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Resumen

En este Trabajo de Fin de Grado presentamos un algoritmo para la estimación de mo-

delos de regresión logística penalizados mediante la técnica de regresión en cresta. La

disponibilidad de bases de datos masivas ha provocado que muchos modelos de regre-

sión padezcan sobreajuste. Así, Tibshirani (1996) introdujo el ‘Least Absolute Shrinkage

and Selection Operator’ (LASSO), un método de estimación que ayudaba a controlar

el sobreajuste introduciendo restricciones al tamaño de los coeficientes estimados, de

forma que son contraídos hacia cero en función de un parámetro de restricción. Desafor-

tunadamente, es más complicado encontrar trabajos en la literatura donde este tipo de

regularización se extienda a modelos econométricos donde la variable dependiente es

limitada. Dado que dichos problemas son de interés en economía, este trabajo se cen-

tra en la aplicación de estas técnicas de regularización al caso particular de modelos de

elección binaria. Para ello, revisamos la literatura existente sobre los Modelos Lineales

Generalizados y funciones de verosimilitud penalizadas. Así, se pone de manifiesto que

algunos de los resultados nos permiten desarrollar un algoritmo para estimar modelos

de regresión logística penalizada. Adicionalmente, realizamos un ejercicio de simulación

para comparar los estimadores obtenidos mediante las técnicas de regresión LASSO y

regresión en cresta. Además, también estudiamos el rol que juega el parámetro de con-

tracción en la estimación de estos modelos penalizados.

Palabras clave: LASSO, regresión en cresta, regularización, IRLS, regresión logísti-

ca.

Abstract

In this dissertation we present a new algorithm to estimate penalized (ridge) logistic re-

gression. With the availability of huge data sets, it is now frequent the curse of overfitting

in regression models. For the standard linear regression model, in Tibshirani (1996) it

was introduced the Least Absolute Shrinkage and Selection Operator (LASSO). This esti-

mation technique guarded against overfitting by introducing a penalty term that somehow

shrinkages some subset of parameter estimates towards some zero pre-specified values.

Unfortunately, it is much more difficult to find papers where the LASSO approach is ex-

tended to regression models where the dependent variable is limited. As in economic

analysis is rather frequent to find this type of problem, this dissertation is devoted to the

study of how to apply the LASSO approach to the particular case of binary discrete choice

models. In order to do so, we first revise the literature of Generalized Linear Models and

penalized likelihood approaches. It turns out that some standard results of these fields

provide us with tools to develop an algorithm to fit penalized logistic regression models.

As an extension we compare through a simulation exercise the results obtained with our

estimator against the corresponding LASSO estimators. We study also the crucial role

that plays in the fitting of these models the so-called shrinkage parameter.

Keywords: LASSO, ridge regression, penalization, IRLS, logistic regression.
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1. INTRODUCTION

One of the most important results that we learn in any introductory econometrics course is

the so-called Gauss-Markov Theorem. In fact, loosely speaking this result give us a nice

efficiency outcome for the OLS estimator in the linear regression model against a broad

class of estimators (the class of all linear and unbiased estimators) under fairly weak

conditions. This important result is probably the reason why in standard econometrics it

is rather common to prefer unbiased estimators against biased ones regardless of other

important properties. In fact, if we consider as efficiency criteria the Mean Squared Error,

in some cases, it can be desirable to incur in a little bias at the gain of considerably

reducing the variance.

The idea of this dissertation then is to study estimation techniques that, taking ad-

vantage of the bias-variance trade off, enables us to trade a little bias for a substantial

decrease in variance, so that the resulting mean squared error is lower. Among other

techniques, we have available the so-called regularization or penalization methods. We

focus in two of them, namely ridge regression (Hoerl and Kennard 1970) and LASSO

regression (Tibshirani 1996). We will see how the latter is more intuitive and has some

convenient features - such as allowing to perform variable selection -, however it is a

non-linear and non-differentiable problem with no closed form.

These methods have been extensively covered in the literature when applied to the

classical linear regression model with continuous dependent variable . See for example

Tibshirani (2011) for a retrospective overview of these methods in the last years. Although

we only focus on the LASSO and ridge alternatives, there have appeared a broad range

of generalizations, such as the grouped LASSO (Yuan and Lin 2007), the elastic-net (Zou

and Hastie 2005) or the adaptive LASSO (Zou 2006).

However, much of the problems posed in economics involve the estimation of econo-

metric models where the dependent variable is limited. In particular, we turn our atten-

tion to the case where the endogenous variable is binary. The logistic regression model

(Cox 1958) can be used to study economic problems where the outcomes represent suc-

cess/failure, or the presence/absence of an attribute (smoker/nonsmoker, fail/pass, dead-

/alive...). In Section 2 we outline Generalized Linear Models (henceforth GLMs) to lay the

foundations for the study of logistic regression in Section 3, as it can be seen as a partic-

ular case of GLMs.

In this dissertation we aim at extending these regularization techniques to the study of

discrete problems. Section 4 describes ridge regression and extends it to logistic regres-

sion. We also propose an algorithm written in R for fitting the model. Section 5 extends

these results to the LASSO penalty, and tries to generalize them to logistic regression

as well. As we will see, LASSO regularization has some computational disadvantages.

