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Abstract—In this work, we consider a second-order detection
problem where rank-p signals are structured by an unknown,
but common, p-dimensional random vector and then received
through unknown M ⇥ p matrices at each of two M -element
arrays. The noises in each channel are independent with identical
variances. We derive generalized likelihood ratio (GLR) tests
for this problem when the noise variance is either known or
unknown. The resulting detection problems may be phrased as
two-channel factor analysis problems.

Index Terms—Passive detection, MIMO channels, passive
radar, generalized likelihood ratio.

I. INTRODUCTION

This paper is motivated by a problem in passive radar,
where the problem is to determine if there are complex
demodulations and synchronizations in several surveillance
antennas (or antenna arrays) that bring signals in the surveil-
lance antennas into coherence with signals in the reference
antennas [1]. The conventional approach for passive detection
uses the cross-correlation (CC) between the data received in
the reference and surveillance channels as the test statistic
[2]. However, the noise in the reference signal renders the
CC detection scheme suboptimal, especially in multiple-input
multiple-output (MIMO) scenarios for which the inherent
subspace structure of the received signals can be exploited
[3], [4].

Detection of a subspace signal of dimension-one with a
single array of sensors under white noise of unknown level
has been addressed in [5], [6] and extensions to diagonal noise
covariance matrices and dimension-p signals can be found in
[7], and [8], [9], respectively. Other variants of this problem,
motivated by cognitive radio and multi-static radio applica-
tions, have been considered in [10]–[15]. References [12], [13]
are noteworthy for their use of a noninformative prior, in this
case the Haar measure on the space of dimension-p subspaces,
followed by integration for a marginal measurement density.
Different from these detection problems, which except for [13]
are solved with a single array of sensors at the surveillance
channel (for radar applications) or at the secondary user (for
cognitive radio applications), the model considered in this
paper is solved with the assistance of an additional multi-
antenna reference channel which acquires a noisy and distorted
version of the transmitted signal.

This problem of detecting correlated subspace signals in
two MIMO channels may be cast as a problem in factor
analysis, where there are constraints on the factor loadings
and the factors. In this paper, we derive generalized likelihood
ratio (GLR) tests when the Gaussian noises at all antennas are
assumed to be independent and identically distributed (i.i.d.),
and the variance is either known or unknown. This idealized
model may apply when reference and surveillance channels
are formed from separate beamsteers in a single array of
antenna elements. The maximum likelihood (ML) estimates
of channels or factor loadings are determined by using a
noise-whitening trick, [16], [17] to construct a noise-whitened
version of the sample covariance matrix, and then using a
result from [17], [18] to optimize over factor loadings.

Notation: The superscripts (·)T and (·)H denote transpose
and Hermitian, respectively. The determinant and trace of a
matrix A will be denoted, respectively, as det(A) and tr(A).
IM is the identity matrix of dimensions M⇥M , and 0 denotes
the zero matrix of appropriate dimensions. The expectation op-
erator will be denoted by E[·], and x ⇠ CNM (0,R) indicates
that x is an M -dimensional complex circular Gaussian random
vector of zero mean and covariance R.

II. PROBLEM FORMULATION

A. Signal Model

We consider the problem of target detection in a passive
network consisting of a reference channel and a surveillance
channel, both equipped with M antennas. Our two-channel
measurement model is

xs[n]
xr[n]

�
=


✓Hs

Hr

�
s[n] +


vs[n]
vr[n]

�
; n = 1, 2, . . . , N

(1)
where xs[n] 2 CM and xr[n] 2 CM are the surveillance
and reference measurements; s[n] 2 Cp contains the signal
transmitted by p opportunistic illuminators, Hs 2 CM⇥p

and Hr 2 CM⇥p represent the M ⇥ p channels from the
transmitter(s) to the surveillance and reference multiantenna
receivers, respectively. The parameter ✓ 2 {0, 1} determines
whether or not there is a signal Hss[n] in the surveillance
channel.

