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• A new approach was conceived to
model air quality in the region of Catalo-
nia.

• The proposed methodology combined
geoprocessing tools and multivariate
statistics.

• Air quality was predicted from solar ra-
diation, surface reflectance and eleva-
tion.

• The results provided highly accurate
predictions of air quality at ungauged
zones.

• The presence of irradiated built-up
areas was found to endanger air quality.
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Air quality in developed areas is being increasingly compromised by the effect of urbanization,which is favouring
the presence of atmospheric pollutants derived from human-induced activities. Land cover change is one of the
consequencesmost closely associatedwith urbanization, leading to a growing presence of dark built-up surfaces.
The target of this investigationwas tomodel the Catalonian Air Quality Index (CAQI) from the combined effect of
the surface reflectance capacity of urban surfaces with solar radiation and elevation. Geoprocessing tools were
used to produce the information required to characterise these variables in the buffer areas surrounding 75 dif-
ferent air quality monitoring stations located across the region. Cluster analysis and Multiple Linear Regression
(MLR) were applied to group these stations according to their similarity and replicate the annual mean values
of CAQI recorded in Catalonia in 2011, respectively. Finally, discriminant analysis enabled assigning ungauged
areas to the cluster andMLRmodel that bestfitted their solar radiation, surface reflectance and elevation features.
The implementation of this approach resulted in highly accurate predictions of CAQI, providing a mechanism of
identification of areas having a number of days with poor air quality during the year. Since these areas were re-
lated to the presence of land cover types with high sunlight absorption, the proposed methodology was sug-
gested to support the adoption of measures aimed at controlling urban air pollution based on replacing built-
up surfaces by green infrastructure.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Rapid population growth and urbanization are contributing to in-
creasing air pollution in urban areas, particularly in developed countries
(Han et al., 2016). Most of this pollution stems from human-related
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activities, such as energy consumption, industrialization or transporta-
tion, and is a source of risk to health, since it might eventually lead to
cardiovascular and respiratory diseases (Andersen, 2017; Vardoulakis
et al., 2003). In consequence, increasing attention is being paid to the
impacts of urbanization on the environment, with emphasis on its alter-
ations in terms of land cover (Alphan, 2003; Dewan and Yamaguchi,
2009) and solar radiation (Alpert and Kishcha, 2008; Wang et al.,
2017) as potential threats for air pollution.

The development of land cover regression models for estimating air
pollution has become a rich discipline in the field of atmospheric envi-
ronment during the last 20 years. The pollutants addressed in these
models included Nitrogen Oxides (NOx) (Briggs et al., 2000; Gonzales
et al., 2012; Muttoo et al., 2018; Stedman et al., 1997), Ozone (O3) and
Particulate Matter (PM) with diameter of b10 (PM10) (Beelen et al.,
2009) and 2.5 μm (PM2.5) (Lee et al., 2017; Liu et al., 2016; Ross et al.,
2007), Sulphur Dioxide (SO2) (Amini et al., 2014) and Volatile Organic
Compounds (VOC) (Wheeler et al., 2008). Besides a land cover-related
variable, these studies considered other predictors, such as traffic, alti-
tude, population, meteorology or precedent emissions. Their estimates
reached coefficients of determination between 0.36 and 0.97, based on
data recorded in a series ofmonitoring stations during sampling periods
ranging from a few weeks to a whole year.

Specific investigations have also been conducted to explore the rela-
tionships between solar radiation and air pollutants. Gómez-Carracedo
et al. (2015) suggested that the presence of photochemical reactions
during the hours of maximum solar radiation favoured an increase in
O3, which coincided with the inferences achieved by Chou et al.
(2007). In contrast, Shen et al. (2014) argued that O3 wasweakly corre-
lated to solar irradiance due to the low concentrations of NOx. Wang
et al. (2005) found that secondary compounds of PM2.5 exhibited high
concentrations in summer as a result of strong solar radiation, a rela-
tionship which was confirmed by Vardoulakis and Kassomenos (2008)
and Hajizadeh et al. (2017), who also reported positive correlations be-
tween solar radiation and NOx, Carbon Monoxide (CO) and Benzene,
Toluene, Ethylbenzene and Xylene (BTEX). However, these results dif-
fered from those yielded by a later study undertaken by Kassomenos
et al. (2014), which indicated that the correlations between solar radia-
tion and PM2.5 and PM10 concentrations were not statistically
significant.

The target of these works highlighted the lack of integrated ap-
proaches for evaluating air quality considering variables related to
both land cover and solar radiation. To fill this gap, this research com-
bined solar radiation, surface reflectance and elevation factors to
model the Catalonian Air Quality Index (CAQI). This index was selected
because its calculation includes themost commonly found air pollutants
Fig. 1. Flowchart for the design and application of th
in urban daily life, such as CO, Nitrogen Dioxide (NO2), O3 and PM10

(Chen and Kan, 2008), and the data registered through its consideration
is open access andwidely available. In particular, the proposedmethod-
ologywas tested and validated using thedata recorded in 75monitoring
stations located in the region of Catalonia during 2011.

