

Capítulo 2

Tabla 2.1 Esquema de las bases de datos utilizadas y apartado en el que se describen .. 60

Capítulo 3

Tabla 3.1 Valores de los estimadores (m) y sus errores estándar del modelo GEV
mensual en el punto NA106
Tabla 3.2 Valores de los estimadores (m) y sus errores estándar del modelo Pareto-
Poisson en el punto NA110
Tabla 3.3 Valores de los estimadores (m) y sus errores estándar del modelo GEV
mensual en Cádiz121
Tabla 3.4 Valores de los estimadores (m) y sus errores estándar del modelo GEV
semanal en Cádiz125
Tabla 3.5 Clasificación de los modelos de extremos y recomendaciones de uso129
Capítulo 4
Tabla 4.1 Períodos de medida de las misiones satelitales134
Tabla 4.2 Períodos de medida de las misiones satelitales

LISTA DE SÍMBOLOS

 c_i Celdas o centroides de la SOM

D Duración de la excedencia o persistencia

d Distancia entre grupos

 $d_{i,i}$ Disimilitud entre el dato i y los j elementos del subconjunto R

 $d_{i.subconjunto}$ Disimilitud entre el dato i y el subconjunto R

 $F_i(y)$ Función de distribución de altura de ola significante en cada celda

i de la SOM

 $F_{total}(y)$ Función de distribución de altura de ola significante en un punto

 H_{m0} Altura de ola del momento de orden cero espectral

H_s Altura de ola significante

H_{s.c} Altura de ola significante calibrada

H_{s,GOW} Altura de ola significante del reanálisis GOW

 $H_{s_{max}}$ Altura de ola significante máxima

H_{s, sqt} Altura de ola significante de satélite

 $H_{s_{20}}$, $H_{s_{50}}$, $H_{s_{100}}$ Altura de ola asociada al período de retorno 20, 50 ó 100 años

 $H_{97\%}$ Percentil 97 de la altura de ola significante

k Coeficiente de corrección en la calibración

Factor de escala k(t)Función de verosimilitud $L(x;\theta)$ Función logarítmica de verosimilitud $l(x;\theta)$ Máximo número de datos por celda N_{max} Número máximo de parámetros $n_{\mathfrak{p}}$ Probabilidad de presentación de los centroides de la SOM p_i 9 Niveles de la superficie del mar Período de retorno; subconjunto R Número de eventos; coeficiente de correlación r Período medio T_{m} T, Constante para escalar la unidad temporal de trabajo T_{p} Período de pico espectral Umbral de corte и Umbral de corte en profundidades indefinidas U_i Umbral de corte en profundidades reducidas u_r Espectro frecuencial S(w)Espectro direccional $S(w,\theta)$ var_{FOFi} Varianza explicada por el EOF i Estadístico resultante del cambio de variable del modelo W estadístico GEV a la distribución Gumbel; velocidad del viento W_{r} Viento en la dirección *x* $W_{_{\scriptscriptstyle
u}}$ Viento en la dirección y Tasa acumulada entre eventos extremales consecutivos \mathcal{Z} β_{IT} Tendencia de largo plazo Incremento de altura de ola significante asociada al período de $\Delta H_{s_{20}}, \Delta H_{s_{50}}, \Delta H_{s_{100}}$ retorno 20, 50 ó 100 años Valor mínimo de tiempo entre eventos independientes Δt η Cota del nivel del mar Autovalores λ_{i}

 μ Parámetro de localización de la distribución GEV

 θ_m Dirección media del oleaje

 θ_{w} Dirección media del viento

 $heta_{\scriptscriptstyle m,GOW}$ Dirección media del oleaje del reanálisis GOW

v Tasa de ocurrencia de eventos anual

 $v_{\scriptscriptstyle
m DEF},v_{\scriptscriptstyle
m MAM},v_{\scriptscriptstyle
m JJA},v_{\scriptscriptstyle
m SON}$ Tasa de ocurrencia de eventos en las estaciones DEF, MAM, JJA,

DEF

 $v_{\scriptscriptstyle 1}, ..., v_{\scriptscriptstyle 12}$ Tasa de ocurrencia de eventos en cada mes del año

 ξ Parámetro de forma de la distribución GEV

 ψ Parámetro de escala de la distribución GEV

|| || Norma euclidiana

Símbolo para denominar el valor medio de una variable

^ Símbolo para designar el estimador de un parámetro

LISTA DE ACRÓNIMOS

A1B Escenario de cambio climático del IPCC de la familia A1

A2 Escenario de cambio climático del IPCC de la familia A2

Bl Escenario de cambio climático del IPCC de la familia Bl

AGCM Modelo general de circulación atmosférica

AIC Criterio de información de Akaike

AMO Oscilación multidecadal del Atlántico (Atlantic Multidecadal

Oscillation)

AR4 Cuarto informe de evaluación del IPCC (Fourth Assessment Report)

AO Oscilación del Ártico (Artic Oscillation)

BACO BAtimetrías y cartas náuticas de la COsta

BMVE Bajamar mínima viva equinoccial

BODC British Oceanographic Data Centre

CA Punto de estudio Cádiz

CCC Compromiso de Composición Constante

C-ERA-40 Corrected ERA-40

CNRM CM3 Modelo global perteneciente al Centre National de Recherche

Météorologiques

CO Punto de estudio Coruña

CO₂ Dióxido de carbono

C.P. Cero del Puerto

CSIRO Australia's Commonwealth Scientific and Industrial Research Organization

DEF Diciembre-Enero-Febrero

DMI Dipole Mode Index

EA Patrón del Este Atlántico (East Atlantic pattern)