The literature has proposed several algorithms to fit the model as in Efron et al. (2004),

Friedman, Hastie, and Tibshirani (2010) or Lee et al. (2006), although there are still some

unresolved issues. Finally, Section 6 contains several Monte Carlo experiments con-

ducted to show how regularization works. In particular, we are concerned with showing

how the coefficients in the estimated model behave under a particular constraint, and we

also propose a statistic to decide whether regularization may outperform or not another

estimation method. The code for these experiments can be found in Appendix A.
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2. GENERALIZED LINEAR MODELS

We outline now the characteristics of GLMs, as a comprehensive understanding of these

models is needed to master the techniques that we will later introduce. GLMs are a gener-

alization of classical linear models that allow for dependent variables that are not normally

distributed. This framework allows to model a potentially nonlinear relationship between

covariates and a response variable with linear methods. GLMs were formulated by Nelder

and Wedderburn (1972) as a way of unifying previous extensions for multiple errors in the

literature. Throughout this section we use McCullagh and Nelder (1989) as the base ref-

erence.

To facilitate the transition to GLMs, we can use the classical linear model as the starting

point. Suppose that a vector y of n observations is a realization of a random variable Y

with independently distributed components with means µ. The latter is specified in terms

of p unknown parameters and covariates. In the case of the usual linear models, we have

E(Yi) =

p∑
j=1

xijβj for i = 1, ..., n (2.1)

where xij refers to the jth covariate for observation i. In matrix notation we may write

E(Y ) = µ = Xβ (2.2)

whereX is the n×pmatrix of dependent variables and β is the p×1 vector of parameters.

The random part of the model involves assuming that the errors follow a Normal distribu-

tion with constant variance. We may rearrange (2.2) to display a three-part specification:

1. The random component.

2. The systematic component: explanatory variables produce a linear predictor η given

by

η =

p∑
j=1

xjβj .

3. The link between then random and the systematic parts:

η = g(µ).

where g(.) is called the link function.

In this setting, the classical linear models have a Gaussian distribution and identity

function link. GLMs allow for two departures: the distribution may come from an ele-

ment of the exponential family other than the Normal, and the link may be any monotone,

differentiable function.

Suppose that the observations y are realizations from a random variable Y whose

distribution is a member of the exponential family characterised by the density function

fY (y; θ, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)} (2.3)

where θ is the canonical parameter. Thus, the log-likelihood function is

l(θ, φ; y) = log fY (y; θ, φ) = {yθ − b(θ)}/a(φ) + c(y, φ). (2.4)

We can derive the expression of the mean and variance of Y using the results of Kendall

and Stuart (1967, p. 9)

E

(
∂l

∂θ

)
= 0 (2.5)
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E

(
∂2l

∂θ2

)
+ E

(
∂l

∂θ

)2

= 0. (2.6)

From (2.4) we see that
∂l

∂θ
= {y − b′(θ)}/a(φ) (2.7)

and
∂2l

∂θ2
= {−b′′(θ)}/a(φ). (2.8)

Thus using (2.4) and (2.6) we obtain

E
[
{y − b′(θ)}/a(φ)

]
= {µ− b′(θ)}/a(φ) = 0, (2.9)

so that

E(Y ) = µ = b′(θ). (2.10)

Equivalently, from (2.6), (2.7) and (2.8) we have

E
[
{−b′′(θ)}/a(φ)

]
+ E

[
{y − b′(θ)}/a(φ)

]2
= 0, (2.11)

which becomes
{−b′′(θ)}

a(φ)
+

var(Y )

a(φ)2
= 0 (2.12)

so that

var(Y ) = b′′(θ)a(φ). (2.13)

The function b′′(θ) depends on θ and hence on the mean, and will be referred to as the

variance function V ,

V (µ) = b′′(θ), (2.14)

while a(φ) depends only on the dispersion parameter φ which is commonly constant.

To select the appropriate link function, one may compare different model fits. Each

distribution has the so-called canonical link, which occurs when

θ = η. (2.15)

It has convenient statistical properties, although this does not mean that it is always the

best choice (McCullagh and Nelder 1989, p. 32).

2.1. FITTING GENERALIZED LINEAR MODELS

Nelder and Wedderburn (1972) also proposed a Iteratively Reweighted Least Squares

(IRLS or IWLS) method for estimation of the parameters β. Here we follow McCullagh

and Nelder (1989) again to describe the fitting procedure. The specific numeric algorithm

used to accomplish the parameter estimation is the Scoring method.

We need to obtain expressions for the first and second derivatives of the log-likelihood

function for a unique observation given by (2.4). Hence by the chain rule

∂l

∂βj
=

∂l

∂θ

dθ

dµ

dµ

dη

∂η

∂βj
. (2.16)

From (2.10) and (2.14) we derive

dµ

dθ
=

db′(θ)

dθ
= b′′(θ) = V (µ), (2.17)
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and from the systematic component η =
∑

βjxj we obtain

∂η

∂βj
= xj . (2.18)

Back to (2.16),
∂l

∂βj
=

(y − µ)

a(φ)

1

V

dµ

dη
xj . (2.19)

The algorithm, as its very name indicates, depends on the weight W , which is defined by