2. Methodology

The proposed methodology was conceived as a sequential combina-
tion of different multivariate statistical techniques, whose application
was founded on data produced using Geographic Information Systems
(GIS), as illustrated in Fig. 1. Hence, the set of factors or predictors iden-
tified as potential contributors to air pollutionwere generated through a
series of geoprocessing tools framed within the discipline of spatial
analysis. Then, a number of clusters were identified according to the
values of these predictors across different air quality stations. This en-
abled maximising the prediction accuracy of the subsequent regression
models built per cluster to estimate air quality. The last step concerned
the application of discriminant analysis to validate the proposed ap-
proach by allocating different stations to the clusters whose regressions
equations maximised their fit to observed values of air quality.

2.1. Framework

By 2017, Catalonia covered 32,106.5 km2 and had 7477.131 inhabi-
tants distributed among 947 municipalities (idescat.cat, 2017). This re-
gion is very dense and highly industrialised, circumstances that have
favoured exceeding European air quality standards in 2015 and 2016
(Secció d'Immissions, 2015, 2016), especially in the Metropolitan Area
of Barcelona, where two thirds of the population resided by 2017. The
surface exposed to pollution levels above those legally permitted
reached 24,000 km2 in 2016, almost 75% of the whole area of Catalonia
(Ceballos et al., 2015). These facts justified the need for developing new
methods and approaches to help better manage air pollution in this
region.

Air quality supervision in Catalonia is carried out by the Air Pollution
Monitoring and Forecast Network, which consists of a series of stations
aimed at measuring the levels of contamination reached across the re-
gion in relation to main atmospheric pollutants. Informing about the
measurements of these stations per pollutant is a time-consuming and
complex task, due to the technical details involved in the understanding
and provision of these data. For this reason, a public information system
based on an Air Quality Index (CAQI) was implemented in Catalonia
since January 1995, in order to communicate population about the
e proposed methodology to predict air quality.



Table 2
Land cover types and associated Albedo coefficients according to the Spanish LandUse and
Land Cover Information System (Coakley, 2003; Dobos, 2005; SIOSE, 2015; Wei et al.,
2001).

Group SIOSE
code

Land cover Albedo

Artificial cover EDF Buildings 0.15
ZAU Artificial green areas and urban woodland 0.21
LAA Artificial water bodies 0.10
VAP Road, parking or pedestrian area without

vegetation
0.08

OCT Other constructions 0.15
SNE Non-built soil 0.17
ZEV Extraction or discharge zones 0.17

Crops CHA Herbaceous: rice 0.18
CHL Herbaceous: other than rice 0.18
LFC Woody: citrus fruit 0.18
LFN Woody: non-citrus fruit 0.18
LVI Woody: vineyard 0.18
LOL Woody: olive grove 0.18
LOC Woody: other 0.18
PRD Meadows 0.19

Pastureland PST – 0.19
Woodland FDC Hardwood: deciduous 0.16

FDP Hardwood: perennials 0.16
CNF Coniferous 0.10

Brushwood MTR – 0.16
Barren
vegetation

PDA Beaches, dunes and sand 0.30
SDN Bare soil 0.17
ZQM Burned areas 0.17
GNP Glaciers and permanent snow 0.60
RMB Valleys 0.17
ACM Rocky: sea cliffs 0.17
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quality of the air they breathe in a clear, concise and rapid manner
(gencat.cat, 2015).

In addition to its ease of interpretation, the CAQI highlights by inte-
grating the aspects considered in current European Union legislation.
Furthermore, this approach provides an aggregated measure of the
weighted contribution of the following pollutants to global air quality,
which facilitates analysing its evolution with time: Ozone (O3), Particu-
late Matter with diameter of b10 μm (PM10), Carbon Monoxide (CO),
Sulphur Dioxide (SO2) and Nitrogen Dioxide (NO2). The CAQI ranges
from −100 to 100 and classifies air quality according to the three fol-
lowing levels: poor (b0), fair (0–49) and good (≥50) (gencat.cat,
2015). The approach taken to reach these thresholds consists of trans-
lating the concentration of the pollutants measured in the air quality
monitoring stations located across Catalonia into a scale that indicates
the effects of such contaminants on people, as specified in Table 1.

A good CAQI (≥50) has no negative effects on population health. In
contrast, if the level of air quality decreases to fair (0–49), eye irritations
andheadaches are likely to occur. In these circumstances, the symptoms
of heart and lung patients might be activated, whilst infants, the elderly
and smokers may experience functional disorders in their respiratory
and cardiovascular systems, such as increased respiratory rate, sensa-
tion of shortness of breath and palpitations. In those cases in which
the CAQI is poor (b0), infants, the elderly and smokers could also suffer
from inflammatory alterations in their respiratory system, including
cough and bronchial spasms. In this situation, the generally healthy
population can present functional disorders in their respiratory and car-
diovascular systems as well, especially when practicing sports or other
open-air physical activities.

The CAQI is not a mean obtained from the daily concentrations reg-
istered with respect to different pollutants, but a measure of the con-
taminant causing the greatest affection on air quality in a certain day
(gencat.cat, 2015). Hence, the first step concerns the calculation of the
value of CAQI associatedwith each pollutant recorded by the Catalonian
Air Pollution Monitoring and Forecast Network, as represented in
Table 1. Then, the value of CAQI for that day is determined as the lowest
value of CAQI across all the pollutants.

The relationships between the values of CAQI recorded across Cata-
lonia and solar radiation, surface reflectance and elevation were exam-
ined at the scale of circular buffer areas with a radius of 250 m around
the air quality stations, a distance of influencewhich has been previous-
ly used to undertake spatial analyses at urban areas involving a moni-
toring network (van Hove et al., 2015). Therefore, the list of predictors
required for estimating air quality (see Fig. 1) was produced according
to the areas covered by such circular buffers.

