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Bosshard, Christian Pagé, Fredrik Boberg, José M. Gutiérrez, Francesco A. Isotta, Adam Jaczewski, Frank 

Kreienkamp, Mark A. Liniger, Cristian Lussana, Krystyna Pianko-Kluczyńska 

 

Five state-of-the-art reanalysis-driven regional climate model experiments are evaluated against 

three different observational reference datasets for two variables (temperature and precipitation) 

and for eight sub-regions of the European continent. Overall, we find the influence of observational 

uncertainty to be smaller than model uncertainty. For individual regions and seasons, however, 

model evaluation can considerably depend on the chosen reference and final model ranks can be 

strongly influenced. 
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Abstract 22 

The influence of uncertainties in gridded observational reference data on regional climate model 23 

(RCM) evaluation is quantified on a pan-European scale. Three different reference datasets are 24 

considered: the coarse-resolved E-OBS dataset, a compilation of regional high-resolution gridded 25 

products (HR) and the European-scale MESAN reanalysis. Five high-resolution ERA-Interim driven 26 

RCM experiments of the EURO-CORDEX initiative are evaluated against each of these references over 27 

eight European sub-regions and considering a range of performance metrics for mean daily 28 

temperature and daily precipitation. The spatial scale of the evaluation is 0.22°, i.e. the grid spacing 29 

of the coarsest dataset in the exercise (E-OBS). 30 

While the three reference grids agree on the overall mean climatology, differences can be 31 

pronounced over individual regions. These differences partly translate into RCM evaluation 32 

uncertainty. Still, for most cases observational uncertainty is smaller than RCM uncertainty. For 33 

individual sub-regions and performance metrics, however, observational uncertainty can dominate. 34 

This is especially true for precipitation and for metrics targeting the wet-day frequency, the pattern 35 

correlation and the distributional similarity. In some cases also the spatially averaged mean bias can 36 

be considerably affected. 37 

An illustrative ranking exercise highlights the overall effect of observational uncertainty on RCM 38 

ranking. Over individual sub-domains, the choice of a specific reference can modify RCM ranks by up 39 

to four levels (out of five RCMs). For most cases, however, RCM ranks are stable irrespective of the 40 

reference. These results provide a two-fold picture: model uncertainty dominates for most regions 41 

and for most performance metrics considered, and observational uncertainty plays a minor role. For 42 

individual cases, however, observational uncertainty can be pronounced and needs to be definitely 43 

taken into account. Results can to some extent also depend on the treatment of potential 44 

precipitation undercatch in the observational reference. 45 
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1. Introduction 48 

The existence and availability of reliable high-quality observational data is essential for climate 49 

monitoring. It is furthermore the basis for the development, evaluation and application of both 50 

physically-based and statistical weather and climate models. This includes downscaling approaches 51 

that translate large-scale atmospheric features into higher-resolved and even point-scale information 52 

(e.g., Fowler et al., 2007). Observations are already used during model development, but also model 53 

calibration and initialization often heavily rely on an existing observational reference (e.g., Bellprat et 54 

al., 2012). As such, the quality of any model-derived weather or climate product can be expected to 55 

depend on the quality of the underlying observations. The same is true for model evaluation 56 

exercises that assess and inter-compare the performance of one or several modelling systems by 57 

comparison against observation-based records (e.g., Christensen et al., 2010, Kotlarski et al., 2014). 58 

Consequently, uncertainties in the observational reference directly translate into uncertainties of 59 

model evaluation results. 60 

Observational uncertainties themselves can be large and originate from multiple sources. Already 61 

raw observations are likely to suffer from inaccuracies due to residual non-climatic influences 62 

(Hartmann et al., 2013, Hegerl et al., 2001, McMillan et al., 2012). Such influences include 63 

malfunctions and error margins of measurement devices and, in case of long-term records, 64 

replacements of the device, relocations of the measurement site or physical changes of the 65 

surrounding landscape. For the case of precipitation, site measurements are furthermore subject to 66 

systematic biases due to the local deformation of the wind field by the gauge and wetting and 67 

evaporation losses. This systematic undercatch is pronounced for windy conditions and for snowfall 68 

and can result in an important underestimation of true precipitation sums (e.g., Adam and 69 

Lettenmaier, 2003, Cheval et al., 2010, Frei et al., 2003, Groisman and Legates, 1994, Sevruk, 1985, 70 

Wolff et al., 2015). Some of the mentioned inaccuracies can be reduced by postprocessing the raw 71 

measurement records, e.g. by applying data homogenization procedures (Begert et al., 2005) or a 72 

dedicated precipitation undercatch correction (Richter, 1995). Additionally, representativity issues 73 

arise for point measurements, i.e. the question to what extent a point record reflects conditions for a 74 

larger area, for instance the mean conditions over a climate model grid box obtained through 75 

averaging all subgrid variabilities in space (e.g., Osborn and Hulme, 1997). 76 

To avoid the latter complication, climate model evaluation wherever possible relies on gridded 77 

reference datasets that are obtained by a spatial analysis and interpolation of point measurements 78 

onto a regular grid yielding area-representative grid cell mean values. Additionally, gridded remote 79 

sensing products and model-derived reanalyses are used. In any case, the gridding procedure itself 80 

involves assumptions and uncertainties with corresponding effects on the final product. For gridded 81 

datasets obtained by spatial interpolation of point measurements problems arise especially in 82 

regions with sparse data coverage, complex topography and for variables with a high spatio-temporal 83 

climatic variability (e.g., Wagner et al., 2007). Spatial variance, for instance, is mostly underestimated 84 

by gridded products (Beguería et al., 2016) and trends can be affected by a temporally changing 85 

network density (e.g., Frei, 2014, Hofstra et al., 2009). Sampling issues due to random natural climate 86 

variability, i.e. the fact that the observed record is only one possible realization of the analysis 87 

period’s climate, can introduce further uncertainties (e.g., Addor and Fischer, 2015, Mahlstein et al., 88 

2015). 89 

In summary, any available observation-based record is unlikely to reflect the true state of 90 

atmospheric quantities but only some approximation of it. A number of studies exist that quantify 91 

the related observational uncertainty by comparing several observation-based reference datasets for 92 
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specific variables and regions (e.g., the recent works by Awange et al., 2016, Berg et al., 2016, Dunn 93 

et al., 2014, Gbambie et al., 2017, Gervais et al., 2014, Herold et al., 2016, Hofstra et al., 2009,  Isotta 94 

et al., 2015, Kyselý and Plavcová, 2010, Palazzi et al., 2013, Rauthe et al., 2013, Schneider et al., 2014; 95 

Tanarhte et al., 2012). In evaluation exercises these shortcomings of the reference inevitably 96 

influence the performance assessment of climate models and introduce uncertainties in the 97 

evaluation results. Previous works have addressed this issue by employing multiple reference data 98 

sources for global and regional climate model (GCM, RCM) evaluation (Addor and Fischer, 2015, 99 

Bellprat et al., 2012, Brienen et al., 2016, Bucchignani et al., 2016,  Casanueva et al., 2013, Cheneka 100 

et al., 2016, Davin et al., 2016, Di Luca et al., 2012, Gómez-Navarro et al., 2012, Haslinger et al., 2013, 101 

Kotlarski et al., 2005, Kotlarski et al., 2012, Maraun et al., 2012, Prein and Gobiet, 2017, Ring et al., 102 

