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NPM1c and NRAS-G12D cooperate to cause high penetrance AML in mice.

Aggressive onset of mutant NPM1-FLT3 AML is underpinned by distnctve molecular and cellular synergies.
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Abstract

Mutatons  afectng  NPM1 deine  the  commonest  subgroup  of  acute  myeloid  leukemia

(AML).  They  frequently  co-occur  with  mutatons  of  FLT3,  usually  internal  tandem

duplicatons (ITD), and less commonly of  NRAS or  KRAS.  Co-occurrence of mutant  NPM1

with  FLT3-ITD carries a signiicantly worse prognosis than the  NPM1-RAS  combinaton. To

understand the molecular basis of these observatons we compare the efects of the two

combinatons  on  hematopoiesis  and  leukemogenesis  in  knock-in  mouse  models.  Early

efects of  these mutatons on hematopoiesis  show that  compound  Npm1cA/+;NrasG12D/+ or

Npm1cA;Flt3ITD share  a  number  of  features:  Hox gene  over-expression,  enhanced  self-

renewal,  expansion  of  hematopoietc  progenitors  and  a  bias  towards  myeloid

diferentaton. The most notable diferences were that  Npm1cA;Flt3ITD mutants, displayed

signiicantly  higher  peripheral  leucocyte  counts,  early  depleton  of  common  lymphoid

progenitors and a monocytc bias compared to the granulocytc bias observed in  Npm1cA/

+;NrasG12D/+ mutants.  Underlying  this  was  a  striking  molecular  synergy  manifested  as  a

dramatcally altered gene expression proile in  Npm1cA;Flt3ITD,  but not Npm1cA/+;NrasG12D/+,

progenitors compared to wild type.  Both compound models developed high penetrance

AML  although  latency  in  Npm1cA/+;NrasG12D/+ mutants  was  signiicantly  longer  (median

survival 138 days post-pIpC in Npm1cA/+;NrasG12D/+ vs 52.5 days in Npm1cA;Flt3ITD mice). During

AML evoluton, both models  acquired additonal copies of the mutant Flt3 or Nras alleles,

but only Npm1cA/+;NrasG12D/+  mice showed acquisiton of other mutatons observed in human

AML, including IDH1 R132Q. Our results show that molecular complementarity underlies the

frequent  co-occurrence  of  mutant  NPM1 and  FLT3-ITD, and  the  poorer  AML prognosis

associated with this mutaton combinaton compared to NPM1-NRAS.
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Introducton

Advances in genomics have deined the somatc mutatonal landscape of acute myeloid leukemia

(AML), leading to a detailed characterisaton of their prognostc signiicance and paterns of mutual

co-occurrence or exclusivity.1,  2 Mutatons in  NPM1, the gene for Nucleophosmin, characterise the

most common subgroup of AML representng 25-30% of all cases, result in cytoplasmic dislocaton of

the protein (NPM1c) and are mutually exclusive of leukemogenic fusion genes.1-3 As is ofen the case

for fusion genes, progression to AML afer the acquisiton of mutant NPM1 is contngent upon the

gain of additonal somatc mutatons such as those that actvate STAT and/or RAS signalling.4 For

reasons that are not clear, this transforming step favours acquisiton of internal tandem duplicatons

in FLT3 (FLT3-ITD) over other somatc mutatons with similar efects such as those involving NRAS or

KRAS.1-4 Furthermore,  the  NPM1c/FLT3-ITD combinaton  is  associated  with  a  signiicantly  worse

prognosis compared to combinatons of NPM1c with mutant NRAS, KRAS or other mutatons.2

Whilst  the  adverse  prognostc  impact  of  NPM1/FLT3-ITD vs  NPM1/RAS co-mutaton  infuences

clinical decisions in AML, its molecular basis and that of the frequent co-occurrence of NPM1c and

FLT3-ITD in AML are unknown. Here, in order to investgate these phenomena, we compare the

interacton of  Npm1c with  Flt3-ITD to its  interacton with  NrasG12D in  knock-in mice.  Individually,

knock-in  models  of  NPM1c,  FLT3-ITD  and  NRAS-G12D display  enhanced  myelopoiesis  and

progression to myeloproliferatve disorders or AML in a signiicant proporton of animals. 5-7 Also, we

and others have previously shown that Npm1c and Flt3-ITD synergise to drive rapid-onset AML, but

the interacton between  Npm1c and mutant  NrasG12D has not, to our knowledge, been previously

investgated in knock-in mice.8 Our indings reveal that the combinaton of Npm1c and Flt3-ITD has

an early profound efect on gene expression and hemopoiesis, whilst Npm1c and Nras-G12D display

only modest molecular synergy and subtler cellular changes. Also, whilst both types of co-mutaton

drove AML in the majority of mice, the leukemias in Npm1c;Flt3-ITD mice were more aggressive and

undiferentated than those which developed in Npm1c;Nras-G12D animals. At the genomic level,

there  was  frequent  ampliicaton  in  both   models  of  the  mutant  Flt3-ITD or  Nras-G12D allele,

however additonal somatc mutatons in AML driver genes (e.g. Idh1 and Ptpn11) were seen only in

Npm1c;Nras-G12D  AMLs.  Our indings  propose that  the molecular  synergy between  Npm1c and

Flt3-ITD underpin the co-occurrence paterns, phenotype and prognosis of NPM1-mutant AML.
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Materials and methods

Animal husbandry

Mx1-Cre+;Npm1fox-cA/+ were  crossed with  NrasLSL-G12D or  Flt3ITD mice,  to  generate  triple  transgenic

animals (Mx1-Cre;Npm1fox-cA/+;NrasLSL-G12D/+ and Mx1-Cre;Npm1fox-cA/+;Flt3ITD/+).9 To actvate conditonal

alleles (Npm1cA and NrasG12D) in approximately 12-14 week old Mx1-Cre;Npm1fox-cA/+;NrasLSL-G12D/+ mice,

Mx1-Cre was induced by intraperitoneal administraton of 5 doses of 200g pIpC over a 10 day

period. As described recently, Mx-1 Cre;Npm1Flox-cA/+;Flt3ITD/+ mutants do not require pIpC inducton of

Mx1-Cre and recombinaton of the  Npm1fox-cA allele8. For pre-leukemic analyses  Npm1cA/+;NrasG12D/+

were  sacriiced  4-5  weeks  post  pIpC  and  Npm1cA/+;Flt3ITD/+ were  sacriiced  at  5  weeks  of  age.

Genotyping for mutant alleles was performed as previously.5, 10

Hematological measurements

Blood counts were performed on a VetABC analyzer (Horiba ABX).

Histopathology

Formalin  ixed,  parafn  embedded  (FFPE)  sectons  were  stained  with  hematoxylin  and  eosin.

Samples from leukemic mice were also stained with ant-CD3, ant-B220 and ant-myeloperoxidase,

and  detected  using  immunoperoxidase.  All  material  was  examined  by  two  experienced

histopathologists (P.W. and M.A.) blinded to mouse genotypes. Selected samples were also studied

for total ERK1/2 (p44/42 MAPK, clone 137F5, Cell Signalling) and pERK1/2 (phosphor-p44/42 MAPK,

clone 197G2, Cell Signalling).

Colony-forming assays and serial re-platng

Nucleated cells (3 x104) from bone marrow aspirates of mutant and wild-type mice were suspended

in cytokine-containing methylcellulose-based media (M3434, Stem Cell Technologies) and plated in

duplicate wells of 6-well plates. Colony-forming units (CFUs) were counted 7 days later. For serial re-

platng, 3 x104 cells were re-seeded and colonies counted afer 7 days.

Flow cytometry and cell sortng

For fow cytometry, single cell suspensions of bone marrow cells or splenocytes were passed through

a 0.4m nylon ilter and suspended in 0.85% NH4Cl for 5 minutes to lyse erythrocytes. Cells were

then suspended in Hank's  Balanced Salt Soluton (HBSS) supplemented with 2% FCS and 10M

HEPES. Progenitor populatons were deined and stained as described in supplementary methods.
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Gated cellularity was calculated by multplying the percentage of gated cells by the total number of

nucleated cells from bone marrow samples afer erythrocyte depleton. 