Land cover maps were incorporated into the methodology to facili-
tate determining the values of surface reflectance associated with
these buffers through the Albedo coefficient. This coefficient provides
ameasure of the amount of solar energy reflected from the Earth surface
to space, being extremely linked to the role played by land cover to re-
duce temperatures near the ground (Bretz and Akbari, 1997; Taha,
1997). Hence, the identification of different land cover typeswas carried
out with the support of the Spanish Land Use and Land Cover Informa-
tion System (SIOSE, 2015). The SIOSE project is a land cover database
reaching a level of detail four times higher than that of other
Table 1
Air quality classification according to the relationship between the Catalonian Air Quality
Index (CAQI) and the pollutants measured in the monitoring stations located across the
region.

Pollutant Emission levels

O3; 1 h (μg/m3) 0–110 111–180 181–240 N241
PM10; 24 h (μg/m3) 0–35 36–50 51–75 N76
CO; 8 h (mg/m3) 0–5 6–10 11–15 N16
SO2; 1 h (μg/m3) 0–200 201–350 351–500 N501
NO2; 1 h (μg/m3) 0–90 91–200 201–400 N401
CAQI 100 to 50 49 to 0 −1 to −50 −51 to −100
European systems, such as the Corine Land Cover (CLC). Table 2 shows
the 2-level classification of the SIOSE project, aswell as the Albedo coef-
ficients corresponding to each category, which were established based
on the values found for urban covers in different studies (Coakley,
2003; Dobos, 2005; Wei et al., 2001).

The reference year for conducting the research was 2011, since the
last available version of the SIOSE project was prepared by then. There
were 75 valid air quality monitoring stations for that year distributed
throughout Catalonia. Fig. 2 represents the location of the circular buffer
areas associatedwith each of these stations, as well as a sample (Station
ID: 74) of their land cover division according to the SIOSE classification.
More than half of these stations were located in the south of the region,
coinciding with the Metropolitan Area of Barcelona, where the highest
levels of pollution in Catalonia are recorded due to increased urbaniza-
tion and population (Ceballos et al., 2015). Still, there was a number of
monitoring stations distributed across the rest of the region, including
mountainous and rural areas, which enabled covering a variety of
cases in terms of surface type configuration, solar radiation exposure
and elevation.

2.2. Geoprocessing tools

Geoprocessing is any GIS-based operation related to the schemes
and toolboxes that enable processing spatial data, such that inputs are
ARR Rocky: rocky outcrops 0.17
CCH Rocky: screes 0.17
CLC Rocky: volcanic rocks 0.17

Humid cover HPA Inland wetlands: swamps 0.10
HTU Inland wetlands: peatbogs 0.10
HAS Inland wetlands: salt flats 0.10
HMA Marine wetlands: marshes 0.10
HSM Marine wetlands: salt marshes 0.10

Water cover ACU Inland waters: water courses 0.10
ALG Inland waters: lakes, ponds and reservoirs 0.10
AEM Inland waters: reservoirs 0.10
ALC Marine waters: coastal lagoons 0.10
AES Marine waters: estuaries 0.10
AMO Marine waters: seas and oceans 0.07



Fig. 2. Location of the 75 valid air quality stations in Catalonia in 2011 and zoom of the land cover classification of the circular buffer area associated with the monitoring station 74
according to the Spanish Land Use and Land Cover Information System (SIOSE).
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manipulated to produce outputs containing relevant information. There
is a vast array of different geoprocessing tools, amongwhich someof the
most widely used concern feature management, topology analysis and
raster processing (ESRI, 2016a). In particular, the geoprocessing tools
used to develop this research corresponded to those available in the
desktop version of ArcGIS (ESRI, 2017), which provides a unified inter-
face and structure for them all (Roberts et al., 2010).

The main data from which geographic tasks were carried out was
the Digital Elevation Model (DEM) of Catalonia, which was acquired
from the open data platform of the Spanish Geographic Institute (IGN
in Spanish) in LiDAR (Light Detection and Ranging) format with a den-
sity of 0.5 points per m2 (CNIG, 2017). The extraction of the LiDAR data,
which was divided into files of 2 × 2 km extension, from the circular
buffer areas depicted in Fig. 2 yielded the elevation information associ-
ated with the surroundings of each of the 75 monitoring stations
considered.

In addition, the data included in the DEM provided the input re-
quired for applying the geoprocessing tools to conduct the solar radia-
tion analysis of each buffer area. The procedure adopted in ArcGIS to
carry out this analysis consists of calculating the insolation in a land-
scape from its variations in elevation, slope and shadows (ESRI,
2016b) during a certain time period, which in this case was the whole
year 2011. Solar irradiance originated from the sun changes as it travels
throughout the atmosphere, until being intercepted at the Earth surface
in the form of direct, diffuse and reflected radiation (ESRI, 2016c).

Except for locations with an important presence of high reflective
surfaces, reflected radiation is very small in comparison with direct
and diffuse radiation. Therefore, ArcGIS omits this factor in the calcula-
tion of global radiation and applies the approach proposed by Fu and
Rich (2003), based on calculating an upward-looking hemispherical
view shed according to topographical data and overlapping it on direct
sun and diffuse sky maps to determine direct and diffuse radiation, re-
spectively (ESRI, 2016c). Fig. 3 illustrates this process for a single buffer
area using the format of the ModelBuilder (ESRI, 2016d), the visual
framework available in ArcGIS for creating geoprocessing workflows.