2016, Sunyer et al., 2013). Besides quantifying the influence of observational uncertainty on 103 

individual model performance scores, two of these studies (Gómez-Navarro et al., 2012 and Sunyer 104 

et al., 2013) also explicitly address the modification of model ranks when changing the observational 105 

reference. 106 

Most of the mentioned works consider geographic domains of limited extent only, such as individual 107 

river catchments or countries, and focus on precipitation. At this point, we refrain from listing the 108 

individual results but note that (1) even in regions covered by dense observational networks 109 

observational uncertainty can be large and can be comparable to RCM uncertainty (measured by the 110 

spread between individual RCM experiments) and that (2) observational uncertainty can have the 111 

potential to influence the outcome of climate model weighting and ranking exercises. Among the 112 

mentioned works a particularly relevant study is the one by Prein and Gobiet (2017) who, focusing on 113 

precipitation, inter-compared a large number of gridded observational datasets over parts of the 114 

European continent and used this observational ensemble to evaluate state-of-the-art RCM 115 

experiments. They found that observational uncertainty can be of similar magnitude as RCM biases, 116 

particularly in regions of low station density and for high temporal and spatial resolution statistics. 117 

In the present work we build upon and complement these previous studies by quantifying 118 

observational uncertainty on a pan-European scale not only for precipitation but also for 119 

temperature and by assessing its influence on RCM evaluation in a well-defined performance 120 

assessment framework. We explicitly include an illustrative model ranking exercise and relate 121 

observational spread to RCM spread. Our main objective is to illustrate the influence of observational 122 

uncertainty on RCM evaluation and RCM ranking for different European sub-regions, for two 123 

variables and for a range of performance scores reflecting different model bias characteristics. 124 

2. Data and Methods 125 

2.1 Observational Reference Data 126 

To sample observational uncertainty we employ three observational reference grids that are 127 

available (1) for both mean temperature and precipitation, (2) at a daily resolution, (3) for the 128 

common 18-year long evaluation period 1989-2006, and (4) at a grid spacing comparable to or higher 129 

than the current RCM resolution for multi-decadal climate projections. Note that the latter criterion 130 

does not necessarily imply a higher effective resolution of the observational datasets compared to 131 

the RCMs. Depending on the underlying network density the effective resolution of the data could be 132 

considerably lower than the nominal grid spacing (e.g., Beguería et al., 2016, Isotta et al., 2015, Prein 133 

and Gobiet, 2017) . The three observational reference grids represent an “ensemble of opportunity”, 134 

i.e. we consider datasets that are readily available, that fulfil the above-mentioned criteria and that 135 

include the evaluation of climate models in their intended range of application. We hence accept 136 

inter-dependencies of the three datasets that could arise, for instance, from the use of the same 137 

station series for gridding or calibration purposes or from similar gridding concepts. In particular, we 138 

combine reference datasets that result from an explicit gridding procedure of observations with a 139 
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reanalysis-based product. We also do not intend to provide final explanations for differences among 140 

the three reference datasets. This would imply a much more detailed analysis of the influence of the 141 

gridding process and of different network densities on the final gridded product and would go 142 

beyond the scope of the present work. These aspects are covered by the accompanying study of 143 

Herrera et al. (2017). Furthermore, note that we use the term observations for results from both 144 

gridding processes and reanalysis procedures. This contrasts with other, more direct definitions of 145 

observations based on actual station data or remote sensing results. We hence do not explicitly 146 

differentiate between observational uncertainty and gridding uncertainty and use the former term to 147 

capture both. 148 

2.1.1 E-OBS 149 

The gridded E-OBS dataset (Haylock et al., 2008; version 15) covers the entire European land surface 150 

and is based on the ECA&D (European Climate Assessment and Dataset) station data plus more than 151 

2000 further stations from additional archives. We here use the daily temperature and precipitation 152 

grids of the rotated 0.22° version (approx. 25 km grid spacing). For several years E-OBS has now been 153 

a standard reference for RCM evaluation over the European continent. Known deficiencies of E-OBS 154 

relate to remaining inhomogeneities in the station series and to the dataset’s quality in regions of 155 

sparse station density. The latter particularly affects the representation of daily extremes (e.g., 156 

Bellprat et al., 2012; Herrera et al., 2012; Hofstra et al., 2009, Hofstra et al., 2010, Lenderink, 2010, 157 

Maraun et al., 2012) and the effective spatial resolution which is presumably lower than the nominal 158 

0.22° grid spacing (e.g., Hanel and Buishand, 2011; Kyselý and Plavcová, 2010). The systematic 159 

undercatch of rain gauges (e.g., Sevruk, 1986) has not been corrected for, i.e., E-OBS likely 160 

underestimates true precipitation sums. 161 

2.1.2 National High-Resolution Grids (HR) 162 

Our second observational reference is a compilation of national/regional high-resolution 163 

temperature and precipitation grids that are available for parts of the European continent only (Fig. 164 

1). This dataset has been assembled within the COST Action VALUE (Maraun et al., 2015). It covers  165 

modified sets of regions and datasets compared to the recent work of Prein and Gobiet (2017), 166 

including one additional country (Poland), an updated version of the Norwegian and the German  167 

dataset and the consideration of Switzerland only instead of the entire Alps, employing a different 168 

high-resolution observational grid. In overlapping boarder regions covered by two national datasets 169 

only one of them has been considered
1
. In the following a brief description of each dataset is 170 

provided. Except for the Swedish product, none of the precipitation grids explicitly accounts for the 171 

systematic undercatch of rain gauges. 172 

Spain (SP): For peninsular Spain and the Balearic Islands an improved 3-dimensional areal 173 

representative version (AA-3D) of the Spain02 gridded dataset at 0.22° grid spacing on a rotated grid 174 

is used (Herrera et al. 2012; 2016). Spain02 is based on a very dense and quality-controlled station 175 

network consisting of 2756 and 237 stations for precipitation and temperature, respectively. The 176 

interpolation and gridding procedure is the same as applied for E-OBS. 177 

Poland (PO): The AA-3D methodology used for the Spanish grid was extended to build an 178 

observational grid for Poland based on a quality-controlled observational station dataset provided by 179 

the Institute of Meteorology and Water Management - National Research Institute, Center for 180 

Poland's Climate Monitoring; see Herrera et al. (2017) for further details. This dataset comprises 197 181 

stations for precipitation and 123 for temperature. Station data were homogenized prior to the 182 

                                                             
1
 In the following pairs of overlapping countries/regions the bold country/region has been considered: NO/SW, 

SP/FR, CH/GE, FR/GE, CH/FR, PO/CA, GE/PO. In case of the Carpathian dataset, which extends far into Poland, 

this means a substantial cut-off at its northern boundary. 
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gridding by applying the MASH v3.03 procedure (e.g., Szentimrey, 2013) to the daily data (Lakatos et 183 

al. 2013). 184 

France (FR): The France national high-resolution analysis SAFRAN is available at an hourly time step 185 

and on a grid of 8 km spacing (Durand et al., 1993; Quintana-Seguí et al. 2008; Vidal et al., 2010). It is 186 

based on observations at more than 4000 sites collected by Météo-France as well as on operational 187 