W = V −1

(
dµ

dη

)2

, (2.20)

where V is the variance function defined in (2.14) evaluated at the fitted values µ̂. Taking

this into account, and adding the term dµ
dη

dµ
dη

−1
to equation (2.19),

∂l

∂βj
=

(y − µ)

a(φ)

1

V

dµ

dη

2dµ

dη

−1

xj =
W

a(φ)
(y − µ)

dη

dµ
xj . (2.21)

As previously mentioned, the dispersion factor can be assumed to be constant and hence

the factor a(φ) can be omitted. Considering the n observations, equation (2.21) becomes

∂l

∂βj
=
∑ W

a(φ)
(y − µ)

dη

dµ
xj . (2.22)

The gradient equations in GLMs are non-linear, hence we cannot simply set them equal to

zero and obtain a solution. Instead, we use an iterative algorithm, such as the well-known

Fisher’s Scoring method. Suppose that we want to calculate the Maximum Likelihood

Estimator (MLE) θ∗ of θ. Using the well-known fact that the gradient evaluated at θ∗ equals
zero u(θ∗) = 0 and applying a first-order Taylor expansion around the true parameter θ0
gives

u(θ∗) = u(θ0) + u′(θ0)(θ
∗ − θ0) +R1(θ

∗), (2.23)

where the remainder R1(θ
∗) is negligible and the first derivative of the gradient is the

Hessian matrix H(θ). Rearranging,

θ∗ = θ0 −
u(θ0)

u′(θ0)
. (2.24)

Hence the algorithm updates as follows:

θm+1 = θm + J −1(θm)u(θm) (2.25)

whereJ −1(θm) stands for the observed information matrix, that is the negative of the Hes-

sian. In turn, u(θm) refers to the score function, that is the gradient of the log-likelihood

function. In practice, the Fisher information (the expected value of the observed informa-

tion) is used I(θ) = E{J (θ)}, so the algorithm becomes

θm+1 = θm + I−1(θm)u(θm). (2.26)

See Greene (2008) for a more detailed explanation.

Back to our problem, the method uses the vector of first derivatives or gradient,

∂l

∂β
= u, (2.27)
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and the Fisher information

−E

(
∂2l

∂βr∂βs

)
= A. (2.28)

Using the Scoring algorithm and letting b be the actual estimate of β and b∗ the new

estimate, equation (2.26) can be seen as

b∗ = b−H−1(b)u(b), (2.29)

where the second part of the right-hand side can be thought of as the adjustment b∗−b =
δb that we define as the solution of

Aδb = u (2.30)

making use of (2.28). If we omit the dispersion factor, the gradient u in (2.22) becomes

ur =
∑

W (y − µ)
dη

dµ
xr (2.31)

where we again use the notation proposed by McCullagh and Nelder (1989). In addition,

(2.28) can be seen as

Ars = −E

(
∂ur
∂βs

)
= −E

∑[
(y − µ)

∂

∂βs

{
W

dη

dµ
xr

}
+W

dη

dµ
xr

∂

∂βs
(y − µ)

]
, (2.32)

and the first term on the right-hand side cancels out as E(y) = µ. Hence

Ars = −E
∑
i

{
W

dη

dµ
xr

∂

∂βs
(y − µ)

}
= −

∑
i

[
W

dη

dµ
xr

{
− ∂µ

∂βs

}]

=
∑
i

Wxr
dη

dβs
=
∑
i

Wxrxs. (2.33)

as ∂y/∂βs = 0.
From equations (2.29) and (2.30) the new estimate may be written as

b∗ = b+ δb

Ab∗ = Ab+Aδb = Ab+A(b∗ − b) = Ab+ u. (2.34)

Using (2.33),

(Ab)r =
∑
s

Arsbs =
∑
s

∑
i

Wxrxs

 bs =
∑

Wxrη. (2.35)

From (2.31) and (2.34),

(Ab∗)r = (Ab)r + ur =
∑

Wxrη +
∑

W (y − µ)
∂η

∂µ
xr

=
∑
i

Wxr
{
η + (y − µ)∂η/∂µ

}
. (2.36)

Given the form of A in (2.33), these equations resemble the solution of weighted least-

squares (WLS) problem, with weights given by (2.20) and a working dependent variable

z given by

z = η + (y − µ)
dη

dµ
. (2.37)
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Using matrix notation, it can be shown that the form of the estimate b̂ mimics that of a

WLS problem:

Ab̂ = XTWz

XTWXb̂ = XTWz

b̂ = (XTWX)−1XTWz. (2.38)

Notice that the working or adjusted dependent variable is simply a linearized link function.

Applying a first-order Taylor series about µ

g(y) ' g(µ) + (y − µ)g′(µ), (2.39)

and using the fact that η = g(µ), the right-hand side of the equation is just z. In addition,

it can be shown that the variance of the working dependent variable is just W−1, which is

easily obtained using (2.20):

W−1 =

(
dη

dµ

)2

V. (2.40)

Proof.

E(z) = η

V (z) = E
[
(z − E(z))2

]
= E

[
(y − µ)

dη

dµ

]2
= E

[
(y − µ)2

](dη

dµ

)2

= var(Y )

(
dη

dµ

)2

(2.41)

Using (2.13) and (2.14) and ignoring again the constant a(φ),

V (z) = b′′
(
dη

dµ

)2

=

(
dη

dµ

)2

V (µ) = W−1. (2.42)
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The IRLS process is described in Algorithm 1. At each iteration k we solve a WLS

problem, and the procedure is referred to as iterative because both z and W depend on

the fitted values, and therefore are updated with each new iteration.