The application of the Area Solar Radiation tool yielded four outputs
in raster format: “Global Radiation”, “Diffuse Radiation”, “Direct Radia-
tion” and “Direct Duration”. The input required by this tool was the
DEM of the buffer area, whilst the parameters for establishing resolu-
tion, time configuration and hour interval were ‘200’ (cells), ‘Whole
year with monthly interval’ (2011) and ‘0.5’ (hours), respectively.
Then, the Zonal Statistics tool was used to calculate several descriptive
statistics, including minimum (Min), maximum (Max), range, mean,
standard deviation (SD) and sum. The inputs needed to run this opera-
tionwere the “Radiation Outputs” determined before, whichwere com-
piled through the IterateMultivalue tool, and the buffer area of the study
station divided according to the SIOSE classification.

These zonal results enabled weighting the radiation outputs shown
in Fig. 3 according to the Albedo coefficients associated with the land
cover types contained in the buffer areas, using the values listed in
Table 2. The addition of the DEM-based statistics for the buffer areas
to the weighted radiation variables formed the set of predictors used
to divide the 75 monitoring stations available in Catalonia in 2011 into
clusters based on their similarity across these parameters.

2.3. Cluster analysis

The concept of cluster analysis was originally proposed by Tryon
(1939) as a tool for grouping elements according to their similarity
through the application of a series of theoretical methods. This tech-
nique is based on the working principle that the elements included in
the same group are related to each other and unrelated to the elements
allocated to other groups. Hence, cluster analysis was applied to this re-
search to partition the list of air qualitymonitoring stations according to
their similarity in terms of the solar radiation, surface reflectance and el-
evation conditions in their surroundings. This technique, as well as the



Fig. 3.Workflow for the production of predictors to estimate air quality.
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other statistical methods included in the methodology, was applied
with the support of the computer programMinitab (Minitab Inc., 2017).

The identification and composition of the number of cluster into
which the whole set of stations should be divided was carried out
through hierarchical clustering. This type of cluster analysis is
based on calculating a distance matrix between the elements in the
datasets, which enables identifying and grouping the two of them
are closest to each other (Rokach and Maimon, 2005). The resulting
cluster becomes indivisible, so that subsequent elements are
grouped into increasingly large and heterogeneous conglomerates.
Therefore, hierarchical clustering is an agglomerative procedure
that ends with the creation of a single global cluster formed of all
the elements contained in the dataset.

In particular, the number of clusters to consider was determined
through the interpretation of dendrograms, which are tree-shape
graphs representing the arrangement of conglomerates derived
from hierarchical clustering. The results provided by this diagram
depend on the linkage method used. Some approaches, including
single, average and complete linkage, use any proximity measure,
whilst some others require distances, such as the centroid, median
and Ward's methods (Day and Edelsbrunner, 1984). Among them,
the latter has been found to be very accurate when working with
compact and spherical clusters (Blashfield, 1976; Hands and
Everitt, 1987; Kuiper and Fisher, 1975), i.e. when the order of magni-
tude of the groups is similar.

Since this assumption was expected to bemet due to the absence of
outliers in the dataset, theWard's method (Ward, 1963) was chosen for
clustering. This approach seeks tominimise the variancewithin clusters
by calculating the Sum of Squared Error (SEE) as formulated in Eq. (1),
which measures the sum of the squared differences between each ele-
ment and the centroid of the cluster to which they belong.

SEE ¼
Xn
i¼1

x2i −
1
n

∑
n

i¼1
xi

� �2

ð1Þ

where n is the number of elements and xi is the value of the ith element.
Eq. (1)was applied iteratively, such that an elementwas selected to join
a cluster at each stage if its inclusion minimised the sum of the intra-
group distances. The clusters obtained as a result of this process enabled
dividing the stations according to their similarity in relation to the out-
puts obtained from the application of the workflow depicted in Fig. 3,
maximising the accuracy of the subsequent MLR models to be built for
estimating values of CAQI.

2.4. Multiple Linear Regression

MLRwas incorporated into the proposedmethodology to determine
the relationships between the mean values of CAQI recorded across the
75 air quality stations located in Catalonia in 2011 and the descriptive
statistics related to solar radiation, surface reflectance and elevation ob-
tained from geoprocessing. Eq. (2) provides the mathematical formula-
tion to calculate the former as a linear combination of the latter:

y ¼ b0 þ b1:1 � x1:1 þ…þ b3:4 � x3:4…þ b5:6 � x5:6 þ e ð2Þ

where y is the response, xi · j stand for the value of the predictor i for the
statistic j, b0 and e represent the constant and the residuals, respectively,
and bi · j indicate the relevance of the predictors in the MLR model.
Table 3 shows the nomenclature used to characterise the list of predic-
tors proposed in terms of the descriptive statistics calculated through-
out the year of study as represented in Fig. 3.

The legitimacy of MLRwas verified through the graphical inspection
of the residuals contained in themodels built, which were diagnosed in
terms of linearity, independence, homoscedasticity and normality. Line-
arity was verified through the p-value of the regression term in the
models, according to a significance level of 0.05 (Fisher, 1925). Plots of
standardised residuals vs. station order and standardised predicted
values enabled checking the assumptions of independence and homo-
scedasticity, respectively. Finally, a Quantile-Quantile (Q-Q) plot was
used to guarantee the normality of residuals.