Numerical Weather Prediction analyses along with some climatological data. It covers all water 188 

basins affecting Metropolitan France including Corsica. Prior to its use within the present work 189 

SAFRAN was conservatively interpolated to the rotated 0.11° EURO-CORDEX grid. 190 

Sweden (SW): The daily gridded PTHBV dataset provides daily precipitation and temperature data at 191 

4 km grid spacing and covers Sweden plus some adjacent regions. The product is based on more than 192 

350 (800) stations for temperature (precipitation) and has been constructed by optimal interpolation 193 

with a climatological background field that accounts for wind-orography effects (Johansson and 194 

Chen, 2003). In the present work it is the only dataset that has been corrected to account for the 195 

systematic undercatch of rain gauges. The correction is based on gauge type, precipitation type (rain 196 

or snow), wind classification and exposure of the gauges (Berg et al., 2016). 197 

Germany (GE): The high resolution daily gridded HYRAS dataset has been produced as part of the 198 

KLIWAS research programme (Impacts of climate change on waterways and navigation – searching 199 

for options of adaptation; www.kliwas.de). It covers the period 1951 to 2006 and is available at 5 km 200 

grid spacing for all river catchments in Germany as well as adjacent river basins with drainage 201 

towards Germany (i.e. the entire Rhine, Danube and Elbe catchments). More detailed information 202 

about the dataset and its underlying station network, which consists of up to 1000 and 6200 stations 203 

for temperature and precipitation, respectively, is provided by Rauthe et al. (2013) and Frick et al. 204 

(2014). 205 

Carpathians (CA): The CARPATCLIM gridded observational dataset (Lakatos et al., 2013) covers parts 206 

of 9 countries along the Carpathian Mountains and is based on raw station time series that were 207 

exchanged along the borders to ensure data homogeneity (temperature: 258 stations, precipitation: 208 

727 stations). Quality control and homogenization were carried out at daily resolution using the 209 

MASH software (Szentimrey, 2004). The MISH package (Szentimrey and Bihari, 2007) was employed 210 

for spatial interpolation. The publicly available CARPATCLIM dataset for 11 variables is provided at 211 

daily temporal resolution and 0.1° grid spacing for the period 1961-2010 (www.carpatclim-eu.org). 212 

Note that, in contrast to the other national/regional grids, CARPATCLIM does not represent areal grid 213 

cell averages but point estimates for the grid cell centers. 214 

Norway (NO): The gridded seNorge version 2 (seNorge2) dataset is based on two modified optimal 215 

interpolation schemes (Gandin, 1965), one for temperature and one for precipitation, in which the 216 

prior distribution is estimated from in-situ observations (Lussana et al., 2016, Uboldi et al., 2008). The 217 

input data used are original non-homogenized station series from the Norwegian Climate Database 218 

(480 and 920 stations on average for temperature and precipitation, respectively). Data for both 219 

variables are provided at daily resolution on a 1 km grid. 220 

Switzerland (CH): For the region of Switzerland, the TabsD (temperature; MeteoSwiss, 2013a) and 221 

RhiresD (precipitation; MeteoSwiss, 2013b) datasets at 2 km grid spacing are used. Both datasets rely 222 

on a large but temporally varying number of station series (temperature: 93, precipitation: about 223 

520) and were produced accounting for the special requirements of interpolating station data in 224 

topographically complex terrain (e.g., Frei, 2014). 225 

2.1.3 EURO4M MESAN 226 

The European Reanalysis and Observations for Monitoring project (EURO4M) has produced several 227 

gridded datasets for Europe, among others a High Resolution Limited Area Model (HIRLAM) 228 

reanalysis at a grid spacing of 0.2° (approx. 22 km) using 3D-VAR data assimilation (Dahlgren and 229 
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Gustafsson, 2012). Several simulated surface fields – including near-surface air temperature and 230 

precipitation - have afterwards been downscaled with the MESAN system to a 0.05° grid (approx. 5 231 

km) using optimal interpolation techniques (Häggmark et al., 2000) and assimilating further surface 232 

observations. Depending on the region, the number of stations used for assimilation and 233 

interpolation is partly larger and partly smaller or comparable to E-OBS (see Fig. 1 in Prein and 234 

Gobiet, 2017). For precipitation, the surface observations assimilated in the MESAN downscaling step 235 

were not corrected for the measurement bias of rain gauges. Hence the final EURO4M MESAN 236 

precipitation product – although originating from simulated precipitation of the HIRLAM model – has 237 

to be assumed to be undercatch-affected.  238 

2.2 RCM Data 239 

The RCM simulations that are evaluated in the present work originate from the EURO-CORDEX 240 

initiative (Jacob et al., 2014) and have been carried out at a grid spacing of 0.11° on a rotated grid 241 

under the CORDEX simulation protocol. All experiments cover a full European domain (see Kotlarski 242 

et al., 2014) and were driven by the ERA-Interim reanalysis (Dee at al., 2011) at the lateral domain 243 

boundaries. We hence evaluate the so-called perfect boundary experiments instead of the GCM-244 

driven historical control runs. Such an evaluation places a stronger focus on the downscaling 245 

performance itself as potentially strong biases in the GCM-derived boundary forcing are avoided. In 246 

total, five simulations are used (Table 1) that form a subset of those experiments considered in the 247 

EURO-CORDEX standard evaluation (Kotlarski et al., 2014). Note that two of the five RCMs employed 248 

(HIRHAM 5 and RACMO 2.2E) as well as the reanalysis-model (MESAN; see above) originate from the 249 

numerical weather prediction model HIRLAM and partly share the same code. Hence, their 250 

respective outputs cannot be considered to be fully independent of each other. 251 

2.3 Analysis Domain and Analysis Grid 252 

The analysis domain of the present work consists of the eight regions covered by HR (Fig. 1; Section 253 

2.1.2) and samples an important part of continental-scale climate variability in Europe. To enable a 254 

consistent comparison on a grid cell level the higher-resolved HR, MESAN and RCM data (including 255 

elevation) were conservatively aggregated to the rotated 0.22° E-OBS grid, i.e. to the coarsest grid 256 

considered in this work, prior to the analysis. This enables a grid-cell-by-grid-cell comparison and 257 

avoids the additional interpolation of E-OBS to the higher-resolved RCM grid. This procedure is also 258 

beneficial in case that the effective resolution of a certain dataset is smaller than its nominal grid 259 

spacing; spatial aggregation would then more accurately represent the effective resolution of the 260 

data. For temperature an additional elevation correction from the aggregated HR, MESAN and RCM 261 

elevation to the elevation of the corresponding E-OBS grid cell was carried out assuming a spatially 262 

and temporally uniform lapse rate of 0.0065 °C m
-1

.  263 

2.4 Performance Metrics 264 

The performance of the RCMs was evaluated on the common 0.22° analysis grid and separately for 265 

each of the eight sub-regions. Seven different metrics were chosen which describe different aspects 266 

of model performance. Five of these metrics were computed for both temperature and precipitation 267 

and one further metric was calculated for temperature or precipitation only, resulting in six metrics 268 

for each variable.  269 

For each observational reference dataset the metrics were calculated for every climate model �, 270 

season �, and analysis region �. For the sake of simplicity, those indices are omitted in the following. 271 