Retroviral transducton of bone marrow progenitors

Lineage depleted bone marrow aspirates, isolated from wildtype and Flt3ITD/+ mice, were transduced

with  MSCV-Hoxa9-GFP and/or  MSCV-Nkx2-3-CFP retroviruses  and expanded for  7  days  in  liquid

culture (X-Vivo, Lonza, supplemented with 10ng/ml IL-3, 10ng/ml IL-6 and 50ng/ml SCF, Peprotech).

CFP, GFP or double positve cells were FACS sorted and 2.5 x104 cells re-plated in semi-solid media as

previously described. For cloning strategy, see supplemental methods.

Microarray and comparatve genomic hybridizaton analysis

Mouse  gene  expression  proiles  were  generated  using  the  Illumina  MouseWG-6  v2  Expression

BeadChip platorm (Illumina). DNA copy number variaton in leukemic samples was assessed using

the Mouse Genome Comparatve Genomic Hybridizaton 244K Microarray (Agilent Technologies).

Full details of analysis are provided in supplemental methods. For mouse gene expression proiling,

n=4-10 (Lin-) or n=3-5 (MPP). 

AML exome sequencing and mutaton calling

Whole exome sequencing (WES) of AML bone marrow and control C57BL/6N or 129Sv tail DNA was

performed  using  the  Agilent  SureSelect  Mouse  Exon  Kit  (Agilent  Technologies)  and  paired-end

sequencing  on  a  HiSeq2000  sequencer  (Illumina).  Validaton of  mutatons  was  performed using

MiSeq sequencing (Illumina) of amplicon libraries as described before (See Supplemental Methods

Figure S1 and Supplemental  Tables  6  and 7 for  primer sequences).11 Full  details  of  analysis  are

provided in supplemental methods.

Statstcs

Student t test or one-way analysis of variance (ANOVA, Bonferroni adjusted) were used for statstcal

comparisons as appropriate and unless stated.  Error  bars  represent standard error of  the mean

(SEM). Signiicant values are reported as: * P<0.05 Vs wildtype, ** P<0.01 Vs wildtype, *** P<0.001

Vs wildtype,  P<0.05 Vs  Flt3ITD/+,  P<0.01 Vs  Flt3ITD/+,  P<0.001 Vs  Flt3ITD/+),   P<0.05 Vs

NrasG12D/+,  P<0.01  Vs  NrasG12D/+,   P<0.001  Vs  NrasG12D/+,  † P<0.05  Npm1cA/+;  NrasG12D/+ Vs

Npm1cA/+; Flt3ITD/+, †† P<0.01 Npm1cA/+; NrasG12D/+ Vs Npm1cA/+; Flt3ITD/+, ††† P<0.001 Npm1cA/+; NrasG12D/

+ Vs Npm1cA/+; Flt3ITD/+.
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Results

Mutant Npm1 co-operates with Nras-G12D and Flt3-ITD to increase self-renewal of hematopoietc

progenitors and expand myelopoiesis

To  understand  the  impact  of  the  studied  mutatons  alone  and  in  combinaton,  we  studied

hemopoietc cell compartments of Npm1cA/+;NrasG12D/+, Npm1cA/+;Flt3ITD/+, Npm1cA/+; NrasG12D/+, Flt3ITD/+

and wild  type  (WT)  control  mice  sacriiced  4-6  weeks  afer  actvaton  of  conditonal  mutatons

(Figure 1). Compared to Flt3ITD/+ single mutants, Npm1cA/+; Flt3ITD/+ mice showed a marked increase of

peripheral  WCCs  (56±13.4  vs  6.5±0.5  x106 g/L,  p<0.001)  and  spleen  weights  (0.63g  vs  0.16g,

p<0.001),  but  not  of  total  bone marrow cellularity  (Figure  1B).  By  contrast,  both  NrasG12D/+ and

Npm1cA/+;NrasG12D/+ mutants  exhibited  only  subtle  increases  in  spleen  size  (WT:  0.12g,  NrasG12D/+:

0.18g, Npm1cA/+;NrasG12D/+: 0.19g, p<0.01 and p<0.001 respectvely) and bone marrow cellularity  (WT:

28.1±1.9 x 106, NrasG12D/+: 43.7±2.6 x 106 and Npm1cA/+;NrasG12D/+: 41.3±3.2 x 106, p<0.01 compared to

WT) (Figure 1B).

Expanded myelopoiesis and myeloproliferaton were previously documented in single NrasG12D/+ and

Flt3ITD/+ mutant mice.6, 7 The additon of mutant Npm1 augmented these phenotypes (Supplemental

Figure S1A). In partcular, total Mac-1+ splenocytes increased in number (27%-50% for NrasG12D/+; and

from 57-73% for  Flt3ITD/+).  Notably, these cells were predominantly granulocytc (Mac-1+/Gr-1+) in

Npm1cA/+; NrasG12D/+ mice in contrast to cells from Npm1cA/+; Flt3ITD/+ mice, which were predominantly

monocytc Mac-1+/Gr-1- (Supplemental Figure S1A).  

NrasG12D/+  mice  have  been  shown  to  have  increased  hematopoietc  stem  and  progenitor  cell

(HSCP)numbers,  due  to  increased  proliferaton  and  self-renewal  of  the  HSC  and  MPP

compartments.12,  13 Our  results  conirm  these  data  demonstratng  signiicant  increases  in  total

myeloid progenitors, GMPs and CMPs, as well as the total number of early progenitors (LSK, and

MPP) in both  Npm1cA/+; NrasG12D/+ and  NrasG12D/+ bone marrow cells when compared to WT controls

(Figure 1C and Supplemental Figure S2A). Our data also reveal that  NrasG12D/+ stem and progenitor

cell  compositon is  largely  unaltered  by  the  additon  of  mutant  NPM1.  Also  in  agreement  with

previous studies, hematopoiesis in  Flt3ITD/+ mice was characterised by increased numbers of total

myeloid progenitors (LK p<0.05 and GMPs p<0.01) and early progenitor populatons (LSK, MPP and

LMPP, p<0.01, p<0.01 and p<0.05 respectvely) (Figure 1C and Supplemental Figure S2A).  14,  15 Of

note,  there  was  a  substantal  decrease  in  the  size  of  the  common  lymphoid  progenitor  (CLP)

populaton in Flt3ITD/+ and Npm1cA/+;Flt3ITD/+ mice (Figure 1C) but not  in single or compound NrasG12D/+

mutants. This was in part due to the reducton in Il-7Rα-positve cells (Figure S2B). Npm1cA/+;Flt3ITD/+

7

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189



Dovey et al MOLECULAR SYNERGY IN NPM1 MUTANT AML

mice also exhibited robust increases in numbers of LK, GMP, LSK, MPP and LMPP populatons (over

what was observed with Flt3ITD/+) when compared to WT. In direct comparison with Flt3ITD/+ mutants,

numbers  of  CMP and MEP progenitors  in  Npm1cA/+; Flt3ITD/+ mice were reduced (from 55x103 to

16x103, p<0.05 and from 61x103 to 17x103, p<0.05), yet GMPs (proposed as direct descendants of

CMPs 16) remain expanded when compared to  Npm1cA/+;NrasG12D/+  mutants. This demonstrates that

Flt3ITD/+ mutant  myelopoiesis  is  dramatcally  altered  by  the  additon  of  Npm1cA/+.  Also,  when

compared  to  Npm1cA/+;NrasG12D/+  mice,  Npm1cA/+;Flt3ITD/+  mice  showed  an  increase  in  LMPPs,

reducton in lymphoid progenitors (CLP) and increase in GMPs (Figure 1E).

In order to assess the efects on the earliest detectable hematopoietc stem cell compartment (HSC)

we opted to perform E-SLAM staining (CD45+/EPCR+/CD48-/CD150+).17 Importantly, and unlike many

other HSC FACS strategies, this does not rely on cell  surface expression of FLT3, and reveals the

percentage of E-SLAM detectable HSCs is decreased in Npm1cA/+;NrasG12D/+ mice further so in Npm1cA/

+;Flt3ITD/+mutants (Figure 1D). Finally, using serial re-platng of bone marrow cells in semi-solid media

we show that  Npm1cA/+ co-mutaton markedly  increased  self-renewal  of  Flt3ITD/+ cells  (as  shown

previously 8) and also of NrasG12D/+ (Figure 1F). 