The validity of MLR analysis was double-checked to further ensure
their validity to estimate future values of CAQI. On the one hand, the
goodness-of-fit of the models built was assessed using the predicted
R2 coefficient, whoseworking principle is based upon systematically re-
moving each air quality station from the model and then calculating
how well the MLR equation predicts the omitted station. On the other
hand, eight stations were excluded from the models at the beginning
of this phase, in order to use them as a posteriori testers of the accuracy
of discriminant analysis. Therefore, the MLR models produced at this
stage played a primary role in the next step of the methodology, since
their application enabled determining the reliability of the allocation
process conducted to assign each excluded station to the cluster that
best fitted their characteristics through discriminant analysis.



Table 3
List of predictors proposed for estimating the Catalonian Air Quality Index (CAQI).

Response Predictor Descriptive statistic

Min Max Range Mean SD Sum

CAQI [−100, 100] Weighted global radiation (Wh/m2) x1.1 x1.2 x1.3 x1.4 x1.5 x1.6
Weighted diffuse radiation (Wh/m2) x2.1 x2.2 x2.3 x2.4 x2.5 x2.6
Weighted direct radiation (Wh/m2) x3.1 x3.2 x3.3 x3.4 x3.5 x3.6
Weighted direct duration (h) x4.1 x4.2 x4.3 x4.4 x4.5 x4.6
Elevation (m) x5.1 x5.2 x5.3 x5.4 x5.5 x5.6
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2.5. Discriminant analysis

Like clustering techniques, discriminant analysis belongs to the
group of multivariate statistical methods devoted to the classification
of elements into several groups. The main difference between discrimi-
nant and cluster analyses concerns the condition of the dataset used,
since the former classifies elements from samples in which the groups
are known aprioristically. Therefore, the purpose of discriminant analy-
sis is to determine themembership of new elements based on the char-
acteristics of the known groups (Lachenbruch, 1975).

Discriminant analysis can be seen as a logistic regression model in
which a series of continuous independent variables are used to deter-
mine the membership group of the elements forming the dataset
through according to a categorical dependent variable, such that the
categories are equal to the groups (Press andWilson, 1978). In analyti-
cal terms, the discriminant function D of two independent variables x1
and x2 is expressed as shown in Eq. (3), which enables differencing
both groups as much as possible.

D ¼ β1 � x1 þ β2 � x2 ð3Þ

where β1 and βn are the weights of the independent leading the ele-
ments from both groups to achieve maximum and minimum scores in
D, which results in the maximum possible separation between groups
(SPSS, 2000). In other words, the application of this functionmust max-
imise and minimise the variance between and within groups, respec-
tively. To this end, the values taken by D must be such that the

distance d between the centroidsd1 andd2 of both groups is maximised,
according to Eqs. (4) and (5):

d ¼ d1−d2 ð4Þ

di ¼ β1 � x ið Þ
1 þ β2 � x ið Þ

2 ð5Þ

where di is the centroid d of the group i, calculated by introducing the
mean values of that group across the independent variables x1 and x2
in the discriminant function D (see Eq. (3)). To guarantee the validity
of discriminant analysis, the groups must be differentiated in the inde-
pendent variables beforehand, in order to enable finding a dimension
in which the groups diverge from each other (SPSS, 2000). Otherwise,
the centroids would be too close to each other, to the extent of making
the distinction between the elements of both groups impossible.

The incorporation of discriminant analysis into the proposed meth-
odology was aimed at serving as a means of allocation to enable deter-
mining which cluster must be assigned to new stations, in order to
maximise the prediction accuracy of CAQI by applying the most conve-
nient regression equation in each situation. Hence, the application of
this technique to the case study of Catalonia in 2011 consisted of
assigning the stations removed from the MLR step to the clusters that
maximised their fit to the values of CAQI.

3. Results and discussion

This section compiles and discusses the results achieved from the
application of the proposed methodology to the case study of Catalonia
in 2011, following the four steps outlined in Fig. 1: Geoprocessing tools,
Cluster analysis, Multiple Linear Regression (MLR) and Discriminant
analysis. In addition, the section starts with an introduction focused
on demonstrating the suitability of using the Catalonian Air Quality
Index (CAQI) for developing this research.

3.1. Framework

Themodelling and analysis of air quality in Cataloniawas carried out
on the basis of the annual mean values of CAQI obtained from the mea-
sures of the air pollutants included in Table 1 in 75 different monitoring
stations located across the region in 2011. To prove the rigor and useful-
ness of using annualmean values of ameasure like CAQI, the correlation
coefficients between such values and the number of dayswithin 2011 in
which this parameter was good (N50), fair (0–49) and poor (b0) (see
Table 1) were calculated. In particular, the Spearman's rho was the cor-
relation coefficient selected for this purpose, since the aim was to find
monotonic relationships between the values of CAQI and the number
of days corresponding to each level.