We treat the symbol sequence as a sequence of uncorrelated,
circular, Gaussian random vectors with unknown covariance
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E[s[n]s[m]

H
] = diag[�2

1 , . . . ,�
2
p ]�[n�m]. The factor loadings

Hs and Hr are unknown, to be identified in a maximum
likelihood procedure. Without loss of generality, the symbol
variances �2

i may be absorbed into these factor loadings.
The vectors vs[n] and vr[n] model the additive noise. For
notational convenience, the signal, noise, and channel vec-
tors can be stacked as x[n] = [xs[n]T ,xr[n]T ]T , v[n] =

[vs[n]T ,vr[n]T ]T and H = [HT
s ,H

T
r ]

T , respectively.
The covariance model for the signal component of Eq. (1)

is

E


✓Hs

Hr

�
s[n]sH [n]

⇥
✓HH

s HH
r

⇤
=


✓2HsH

H
s ✓HsH

H
r

✓HrH
H
s HrH

H
r

�
.

(2)
The additive noise is assumed to be temporally white, zero-
mean Gaussian distributed, and uncorrelated between the
surveillance and reference channels. The noise covariance
matrix can then be written as

E[v[n]v[m]

H
] = ⌃ =


⌃ss 0
0 ⌃rr

�
�[n�m] 2 E (3)

where E is a set of structured covariances. Four different
structuring sets are plausible models for this application:

• Model 1. Independent and identically distributed (i.i.d)
noises with identical variance at both channels: ⌃ss =

⌃rr = �2IM .
• Model 2. White noises, but with different variances

at the surveillance and reference channels: ⌃ss =

�2
sIM ,⌃rr = �2

rIM .
• Model 3. Uncorrelated noises across antennas, thus yield-

ing diagonal noise covariance matrices, ⌃ss and ⌃rr,
with unknown elements along its diagonal.

• Model 4. Noises with arbitrary spatial correlation: ⌃ss

and ⌃rr are arbitrary full-rank positive definite (psd)
matrices.

Model 4 was considered in our previous works [3] and [19],
for rank-one and rank-p signal models, respectively. The rank-
p detector for Model 4 was also reported in [20] for a different
problem. The Models 2 and 3 have recently been discussed in
[21]. In this work, we focus on Model 1 and derive GLR tests
when the noise variance is either known or unknown.

B. Detection problem

The passive radar detection problem is to test the hypothesis
that the surveillance channel contains no signal, versus the
alternative that it does:

H0 : ✓ = 0

H1 : ✓ = 1

(4)

Denote by R0 and R1 the set of measurement covariance
matrices under the null hypothesis and alternative hypothesis
for i.i.d. noises (Model 1), respectively. We have

R0 =

⇢
R : R =


0 0
0 HrH

H
r

�
+ �2I2M

�
(5)

R1 =

⇢
R : R =


HsH

H
s HsH

H
r

HrH
H
s HrH

H
r

�
+ �2I2M

�
. (6)

This detection problem essentially amounts to testing be-
tween two different structures for the composite covariance
matrix under the null hypothesis and alternative hypothesis. It
may be written as

H0 : x[n] ⇠ CN 2M (0,R), R 2 R0

H1 : x[n] ⇠ CN 2M (0,R), R 2 R1.
(7)

There are two possible interpretations of this model: (1) it
is a one-channel factor model with special constraint on the
loadings under H0; or (2) it is a two channel factor model with
constraint under H0 and common factors in the two channels.