The Npm1cA/+ transcriptonal signature persists in double mutant hemopoietc progenitors 

To  examine  their  combined  efects  on  transcripton  we  performed  comparatve  global  gene

expression  proiling  of  lineage  negatve  (Lin -)  bone  marrow  cells  using  microarrays.  Npm1cA/+;

NrasG12D/+  and  Npm1cA/+;Flt3ITD/+ cells  displayed  a  dramatcally  altered gene  expression  proile

compared  to  single  NrasG12D/+  or  Flt3ITD/+ mutants  (Figure  2A  and  Supplemental  Figure  S3B).

Previously, we showed that mouse Npm1cA/+ Lin-  cells overexpressed several homeobox (Hox) genes

(in partcular overexpression of  Hoxa5,  Hoxa7,  Hoxa9 and two other homeobox genes,  Hopx and

Nkx2-3).18 Here, we show that this signature, absent from NrasG12D/+ or Flt3ITD/+ singular mutant mice,

persists  in  compound  Npm1cA/+;NrasG12D/+  and Npm1cA/+;Flt3ITD/+ Lin- progenitors.  (Figure  2A,

Supplemental Figure S3A-C). Gene Set Enrichment Analysis (GSEA) of Npm1cA/+ single and compound

mutant cell  expression proiles,  showed signiicant enrichment for genes up-regulated in NPM1-

mutant and MLL-fusion gene positve human leukemias (Figure 2A). 

Overexpression of the homeobox gene NKX2.3 in NPM1-mutant AML

Using  the  human  TCGA  AML  dataset,  we  compared  gene  expression  proiles  of  NPM1  mutant

(NPM1c+ve) to NPM1 wildtype (NPM1wt) AML.1 In agreement with previously published analyses, both
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HOXA and  HOXB genes were signiicantly overexpressed in NPM1c+ve AML (Figure 2B).19 We also

noted that another homeobox gene, NKX2-3, was also overexpressed in keeping with our indings in

Npm1cA/+ mice (Figure 2A). Recently, NKX2-3 overexpression was shown to be the most efectve

discriminant  of  MLL-MLLT4 (MLL-AF6)  driven  AML to AML driven by  other  MLL-fusion genes. 20

Whilst overexpression of Hox genes such as Hoxa9 has been shown to impart increased self-renewal

and proliferaton of hematopoietc progenitors, the efects of Nkx2-3 overexpression are unknown. 21

To study this we performed retroviral gene transfer of fuorescently tagged Nkx2-3-CFP and Hoxa9-

GFP into wildtype and Flt3ITD/+ Lin-  bone marrow cells. Cells were subsequently sorted and plated in

semi-solid methylcellulose for colony formaton assays (Figure 2Ci). We ind that overexpression of

Nkx2-3 increases clonogenic potental, albeit to a lesser extent compared to Hoxa9 overexpression,

in both wildtype and  Flt3ITD/+ progenitors. Notably, this is not augmented in combined transfected

cells. (Figure 2Cii). 

In order to mitgate the impact of  the studied driver mutatons on cell  surface phenotypes, we

performed  transcriptome  analysis  on  a  homogeneous  populaton  of  puriied  LSK-multpotent

progenitor cells (MPPs, cell surface proile: Lin-/CD34+/Flt3+/CD48+/CD150-) (Figure 2D). Transcripton

proiles of  MPPs from single  NrasG12D/+  or  Flt3ITD/+ and the respectve  Npm1cA/+ compound mutant

MPPs revealed distnct transcriptonal changes. In partcular, compared to WT, both  NrasG12D/+ and

Npm1cA/+;NrasG12D/+ MPPs displayed similarly small numbers of diferentally expressed genes yet only

~20% of these were shared (Figure 2Di). Also, gene/pathway enrichment analyses did not uncover

signiicant overlap with a pre-established expression signature (data not shown). In contrast, the

“additon”  of  Npm1cA/+  to  Flt3ITD/+ in  MPPs  led  to  diferental  expression  of  a  large  number  of

additonal genes, whilst also retaining most of the transcriptonal changes atributable to  Flt3ITD/+

(Figure 2Dii). This demonstrates the powerful synergy between  Npm1cA/+  and  Flt3ITD/+ (Figure 2Dii,

Tables S2a-b). Pathway analysis of genes diferentally expressed in Npm1cA/+; Flt3ITD/+ MPPs revealed

enrichment of genes in the JAK-STAT pathway (Supplemental Figure 2E, Supplemental Tables S4a-b),

including the negatve regulators  Cish and  Socs2 (Figure 2F).  A number genes, encoding proteins

involved  in  MAPK  signalling  are  also  deregulated  (i.e.  down-regulaton  of  the  MAPK  pathway

inhibitor,  Dusp6 and up-regulaton of actvators,  Rasgrp1, Rasgrf2 and  RaslIIb) (Figure 2F).  Other

notable  dysregulated  genes included  those involved in  chromatn organisaton (down-regulated,

Hdac10, Hdac11, Cbx7, Fbxl10/Kdm2b, Chd3, Satb1 and H1F0) and hematopoietc lineage or myeloid

cell diferentaton (Bcl6,  Bmp1,  Lmo2,  Ldb1  all down-regulated with Cd74 and  Thy1  up-regulated)

(Figure  2F,  Supplemental  Figure  3D).  Of  partcular  note  is  the  down regulaton  of  two  positve

regulators of murine lymphoid hemopoiesis, Bcl11a and  Kdm2a/Fbxl10 (knock-out mice of either

gene are devoid of detectable CLPs22, 23). Many of the genes in our Npm1cA/+; Flt3ITD/+ data set are also
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present as deregulated in a recently published Tet2 -/-;Flt3ITD/+ mouse model that also develops AML

(76/418  genes,  Supplemental  Figure  3F  and  Supplemental  Table  6,)  which  serves  to  verify  our

dataset but also reveals a distnguishing expression signature of FLT3-ITD which includes Socs2, Id1,

Csfr3r and Bcl11a. In contrast a lack of correlaton between deregulated gene sets of Npm1cA/+;Flt3ITD/

+ and  Npm1cA/+;NrasG12D/+  MPPs  (Supplemental  Figure  S3E)  emphasises  the  molecular  distncton

between these compound mutants. 24

Notably,  Hox  gene expression was not  signiicantly  altered in  MPP populatons from any of  the

Npm1cA/+ models when compared to wildtype or to single NrasG12D/+ and Flt3ITD/+ mutants (Figure 2E

and Figure S3C).  These results  are  in agreement  with observatons that  Hox gene expression in

human  NPM1c+ve AML  is  comparable  to  that  seen  in  normal  HSCs  and  myeloid  progenitors.19

However, although we observe expanded myeloid progenitor populatons, these data propose that

the observed patern of homeobox gene dysregulaton is a direct molecular consequence of NPM1c

rather than a change in cellular compositon.

Npm1cA/+ and NrasG12D collaborate to promote high penetrance AML

To understand the leukemogenic potental of combined Npm1cA/+ and NrasG12D mutatons, we aged

cohorts of Npm1cA/+;NrasG12D/+ mice along with Npm1cA/+;Flt3ITD/+, single Npm1cA/+, NrasG12D and Flt3ITD/+

mutant  and wildtype control  mice.  Compound  Npm1cA/+;NrasG12D/+ and  Npm1cA/+;Flt3ITD/+ mice had

signiicantly reduced survival (median 138 and 52.5 days respectvely) when compared to wildtype

(618  days),  Npm1cA/+ (427  days),  NrasG12D/+ (315  days)  and  Flt3ITD/+  (also  315  days)  (Figure  3A,

Supplemental Figure S4A). No diference in the survival of  NrasG12D/+ and  Flt3ITD/+ mutant mice was

observed (p value = 0.85, see Supplemental  Figure S4A for all  comparisons).  Moribund  Npm1cA/

+;NrasG12D/+ and  Npm1cA/+;Flt3ITD/+ mice displayed increased spleen and liver  weights  compared to

moribund  mice  of  other  genotypes  (Figure  3B).  At  tme  of  sacriice  they  also  had  signiicantly

increased blood leukocyte (32.6±12,  NrasG12D/+ compared to 359±62 x106/L,  Npm1cA/+;NrasG12D/+; and