We define ��and ��to be daily observational and climate model data, respectively, at a particular 272 

grid point � within the analysis region r that contains a total of � grid points. Further, overbars 273 
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denote the temporal mean over all time steps in the analysis period that fall into the season �, two 274 

overbars denote temporal and spatial mean, and yearly seasonal means are denoted by the index y.  275 

The performance of the climatological seasonal mean averaged over a sub-region was evaluated by 276 

the bias given as 277 

	
�� = �
�∑ (��� − ���)����  (Eq. 1) 278 

Moderate extremes at the upper end of the distribution were evaluated by the mean absolute error 279 

of the 99
th

 percentile:  280 

����� = �
�∑ |���(��) − ���(��)|����  (Eq. 2) 281 

with ��� denoting the percentile function for the 99
th

 percentile. For precipitation, all-day percentiles 282 

(including the dry days) were used. Note the absolute nature of MAE99 and the fact that, in contrast 283 

to the BIAS metric, under- and overestimations of ��� at individual grid cells within a given sub-284 

region do not compensate each other. 285 

The similarity of the spatial pattern of climatological seasonal means was assessed using pattern 286 

correlation as defined by the Pearson product-moment coefficient of linear correlation 287 

���� = � !("�#,%�#)
&'("�#)&'(%�#) , � = 1. . � (Eq. 3) 288 

with *+, and -. representing the spatial covariance and standard deviation, respectively. 289 

The interannual variability of seasonal means was evaluated using the ratio of interannual variability 290 

(RIAV). The spatial and temporal means of a season were first calculated for every year separately, 291 

and the standard deviations were then related according to 292 

/
�0 = &'("12)
&'(%12)   (Eq. 4) 293 

The Cramér-von Mises Test (CMT; Anderson, 1962, Lunneborg, 2005) was used to evaluate the 294 

similarity of the cumulative distribution functions of daily values. In the case of precipitation, only the 295 

wet days were considered (wet-day threshold of 1mm day
-1

). In order to remove the influence of the 296 

bias in the mean (which is evaluated already by the BIAS metric) the climate model data were first 297 

corrected for the mean bias. For temperature and precipitation this was done by additive and 298 

multiplicative correction, respectively. After the bias correction, the CMT was applied to every grid 299 

point separately resulting in a probability value for rejection	4�. Using a significance level of 0.05, the 300 

fraction of grid-points with non-rejection (i.e., the null-hypothesis of the two distributions being 301 

similar cannot be rejected at a probability of 0.05) was calculated. The latter represents the final 302 

Cramér-von Mises performance metric 56.  In mathematical terms, this can be described as follows: 303 

4� = 567(��, ��)  (Eq. 5) 304 

*� = 1				89	4� > 0.05
*� = 0				89	4� ≤ 0.05  (Eq. 6) 305 

�� = �
�∑ *�����   (Eq. 7) 306 

Note that this simple version of the metric neglects a potential spatial autocorrelation of the test 307 

statistic and does not consider field significance (e.g., Ivanov et al. 2017a and 2017b). Two further 308 

metrics were only calculated for either temperature or precipitation. For temperature only, the mean 309 

absolute error of the 1
st

 percentile was used to evaluate moderately cold extremes: 310 
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���>? = �
�∑ |��(��) − ��(��)|����   (Eq. 8) 311 

For precipitation only, the mean absolute bias in the wet-day frequency was evaluated by 312 

@AB/�C = �
�∑ |D.9�(��) − D.9�(��)|����   (Eq. 9) 313 

with D.9�() being the wet-day frequency [%] for a given grid point and a given season for a wet-day 314 

threshold of 1 mm day
-1

. 315 

2.5 Uncertainty Intercomparison 316 

A dedicated comparison framework was employed to quantify the relation between observational 317 

uncertainty (the influence of the choice of the reference dataset on the evaluation) and model 318 

uncertainty (the effect of the choice of a specific RCM on the evaluation). In case observational 319 

uncertainty is large, model evaluation against one specific reference dataset has to be considered as 320 

non-robust and evaluation exercises need to definitely take into account observational uncertainty. 321 

Let �E,F  be the value of given performance metric for a given variable, sub-region and season when 322 

employing reference dataset 8 (8 ∈ H1,2,3K) for evaluating RCM � (� ∈ H1,2,3,4,5K). Observational 323 

uncertainty is defined as the mean standard deviation of the metric’s values when comparing an 324 

RCM against each of the three reference datasets: 325 

M%NO = ∑ PQ
R∑ STU,VWQX∑ TU,VXUYQ ZRXUYQ[VYQ

\  (Eq. 10) 326 

Correspondingly, model uncertainty is defined as the mean standard deviation of the respective 327 

metric’s values when comparing all ]\^_ = 10 three-member RCM sub-ensembles against a given 328 

reference dataset: 329 

M`%a = ∑ ( QQb∑ PQ
R 	∑ STU,VWQX∑ TU,VV∈c# ZRV∈c#Qb#YQ )XUYQ

^  (Eq. 11) 330 

where d� = H(1,2,3); (1,2,4); (1,2,5); (1,3,4); (1,3,5); (1,4,5); (2,3,4); (2,3,5); (2,4,5); (3,4,5)K. 331 

Three-member sub-ensembles are chosen to be consistent with M f&. The ratio 332 

g = hijc
hkil  (Eq. 12) 333 

for a given metric, variable, sub-region and season then defines the ratio of observational and model 334 

uncertainty. If this ratio is larger than 1 observational uncertainty is larger than model uncertainty 335 

and, hence, presents an important contribution to overall evaluation uncertainty and should be 336 

considered in evaluation exercises. Note that in our case model uncertainty is defined via the spread 337 

among different re-analysis driven RCMs. When evaluating RCM experiments that are driven by 338 

different GCMs at their lateral boundaries (i.e. the kind of experiments employed for regional climate 339 

projections) this spread and, hence, model uncertainty can be expected to be larger. 340 

As mentioned earlier, the observational references except for HR over Sweden have not been 341 

corrected for precipitation undercatch and might underestimate true precipitation sums which can 342 

have an effect on the uncertainty intercomparison. In a dedicated sensitivity analysis we therefore 343 

carried out a modified uncertainty analysis for precipitation. For this purpose, a bulk correction of 20 344 

% was applied to all observational references (E-OBS, MESAN and HR, except for HR over sub-region 345 

SW), i.e. daily precipitation amounts were multiplied by a factor of 1.2. This bulk correction might 346 

underestimate the undercatch in winter in some regions and overestimate it in summer. It should 347 

only be considered as a rough estimate employed to address the principle sensitivity of our 348 
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uncertainty analysis with respect to the undercatch issue. Simulated precipitation amounts were not 349 

modified. Uncertainty ratios g were re-computed employing the undercatch-corrected observations. 350 

2.6 Ranking Framework 351 

As model selection and weighting schemes (e.g., Christensen et al., 2010) are commonly based on 352 

the assessment of a climate model’s ability to simulate the present-day climate (Räisänen et al., 353 

2007), part of the uncertainty in these schemes arises from differences between the available 354 

reference datasets. To test how the relative performance of the RCMs depends on the selected 355 

reference, a simple scheme combining the performance metrics introduced in Section 2.4 was used. 356 