Algorithm 1 IRLS

1: Set the initial estimate β0;
2: while k<MaxIterations do

3: Compute the linear predictor η =
∑

βjxj
4: Compute the fitted value µ = g(η)
5: Construct the working dependent variable

z = η + (y − µ)
dη

dµ

6: Calculate the weight

W = V (µ)−1

(
dµ

dη

)2

7: Regress z on the covariates and weight W to solve the WLS problem so as to

obtain the new estimate βk+1

β = (XTWX)−1XTWz

8: if the stopping criterion is satisfied then

9: Break;

10: end if

11: end while
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3. LOGISTIC REGRESSION FOR BINARY DATA

Instead of considering the generic model derived in Section 2, let us now focus on a

particular case known as the logistic regression model. Logistic regression or logit is a

discrete choice regression model where the response is categorical, that is it can take on

one of a limited number of values. Although categorical variables can have more than

two possible values (polytomous variables) we will consider here dichotomous variables,

which can take on just two different values, say "0" and "1". The pioneer of the model was

statistician Cox (1958).

3.1. INTRODUCTION TO LOGISTIC REGRESSION

We start by studying the structure of the data in terms of its probability distribution, and

then we discuss the logit transformation and set-up the regression model.

3.1.1. The Binomial Distribution

Consider first the case where the dependent variable yi is binary, which can only take two

values, say one or zero. This variable is a realization of a random variable Yi that takes
the values

Yi =

{
1, with probability πi

0, with probability 1− πi.
(3.1)

Then, Yi follows a Bernouilli distribution Yi ∼ Ber(πi) with probability function

Pr(Yi = yi) = πyi
i (1− πi)

1−yi . (3.2)

The expected value is

E(Yi) = µi = 1 Pr(Yi = 1) + 0 Pr(Yi = 0) = πi, (3.3)

and the variance, which is not constant and depends on the probability of success,

var(Yi) = σ2
i = E(Y 2

i )− E(Yi)
2 = πi − π2

i = πi(1− πi). (3.4)

thus ruling out the possibility of fitting linear models with homoscedastic variance.

We consider now the possibility of extending this characterization. Sometimes, it is

more convenient to work with grouped data, that is listing the data in terms of covariate

classes rather than by the N individuals (McCullagh and Nelder 1989, p. 100). Each

covariate class mi is formed by a group of individuals that have identical values of all ex-

planatory variables xi1, ..., xip. This classification is more efficient mainly when the number

of covariate vectors is significantly smaller than the number of individuals N . When bi-

nary data are grouped, the dependent variables have the form y1/m1, ..., yn/mn, where

0 ≤ yi ≤ mi is defined as the number of units having the attribute of interest out of the mi

individuals belonging to that group or class. In addition, the vector m of classes is called

the binomial index vector.

Now, the responses yi = 0, 1, ...,mi are viewed as a realization of a random variable

Yi that follows the binomial distribution with index mi and parameter πi, Yi ∼ B(mi, πi).
The probability distribution function is given by

Pr(Yi = yi) = fi(yi) =

(
mi

yi

)
πyi(1− π)mi−yi for yi = 0, 1, ...,mi (3.5)
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where yi is the number of successes and mi − yi the number of failures and the binomial

coefficient represents the number of ways of obtaining them. The expected value and

variance of Yi are given by

E(Yi) = µi = miπi (3.6)

and

var(Yi) = σ2
i = miπi(1− πi). (3.7)

Using grouped data is somehow more general as it includes individual data as a special

case, that is when we have n groups withm = 1. In fact, the Bernouilli distribution can be

viewed as a degenerated case of the binomial for which m = 1. When the outcomes are

independent, the two specifications are equivalent and they lead to the same likelihood

function. Hence we will be using the binomial distribution to outline the model and later

limit ourselves to the m = 1 case.
From (3.5) and taking logs,

log fi(yi) = yilog(πi) + (mi − yi)log(1− πi) + log

(
mi

yi

)
= yilog

(
πi

1− πi

)
+milog(1− πi) + log

(
mi

yi

)
. (3.8)

Thus the log-likelihood has the general form of (2.4), with canonical link

θi = log

(
πi

1− πi

)
, (3.9)

which is called the logit. Hence the binomial distribution, as noted by McCullagh and

Nelder (1989, p. 30), belongs to the exponential family. As a consequence, logistic re-

gression can be characterized following the framework outlined in Section 2.