These second-order models for the measurements, where
the signal modulates the covariance, so to speak, is the model
that results when the conditional density for the measurements
is marginalized over the distribution of the Gaussian random
vectors s[n]. It is important to distinguish this second-order
model from first-order models that treat the s[n] as unknown
random vectors to be estimated from the measurements. In
the second-order model, there are only the 2Mp parameters
of H to be estimated (under the alternative) from the 2MN
measurements, resulting in N/p measurements per parame-
ter. In the first-order model there are 2Mp + pN parame-
ters to be estimated from 2MN measurements, resulting in
2MN/(2Mp + pN) measurements per parameter. This is a
reduction in the number of measurements per parameter by
the factor (1+N/2M). For p = 1, M = 5, and N = 100, this
factor is 11. This simple reasoning will help to explain why
generalized likelihood reasoning is more effective in second-
order models, when they apply, than is first-order reasoning.
And it shows that the second-order model is based on a
marginalization over the Gaussian distribution of random s[n].

C. The Generalized Likelihood Ratio

Let us now consider N consecutive array snapshots under
a model with generic covariance matrix R

⇥
x[1] . . . x[N ]

⇤
= X 2 C2M⇥N , (8)

which are i.i.d. realizations of x[n] ⇠ CN 2M (0,R). As there
are unknown parameters under both hypotheses, the Neyman-
Pearson detector is not implementable for this composite test.
Therefore, we adopt a Generalized Likelihood Ratio Test
(GLRT), which usually results in simple detectors with good
performance [17]. The likelihood may be written as

f(X;R) =

1

⇡2MN
det(R)

N
exp

��N tr

�
SR�1

� 
, (9)

where S =

1
NXXH is the sample covariance matrix, parti-

tioned as
S =


Sss Ssr

SH
sr Srr

�
. (10)

Here Sss is the sample covariance matrix of the surveillance
channel and the other blocks are defined similarly. The gen-
eralized likelihood ratio (GLR) is

� =

f(X;

ˆR1)

f(X;

ˆR0)
, (11)
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where ˆR0 and ˆR1 are, respectively, the Maximum Likelihood
(ML) estimates of the covariance matrix under H0 and H1.
They maximize the log-likelihood function

L(R) = logdet(SR�1
)� tr

�
SR�1

�
. (12)

D. ML estimation

The following theorem is a variation on a result of [18],
using a technique of [16] and [17]. It illuminates the problem
of estimating the covariance R.

Theorem 1. For a given noise covariance ⌃, we define the
noise-whitened sample covariance matrix

˜S = ⌃�1/2S⌃�1/2
=


˜Sss

˜Ssr

˜SH
sr

˜Srr

�
(13)

with eigenvalue decomposition ˜S =

˜W ˜⇤ ˜WH , and ˜⇤ =

diag

⇣
˜�1 � ˜�2 � . . . � ˜�2M

⌘
; ˜Srr =

˜Wrr
˜⇤rr

˜WH
rr, and

˜⇤rr = diag

⇣
˜�rr,1 � ˜�rr,2 � . . . � ˜�rr,M

⌘
. Then, under H1,

the value of HHH that maximizes the likelihood (12) is

HHH
= ⌃1/2

˜W ˜D ˜WH⌃1/2 (14)

with ˜D = diag (d1 � d2 � dp � 0 . . . 0) and di = max(

˜�i �
1, 0). Under H0, ✓ ⌘ 0, the value of HrH

H
r that maximizes

the likelihood (12) is

HrH
H
r = ⌃1/2

rr
˜Wrr

˜Drr
˜WH

rr⌃
1/2
rr (15)

with ˜Drr = diag (drr,1 � drr,2 � drr,p � 0 . . . 0) and drr,i =
max(

˜�rr,i � 1, 0).

Proof. The proof for H1 is identical to Theorem 9.4.1 in
[17]. The proof for H0 is straightforward after we rewrite
the loglikelihood function using the blockwise decomposition
in (13) and use the fact that the noise covariance ⌃ is block
diagonal.