First, to ensure that smaller values indicate better RCM performance absolute values were 357 

considered for BIAS while RIAV, PACO and CM were transformed according to 358 

�′ = 	 |1 − �|  (Eq. 13) 359 

with � being the value of the respective performance metric. MAE99, MAE01 and WDFREQ were 360 

used as computed according to Eqs. 2, 8 and 9, respectively. For a consistent combination of the 361 

metrics the values were furthermore normalized (Santer et al., 2009; Rupp et al., 2013) to obtain the 362 

respective score d ∈ n0,1o for a given model � and performance metric p (indices for season �, 363 

region � and reference dataset 8 omitted): 364 

dF,q = 1 − TV,rWstu	(Tr)
svw(Tr)Wstu	(Tr) (Eq. 14) 365 

with min	(�q) and max	(�q) denoting the minimum/maximum value of the five �F,q (five RCMs �) for 366 

the case considered. Note that, in contrast to the performance metric �F,q, the larger the value of 367 

the score dF,q the better the performance of a particular RCM for a given performance metric. For 368 

each reference dataset and each variable, the final overall normalized scores were then calculated 369 

separately for each RCM � and region � by taking an average over } seasons and 6 performance 370 

metrics:    371 

dF̅,� =	 �
`�∑ ∑ dF,�,q,�����q̀��  (Eq. 15) 372 

Thus, equal weight is given to each performance score. The RCM simulations were then ranked 373 

according to the obtained dF̅,� values separately for temperature and precipitation (6=6 in Eq. 15). If 374 

there are no systematic differences in the relative RCM performance (i.e., dF,�,q,� tends to vary 375 

randomly for a given model � and a given region �) dF̅,� is expected to approach 0.5. Combined 376 

temperature and precipitation ranks were computed by considering both temperature and 377 

precipitation metrics in Eq. 15 (6=12). 378 

A similar scheme with a slightly different set of performance metrics was compared to a more 379 

sophisticated scheme by Rupp et al. (2013) and was found to yield qualitatively similar results. One 380 

should note that model ranking is inherently subjective (Overland et al., 2011) and depends on the 381 

selected climatic aspects, error measures as well as the temporal and spatial scales considered. 382 

However, for illustrational purposes the selected scheme is considered sufficient.  383 

3. Reference Data Uncertainty 384 

In order to provide a first impression on the differences among the three reference datasets which 385 

will ultimately determine differences in the RCM evaluation exercise we here present a comparison 386 

of E-OBS, MESAN and HR in terms of the spatial distribution of climatological seasonal mean values. 387 

This comparison is directly relevant for the BIAS metric but might also concern metrics such as 388 
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MAE99, MAE01 or PACO. For the comparison we assume HR as reference (due to its highest 389 

underlying network density) and display the differences of E-OBS and MESAN with respect to HR.  390 

Figure 2 shows the spatial distribution of seasonal mean temperature in HR and the corresponding 391 

deviations of E-OBS and MESAN. All three datasets agree on the general continental-scale 392 

temperature gradients and on large-scale mean values (not explicitly shown but deducible from 393 

Figure 2). Differences, however, appear over individual sub-regions and are obviously connected to 394 

the merging of different regional grids in the HR dataset and to complex orography. Over the Spanish 395 

Highlands, the Scandinavian Alps, Switzerland, south-western France and the Carpathians both E-OBS 396 

and MESAN can considerably deviate from HR in both seasons. Over the Carpathians these 397 

differences are systematic in the sense that HR provides the highest temperatures. When moving to 398 

Poland, i.e. into a region covered by a different sub-regional dataset in HR, a close agreement 399 

between E-OBS, MESAN and HR is obtained in both seasons. Over south-western France, in contrast, 400 

HR systematically shows lower temperatures. Over most parts of Spain MESAN yields lower winter 401 

temperatures than HR with differences partly larger than 2°C. Again, this bias pattern disappears 402 

when moving into France where mean winter temperatures in HR and MESAN closely agree. E-OBS 403 

shows the highest temperatures over FR in both seasons with differences to HR often larger than 404 

0.5°C. This might be connected to the fact that most French station data underlying E-OBS represents 405 

larger urban settings possibly affected by the urban heat island effect (see, e.g., 406 

http://www.ecad.eu/download/stations.txt). Further consistent features are higher temperatures in 407 

E-OBS and MESAN over parts of Scandinavia and the European Alps. 408 

Regarding mean seasonal precipitation all reference datasets again agree on the basic continental 409 

scale patterns and on large-scale mean values (not explicitly shown but deducible from Figure 3). A 410 

noticeable difference in comparison to HR is the general underestimation of precipitation by both E-411 

OBS and MESAN in both seasons and for most parts of the analysis domain. Deviations can be as 412 

large as 50% (e.g. Poland and Sweden in MESAN with respect to HR). Exceptions are the complex 413 

coastline of Western Norway, where E-OBS provides higher precipitation sums than HR in both 414 

winter and summer, and Spain, where MESAN precipitation is comparable to HR and over parts of 415 

the country even higher in summer. The same is true over parts of the Carpathians. Over France, 416 

MESAN and HR are in very close agreement, which is likely connected to the good station coverage in 417 

MESAN over this region and which supports findings by Isotta et al. (2015) and Prein and Gobiet 418 

(2017) for (south-eastern) France. The general picture of highest precipitation sums in HR and drier 419 

conditions in E-OBS and MESAN might be a direct consequence of the higher underlying network 420 

density in HR and the fact that more high-elevation stations are sampled. Over Sweden, a further 421 

reason for lower precipitation sums in E-OBS and MESAN especially in wintertime is presumably the 422 

applied undercatch correction in the PTHBV dataset underlying HR in this region (see Section 2.1.2). 423 

4. Model Evaluation 424 

In the following the results of the model evaluation exercise are presented separately for both 425 

variables (temperature and precipitation) and for both seasons (winter and summer). The analysis 426 

allows for a separate assessment of each performance metric, each observational reference and each 427 

sub-region. For the sake of clarity and according to the objectives of this work we do not explicitly 428 

identify the five individual RCM experiments (see Table 1 for their identification though). 429 

4.1 Temperature 430 

Figures 4 and 5 present the temperature evaluation results for the winter and the summer season, 431 

respectively. In most cases the spatially averaged model biases (BIAS) approximately agree for the 432 

three reference datasets. In winter (Fig. 4) a cold model bias prevails and, depending on sub-region 433 

and RCM, can amount to more than -2 °C. The range of model biases (given by the vertical extent of 434 
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the bars) is largest over sub-region CH, where two of the five RCMs are subject to pronounced cold 435 

biases. This is likely related to the strong topographic variability of this domain, the pronounced 436 

differences in RCM orographies and to the fact that the applied lapse rate correction is based on the 437 

simplifying assumption of a global lapse rate being stationary in both time and space. Over France 438 

and Norway cold biases are most pronounced when evaluating against E-OBS, which is in line with 439 

the higher winter temperatures in E-OBS compared to HR and MESAN over these sub-domains (cf. 440 

Fig. 2).  441 

In the summer season (Fig. 5) notable differences of the BIAS metric when comparing against 442 

different reference datasets are apparent for sub-regions CA, FR, NO, SP and CH. For the other 443 

regions, spatially averaged model biases mostly agree. A similar finding is obtained for MAE99 and 444 