The results collected in Table 4 demonstrated the statistical signifi-
cance of these correlations (p-values b 0.05 in all cases), whichwere es-
pecially strong for the levels good and fair. The fact that several of the 75
stations considered recorded 0 dayswith poor CAQI explained the lower
Spearman's rho reached for this level. Still, these results indicated that
those stations with annual mean values in the range between 42 and
55were poor in terms of CAQI several days throughout the year. Annual
mean values ranging from 55 to 70 were very likely to be related to a
number of days with fair CAQI levels, whilst those stations with values
above 70 had generally good air quality all year round. Overall, these
findings guaranteed the relevance of using this parameter as a measure
of air quality, according to the emissions of O3, PM10, CO, SO2 and NO2

related to the three levels of CAQI (see Table 1). Furthermore, similar
principles than those used for creating the CAQI have been implement-
ed to create theWorld Air Quality Index (aqicn.org., 2017), an initiative
providing air quality information in 600 major cities worldwide, based
on data from N9000 stations. This project provides evidence of the po-
tential applicability of the proposed approach,whichmight be easily ex-
trapolated to hundreds of cities around the globe.

3.2. Geoprocessing tools

The application of the set of geoprocessing tools described in Fig. 3 to
the buffer area zoomed in Fig. 2 (Station ID: 74) yielded the circular
maps depicted in Fig. 4. The Digital ElevationModel (DEM) correspond-
ing to this buffer area enabled running the solar radiation tool, which
produced the outputs required for generating the predictors to be
used in subsequent steps. Direct radiation was responsible for almost
80% of the global radiation in this particular buffer area, which explains
the resemblance between both maps.

The circles shown in Fig. 4 provided information about the global
solar radiation accumulated by each cell contained in the buffer area
throughout 2011, broken down into diffuse radiation, direct radiation
and direct duration. The processing of these values and those of eleva-
tion using zonal statistics, with the additional consideration of the
zones established by the Spanish Land Use and Land Cover Information



Table 4
Spearman's correlation coefficients (rho) between the annualmean values of CatalonianAir Quality Index (CAQI) recorded in 2011 and the number of days during the year inwhich the air
quality level was good, fair and poor.

Term 1 Term 2 Spearman's rho p-Value

Annual mean value of CAQI [42, 96] No. of days with good CAQI (≥50) 0.823 0.000
No. of days with fair CAQI (0–49) −0.832 0.000
No. of days with poor CAQI (b0) −0.505 0.000
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System (SIOSE) in the case of radiation, enabled determining the mini-
mum,maximum, range,mean, standard deviation and sumof these var-
iables for each land cover type (see Table 2).

The last operation to end characterising the list of predictors pro-
posed in Table 3 consisted of multiplying the radiation-related values
per land cover type by their corresponding Albedo coefficients included
in Table 2. This resulted in weighted values of radiation and duration,
providing a measure of the weighted effect of radiation on air quality
once the degree of surface reflectance of the ground surrounding the
monitoring stations was taken into account.

3.3. Cluster analysis

The descriptive statistics obtained through the application of
geoprocessing tools for the 75 buffer areas considered were used as
the variables defining the clusters for grouping the monitoring stations
according to their similarity. Since cluster analysis algorithms are based
on calculating distances, these variables were previously standardised
to avoid achieving misleading results due to the different scales in
which they were measured.

Hence, the standardised variables were inputs to draw the dendro-
gram represented in Fig. 4 using the Ward method as linkage method
and Euclidean metric as distance measure. The visual inspection of the
dendrogram suggested that four clusters (CL1, CL2, CL3 and CL4)
might be a suitable division (see Fig. 5). Considering a higher number
of clusters would lead to unbalanced groups, whilst three or less cluster
Fig. 4. Elevation (m), global radiation (Wh/m2), diffuse radiation (Wh/m2) and direct radiation
monitoring station 74.
would result in a loss of accuracy. CL1 included stations located around
the most urbanised areas in Catalonia and highlighted by reaching the
highest values in direct duration. In contrast, CL2 and CL4 contained
most of the stations located in Barcelona and its surroundings, resulting
in low values of Albedo and elevation. Finally, CL3 consisted of the sta-
tions located in the north of the region, coinciding with mountainous
areas and, therefore, high values of elevation.

Since cluster analysis was a preliminary step to develop regression
equations for predicting CAQI, the number and composition of clusters
was intended to maximise the goodness-of-fit of the MLR models to
be built in the next step. Although the number of clusters identified
was optimal, some stations included in each of these four groups were
found to be improvable in terms of the goodness-of-fit of MLR, as a re-
sult of the differences between the working principles behind both sta-
tistical techniques.
3.4. Multiple Linear Regression

To palliate the lack of fit derived from cluster analysis, a cross-
validation process was conducted to optimise the allocation of stations
in the clusters identified in terms of MLR, such that each station was re-
moved from its original cluster and added to the remaining clusters, in
order to test how its omission or inclusion affected the prediction reli-
ability of the MLR equations associated with every cluster. In the end,
this task led to maximise the fit between measured and estimated
(Wh/m2) and duration (h) maps obtained for the circular buffer area corresponding to the



Fig. 5.Dendrogram for dividing the set of 75monitoring stations into clusters according to
their similarity in terms of solar radiation, surface reflectance and elevation.
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CAQI, resulting in the following cluster arrangement: CL1–14 stations;
CL2–19 stations; CL3–17 stations; CL4–25 stations.

Up to 8 stations were excluded from this step in proportion to the
size of the clusters, in order to use them for checking the accuracy of dis-
criminant analysis in the application of the last phase of the proposed
methodology. Hence, 1, 2, 2 and 3 stations were omitted in the calcula-
tion of theMLRmodels corresponding to CL1, CL2, CL3 and CL4, respec-
tively. Table 5 summarizes the main characteristics of these models,
including the terms involved in their equations and the values achieved
with respect to different goodness-of-fit measures.