For a given ⌃, this theorem gives the value of HHH

that maximizes the log-likelihood function with respect to
R = HHH

+ ⌃. Thus, we have the solution R =

⌃1/2
˜W ˜D ˜WH⌃1/2

+ ⌃. Straightforward calculation shows
that

det(RS�1
) =

pY

i=1

min(

˜�i, 1)
2MY

j=p+1

˜�j ,

and

tr(RS�1
) =

pX

i=1

min(

˜�i, 1) +
2MX

j=p+1

˜�j .

III. GLRTS

In this section we present closed-form GLRTs for the i.i.d.
noise model when the noise variance is unknown or known.
In both cases, the model order p is assumed known and the
channel gains Hs and Hr are unknown.

A. GLR detector for unknown �2

Suppose the sample covariance matrices have these eigen
decompositions: S = W⇤WH , Sss = Wss⇤ssW

H
ss and

Srr = Wrr⇤rrW
H
rr. Under noise model 11, the ML solution

for �2 under the alternative hypothesis is obtained by realizing
that (2M�p)�1

P2M
p+1

˜�i = (2M�p)�1
P2M

p+1 �
�2�i, which

returns

�̂2
1 =

1

2M � p

2MX

i=p+1

�i. (16)

Therefore, the ML estimate of the covariance matrix under
the alternative is

ˆR1 = WDWH
+ �̂2

1I2M , (17)

where D = diag (d1, . . . , dp, 0, . . . , 0) is an 2M ⇥ 2M
diagonal matrix with di = �i � �̂2

1 .
The ML estimate of the covariance matrix under the null is

ˆR0 =


0 0

0 ˆHr
ˆHH

r

�
+ �̂2

0I2M , (18)

where

�̂2
0 =

1

2M � p
(

MX

i=1

�ss,i +

MX

i=p+1

�rr,i), (19)

ˆHr
ˆHH

r = WrrD0W
H
rr, D0 = diag (d1, . . . , dp, 0, . . . , 0) is

an M ⇥M diagonal matrix, and di = max(�rr,i � �̂2
0 , 0).

Plugging (17) - (18) into (11), the GLRT under noise
model 1 when the noise variance is unknown is given by

�1 =

(

Qpr

i=1 �rr,i) (�̂2
0)

2M�pr

(

Qp
i=1 �i) (�̂2

1)
2M�p

H1

?
H0

⌘. (20)

where pr is the largest value of i between 1 and p such that
�rr,i > �̂2

0 .

B. GLR detector for known �2

When the noise variance �2 is known, the ML estimate of
the covariance under the alternative is

ˆR1 = WDWH
+ �2I2M , (21)

where D = diag

�
�1 � �2, . . . ,�pa � �2, 0, . . . , 0

�
, and pa is

the largest value of i between 1 and p such that �i > �2.
Likewise, the ML estimate of the covariance matrix under the
null when �2 is known is

ˆR0 =


0 0
0 WrrD0W

H
rr

�
+ �2I2M , (22)

where D0 = diag

�
�rr,1 � �2, . . . ,�rr,pn � �2, 0, . . . , 0

�

with pn being the largest value of i between 1 and p such
that �rr,i > �2.

Plugging now (21) - (22) into (11), the GLRT under noise
model 1 when the variance is known is given by

�2 =

⇣Qpn

i=1
˜�rr,i

⌘
exp

⇣Ppa

i=1
˜�i

⌘

⇣Qpa

i=1
˜�i

⌘
exp

⇣Ppn

i=1
˜�rr,i

⌘e(pn�pa)
H1

?
H0

⌘, (23)

1We focus here on the case where p  2M � 1; otherwise the spatial
structure of the target plays no role and the GLRT detector is given by the
well-known sphericity test [22].
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with ˜�i = �i/�2 and ˜�rr,i = �rr,i/�2.

IV. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
GLR tests for the i.i.d. noise model by means of Monte Carlo
simulations. The input signal-to-noise-ratio (SNR) for both the
surveillance and reference channels is defined as

SNRj = 10 log10

1
M tr(HH

j Hj)

�2
, j = {s, r}.