MAE01. In the latter case, however, the evaluation against MESAN yields considerably larger summer 445 

model biases than for E-OBS and HR in the topographically complex sub-regions NO and CH. Note the 446 

extremely large ranges of MAE01 in the winter season with differences between the RCMs of more 447 

than 9 °C in sub-region CH, independently of the reference dataset. These large biases are found in 448 

two of the five RCMs only. In general, the large model spread over CH indicates difficulties of the 449 

RCMs to reliably reproduce minimum temperatures over regions of complex topography. 450 

Concerning the RIAV metric the evaluation results are robust with respect to the choice of reference 451 

in both winter and summer with minor exceptions only. Model uncertainty as expressed by the 452 

vertical extent of the bars is generally much larger than the influence of the reference dataset. The 453 

situation is different though for the PACO metric. Here, the choice of the reference can have an 454 

important influence on the evaluation results. Correlation coefficients are high in general (> 0.8 in all 455 

cases) owing mainly to the pronounced influence of topography on spatial temperature patterns 456 

which is, in principle, represented by both the RCMs and by the observations. Depending on sub-457 

region and season, reference data uncertainty can however strongly dominate. Use of the HR dataset 458 

as reference leads to lower correlation coefficients in winter in sub-regions FR and SP. The same is 459 

true for FR, PO and SP in summer. These results suggest differences in the spatial pattern of seasonal 460 

mean temperatures in the three reference datasets even for regions of pronounced topography and 461 

even for the aggregated evaluation scale of 0.22°. 462 

For the distribution-based CM metric, the choice of the reference has an important effect in a few 463 

cases only and model uncertainty mostly dominates. The choice of the reference dataset markedly 464 

influences CM over CA, FR and SP in winter and CA and CH in summer.  465 

4.2 Precipitation 466 

For precipitation, a pronounced dependency of the BIAS metric on the choice of the reference can be 467 

found in both seasons but depending on the sub-region (Figs. 6 and 7). In winter and for sub-region 468 

SP, positive model biases with respect to E-OBS can partly translate into negative biases with respect 469 

to HR, reflecting the higher precipitation sums in HR compared to E-OBS over most parts of sub-470 

region SP (cf. Figure 3). The same is true for SW and CH in summer. In a few cases the BIAS ranges for 471 

the three reference datasets only slightly overlap and reference data uncertainty is of a similar 472 

magnitude as model uncertainty (for instance, sub-regions CA, PO and SW in winter). In the last case 473 

(SW in winter) a possible reason is the undercatch correction of the Swedish HR dataset that 474 

potentially reduces positive model biases compared to the non-corrected E-OBS and MESAN data. 475 

For MAE99, i.e. for the upper tail of the daily precipitation distribution, reference data uncertainty 476 

has a larger magnitude than for the BIAS metric (note the different y-axis scales in the upper left and 477 

upper middle panels) but is clearly dominated by model uncertainty, especially in summertime. A 478 

completely different result is obtained for the spatially averaged absolute bias of the wet day 479 

frequency WDFREQ. While model biases with respect to E-OBS and HR approximately agree, the use 480 

of the MESAN reanalysis as reference is in most cases associated with larger biases that are partly 481 

outside the bias range obtained for E-OBS and HR. The reason is a considerably lower wet day 482 
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frequency in MESAN compared to E-OBS and HR and a generally positive wet day frequency bias of 483 

the RCMs. This bias, and hence WDFREQ, is therefore largest when using MESAN as reference. 484 

In wintertime and over sub-regions PO, SW and CH the MESAN reanalysis is furthermore associated 485 

with larger RIAV values (Fig. 6, lower left panel), i.e. a more pronounced overestimation of 486 

interannual precipitation variability. All other cases show similar RIAV ranges regardless of the 487 

reference employed and model uncertainty clearly dominates. For PACO the results considerably 488 

depend on the sub-region. As a general picture, PACO values are systematically lower compared to 489 

temperature which reflects the less pronounced control of topography on the spatial pattern of 490 

mean seasonal precipitation. The PACO ranges for the three reference datasets are similar in many 491 

cases but there are exceptions. The use of E-OBS, for instance, leads to considerably lower values 492 

over sub-regions CA, FR and SP in winter while HR is associated with a lower pattern correlation for 493 

PO but higher values for sub-region SW. In summer, MESAN is associated with lower correlations 494 

over CA, and HR with higher correlations over CA and SW. Overall, however, model uncertainty 495 

dominates for the PACO metric. 496 

A different picture is obtained for the distribution-based CM metric (lower right panels). The range of 497 

CM values for a given reference dataset is generally high, but especially the use of MESAN as 498 

reference can be associated with much lower values compared to E-OBS and HR, i.e. with a lower 499 

fraction of grid cells passing the CM test. This feature affects all sub-regions in winter and sub-500 

regions GE, NO, PO, SW and CH in summer. It is obviously associated with the much higher WDFREQ 501 

value when using MESAN as a reference, i.e. with the lower wet day frequency in MESAN. Note that 502 

CM only considers the wet-day distribution (see Section 2.4) and is not directly affected by wet-day 503 

frequency biases. The close relation between both metrics hence indicates that model biases in the 504 

wet-day frequency when comparing against MESAN come along with biases in the precipitation 505 

distribution for wet days only, i.e. that at least the complete lower tails of the two all-day 506 

distributions (model and reference) considerably differ from each other. 507 

5. Observational Versus Model Uncertainty 508 

We here present the results of the uncertainty intercomparison introduced in Section 2.5. This 509 

analysis can be seen as a summary of the comparison between observational uncertainty (offset of 510 

the three vertical bars for a given performance metric, season and sub-region) and model uncertainty 511 

(vertical extent of the bars) provided in Chapter 4 and apparent from Figures 4 to 7. 512 

For temperature (Fig. 8) uncertainty ratios smaller than one are obtained in most cases, i.e. 513 

observational uncertainty is typically smaller than model uncertainty. But exceptions to this general 514 

pattern are possible, and also the magnitude of the uncertainty ratio primarily depends on the 515 

performance metric considered. For the seasonal mean model bias (BIAS) ratios are consistently 516 

smaller than 0.5, indicating a model uncertainty being twice as large as observational uncertainty. 517 

With reference to the scores describing the tails of the daily values (MAE99 and MAE01) and the 518 

frequency distribution (CM), observational uncertainty is also smaller than model uncertainty with 519 

the exception of Spain for MAE01 in summer. Ratios for RIAV are below one throughout all sub-520 

regions and both seasons with typically somewhat larger values in winter. In contrast to all other 521 

performance metrics, the ratios for the pattern correlation PACO are close to or larger than one in at 522 

least half of the cases, i.e. observational uncertainty dominates. This is in particular true for sub-523 

regions FR, GE and SP during summer. 524 

As a general pattern observational uncertainty, i.e. the choice of the reference data, tends to be 525 

more important for precipitation (Fig . 9) than for temperature. Uncertainty ratios for WDFREQ and 526 

CM are close to or even larger than one in most cases. Maximum values larger than three are 527 

obtained for winter in sub-regions CA, PO and SW (WDFREQ) and for sub-region CA (CM). For the 528 

cases of WDFREQ and CM these high values are clearly related to low WDFREQ values in the MESAN 529 
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reference, which constitute an outlier within the observational ensemble. They are probably related 530 

to specifics of the MESAN spatial interpolation and not to shortcomings in the underlying station 531 

observations. Except for a few cases summer ratios are smaller than their winter counterparts, 532 

indicating a smaller contribution of observational uncertainty in summer. This is mainly due to the 533 

fact that MESAN deviates stronger from E-OBS and HR in winter than in summer. A clearly 534 

dominating observational uncertainty is also found for PACO in sub-region CA (both seasons) as well 535 

as in PO and SW (winter only). The same is true for the winter BIAS in sub-regions CA, PO and SW. 536 