The logic of the impacts of the Albedo coefficient, solar radiation and
elevation on air quality, which have been documented in different stud-
ies over the years (Bisht et al., 2016; Peterson and Flowers, 1977;
Touchaei et al., 2016; Twomey, 1974; U.S. EPA, 1978; Yamashita,
1973), were confirmed by Fig. 6. Dark surfaces involve lower values of
Albedo and high sunlight absorption, increasing local temperatures
and speeding up chemical reactions that diminish air quality, as
depicted in Fig. 6a. Fig. 6b demonstrates that the relationship between
weighted global radiation and CAQI is inversely proportional, which
reaffirms the aforementioned positive impact of irradiated surfaces on
air pollution. Moreover, since temperature decreases with elevation as
molecules expand, the warming effect of solar radiation on air quality
at high altitudes is mitigated as proved in Fig. 6c. According to these
Table 5
Scheme of the Multiple Linear Regression (MLR) models built for estimating the Catalonian Ai

Term CL1 (N = 13) CL2 (N = 17)

Coef p-Value Coef p-Va

Regression – 0.001 – 0.000
b0 318.35 0.000 71.89 0.000
b1.3 1.01E−04 0.000 – –
b2.1 −1.18E−04 0.002 – –
b2.5 – – – –
b3.1 – – −1.36E−05 0.001
b3.4 −3.59E−05 0.033 – –
b4.1 – – – –
b4.3 −3.43E−02 0.000 – –
b4.6 −5.43E−08 0.032 – –
b5.1 – – 4.21E−02 0.000
b5.2 −6.64E−02 0.001 – –
b5.5 – – 3.85E−01 0.003
S 3.64 5.32
R2 0.95 0.89
Adj. R2 0.91 0.86
Pred. R2 0.78 0.77
inferences, urban planning and management strategies concerning air
quality should consider taking measures to replace part of the built-up
skin of urban areas by lighter surfaces, preferably based on green infra-
structure, in order to control atmospheric pollution and contribute to
improving sustainability (Jato-Espino et al., 2017).

The standardR2 coefficients shown in Table 5 suggested that N85% of
the variations in the values of CAQIwas explained by the solar radiation,
surface reflectance and elevation-related predictors. Fig. 7 illustrates the
excellent fit provided by the MLR models built, which demonstrated to
be capable of predicting peaks and sinks of CAQI with high precision.
The standard error of the regression S confirmed the accuracy of the es-
timates to replicate the values of CAQI measured in 2011. Furthermore,
the adjusted and predicted R2 coefficients reached guaranteed that the
MLRmodels were not overfitted due to an excess of predictors and val-
idated their use for making new predictions, respectively.

The residuals of these MLR models were analysed to fully ensure
their reliability. The p-values of the regression term in Table 5, which
were below the significance level in all cases (p-values b 0.05), guaran-
teed the linearity of residuals. Fig. 8 depicts the Q-Q plots, standardised
residual versus fits plots and standardised residual versus order plots
corresponding to the MLR models built for each cluster, which were
used to verify the normality, homoscedasticity and independence of re-
siduals, respectively. Since the points in the Q-Q plot lied close to a
straight line, normality was assumed to be true. Moreover, the absence
of marked trends and correlations in the standardised residual versus
fits and order plots enabled accepting the hypotheses of homoscedastic-
ity and independence, respectively. The adequate arrangement of the
residuals in the plots included in Fig. 8 prevents the predictions and sci-
entific insights achieved through the application of theMLRmodels rep-
resented in Table 5 from being biased or misleading. Consequently,
these models were scientifically validated to estimate the CAQI in any
location of the region.
3.5. Discriminant analysis

Since the regression equations built in the previous step were ar-
ranged according to clusters, the validation of the proposedmethodolo-
gy required amechanism to allocate new study areaswhere to estimate
air quality to one group or another, in order to ensure each locationwas
assigned to the MLR model in Table 5 that maximised the fit of CAQI.
This was accomplished through discriminant analysis, which was com-
puted from group sizes, such that the likelihood of membership to a
group increased as the size of the group increased. Furthermore, the sta-
tions considered for MLR were classified using a separate-groups
r Quality Index (CAQI).

CL3 (N = 15) CL4 (N = 22)

lue Coef p-Value Coef p-Value

– 0.000 – 0.000
136.61 0.000 149.90 0.000
– – – –
– – – –
– – 1.30E−03 0.000
−3.60E−04 0.000 – –
– – −5.28E−05 0.000
– – 4.92E−03 0.000
– – – –
– – – –
−5.23E−02 0.000 −3.64E−02 0.006
– – – –
– – – –

3.37 4.57
0.90 0.86
0.88 0.83
0.84 0.75



Fig. 6. Relationships between Air Quality Index (CAQI) and representative parameters of the proposed predictors: a) Albedo coefficient b) weighted global radiation (Wh/m2) c) elevation
(m).

197D. Jato-Espino et al. / Science of the Total Environment 624 (2018) 189–200
covariance matrix based on discriminant functions, which resulted in
the distribution depicted in Fig. 9.