151±34, Flt3ITD/+ compared 250±33 x106/L, Npm1cA/+; Flt3ITD/+) and reduced platelet counts (1046±227,

NrasG12D/+ compared  to  504.9±209  x106/L,  Npm1cA/+;  NrasG12D/+;  and  607±99,  Flt3ITD/+ compared  to

225±25.8 x106/L, Npm1cA/+; Flt3ITD/+). Iniltraton of spleen tssue with myeloid cells was conirmed by

FACS (Mac-1/Gr-1) (Supplemental Figure S4B).  Independent histopathological analysis of formalin

ixed  parafn  embedded  tssues  from  moribund  mice  (Figure  3C)  revealed  an  increase  in  AML

incidence from 41% (Flt3ITD/+) to 100% in Npm1cA/+;Flt3ITD/+ samples and from 13% (NrasG12D/+) to 85%

in Npm1cA/+;NrasG12D/+ samples (45% AML with maturaton, AML+ and 40% AML without maturaton,

AML- as deined by Bethesda classiicaton) (Figure 3C). 
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Additonal somatc mutatons are required for progression to AML in Npm1cA/+; NrasG12D/+ mice.

Npm1cA/+;Flt3ITD/+  mice succumb to AML very rapidly, compared to Npm1cA/+  and  Npm1cA/+;NrasG12D/

+mice. We hypothesised that the slower onset of AML in the later two genotypes  may be due to the

requirement for additonal cooperatng somatc mutatons. To test this, we performed whole exome

sequencing and array comparatve hybridisaton (aCGH) of AMLs from Npm1cA/+, Npm1cA/+;Flt3ITD/+and

Npm1cA/+;NrasG12D/+ mice.  We irst  conirmed the  frequent  development  of  loss-of-heterozygosity

(LOH) at the  Flt3 locus in  Npm1cA/+;Flt3ITD/+ AMLs  8,  25 and used quanttatve amplicon sequencing

(MiSeq; Methods, Supplemental Methods Figure S1) to quantfy the  Flt3ITD variant allele fractons

(VAFs), which were greater than 0.5 in 5/5 (range: 0.55-0.95, Figure 4Ai). Results of aCGH showed

that  LOH  was  copy-neutral  (i.e.  acquired  uniparental  disomy,  Supplemental  Figure  4Aii),  with

duplicaton of the Flt3ITD allele. Using another quanttatve amplicon sequencing assay we also show

that  recombinaton  of  the  Npm1fox-cA  allele  was  complete  or  near-complete  (Figure  S5A).

Interestngly,  aCGH of  Npm1cA/+;NrasG12D/+ samples revealed ampliicaton of chr3 in 5/10 samples

tested (Figure 4Bi). This was exclusively seen in Npm1cA/+;NrasG12D/+ AMLs and mapped to a minimally

ampliied  region  (chr3:  102743581-103470550)  which  contained  the  genes  Nr1h5,  Sike1,  Csde1,

Ampd1,  Dennd2c,  Bcas,  Trim33 and  Nras (Supplementary  Table  S10).  This  was  conirmed  by

amplicon speciic MiSeq PCR of the NrasG12D allele and demonstrates gains of mutant Nras in these

samples. This assay also identied gains of mutant Nras in 3 of 5 copy neutral samples by aCGH at

the Nras locus (and 3 out of 4 further samples not assayed by aCGH). In summary, increased NrasG12D

dosage was detected in 11/14 Npm1cA/+;NrasG12D/+ AMLs (Figure 4Bii). Staining of FFPE tssues from

Npm1cA/+;NrasG12D/+ AMLs for  pERK1/2 (actvated downstream of  mutant  RAS),  demonstrated the

level of RAS pathway actvaton approximately correlated with NrasG12D gene dosage (Figure 4C). 

Whole  exome  sequencing  of  AML  samples  revealed  the  average  cumulatve  number  of  single

nucleotde variants (SNVs) and small insertons or deletons (Indels) per AML sample was positvely

correlated  to  median  survival  rates.  That  is,  Npm1cA/+ 6.8±0.9,  Npm1cA/+;  NrasG12D/+ 3.3±0.5  and

Npm1cA/+; Flt3ITD/+2.6±0.7 (mean number of mutatons ± S.E.M.) (Figure 5A). Given the short latency

to  AML,  it  is  unsurprising  that  Npm1cA/+;Flt3ITD/+ AMLs  exhibit  the  fewest  mutatons.  Moreover,

Npm1cA/+ AMLs spontaneously acquire mutatons in genes involved in RAS signalling (NrasQ61H, CblS374F,

Ptpn11S502L and  Nf1W1260*/R683*)  conirming  this  genetc  interacton.   Likewise,  detecton  of  a

spontaneous tyrosine kinase domain mutaton in Flt3, (Flt3D842G) further conirms the importance of

mutant  FLT3  in  the  progression  of  mutant  NPM1  AML  (Figure  5B,  Supplemental  Table  9).

Interestngly, another spontaneously acquired mutaton, in a single Npm1cA/+;NrasG12D/+ AML, occurs
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in the Idh1 gene (R132Q) and although R132H/R132C   are the commonly detected mutatons in

human  AML,1 the  R132Q  mutaton  has  been  demonstrated  as  being  an  equivalent  pathogenic

variant in chondrosarcoma.26  aCGH also reveals the presence of complete or partal gain of chr7 in

7/8 Npm1cA/+ and 4/9 Npm1cA/+; NrasG12D/+ AMLs (Figure 5C and Supplemental Figure S5B). A minimally

ampliied region contains a number of genes previously implicated in leukemic transformaton such

as  Nup98, Wee1  and  Eed  (Supplemental Figure S5C).18,  28,  29  The ampliied region of murine chr7 is

syntenic to human chr11 (Supplemental Table S11). Trisomy 11 has been reported in human AML

and MDS, ofen in concert with  MLL-PTD mutatons.30,  31 Single copy loss of chromatn modifying

enzymes  commonly  found  in  NK-AML,  WT1,  Asxl1 and  Dnmt3b occurs  simultaneously  in  one

Npm1cA/+  sample (Supplemental  Figure S5D) and a  focal  deleton of  Ezh2 is  detected in  a single

Npm1cA/+;NrasG12D/+ AMLs (Figure 5c). Other signiicant chromosomal gains include a region of chr6 in

RN8 (which contains the oncogene Ret as well as Kras) and two instances of chr15 ampliicaton, RN3

and RN6 which contain the Ghr gene, a common inserton site in our Npm1cA/+  transposon insertonal

mutagenesis screen  (Figure 5C, Supplemental Figure S6 and Supplemental Table 10 for full results).

18

Discussion

Whilst the mutatonal drivers of AML and their paterns of co-occurrence are now well understood,

the molecular basis for the frequency and prognostc impact of these paterns remains unknown. Of

partcular  clinical  relevance  are  the  co-occurrence  paterns  of  mutant  NPM1,  the  equal  most

common mutaton type in human AML.1,2 Co-mutaton of  NPM1 with  FLT3-ITD is both signiicantly

more frequent and carries a worse prognosis than co-mutaton of  NPM1 with  NRAS or KRAS.  To

understand the basis  of  this  observaton we investgated the interactons of  these mutatons in

bespoke  experimental  models  (Figure  1A).   We  irst  looked  at  the  short-term  impact  of  these

mutatons on hemopoiesis  in young mice and conirmed that single  Npm1cA/+ mutant mice have

normal  bone  marrow  cellularity,  white  blood  cell  counts  (WCC)  and  splenic  weight.18 Also,  as

described before, single Flt3ITD/+ and NrasG12D/+ had moderate but signiicant increases in splenic size,

whilst  NrasG12D/+  also  had  raised  WCC  and  bone  marrow  cellularity.6,7 However,  whilst  the

introducton of Npm1cA/+ into the NrasG12D/+ background did not alter these parameters signiicantly,

the Npm1cA/+;Flt3ITD/+ co-mutaton led to a dramatc rise in white cell count and splenic size (Figure

1B). At the cellular level, the Npm1cA/+; NrasG12D/+ combinaton did not lead to signiicant changes on

the size of progenitor and stem cell  compartments when compared to  NrasG12D/+ alone. In sharp

contrast, when compared to  Flt3ITD/+ single mutants,  Npm1cA/+;Flt3ITD/+ mice displayed reductons in
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CMP  and  MEP  and  increases  in  LSK  progenitors.  Furthermore,  Npm1cA/+;Flt3ITD/+ mice  showed  a

profound reducton in HSCs (Figure 1 C–E). 