The latter are, however, outliers since for the BIAS metric ratios close to 0.5 are obtained for most 537 

other cases, i.e. model uncertainty clearly dominates. Also for MAE99 and RIAV ratios smaller than 538 

one are obtained with the exception of CA (MAE99) and PO and SW (RIAV) in winter 539 

The influence of a potential precipitation undercatch in the observational references on the 540 

uncertainty analysis can derived from Figure 10. For most performance metrics the uncertainty ratios 541 

are not or only slightly modified compared to the original results (Fig. 9). The most important change 542 

is obtained for the MAE99 metric which is especially sensitive as it considers absolute biases at the 543 

upper tail of the distribution. Here, uncertainty ratios are increasing in many cases. Roughly, the 544 

same stands for further measures based on daily data (WDFREQ and CM). For sub-region SW, 545 

specifically, observational uncertainty for MAE99 grows in both winter and summer as only two of 546 

the references (E-OBS and MESAN) were corrected for the undercatch compared to the original 547 

analysis. This results in larger inter-observational differences, in a larger observational uncertainty 548 

and, hence, in a larger uncertainty ratio. For the BIAS metric over SW in winter, undercatch 549 

correction brings the three references closer together (not shown), resulting in a decreasing 550 

observational uncertainty and a decreasing uncertainty ratio. 551 

6. Model Ranking 552 

To assess the influence of observational uncertainty on model ranking we first show the results for  553 

dF,q (Eq. 14; simply denoted as d hereafter) separately for temperature and precipitation when 554 

averaged over all seasons and regions (Fig. 11). For illustrational purposes, the actual RCM ranks 555 

based on d are also shown. The individual performance metrics show a varying degree of variation in 556 

d between the reference datasets (horizontal variation within a given panel). BIAS and MAE99 have a 557 

similar normalized error pattern and almost identical ranks for all reference datasets. Model C, for 558 

instance has the best performance for both metrics in terms of temperature, independently of the 559 

reference dataset. In contrast, model D shows the worst performance for temperature but the best 560 

for precipitation. In contrast to these cases of agreement between reference datasets, scores for CM 561 

(precipitation) and PACO (temperature) show noticeable differences when employing E-OBS, MESAN 562 

or HR as reference. Unsurprisingly, variations are even larger when individual regions are considered 563 

(not shown). Concerning the performance of a given model for different performance metrics 564 

(vertical variation within a given panel) model C, for instance, has the highest d values (and the best 565 

ranking) for most temperature performance metrics, while model D shows the best performance in 566 

the case of precipitation. While not the worst performing model in all cases, model E often shows the 567 

lowest d and ranks poorly accordingly, regardless of the reference dataset considered. The fact that 568 

the dependence of the evaluation results on the reference dataset in turn depends on the metric 569 

considered confirms findings from previous works (e.g., Santer et al., 2009, Rupp et al., 2013) and 570 

should be kept in mind when interpreting the ranking results.  571 

To illustrate the results for the full ranking scheme, Fig. 12 presents the overall normalized score dF̅,�  572 

of Eq. 15 (denoted as d̅ hereafter) for each sub-region together with the actual RCM ranks. As an 573 

overall picture RCM ranks are similar, independently of the reference dataset employed. However, 574 

differences in d̅	between the reference datasets can be non-negligible depending on the region and 575 

RCM considered. On average, differences in d̅ between the reference datasets are largest over sub-576 

regions GE and PO, although individual RCMs also stand out in other regions such as SP (model C) or 577 
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FR (model D). On the other hand, Switzerland (CH) shows only small differences in the overall scores 578 

between the reference datasets. Furthermore, variations in the actual ranks depending on the 579 

reference dataset employed are apparent. These differences tend to be smallest in CH, NO and SW, 580 

where the intermodel differences in d̅ are relatively large compared to the differences between the 581 

reference datasets. In other sub-regions a change of the reference dataset can lead to larger changes 582 

in the model ranks (e.g., the rank of model C in SP can change by four levels). This shows that model 583 

ranking becomes more dependent on the reference dataset when spatial details are considered. 584 

Finally, although the best performing RCM depends on the region and the reference, a noticeable 585 

feature is the systematically poor performance of model E in comparison to other models. Model E 586 

has the lowest rank in almost all cases regardless of the reference, and values of d̅	rarely approach 587 

0.5 for this model. 588 

7. Summary and Conclusions 589 

The objective of the present work was to illustrate the effect of uncertainties in gridded 590 

observational reference datasets on RCM evaluation for two variables (temperature and 591 

precipitation) on a pan-European scale. For this purpose we made use of three different gridded 592 

observational reference datasets (E-OBS v15, national/regional high-resolution grids (HR), EURO4M 593 

MESAN) and five reanalysis-driven RCM experiments carried out within the EURO-CORDEX initiative. 594 

Our well-defined performance assessment framework considers a range of performance metrics for 595 

eight different sub-regions of the European continent and includes an illustrative model ranking 596 

scheme. Note that the ensemble of reference grids is an ensemble of opportunity and is likely subject 597 

to inter-dependencies arising, for instance, from the use of common station time series in the 598 

interpolation or assimilation procedure. In general, an extension of the observational ensemble by, 599 

for instance, satellite-based products or by new upcoming datasets could alter the derived 600 

observational uncertainties and, hence, the overall evaluation results. The same would be true for an 601 

extension of the set of RCMs considered or for a different sampling of available RCM experiments. 602 

A comparison of climatological seasonal mean values as represented by the three reference grids 603 

alone yields a general agreement concerning the continental-scale patterns, but also differences on 604 

regional scales. These depend on the variable, region and season considered and translate into 605 

differences in RCM performance scores. Largest differences in seasonal mean temperature occur 606 

over regions of pronounced topography, such as Spain, the European Alps, Scandinavia and the 607 

Carpathians. Except for the latter case, the high-resolution HR dataset typically shows lowest 608 

temperatures which might be related to a better sampling of high-elevation stations by HR. For the 609 

case of precipitation both MESAN and E-OBS typically underestimate mean seasonal precipitation as 610 

provided by HR. 611 

For most performance metrics and especially for temperature, the influence of the choice of the 612 

observational reference on model evaluation is rather weak and is smaller than model uncertainty. 613 