3.1.2. The Logistic Regression Model

Given its probability distribution, we need to specify a function to model the probabilities

πi in terms of a set of explanatory variables . The linear probability model

πi = x′
iβ (3.10)

does not guarantee that the responses will fit within the response range [0, 1]. An alterna-

tive is to model the probabilities in a different way such that this transformation can finally

be a linear function of xi. Following Rodríguez (2007), This involves computing the odds

oddsi =
Pr(Yi = 1)

Pr(Yi = 0)
=

πi
1− πi

, (3.11)

and taking logarithms to obtain the logit or log-odds

ηi = logit(πi) = log

(
πi

1− πi

)
. (3.12)

The transformation has removed the range restriction, as the logit maps the interval [0, 1]
onto the whole real line. The antilogit transformation allows us to go back to probabilities

πi = logit−1(ηi) =
eηi

1 + eηi
. (3.13)

Suppose that the observed values y1, ..., yn are realizations of independent random

variables Y1, ..., Yn where Yi has the binomial distribution

Yi ∼ B(mi, πi) (3.14)
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and the systematic part of the model is specified as a linear function of the predictors and

coefficients

ηi = g(πi) = log

(
πi

1− πi

)
=
∑
j

xijβj for i = 1, ..., n. (3.15)

Equation (3.15) defines a GLM with binomial errors and link logit, which is the canonical

link as defined in (3.9). Using matrix notation, we can easily solve for the odds

log

(
πi

1− πi

)
= x′

iβ → πi
1− πi

= exp(x′
iβ) (3.16)

and the probabilities

πi =
exp(x′

iβ)

1 + exp(x′
iβ)

. (3.17)

Interpreting the parameters in (3.15) simply implies analyzing changes in the logit of the

probability, while in (3.17) we have a nonlinear function of the β coefficients.

3.2. ESTIMATION

We follow here the procedure outlined in Section 2 to estimate the coefficients in (3.15)

by IRLS, as the binomial distribution belongs to the family of exponential distributions.

We have Y1, ..., Yn independent random variables with probability density function

given by (3.5), thus the joint density is

L(π;y) =

n∏
i=1

fi(yi;πi) =

n∏
i=1

[(
mi

yi

)
πyi(1− π)mi−yi

]
(3.18)

and the log-likelihood

log L(π;y) = l(π;y) =

n∑
i=1

log fi(yi;πi) =

n∑
i=1

[
yilog(π) + (mi − yi)log(1− πi)

]
, (3.19)

where the combinatorial coefficient has been omitted because it is a constant function

which does not depend on π. Equivalently to (3.8), the log-likelihood may be written as

l(π;y) =

n∑
i=1

[
yilog

(
πi

1− πi

)
+milog(1− πi)

]
. (3.20)

McCullagh and Nelder (1989) also consider the log-likelihood as a function of the unknown

parameters,

l(β;y) =
∑
i

∑
j

yixijβj −
∑
i

milog

1 + exp
∑
j

xijβj

 (3.21)

which we show to be equivalent below.

Proof. From (3.19) and using (3.16) and (3.17)

l(β;y) =
∑
i

∑
j

yixijβj +
∑
i

milog

(
1−

exp
∑

j xijβj

1 + exp
∑

j xijβj

)

=
∑
i

∑
j

yixijβj +
∑
i

milog

(
1

1 + exp
∑

j xijβj

)
(3.22)

page 11 of 43



Pඍඖඉඔඑජඍඌ Lඏඑඛගඑඋ Rඍඏකඍඛඛඑඖ

and using the property log(a) = −log(a−1)

l(β;y) =
∑
i

∑
j

yixijβj −
∑
i

milog

1 + exp
∑
j

xijβj

 . (3.23)

The likelihood equations for the parameters β can be obtained using the chain rule:

∂l

∂βr
=

∂l

∂πi

∂πi
∂βr

=
∂l

∂πi

dπi
dηi

∂ηi
∂βr

. (3.24)

Taking derivatives of the log-likelihood function, as given in (3.19), gives

∂l

∂πi
= yi

d log
(

πi
1−πi

)
dπi

+mi
d log(1− πi)

dπi
=

yi
πi(1− πi)

− mi

(1− πi)
=

yi −miiπi
πi(1− πi)

, (3.25)

and using ∂ηi/∂βr = xir we obtain

∂l

∂βr
=
∑
i

yi −miiπi
πi(1− πi)

dπi
dηi

xir. (3.26)

Now, by means of (3.17) and E(Yi) = µi = miπi,

∂l

∂βr
=
∑
i

yi −mi e
ηi/(1 + eηi)

eηi/(1 + eηi)2
eηi

(1 + eηi)2
xir =

∑
i

(yi −miπi)xir =
∑
i

(yi − µi)xir.

(3.27)

Hence, in matrix notation, the score reduces to

∂l/∂β = XT (Y − µ). (3.28)

The observed information matrix can be again be approximated by the Fisher information,

−E

(
∂2l

∂βr∂βs

)
=
∑
i

mi

[
πi(1− πi)

][
πi(1− πi)

]2 ∂πi
∂βr

∂πi
∂βs

=
∑
i

mi

πi(1− πi)

∂πi
∂βr

∂πi
∂βs

=
∑
i

mi

(
dπi/dηi

)2
πi(1− πi)

xirxis =
{
XTWX

}
rs
, (3.29)

where we have made use of dπi/dηi xir = ∂πi/∂βr and W is a diagonal weight matrix

W = diag

mi

(
dπi/dηi

)2
πi(1− πi)

 . (3.30)

Using (3.17) and dπi/ηi = eηi/(1 + eηi)2, W reduces to

W = diag

{
mi

eηi

(1 + eηi)2

}
= diag

{
miπi(1− πi)

}
. (3.31)

It can be shown that this diagonal matrix of weights is a particular case of the more general

weight given by equation (2.20).
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Proof. The generic weight W is defined as

W = V −1

(
dµ

dη

)2

. (3.32)

Using the expressions for the mean and the variance of Yi given in equations (3.6) and

(3.7),

W =
1

miπi(1− πi)
m2

i

(
dπi
dηi

)2

=
m2

i

mi eηi/(1 + eηi)2

[
eηi

(1 + eηi)2

]2
= mi

eηi

(1 + eηi)2
= miπi(1− πi), (3.33)

which again matches V (Yi).