This  diferental  impact  of  Npm1cA/+  on  Flt3ITD/+ versus  NrasG12D/+ was  refected  in  the  marked

diferences in gene expression proiles (GEP) between these two types of double-mutant mice. In

fact  the  Npm1cA/+;NrasG12D/+ model  displayed only minimal  diferences  to  single  NrasG12D/+,  whilst

Npm1cA/+;Flt3ITD/+ lin- progenitors had profoundly diferent GEPs to  Flt3ITD/+ refectng the dramatc

impact of this combinaton on gene expression and in turn on progenitor cell fate. In order to discern

the efects on transcripton from changes in cellular compositon, we studied gene expression in

puriied MPPs. Interestngly, whilst the impact of “adding” Npm1cA/+ was much more dramatc with

Flt3ITD/+ than  with  NrasG12D/+  (Supplemental Figure  S3),  the  characteristc  Hox gene  signature  of

Npm1cA/+  was not detectable in  MPPs (Figure 2D-F).  By contrast,  other diferences in  MPP gene

expression  between  Npm1cA/+;NrasG12D/+ and  Npm1cA/+;Flt3ITD/+  may  have  a  role  in  the  observed

cellular phenotypes, for example Kdm2b, a critcal gene for lymphopoiesis  (is  down-regulated in

Npm1cA/+;Flt3ITD/+  (Figure 2F and Supplemental Figure S3D), which displays a signiicant reducton in

CLPs.22 Our transcriptome analysis of mouse progenitors and human AML reveals overexpression of

Nkx2-3 to be a distnguishing molecular feature of mutant NPM1. NKX2-3 has been described as a

prominently expressed and a novel distnguishing marker of MLL-AF6 and MLL-ENL from other of

forms of MLL leukemia (fusion or PTD). 20, 32 Here we report this phenomenon in human NPM1c+ve NK-

AML. A full  appreciaton of  Nkx2-3 over-expression and how it may contribute to the efects on

leukemogenesis  has  yet  to  be  discerned  and  may  warrant  closer  inspecton,  especially  as  it  is

suggestve  of  a  common  mechanism  of  deregulaton  of  homeobox  gene  expression  in  these

leukemia sub-types. 

To study how these diferences impact on leukemogenesis we aged double mutant mice and report

that,  like  Npm1cA/+;Flt3ITD/+ animals  (Mupo  et  al8),  Npm1cA/+;NrasG12D/+ mice  also  develop  highly

penetrant AML. However, AML latency was markedly shorter in Npm1cA/+;Flt3ITD/+ (median, 52.5 days)

than in Npm1cA/+; NrasG12D/+ (median, 138 days) mice. Interestngly single mutant Flt3ITD/+ and NrasG12D/

+ mice did not display a diferent survival (Figure 3A) indicatng that the interacton with Npm1cA was

central  to  this  diference.  Also,  Npm1cA/+;Flt3ITD/+ AMLs lacked myeloid  diferentaton,  which was

frequently  seen  in  Npm1cA/+;NrasG12D/+ leukemias.  To  understand  the  genetc  events  involved  in

leukemic  progression,  we  performed  copy  number  analysis  and  exome  sequencing  of  Npm1cA/

+;Flt3ITD/+ and  Npm1cA/+;NrasG12D/+ AMLs.  We  found  that  the  commonest  somatc  event  during

progression was an increase in mutant allele burden (NrasG12D/+ or Flt3ITD/+), through copy neutral LOH
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(6/6 Npm1cA/+;Flt3ITD/+ and 3/8 Npm1cA/+;NrasG12D/+ AMLs) or copy number gain (5/8 Npm1cA/+;NrasG12D/+

AMLs). 

Using faithful  mouse models,  our  study provides  strong and comparatve evidence that  the co-

occurrence of mutant NPM1 with FLT3-ITD is more formidable in AML potentality, led by strikingly

diferent molecular and cellular consequences, compared to its co-occurrence with mutant  NRAS.

This is a very plausible explanaton for the frequent co-occurrence and worse prognosis of double

mutant NPM1c/ FLT3-ITD AML.
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Figure Legends

Figure  1.  Mutant  Npm1 co-operates  with  Nras-G12D  and  Flt3-ITD to  enhance  myeloid

diferentaton and enhance progenitor self-renewal. 

(A) Schema for  Mx-1 Cre,  Npm1fox-cA,  NrasLSL-G12D and Flt3ITD inter-crosses. (B)  NrasG12D/+ mice show a

subtle  and  Npm1cA/+;  Flt3ITD/+ mice  a  marked  increase  in  white  cell  count  (WCC),  compared  to

wildtype. Splenic sizes were signiicantly increased in all mutant genotypes except  Npm1cA/+, with

Npm1cA/+; Flt3ITD/+ showing the most striking phenotype. Bone marrow cellularity was increased only

in the presence of the  NrasG12D/+ allele.  (C) FACS analysis at 4-5 weeks afer mutaton inducton.

Gatng strategies depicted are from wildtype mice. Signiicant diferences in the stem and progenitor

cell  compartments  of  NrasG12D/+ and  Flt3ITD/+,  but  not  Npm1cA/+ single  mutant  mice,  as  previously

reported. In double mutant mice, the Npm1cA/+; NrasG12D/+ combinaton was not signiicantly diferent

to  NrasG12D/+,  in  contrast  to  Npm1cA/+;Flt3ITD/+ which  was  markedly  diferent  to  both  Flt3ITD/+ and

Npm1cA/+ single mutants. (D) Using a cell surface phenotype independent of FLT3 staining, we found

that CD45+/EPCR+/CD150+/CD48- HSCs were reduced slightly in Npm1cA/+;NrasG12D/+ and markedly in

Npm1cA/+;Flt3ITD/+mice.  (E)  Summary  of  hematopoietc  efects  of  Npm1cA/+;NrasG12D/+ and  Npm1cA/

+;Flt3ITD/+ double  mutatons  in  mice.  LK,  Lin-/Kit+;  LSK,  Lin-/Sca-1+/Kit+;  CMP,  common  myeloid

progenitor;  MEP,  megakaryocyte-erythroid  progenitor;  GMP,  granulocyte-monocyte  progenitor;
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MPP,  mult-potent  progenitor;  LMPP,  lymphoid  primed  mult-potent  progenitor;  CLP,  common

lymphoid progenitor  and HSC,  hematopoietc  stem cell.  (F)  Single  Npm1cA/+ and double  Npm1cA/

+;NrasG12D/+ or  Npm1cA/+;Flt3ITD/+  mutant hematopoietc  progenitors  show  increased  self-renewal

potental in whole bone marrow serial replatng assays  Mean ± SEM (n=4-8).

Figure 2. Impact of Npm1cA/+ on the transcriptomes of NrasG12D/+ and Flt3ITD/+ mutant hematopoietc

progenitors. 