The observations under each hypothesis are generated as
x[n] ⇠ CN 2M (0,Ri), i = {0, 1}, with R0 and R1 having the
structure in (5) and (6), respectively. We collect N snapshots
and compute the test statistic (20) for unknown �2, and (23)
for known �2.

The first example involves a scenario with M = 6 antennas,
N = 50 snapshots, SNRs = �10 dB and SNRr = �5 dB.
Fig. 1 depicts the Receiver Operating Characteristic (ROC)
curve for the GLR tests for p = 1 and p = 3. The performance
for the GLR detectors is better for rank-one signals, since
there is more spatial structure to exploit, and there are more
measurements per parameter to be estimated. For the same
reason, the benefit of knowing �2 is only marginal for p = 1,
while it is more significant for p = 3.

Probability of False Alarm
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0.8
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1

GLRT i.i.d. (known <2)

GLRT i.i.d. (unknown <2)

p = 1

p = 3

Fig. 1. ROCs for a scenario with M = 6 antennas, N = 50 snapshots,
SNRs = �10 dB and SNRr = �5 dB, N/p = 50, 50/3.

In the second example we consider a scenario with M = 8

antennas, SNRs = SNRr = �10 dB, and a rank-one signal.
Fig. 2 depicts the ROC curves for the GLR tests with N = 20

and N = 50 snapshots. As we observe, knowing the true �2,
in addition to being a model of limited practical importance,
does not provide a significant benefit.

In the last example, we study the robustness of the proposed
GLR tests under mismatched noise models. We consider
a scenario with M = 5 antennas, a rank-one signal and
N = 50 snapshots. In the detectors, the noises are assumed
to have equal variances. But in the experiments, the noises at
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GLRT i.i.d. (known <2)

N =20

N =50

Fig. 2. ROCs for a scenario with M = 8 antennas, SNRs = SNRr = �10
dB, and p = 1; N/p = 20, 50.

both arrays are uncorrelated with different variances or have
arbitrary spatial correlation, which corresponds respectively to
Models 3 and 4 as described in Section II. For comparison
we include the GLRT under Model 4, which compares the
product

Qp
1(1�k2i ) to a threshold, where the ki’s are squared

canonical coordinates of the two channel sample covariance
matrix [19], [20]. For the GLRT with known noise variance we
use �2

=

tr(⌃)
2M . Fig. 3 shows the results obtained for different

SNR values. Not surprisingly, the GLRT in [19] provides the
best results for both noise models (it is matched to Model 4).
In general, the GLRT with assumed unknown noise variance
is more robust against mismatched noise models than is the
GLRT with assumed known noise variance.
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Noise Model 4, SNRs = -12, SNRr = 0

Noise Model 3, SNRs = -15, SNRr = -5

Fig. 3. Performance under mismatched noise models for a scenario with
M = 5 antennas, p = 1, and N = 50 snapshots, N/p = 50.
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V. CONCLUSION

In this paper we have addressed a second-order detection
problem motivated by passive radar. The problem is to detect
a common rank-p signal in two MIMO channels. It turns out
that the problem is a problem in factor analysis, where there
are constraints on the factor loadings and the factors. We have
derived the GLRTs for the case of common noise variances in
the two MIMO channels when the noise variance is unknown
or known. Numerical simulations indicate that the GLRT for
unknown �2 is more robust and of more practical interest than
the test for known noise variance, which is a model of more
limited applicability.

The second-order model we assume in our detectors, with
the signal component appearing as a rank-p component in
the measurement covariance, amounts to a marginalization
over the Gaussian distribution of the symbols transmitted
from transmitters of opportunity. This leaves only the channel
matrices to be estimated in a GLR theory, or marginalized out
in a Bayesian theory. For the examples we have considered,
where the number of measurements per parameter is on
the order of 50, the second-order GLR appears to perform
satisfactorily.
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