At this point we could estimate the parameters using a method such as the Scoring

or the Newton-Raphson algorithm. The procedure is equivalent to IRLS. Given a current

estimate β, the working dependent variables has the form given in (2.37), that is

zi = η̂i +
yi −miπ̂i

mi

dηi
dπi

, (3.34)

which by the fact that µ̂i = miπ̂i and dηi/dπi = 1/
[
πi(1− πi)

]
reduces to

zi = η̂i +
yi − µ̂i

miπi(1− πi)
, (3.35)

where the hats highlight that the current estimate is used to compute the lineal predictor

η and the fitted values µ. In addition, through an equivalent derivation to that of (2.42), it

can be shown that the variance of z is just W−1.

Proof.

E(z) = η̂ +
E(y)− µ̂

mπ(1− π)
= η̂

V (z) = E
[
(z − E(z))2

]
= E

[
η̂ +

y − µ̂

mπ(1− π)
− η̂

]2
=

1[
mπ(1− π)

]2E [(y − µ̂)2
]

=
var(Y )[
var(Y )

]2 =
1

mπ(1− π)
= W−1, (3.36)

where the subscripts have been omitted for simplicity and we have used (3.6) and (3.7).

The algorithm requires regressing the adjusted dependent variable on the covariates

and solving a WLS problem at each iteration, thus the revised estimate for β has the form

given in (2.38), which we prove below.

Proof. The Fisher’s Scoring method, according to (2.26), updates as follows:

β1 = β0 + I−1(β0)u(β0) (3.37)

where β1 and β0 represent the new and old estimates respectively, and the Fisher infor-

mation matrix I and the gradient u are given by (3.28) and (3.29) respectively. Incorpo-

rating these expressions,

β1 = β0 + (XTWX)−1XT (y − µ), (3.38)
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and pre-multiplying β0 by (XTWX)−1(XTWX) and adding WW−1,

β1 = (XTWX)−1(XTWX)β0 + (XTWX)−1XTWW−1(y − µ)

= (XTWX)−1XTW
{
Xβ0 +W−1(y − µ)

}
= (XTWX)−1XTWz, (3.39)

where W = diag
{
miπi(1− πi)

}
and z = Xβ +W−1(y − µ).

As noted in McCullagh and Nelder (1989, p. 43), for exponential families where we

use the canonical link, the expected and actual values of the Hessian coincide, so the

Fisher’s Scoring method and the Newton-Raphson method coincide as well.

The iterative process is described in Algorithm 2. As it will be used later, we will make

now the simplification m = 1, that is we work with individual data or, equivalently, the

binomial distribution reduces to the Bernouilli distribution.

Algorithm 2 IRLS for Logistic Regression

1: Set the initial estimate for the parameters, say 1

β = 0 and β0 = log

(
ȳ

1− ȳ

)
2: while k<MaxIterations do

3: Compute the linear predictor

η = βo +
∑

βjxj

4: Compute the fitted value

µ ≡ π =
exp(η)

1 + exp(η)

5: Construct the working dependent variable

z = η +
(y − µ)

w
where w ≡ π(1− π)

6: Calculate the weight matrix

W = diag {w}

7: Regress z on the covariates and weight W to solve the WLS problem so as to

obtain the new estimate βk+1

β = (XTWX)−1XTWz

8: if the stopping criterion is satisfied then

9: Break;

10: end if

11: end while

1When all the slopes are set to zero, the odds in the intercept-only model are given by oddsi = exp(β0) =
ȳ/(1 − ȳ) thus an estimate for β0 is obtained taking natural logarithms. Also, the subscripts i and the hats

indicating estimates of the true parameters have been omitted for simplicity.
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4. PENALIZED LOGISTIC REGRESSION: A RIDGE PARAMETER

In the fields of statistics and econometrics, penalization or regularization refers to a tech-

nique that introduces a penalty term to the objective function. It is used to tackle some

situations where the usual OLS estimation may be unsatisfactory or to improve the esti-

mates as judged by different quality measures.

Throughout this section, we first motivate the use of regularization techniques and

outline one of the simplest ways to penalize the parameters, known as Ridge Regression.

Then we extend this penalty to Logistic Regression, and propose an IRLS algorithm to fit

the model parameters.

4.1. INTRODUCTION TO REGULARIZATION

4.1.1. Motivation and the bias-variance trade-off

The Gauss-Markov Theorem states that in the classical linear regression model the OLS

estimator is the one giving the minimum variance among the class of all linear unbiased

estimators. This important result is probably the reason why it is rather common for prac-

titioners to prefer unbiased estimators against biased ones regardless of other important

properties, such as low variance.

Even thoughwe know that unbiasedness and low variance are two convenient features

of an estimator, sometimes they can conflict with each other (Dougherty 2007). Consider

as an example what happens in Figure 4.1. While estimator B is clearly biased, it has a

smaller variance than A, which is unbiased.