(A) Overlap of diferentally expressed mRNAs reveals that  Npm1cA/+ has a dramatc impact on Lin-

progenitor gene expression proiles when combined with  Flt3ITD/+, but only a modest impact when

combined with NrasG12D/+. Nonetheless, the characteristc hallmarks of Npm1cA/+ are retained in both

double mutant progenitors, namely overexpression of Hoxa genes and of the homeobox genes Hopx

and  Nkx2-3 (also  seen  in  single  Npm1cA/+ progenitors).  Gene  Set  Enrichment  Analysis  reveals

enrichment of diferentally expressed genes from these models in human AMLs harboring mutant

NPM1 or MLL gene fusions (B) Comparison of human NPM1-mutant (NPM1c) versus NPM1-wildtype

(NPM1WT) normal karyotype AML (NK-AML) also shows marked overexpression of  HOXA and HOXB

genes, as well as of NKX2.3 raising the possibility that the later may mediate some of the efect of

NPM1c. (C) Efects of Nkx2-3 and Hoxa9 over-expression on mouse hematopoietc progenitors. (i) Lin -

bone marrow progenitors from wildtype and Flt3ITD/+ mice were transduced with MSCV-Nkx2.3-CFP

and/or MSCV-Hoxa9-GFP constructs, maintained in liquid culture for 7 days, FACS sorted for CFP and

GFP single and for double transfected cells and plated in semi-solid media. (ii) Colony assays of 2500

transduced cells  show that  both  MSCV-Hoxa9 and MSCV-Nkx2-3 conferred  an increase in  self-

renewal of both wildtype and Flt3ITD/+ cells. However, double MSCV-Hoxa9/MSCV-Nkx2-3 transfected

cells showed no further changes in self-renewal when compared to MSCV-Hoxa9 alone. Mean ± SEM

(n=3);  *p<0.05;  **p<0.01;  ***p<0.001;  students  t-test).  (D)  Sortng  strategy  for

LSK/CD34+/Flt3+/CD48+ progenitor  cells  and  overlap  of  diferentally  expressed  genes  (Illumina

MouseWG-6  v2  Expression  BeadChip)  for (i)  NrasG12D/+ Vs  Npm1cA/+;NrasG12D/+ and  (ii)  Flt3ITD/+  Vs

Npm1cA/+;Flt3ITD/+ MPPs datasets. (E) Heat map of normlaised Hox gene expression in puriied (i) MPP

and (ii) Lin- populatons reveal that Npm1cA/+ mutants (single or double) have similar paterns of Hox

gene expression to wildtype (normalised average expression values are used to generate heat map

values). (F) Diferentally expressed genes in Npm1cA/+;Flt3ITD/+ MPPs vs wildtype controls . 

Figure 3. Npm1cA and NrasG12D co-operate to drive high penetrance AML. 

(A) Kaplan Meier survival curves of wildtype (n=23), Npm1cA/+ (n=34), NrasG12D/+ (n=40), Flt3ITD/+ (n=39),

Npm1cA/+;NrasG12D/+ (n=46)  and  Npm1cA/+;Flt3ITD+/ (n=40).  Double  mutant  (Npm1cA/+;NrasG12D/+ and

Npm1cA/+;Flt3ITD/+)  mice  had  a  signiicantly  shortened survival  when compared to single  mutants,

whilst Npm1cA/+;Flt3ITD had signiicantly shorter survival than Npm1cA/+;NrasG12D/+ mice. (B) Spleen and

liver weights, blood leukocyte (WCC) and platelet (Plts) counts of wildtype (n=13),  Npm1cA/+ (n=17),

NrasG12D/+ (n=22), Flt3ITD/+ (n=30), Npm1cA/+;NrasG12D/+ (n=15) and Npm1cA/+;Flt3ITD/+ (n=29), Mean ±SEM,

one way ANOVA (Bonferroni adjusted) (*Vs wildtype, Vs Flt3ITD/+, Vs NrasG12D/+). (C) Characteristc
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histopathology  from  sick  mice  demonstrate  increased  incidence  of  AML  in  compound  Npm1cA/

+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ mice compared to NrasG12D/+ and Flt3ITD/+ mice. Complete efacement

of splenic tssue and iniltraton of myeloid blast cells in liver tssue from  Npm1cA/+; NrasG12D/+ and

Npm1cA/+; Flt3ITD+/ AMLs are presented.  H&E, Haematoxylin and eosin; MPO, myeloperoxidase.

Figure 4. Leukemic progression in double mutant mice involves increased NrasG12D or Flt3ITD allele

dosage 

(A) Increase in Flt3ITD allele burden in AMLs from Npm1cA; Flt3ITD mice through loss of heterozygosity

for the locus. (i) Flt3ITD amplicon sequencing (MiSeq) of leukemic bone marrow or spleen DNA (FN2-

FN7). Tail  DNA ampliied from 2-week-old Flt3+/+, Flt3ITD/+, Flt3ITD/ITD mice was used as control.  (ii)

Normalised Log2 rato plots show copy neutrality of chr5 and the Flt3 locus in 7/7  Npm1cA; Flt3ITD

murine  AMLs  (FN-AMLs)  tested.  In-set:  standard Flt3ITD PCR  genotyping  of  the  same  FN-AML

samples;  note reducton in the wildtype allele is  visible.  (B)  (i)  Summary of  aCGH showing copy

number gain at the Nras locus in AMLs RN6-10. (ii) Allele fractons for Nraswt vs NrasG12D show that

copy number gains in RN6-10 involved NrasG12D, and that an additonal 3 cases (RN3-5) show copy-

neutral loss-of-heterozygosity. In additon, two more RN AMLs show gains in mutant NRAS when

measuring  Nraswt vs  NrasG12D  allele fractons (aCGH was not performed on these). Results of two

Npm1cA/+  samples are also shown for comparison purposes (N6, N7). (C) Increased gene dosage of

NrasG12D correlates  with  increased  levels  of  phosphorylated  RAS  efectors  pERK1/2.  FN2,3,4,6,7=

Npm1cA;Flt3ITD mice, RN1-14= Npm1cA/+;NrasG12D/+ mice.

Figure 5.  Somatc mutatons in Npm1cA/+, Npm1cA/+; NrasG12D/+ and Npm1cA; Flt3ITDAMLs.  (A) Exome

sequencing identies an increased number of somatc nucleotde variants (SNVs) and small indels in

Npm1cA/+,  compared to  Npm1cA/+;  NrasG12D/+ (RN-AML) and  Npm1cA;  Flt3ITD (FN-AML) AML samples.

Total  AMLs  sequenced: Npm1cA/+  (n=12),  Npm1cA/+;  NrasG12D/+ (n=14)  and  Npm1cA;  Flt3ITD (n=7),

mean/range,  one  way  ANOVA  (Bonferroni  adjusted)  (**=p<0.01  Vs  Npm1cA/+). (B)  Summary  of

SNVs/Indels detected in AMLs from each genotype as indicated. Those in blue are genes mutated in

the TCGA AML dataset. Those in red are exact or synonymous mutatons detected in the TCGA AML

dataset. (C) Co-occurance of SNVs and CNVs. Depicted are SNVs and focal copy number variatons

(CNVs)  which have been formally  detected in  the TCGA AML19 dataset  or  detected as  common

inserton sites (CIS)  in  our previously published Npm1cA/+  Sleeping Beauty  Transposon screen  25  .

Mutant allele copy gains, chromosome gains and losses depicted. For copy number variaton, colour

coded boxes are based on log2 ratos (aCGH) and are not representatve of CNV size. For a complete

overview of all CNV and SNV co-occurrence see Supplemental Figure S6.
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Supplemental Methods 

Flow cytometry and cell selection 

Progenitor populations were defined as follows;  

HSCs (CD45+, EPCR+, CD48-, CD150+) 

Short term-long term-progenitor-HSCs (ST/LTprog/HSC) (Lin-, c-kit+, Sca-1+, Flt3-) 

Multipotent progenitors (MPP) (Lin-, c-kit+, Sca-1+, Flt3+) 

Lymphoid primed multipotent progenitors (LMPP) (Lin-, c-kit+, Sca-1+, Flt3hi) 

Common lymphoid progenitors (CLP) (Lin-, Flt3hi, Il-7r+, c-kitint, Sca-1int)  

Granulocyte-monocyte progenitors (GMP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34+, CD16/32+) 

Common myeloid progenitors (CMP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34+, CD16/32-) 

Megakaryocyte-erythroid progenitors (MEP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34-, CD16/32-) 

Antibodies were obtained from eBiosciences or BioLegend unless stated. Markers for lineage depletion (Lin-) 

included B220 (RA3-6B2), CD3 (145-2C11), Mac-1 (M1/70), Gr-1 (RB6-8C5) and Ter119 (TER-119). E-PCR 

(RMEPCR1560, Stem Cell Technologies), CD45 (30-F11), CD150 (TC15-12F12.2), CD48 (HM48-1), CD34 (RAM34), 

CD16/32 (2.4G2), FLT3 (A2F10), c-kit (2B8), Sca-1 (E13-161.7) and Il7-r (A7R34).  