Overall, 51 out of the 67 stations included in the MLR models
schematised in Table 5 were allocated to their membership groups
(74.63%), which involved that 3, 7, 2 and 5 stations that were supposed
to be allocated to CL1, CL2, CL3 and CL4, respectively, were misassigned
to any of the other three groups. The number of stationsmisallocated to
their membership cluster was particularly high for CL2, due to the prox-
imity of its centroid to those of CL3 and CL4, as demonstrated in Fig. 9.
Regarding the stations removed from the MLR models, the allocation
process undertaken using discriminant analysis and the subsequent ap-
plication of the corresponding regression equations (see Table 5)
yielded the results compiled in Table 6.

All the validation stations were assigned to the cluster that
maximised their fit to the measured value of CAQI, except station 9,
which was misassigned to CL4. Recalculations made using the equation
corresponding to CL2, which was the second nearest group to station 9,
Fig. 7. Fit betweenmeasured and predicted values of Catalonian Air Quality Index (CAQI) in the s
(CL4).
yielded a predicted CAQI of 49.59, a value that resulted in an error in the
order ofmagnitude of S for thatMLRmodel (see Table 5). Consequently,
discriminant analysis was demonstrated to provide very accurate re-
sults in the allocation process of new sites to the MLR models that
maximised the prediction of CAQI according to the solar radiation, sur-
face reflectance and elevation characteristics of their surrounding areas.

Overall, the results achieved proved the reliability and accuracy pro-
vided by the proposed methodology in the modelling of CAQI, such that
its applicationmight be used to predict air quality at non-monitored loca-
tions. Hence, the procedure to implement this methodology at ungauged
siteswould consist of (1) selecting a specific location, (2) delimiting a cir-
cular buffer area with a radius of 250 m around it, (3) computing the
values of surface reflectance, solar radiation and elevation associated
with such buffer area using geoprocessing tools, (4) assigning the location
under study to the cluster that bestfits its characteristics throughdiscrim-
inant analysis and (5) applying the MLR corresponding to such cluster to
determine the value of CAQI being sought.
tations included in a) Cluster 1 (CL1), b) Cluster 2 (CL2), c) Cluster 3 (CL3) and d) Cluster 4



Fig. 8.Residual analysis for theMultiple Linear Regression (MLR)models to predict the Catalonian Air Quality Index (CAQI) in the stations included in a) Cluster 1 (CL1), b) Cluster 2 (CL2),
c) Cluster 3 (CL3) and d) Cluster 4 (CL4).
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4. Conclusions

This research demonstrated that the combination of geoprocessing
tools and multivariate statistics can produce accurate estimates of air
Fig. 9. Combined-groups plot representing the proximity of eachmonitoring station to the
four clusters identified in previous steps.
quality in Catalonia from the consideration of the interactions between
the surface reflectance of urban surfaces with solar radiation and eleva-
tion. The results achieved through the sequential application of the dif-
ferent components included in the proposed methodology highlighted
the synergetic role they played in the prediction of air quality.

Geoprocessing tools were found to provide a simple and accurate
means to produce the solar radiation, surface reflectance and elevation
predictors required to model air quality. Although cluster analysis did
not provide an arrangement of the 75 monitoring stations located in
Catalonia resulting in the maximisation of the fit between measured
and predicted air quality, its combination with Multiple Linear
Table 6
Comparison between measured and predicted values of Catalonian Air Quality Index
(CAQI) for the validation stations using theMultiple Linear Regression (MLR) models cor-
responding to their assigned clusters through discriminant analysis.

Value Station ID

9 25 27 38 46 48 56 60

Assigned cluster 4 3 4 4 3 4 2 1
Measured CAQI 54 60 49 66 75 59 60 57
Predicted CAQI 67.10 63.69 48.34 61.62 71.03 53.94 59.45 61.02
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Regression (MLR) enabled replicating the values of Catalonian Air Qual-
ity Index (CAQI) recorded in 2011 with high precision. Finally, discrim-
inant analysis facilitated the estimation of the levels of air quality at
ungauged zones, since its application led to correctly assign more than
three fourths of the stations analysed to its membership group, provid-
ing a reliable method to allocate new study areas to the cluster and cor-
responding MLR model best suited to their characteristics. In
consequence, the stepwise implementation of the proposed methodol-
ogy allowed estimating air quality with high precision, emerging as an
effective tool to support decision-making processes in urban planning
and management.

Since low annualmean values of CAQIwere proved to be significant-
ly correlated to the number of days within a year in which this variable
is poor and, by extension, potentially harmful to human health, a tested
procedure to estimate air quality with high accuracy like the proposed
methodology can support the design of plan actions aimed at control-
ling air pollution in urban spaces. Furthermore, the negative effects of ir-
radiated dark cover types on air quality found during the investigation
suggested that substituting built-up surfaces by green infrastructure
might reduce urban air pollution. Hence, future urban designs and res-
toration actions should be oriented to the implementation of technolo-
gies such as cool pavements and roofs and vegetated surfaces, in order
to help mitigate the harmful impacts of urbanization on air quality
through environmentally efficient land cover management practices.

Air quality indices are used as a recognised measure of atmospheric
pollution in many cities worldwide, which guarantees the applicability
of the methodology conceived in this research beyond the boundaries
of Catalonia. However, although CAQI was statistically demonstrated
to be a valid and rigorous indicator for air quality, future research in
this line should also focus on implementing the proposed approach in
the modelling of specific pollutants, such as Ozone (O3), Particulate
Matter (PM10), CarbonMonoxide (CO), Sulphur Dioxide (SO2) or Nitro-
gen Dioxide (NO2).
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