Figure 4.1: The bias-variance tradeoff

Source: Dougherty (2007, p. 26)

Which estimator is better can be determined using a function that weights the devia-

tions of the estimated parameter from its true value, such as risk functions, and choosing

the estimator that yields the smallest expected loss. One common loss function is the

Mean Squared Error (henceforth MSE), that is the expected value of the quadratic loss.

It can be shown that the MSE of an estimator θ̂ can be decomposed as the sum of the

variance and the squared bias of the estimator,

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= var(θ̂) + bias(θ̂, θ)2. (4.1)
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Proof. When θ̂ is a scalar and an estimator of θ, and adding the term E(θ̂)− E(θ̂),

MSE(θ̂) = E
[
(θ̂ − E(θ̂) + E(θ̂)− θ)2

]
= E

[
(θ̂ − E(θ̂))2

]
+ E

[
(E(θ̂)− θ)2

]
+ E

[
2(θ̂ − E(θ̂))(E(θ̂)− θ)

]
= E

[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2 + 2

[
E(θ̂)− E(θ̂)

]
(E(θ̂)− θ)

= E
[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2

= var(θ̂) + bias(θ̂, θ)2. (4.2)

It follows that the OLS estimator is the minimum MSE estimator among the class of

linear unbiased estimators. However, it is possible to find a biased estimator with smaller

MSE, which would allow for a little bias in exchange for a larger reduction in variance

(Hastie, Tibshirani, and Friedman 2008, p. 52).

This is precisely the basic intuition behind the idea of regularization: under some cir-

cumstances, the OLS estimator is susceptible to having very high variance, thus intro-

ducing a little bias may allow us to substantially reduce the variance, and possibly lead to

a smaller MSE. Regularization is achieved by introducing a penalty term in the objective

function which penalizes how large the coefficients can grow, therefore introducing bias

but controlling the variance. The OLS estimator may have large variability when, for ex-

ample, there is multicolinearity (a high correlation among the explanatory variables). The

variance of the OLS estimator has the well-known form (Wooldridge 2009)

V (β̂j) =
σ2

SSTj(1−R2
j )
, (4.3)

where SSTj refers to the Total Sum of Squares and represents the total sample variation

in the predictors, and R2
j is the R-squared from regressing the covariate xj on all other

predictors included in the model. Therefore, if there is perfect multicollinearity, the vari-

ance is infinite. When the explanatory variables are highly correlated, several problems

arise (Greene 2008):

1. Unstable estimators, very sensitive to small changes in the data.

2. High standard errors, leading to confusing inference conclusions.

3. Not acceptable magnitudes or wrong signs.

Another reason why the variance may be large is due to a large number of predictors

relative to the sample size. The variability in the explanatory variables is greater for large

samples, which in turn helps to control the variance. To sum up, occasionally a penalized

estimate that helps to control a large variance may be a more convenient choice.

The usual motivation to conduct regularization is to reduce overfitting, which happens

for example if a model has an excessive number of parameters compared to the sample

size. Overfitting implies that the model captures part of the random noise of the training

set, thus generalizing poorly to the testing set. Regularization improves prediction perfor-

mance, which is intimately related to MSE (Hastie, Tibshirani, and Friedman 2008, p. 52).

Consider the model

yi = f(xi) + ui, (4.4)

then the expected prediction error is given by

E
[
yi − ˆf(xi)

]2
= σ2 + E

[
ˆf(xi)− f(xi)

]2
= σ2 +MSE

[
ˆf(xi)
]
, (4.5)

thus prediction accuracy can be increased by reducing the MSE.
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4.1.2. Ridge Regression

One of the simplest and most common techniques to place constraints on the coefficients

is ridge regression. Ridge regression was first introduced by Hoerl and Kennard (1970),

and works by shrinking the coefficients by introducing a penalty on how large they can be.

Let us first try to explain how ridge regression works in an intuitive way. In Figure 4.2,

β̂ represents the OLS estimates in the bi-dimensional plane. The ellipses around β̂ rep-

resent different values of the parameters for which the Residual Sum of Squares (RSS)

is the same, thus the unconstrained coefficients are chosen so as to minimize the RSS,

and as we move away from the OLS estimates the RSS increases. Regularization works

by minimizing the RSS subject to a constraint, which in the ridge regression case is rep-

resented by the shaded circle around zero.

As β̂ lie outside the circle, it can be seen that the ridge estimates will differ from the

OLS estimates. The optimal ridge estimates can be found where the constraint region

intersects the closest ellipse to the OLS solution, that is the one that minimizes the RSS.

It can easily be seen that this will happen at a frontier point of the constraint region.

The introduction of a penalty to the size of the coefficients limits the space where

the coefficients can be found to the shaded circle, thereby reducing the variance. At the

same time, if the true parameter vector β lies outside that region, the expected value of

the estimates will not coincide with the true parameters and the ridge regression estimates

will be biased. In addition, we can see that the variance will be reduced and the bias will

increase as the circle becomes smaller - the penalty becomes stronger -, which sheds

some light on the intuitive workings of the bias-variance trade-off implied by regularization.