For MPP gene expression, sorting was defined as: Lin-, c-kit+, Sca-1+, CD34+, CD48+ and CD150-. Samples were 

flow-sorted after removal of lineage positive cells using a magnetic activated cell sorting (MACS) mouse lineage 

depletion kit containing antibodies for CD5, B220, CD11b, Gr-1 (Ly-6G/C), 7-4, and Ter-119 following the 

ŵaŶufacturers’ iŶstructioŶs ;MilteŶyi BiotecͿ.  

Gene expression profiling, microarrays 

Gene expression profiles of lineage negative (lin-) or 1,000 sorted multipotent progenitors (MPPs) from mutant 

and wildtype controls were compared using the Illumina MouseWG-6 v2 Expression BeadChip platform 

(Illumina). Lin- populations were separated from whole bone marrow using magnetic activated cell sorting 

(MACS, Miltenyi Biotec) and RNA isolated using a standard Trizol (Thermofisher) protocol. Flow sorted MPP 

populations were sorted directly into Trizol LS (Thermofisher) using a Mo-FlowTM XDP (Beckman Coulter) and 

RNA extracted according to the manufacturer. Extracted RNA was prepared for array hybridization using the 

TargetAŵp™-Nano Labeling Kit (Epicentre). Global profiling was done using Illumina MouseWG-6 v2.0 

Expression BeadChip. Data were quantile normalized  and analyzed using the Bioconductor, lumi and limma 

2packages with P values adjusted for multiple testing  (Bioconductor, http://www.bioconductor.org/; lumi, 

http://www.bioconductor.org/packages/2.0/bioc/html/lumi.html; RTCGD, http://rtcgd.ncifcrf.gov/).1-3 

http://www.bioconductor.org/
http://www.bioconductor.org/packages/2.0/bioc/html/lumi.html
http://rtcgd.ncifcrf.gov/


Adjusted P value (<0.05) was used to identify significantly differentially expressed genes. Gene set enrichment 

analysis was carried out using GSEA v2.1.0 (Broad Institute).4, 5 (All data is deposited into ArrayExpress under 

the following accession numbers, E-MTAB-5358, E-MTAB-5359 and E-MTAB-5361.) 

Comparative gene expression analysis of NPM1+ve and NPM1-ve AML samples from the Cancer Genome Atlas 

(TCGA) , generated using the Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix) was performed using 

the GCRMA (http://www.bioconductor.org/repository/devel/vignette/gcrma.pdf), limma  and affy packages in 

Bioconductor .2, 6 , 7 (.CEL file sample IDs are listed in Supplemental Table 1.1, datasets and samples are listed in 

Supplemental Table 2, note that samples positive for MLL gene fusions were removed from the control sample 

set.) 

Copy number variation, comparative genomic hybridisation (aCGH) 

DNA copy number variation in leukemic samples was assessed using the Mouse Genome Comparative Genomic 

Hybridization 244K Microarray (Agilent Technologies). DNA was labeled with Cy3 or Cy5 according to Agilent 

aCGH genomic labeling protocol (Agilent Technologies). Raw data was extracted using Agilent Feature Extraction 

and normalised using R Package aCGH Spline. Subsequent data analysis was performed in R using aCGH 

Bioconductor packages (http://www.bioconductor.org).7 (All data is deposited into ArrayExpress under the 

following accession number, E-MTAB-5356.) 

Mouse AML mutation calling and validation. 

Sequence reads were aligned against the reference mouse genome (GRCm38) using the Burrows-Wheeler 

algorithm (BWA; specifically, aln for HiSeq--paired-end exome sequencing data and mem for MiSeq-250bp-

paired-end sequencing data). For the detection of the Flt3ITD and Npm1flox-cA or Npm1cA alleles, a fasta entry 

containing these sequences was appended to the reference genome. Sam/bam files were sorted and indexed 

using SAMTOOLS.8 Where necessary we also performed PCR duplicate marking using PICARD tools 

(http://picard.sourceforge.net) and local realignment around indels using GATK.9 The in-house software 

RAMSES, was used to detect somatic mutations and indels identified using PINDEL.10 Functional consequences 

of mutations were predicted using an in-house script employing Ensembl Perl API.11 All potential transcript 

annotations were calculated and recorded. The most deleterious of all potential annotations was reported for 

each mutation. All data is submitted to the European Nucleotide Archive (ENA study accession PRJEB18526, 

secondary study ERP020464).  

Further details of the exome sequencing and amplicon specific validation workflow are outlined in Supplemental 

Methods Figure S1. 

Retroviral transduction 

Cloning of mouse Nkx2-3 and Hoxa9 into MSCV-GFP/CFP retroviral backbones. 

http://www.bioconductor.org/repository/devel/vignette/gcrma.pdf
http://www.bioconductor.org/
http://picard.sourceforge.net/


mRNA extracted from homozygous wildtype C57BL/6N mouse bone marrow cells was reverse transcribed 

using  SuperScript III (Invitrogen) and the subsequent cDNA was used as template to amplify full length Nkx2-3 

or Hoxa9 cDNA using high fidelity taq polymerase (KAPA HiFi HotStart ReadyMix, Kapa Biosystems) using the 

ŵaŶufacturer’s iŶstructioŶs aŶd the followiŶg priŵers;  

EcoRI-mNkx2-3-XhoI Fwd:  

gaattcgccaccatgatgttaccaagcccggtcacctccacccctttctc  

EcoRI-mNkx2-3-XhoI Rev: 

tcgagtcacttgtcgtcatcgtctttgtagtcaatgtcatgatccttgtaatcgccgtcgtgccaagccctgatgccctgcaaagtcccctgcgtgcacg  

This fragment was cloned into an EcoRI/XhoI linearized fragment obtained from the MSCV-IRES-GFP (Addgene 

plasmid # 20672) retroviral backbone using standard molecular biology techniques. 

MluI-Hoxa9-XhoI Fwd:  

aattcacgcgtatggccaccaccggggccctgggcaactactatgtggac 

MluI- Hoxa9-XhoI Rev: 

ctcgagttaagcgtaatctggaacatcgtatgggtagccgtcgtgctcgtcttttgctcggtccttgttgattttcttcattttcatcctgcggttctgg 

This fragment was cloned into a MluI/XhoI linearized fragment of MSCV-IRES-CFP, a kind gift from Dr Brian 

Huntley. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Methods Figure S1 
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Supplemental Table Legends 

Supplemental Table S1. Comparatively altered gene expression in lineage negative bone marrow 

aspirates compared to wildtype (significantly differentially expressed genes, adj. p<0.05). 

Supplemental Table S2. TCGA datasets6 used for comparative gene expression analysis of human AML. 

Supplemental Table S3. Comparatively altered gene expression in human AML based on NPM1 

mutation status (for significantly differentially expressed genes adj.p<0.05). 

Supplemental Table S4a. Comparative gene (probes) expression in multipotent progenitors, NrasG12D/+ 

and Npm1cA/+;NrasG12D/+ compared to wildtype. 

Supplemental Table S4b. Comparative gene (probes) expression in multipotent progenitors, Flt3ITD/+ 

and Npm1cA/+;Flt3ITD/+compared to wildtype. 

Supplemental Table S5a. Kegg Pathways enriched in Npm1cA/+;Flt3ITD/+ multipotent progenitor cells 

(DAVID12). 

Supplemental Table S5a. Functional annotational clustering of gene ontology terms (GO-term) 

enriched in Npm1cA/+;Flt3ITD/+ multipotent progenitor cells (DAVID12). 

Supplemental Table S6. Overlap of differentially expressed genes in Tet2-/-;Flt3ITD/+  LSK cells and 

Npm1cA/+;Flt3ITD/+ MPP cells compared to wildtype. 

Supplemental Table S7a. 1st Round MiSeq amplicon specific primer sequences. 

Supplemental Table S7b. 2nd Round MiSeq iPCR-tag primer sequences. 

Supplemental Table S8. Validation of exome sequencing: MiSeq amplicon sequencing results (mVAF). 

Supplemental Table S9. Combined Single Nucleotide Variant (SNV) and insertions/deletions (Indels) 

detected by the Exome sequencing pipeline (detailed in Methods and outlined in Supplemental 

Methods Figure S1) 

Supplemental Table S10. aCGH results summary. 