EA/WR Patrón del Este Atlántico-Oeste de Rusia (East Atlantic-Western

Russian pattern)

ECHAM 5 Modelo global perteneciente al Max Planck Institute für Meteorologie

ECMWF European Centre for Medium-Range Weather Forecasts

ENSO El Niño-Oscilación del Sur (El Niño-Southern Oscillation)

EOFs Función empírica ortogonal (Empirical Ortogonal Function)

EP/NP Patrón del Pacífico Este-Pacífico Norte (East Pacific-North Pacific

pattern)

ERA-40 Simulaciones numéricas de la circulación atmosférica global

realizado por ECMWF para el período enero 1989-presente

ERA-INTERIM Simulaciones numéricas de la circulación atmosférica global

realizado por ECMWF para el período septiembre 1957-agosto

2002

ERS-2 Satélite europeo (Europe Remote Sensing 2)

GCM Modelo general de circulación (General Circulation Model)

GEBCO General Bathymetric Chart of the Oceans

GEI Gases de efecto invernadero

GEV Función generalizada de extremos (Generalized extreme Value)

GFO Satélite estadounidense (Geosat Follow-On)

GOW Reanálisis de oleaje global de IH Cantabria (Global Ocean Waves)

GPD Función Generalizada de Pareto (Generalized Pareto Distribution)

GtC/año Gigatoneladas de carbono al año

UK-HadCm3 Modelo global perteneciente al Hadley Centre

IE-EE Informe Especial sobre Escenarios de Emisiones del IPCC

IH Cantabria Instituto de Hidráulica Ambiental de Cantabria

iid Independiente e idénticamente distribuida

IOD Dipolo del Océano Índico (Indian Ocean Dipole)

IPCC Panel Intergubernamental de cambio Climático

IS92 Primeros escenarios de cambio climático que creo el IPCC y que

proporcionaban estimaciones de todos los gases de efecto

invernadero

JJA Junio-Julio-Agosto

JMA Japan Meteorological Agency

JRA-25 Simulaciones numéricas de la circulación atmosférica global

realizado por JMA para el período 1979-presente

MAM Marzo-Abril-Mayo

MaxDiss Método de selección por máxima disimilitud

MDA Máximo Domínio de Atracción

MLE Método de máxima verosimilitud (Maximum Likelihood Estimation)

MMA Método de Máximo Anual

MMM Método de Máximos Mensuales
 MMS Método de Máximos Semanales
 MPIM Max Planck Institute für Meteorologie

NA Punto de estudio en el Atlántico Norte unos 500 km al oeste de

Irlanda

NAO Oscilación del Atlántico Norte (North Atlantic Oscillation)

NASA National Aeronautics and Space Administration

NCEP/NCAR National Center for Environmental Prediction-National Center for

Atmospheric Research

NMM Nivel medio del mar

NOAA National Oceanic and Atmospheric Administration

NPI North Pacific Index

OGCM Modelo general de circulación oceánica
OMM Organización Meteorológica Mundial
OPPE Organismo Público Puertos del Estado

PCs Componentes principales (Principal Components)

PDO Oscilación multidecadal del Pacífico (Pacific Multidecadal Oscillation)

PMVE Pleamar máxima viva equinoccial

PNA Patrón de Norte América-Pacífico (Pacific North American Index)

PNUMA Programa de las Naciones Unidas para el Medio Ambiente

POT Peak Over Threshold

PP Probabilidad-probabilidad (Probability-probability)

QBO Oscilación cuasi-bianual o "Vientos de Singapur" (Quasi-biennial

Oscillation)

QQ Cuantil-cuantil (Quantile-quantile)

RA Altímetros de radar (Radar altimeter)

RBF Método de interpolación de funciones de base radial (Radial Basis

Function)

RE Entropía relativa

REDCOS Red de boyas en aguas costeras del OPPE

REDEXT Red de boyas en aguas profundas del OPPE

REDMAR Red de mareógrafos del OPPE

SAM Oscilación del Antártico (Southern Annular Mode)

SCA Patrón de Escandinavia (Scandinavian pattern)

SCE-UA Algoritmo de optimización global (Shuffled Complex Evolution)

SLP Presión a nivel del mar (Sea level pressure)

SOI Southern Oscillation Index

SOM Redes auto-organizativas (Self-organizing maps)

SON Septiembre-Octubre-Noviembre

SST Temperatura superficial del agua (Sea Surface Temperature)

SWAN Modelo numérico de propagación de oleaje (Simulating WAves

Nearshore)

TOMAWAC Modelo numérico de propagación de oleaje (TELEMAC-based

Operational Model Addressing Wave Action Computation)

TOPEX/Poseidon Satélite franco-estadounidense de oceanografía espacial (1997-

2003)

TVE Teoría de Valores Extremos

WAM Modelo numérico de generación de oleaje (WAve Model)

WASA Reanálisis de oleaje (Waves and Storms in the North Atlantic)

WEMO Western Mediterranean Oscillation

WP Índice del Pacífico Oeste (Western Pacific index)

WW III Modelo numérico de generación de oleaje (Wave Watch III)

XIOM	Xarxa d'Instruments Oceanogràfics i Meteorològics
20C3M	Escenario hipotético utilizado como muestra científica para el
	diagnóstico de las proyecciones de los modelos globales