This is especially true for winter temperature, where only the pattern correlation (PACO) and to 614 

some extent the distribution-based Cramér-von Mises score (CM) show notable dependencies on the 615 

reference dataset employed. However, winter PACO values are still larger than 0.8 for each individual 616 

sub-region and for any combination of RCM and reference dataset. Hence, spatial temperature 617 

patterns are, in a general sense, well represented by the RCMs independently of the specific 618 

reference employed. The same is true for the summer season which, however, is subject to slightly 619 

larger reference data uncertainty  for PACO and for the mean absolute error of the 1
st

 daily 620 

percentile (MAE01). For precipitation the influence of observational uncertainty is larger than for 621 

temperature. It often dominates model uncertainty especially for the absolute bias in the wet-day 622 

frequency (WDFREQ) and for the Cramér-von Mises score (CM) in winter. But even the spatially 623 

averaged measures of seasonal mean bias (BIAS) and ratio of interannual variability (RIAV) can be 624 

considerably affected by the choice of the reference observational product. The fact that most 625 
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observational references are not corrected for rain gauge undercatch has some influence on the final 626 

uncertainty analysis but does not change the general picture. Note that observational uncertainty 627 

being smaller than model uncertainty does not necessarily imply that uncertainties in observations 628 

are negligible and without influence. They can still be relevant, for instance, in model development 629 

or model bias correction. 630 

When employing a simple and illustrative model ranking scheme on these results it is found that RCM 631 

ranking can depend on the reference dataset employed, and more often for precipitation than for 632 

temperature. In individual cases, final model ranks can differ by up to four (out of five models) 633 

depending on the choice of the reference dataset. These findings are in line with previous works 634 

(e.g., Gómez-Navarro et al., 2012; Prein and Gobiet, 2016) which suggests that uncertainties related 635 

to the reference data should ideally be taken into account when assessing climate model 636 

performance in the present-day climate. However, if a focus is laid on temperature only the three 637 

reference datasets agree to a large extent, indicating the suitability of each individual product for 638 

climate model evaluation purposes. Furthermore, spatio-temporally averaged temperature and 639 

precipitation climates are very similar among the three references (see the BIAS metric), and model 640 

uncertainty clearly dominates in these case. Also note that all datasets employed in the present work 641 

were aggregated to the comparatively low E-OBS grid spacing of 0.22° prior to the analysis, including 642 

the high-resolution HR data. This spatial aggregation might to some extent mask the added value of 643 

HR but is required in the context of the present work. The full benefits of the higher-resolved HR data 644 

and their underlying dense station network will however only become apparent when evaluating, for 645 

instance, very high resolution RCM experiments at the convection-resolving scale (e.g. Ban et al., 646 

2014). 647 

Considering the ranking exercise itself, one should keep in mind that the ranking scheme applied 648 

here is likely to suffer from commonly known limitations (Overland et al., 2011; Santer et al., 2009, 649 

Rupp et al., 2013) and that the results are specific for the selected RCMs and performance metrics. 650 

On the other hand, it has been previously shown that only small uncertainties in the ranking and 651 

weighting of models can result in strong differences and potentially misleading signals (Weigel et al., 652 

2010). 653 
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Figures 933 

 934 

Fig. 1: The eight sub-regions considered for RCM evaluation. SP: Spain, FR: France, CH: Switzerland, 935 

GE: Germany, NO: Norway, SW: Sweden, PO: Poland, CA: Carpathians. 936 
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938 
Fig. 2: Spatial pattern of seasonal mean temperature [

o
C] in HR in the period 1989-2006 (left column) and 939 

difference between E-OBS and HR (middle column) and MESAN and HR (right column). Upper row: Winter 940 

(DJF), lower row: Summer (JJA).  941 
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 942 
 943 
Fig. 3: As Figure 2 but for mean seasonal precipitation [mm day

-1
]. Differences between E-OBS and HR and 944 

between MESAN and HR are given in [%]. 945 
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 947 

Fig. 4: Evaluation results for winter (DJF) temperature. The six panels correspond to the six 948 

performance metrics considered, the colours refer to the three observational references. Each set of 949 

three bars corresponds to one sub-region (x-axis). The five dots within each bar refer to the 950 

evaluation results for the five individual RCMs, whereas the bars themselves depict the model spread 951 

in terms of the minimum-maximum range. 952 
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 954 

Fig. 5: As Figure 4 but for summer (JJA) temperature. 955 
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 957 

 958 

Fig. 6: As Figure 4 but for winter (DJF) precipitation. 959 

 960 

  961 

Page 30 of 49

http://mc.manuscriptcentral.com/joc

International Journal of Climatology − For peer review only



Peer Review O
nly

 

 

29 

 

 962 

 963 

Fig. 7: As Figure 4 but for summer (JJA) precipitation. 964 
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 966 

Fig. 8: Uncertainty intercomparison for temperature. The six panels refer to the six performance 967 

metrics considered, the two colours to the seasons. An uncertainty ratio R larger (smaller) than one 968 

(thick horizontal line) corresponds to a dominating observational (model) uncertainty for the 969 

respective case. 970 

 971 
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 973 

Fig. 9: As Figure 8 but for precipitation. 974 
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 976 

Fig. 10: As Figure 9 but for corrected precipitation: 20% were added to all daily precipitation amounts 977 

in all three observational references except for HR over sub-region SW. Open circles instead of filled 978 

ones are used for better separation from Fig. 9. 979 
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 981 

 982 

Fig. 11: Normalized performance scores (shading) for individual performance metrics, when averaged 983 

over all seasons and regions. The upper row shows the results for temperature and the lower row for 984 

precipitation. Numbering inside the shaded boxes indicates the actual RCM rank for each case. In 985 

each panel, the individual rows indicate the performance metric, the individual columns the five 986 

RCMs considered. 987 
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 989 

Fig. 12: Overall (combined temperature and precipitation) normalized performance scores for each 990 

sub-region. The numbering above the bars indicates the actual RCM ranks separately for each 991 

reference dataset. 992 
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 999 

Tables 1000 

Table 1: Overview on the employed observational reference and RCM datasets. In this work the 1001 

individual datasets are simply referred to by their abbreviation (last column). 1002 

Type of 

dataset 
Details 

Observational 

reference 

Name Description Abbreviation 

E-OBS v15 Section 2.1.1 E-OBS 

National high-resolution grids Section 2.1.2 HR 

EURO4M MESAN Section 2.1.3 MESAN 

RCM 

Model name and version Institute/Group Abbreviation 

CCLM 4.8.17 CLMcom A 

HIRHAM 5 DMI B 

WRF 3.3.1F IPSL-INERIS C 

RACMO 2.2E KNMI D 

RCA 4 SMHI E 

 1003 
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Normalized performance scores (shading) for individual performance metrics, when averaged over all 
seasons and regions. The upper row shows the results for temperature and the lower row for precipitation. 

Numbering inside the shaded boxes indicates the actual RCM rank for each case. In each panel, the 
individual rows indicate the performance metric, the individual columns the five RCMs considered.  

 
152x101mm (300 x 300 DPI)  

 

 

Page 48 of 49

http://mc.manuscriptcentral.com/joc

International Journal of Climatology − For peer review only



Peer Review O
nly

  

 

 

Overall (combined temperature and precipitation) normalized performance scores for each sub-region. The 
numbering above the bars indicates the actual RCM ranks separately for each reference dataset.  
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1 

 

Table 1: Overview on the employed observational reference and RCM datasets. In this work the 

individual datasets are simply referred to by their abbreviation (last column). 

Type of 

dataset 
Details 

Observational 

reference 

Name Description Abbreviation 

E-OBS v15 Section 2.1.1 EOBS 

National high-resolution grids Section 2.1.2 HR 

EURO4M MESAN Section 2.1.3 MESAN 

RCM 

Model name and version Institute/Group Abbreviation 

CCLM 4.8.17 CLMcom A 

HIRHAM 5 DMI B 

WRF 3.3.1F IPSL-INERIS C 

RACMO 2.2E KNMI D 

RCA 4 SMHI E 
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