Supplemental Table S11. Mouse-Human synteny of chromosome regions with altered copy number, 

identified by aCGH, in murine AMLs. (Only genes identified as mutated in the TCGA AML data-set or 

hits in our Npm1cA/+ Sleeping Beauty insertional mutagenesis screen are included.) 
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Supplemental Figure Legends 

Supplemental Figure S1. Pre-leukemic phenotypes of hematopoietic tissues. (A) Mac-1/Gr-1 staining 

of bone marrow and splenocytes from all genotypes shows an increase in myeloid commitment in 

Npm1cA/+; NrasG12D/+ (predominantly Mac-1+/Gr-1+granulocytic) and Npm1cA/+; Flt3ITD/+ (predominantly 

Mac-1+/Gr-1- monocytic) compared to singular mutants. 

Supplemental Figure S2. Representative plots of pre-leukemic progenitor FACS of Npm1cA, 

NrasG12D/+, Flt3ITD/+ and compound Npm1cA/+; NrasG12D/+ or Npm1cA/+; Flt3ITD/+ mice. (A) Lin-, LK, LSK. 

Percentages of parent populations are shown for LK, LSK, GMP, MEP, CMP, LMPP, MPP and ST/LTprog-

HSC populations, mean ± SEM (n=4-8).  Representative plots of (B) CLP and (C) E-SLAM, HSC FACS plots 

and gates. Note an absence of the double positive FLT3/Il7-R in the CLP stain. LK (Lin-/Kit+), LSK (Lin-

/Kit+/Sca-1+), CMP (common myeloid progenitor), MEP (megakaryocyte-erythroid progenitor), GMP 

(granulocyte-monocyte progenitor), MPP (multi-potent progenitor), LMPP (lymphoid primed multi-

potent progenitor), CLP (common lymphoid progenitor) and HSC (hematopoietic stem cell). 

Supplemental Figure S3. Global gene expression analysis of lineage negative and LSK-progenitors. 

(A) Heat map of Hox gene expression in Lin- bone marrow from singular and compound Npm1cA/+, 

NrasG12D/+, Flt3ITD/+ mice (normalised average expression values are used to generate heat map values). 

(B) Venn diagrams of overlapping differentially expressed genes in Npm1cA/+, NrasG12D/+, Flt3ITD/+, 

Npm1cA/+; NrasG12D/+ and Npm1cA/+; Flt3ITD/+ Lin- bone marrow. Select over-expressed (red font) or 

under-expressed (blue font) are displayed. GSEA of differentially expressed genes in NrasG12D/+ or 

Flt3ITD/+ only mutants reveal enrichments for NRAS and JAK-STAT signalling pathways respectively.  (C) 

Box-whisker plots of normalised average expression of Nkx2-3, Hoxa7 and Hoxa9, as detected by 

microarrays in MPP and Lin- populations. n=4-10 (Lin-) or n=3-5 (MPP) for all genotypes (Mean ± Min-

Max). (D) (i) Venn diagram and (ii) heat map of overlapping and distinct differentially expressed genes 

in sorted MPP populations from Npm1cA/+, NrasG12D/+, Flt3ITD/+, Npm1cA/+; NrasG12D/+ and Npm1cA/+; 

Flt3ITD/+ reveals only a small sub-set of 12 deregulated genes shared in compound Npm1cA/+; NrasG12D/+ 

and Npm1cA/+; Flt3ITD/+ mice (log fold change, logFC, Adj. p<0.05 was used to identify significantly 

differentially expressed genes). (E) Results of gene-annotation enrichment analysis and functional 

annotation of differentially expressed genes in Npm1cA/+; Flt3ITD/+ compared to wildtype MPPs (using 

DAVID). Statistically significant enriched Kegg pathways and enriched Gene Ontology term (GO-Term) 

clusters are shown (as depicted using Cytoscape 3.3.0).  (F) A number of differentially expressed genes 

in Npm1cA/+; Flt3ITD/+ multipotent progenitors (MPPs) are also deregulated in compound Tet2-/-; Flt3ITD/+ 

lineage negative/Sca-1+/c-Kit+ (LSK) progenitors when compared to wildtype controls. 

Supplemental Figure S4. Npm1cA and oncogenic NrasG12D co-operate to develop AML. (A) 

Comparative survival statistics (Median survival and Mantel-Cox Test p values) of data presented in 

Figure 3a, Kaplan Meier. FACS analysis of three of Npm1cA/+; NrasG12D/+ and Npm1cA/+; Flt3ITD/+ AMLs 

confirms myeloid infiltration in secondary lymphoid tissue (splenocytes); lymphoid (CD/B220), 

myeloid (Mac-1/Gr-1, Mac-1/Kit) and B220+ myeloid (B220+/Mac-1/Gr-1). 



Supplemental Figure S5. Array comparative hybridisation (aCGH) of Npm1cA/+, Npm1cA/+; NrasG12D/+ 

and Npm1cA; Flt3ITD murine AML. (A) To determine the extent of recombination of the Npm1flox-cA allele 

FN-AMLs, we quantified the fraction of Npm1flox-cA and Npm1cA allele reads using targeted amplicon 

specific MiSeq (see Materials and methods). As controls we used Mx-1 Cre;Npm1cA/+ and Npm1flox-cA 

gDNA 4 months post pIpC injection. (B) Normalised Log2 ratio plots show gains (whole chromosome 

or smaller regions) of chr 3 in Npm1cA/+; NrasG12D/+. Green highlighted region denotes minimally 

mapped region of common chromosomal gain or loss (chr3: 102743581-103470550). (C) A commonly 

amplified region of chr7 (ch7: 91838150-131492236) is detected in 7/8 Npm1cA/+ and 4/9 Npm1cA/+; 

NrasG12D/+ (not represented). 31 of the 312 genes in this region, syntenic to human chr11, are mutated 

in the TCGA AML data-set and include Nup98, Wee1 and Eed. (D) A region of chr2 (chr2: 77889234-

171131931) is deleted in Npm1cA/+ AML, N4. Of the 741 genes within this region 57 are in the TCGA 

AML dataset and include the commonly deleted genes in AML; Asxl1, Wt1 and Dnmt3b. Black 

smoothed line indicates copy neutral regions. Red or blue smoothed line denotes gain or loss, 

respectively, of a chromosomal region defined on the x-axis for a particular sample. For (C) and (D) 

enrichment of syntenic human-mouse genes are shown (enrichment p-values as determined using 

DAVID12). 

Supplemental Figure S6. Combined copy number and somatic variants for Npm1cA/+, Npm1cA/+; 

NrasG12D/+ and Npm1cA/+; Flt3ITD/+ AMLs.  (A) Combined copy number (aCGH) and somatic variants 

(while exome sequencing) in Npm1cA/+ (N-AML) compared to murine Npm1cA/+; NrasG12D/+ (RN-AML) 

and Npm1cA; Flt3ITD (FN-AML) AML samples. 

 

Supplemental Methods Figure S1. Exome sequencing and mutant somatic variant validation. (A) 

Exoŵe seƋueŶciŶg aŶd Mi“eƋ ǀalidatioŶ ͞pipe-liŶe͟ foƌ detectiŶg ŶoŶ-synonymous mouse AML 

variants. (B) Representation of MiSeq amplicon sequencing protocol. (1) Genomic PCR was performed 

with genome specific/MiSeq adapter primer sequences, Supplemental Table 2.1. (2) Pooled PCR 

products were then (3) amplified by PCR enrichment using a universal PE1.0 forward and a unique 

iPCRTag reverse primer, Supplemental Table 2.2. Samples were further purified and sequenced on an 

Illumina MiSeq. (C) The percentage of SNVs detected by exome sequencing and validated by MiSeq 

amplicon specific sequencing increases to 83% ǁheŶ usiŶg aŶ ͞exoŵe seƋueŶciŶg scoƌe͟ ≥3. This is 
further increased to 86% upon removal of C>A/G>T trans-version SNVs with mVAF<0.3. Note, the 

exome sequencing score (generated by RAMSES) is a confidence value derived from the following 

criteria for each SNV within a given sample; (i) the presence of mutations in both forward and reverse 

reads, (ii) unique or multiple genomic loci alignment (BLAT) and (iii) read quality and depth. 
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