Figure 4.2: Ridge regression

Source: James et al. (2013, p. 222)

The ridge constraint is represented as a circle in the bi-dimensional space because

it imposes an `2-norm penalty on the coefficients. In the specific case of the `2-norm or

Euclidean norm, the length of the vector

β =

[
β1
β2

]
(4.6)

can be measured by the formula

‖β‖2 =
√

β2
1 + β2

2 , (4.7)
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which by the Pythagorean theorem gives the distance from the origin to β and draws a

circle.

Let us now dive into the details of ridge regression. The ridge regression estimates

βλ
j minimize a penalized RSS expression (James et al. 2013) given by

PRSS =

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j , (4.8)

where λ ≥ 0 is a tuning parameter. The shrinkage parameter λ
∑p

j=1 β
2
j is small when the

coefficients are close to zero, and the tuning parameter controls the amount of shrinkage

applied to the parameters. When λ = 0, the ridge regression problem becomes the usual

OLS problem, while as λ → ∞ the regression coefficients will approach zero. The penalty

term is sometimes written as 1
2λ
∑p

j=1 β
2
j , which sometimes simplifies the mathematics.

We will use both penalties interchangeably as a constant term does not play a relevant

role in the problem.

Notice that the intercept is not subject to regularization, as it is just a measure of the

mean value of the dependent variable when all the explanatory variables are set to zero.

It has to be noted that the explanatory variables are usually standardized to have zero

mean and unit standard deviation,

x̃ij =
xij − x̄j√

1
n

∑n
i=1(xij − x̄j)2

. (4.9)

Centering the explanatory variables implies that the intercept now represents the expected

value of the dependent variable when the predictors are set to their means, which may be

a more realistic situation. Scaling the covariates is needed because penalized regression

is not scale invariant (James et al. 2013). Multiplying a predictor by a constant does

not lead to a simply rescaling of the associated coefficient due to the `2-norm penalty.

In addition, as the shrinkage parameter considers the whole vector of coefficients, if the

units of measurement of one explanatory variable is modified, this will in turn affect its

coefficient and hence the relative amount of shrinkage applied to the other coefficients.

We usually center the dependent variable as well, so that we can omit the intercept without

loss of generality.

We can reformulate (4.8) to obtain a similar expression to the one that Tibshirani (1996)

uses when describing another regularization technique known as LASSO regression,

(α̂, β̂) = arg min


n∑

i=1

yi − α−
p∑

j=1

βjxij

2
 subject to

p∑
j=1

β2
j ≤ s, (4.10)

where s ≥ 0 is a tuning parameter. For every value of λ there will be a value of s which
will give the same ridge estimates. This formulation is more intuitive to understand the

workings of the constraint represented in Figure 4.2. When the number of explanatory

variables is equal to two, p = 2, the ridge regression estimates are chosen so as to

minimize the RSS given that they must lie within the unit circle given by β2
1 + β2

2 ≤ s.
We can solve for the ridge regression solution by writing the problem in matrix form,

as in Hastie, Tibshirani, and Friedman (2008),

PRSS(β) = (y −Xβ)T (y −Xβ) + λβTβ, (4.11)

where the ridge constraint can also be written as an `2-norm penalty of the form ‖β‖22 =√
β2
1 + ...+ β2

p . Taking a first derivative and setting the resulting equation to zero gives

∂PRSS(β̂)

∂β̂
= −2XT (y −Xβ̂) + 2λβ̂ = 0, (4.12)
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and rearranging gives

XTy = (XTX + λI)−1β̂, (4.13)

where I is the p× p identity matrix. The ridge solution follows 2

β̂λ = (XTX + λI)−1XTy. (4.14)

Again, the OLS estimate is obtained by simply setting λ = 0. The introduction of the

penalty adds the constant λ to the diagonal entries of XTX.

Selecting the correct tuning parameter is critical. This is usually done through cross-

validation. However, we do not really focus on this issue, and treat λ as given.

4.2. L2-PENALIZED LOGISTIC REGRESSION

Regularization is becoming a recurrent solution to the problems posed by OLS estimation

within the framework of the classical linear regression model, however there is much

less literature regarding its extension to GLMs. We therefore aim at departing from the

generic framework outlined in Sections 2 and 3 and generalizing regularization to Logistic

Regression.

An `2 penalty can be imposed upon the unregularized logistic regression problem to

reduce the size of the coefficients. We refer to this model as Ridge Logistic Regression

or `2-Penalized Logistic Regression. We start from the unregularized log-likelihood `(β)
given by (3.20), and define the ridge log-likelihood as 3

`ridge(β) = `(β)− 1

2
λ‖β‖22. (4.15)

The maximizer of this equation is denoted as βλ. Following the procedure in Section 3

gives the gradient
∂`ridge(β)

∂β
= XT (y − µ)− λβ, (4.16)

where the first part in the right-hand side of the equation is the unregularized gradient, as

given by in equation (3.28). The unregularized Fisher information given by (3.29) becomes

−E

(
∂2`ridge(β)

∂ββ′

)
= XTWX + λI. (4.17)

As noted in Section 3, in this particular case taking the expected value of the Hessian

matrix is not of importance, however we simply note it to maintain consistency with pre-

vious derivations. To obtain the revised βλ estimates we use the IRLS framework, and

the Fisher’s Scoring algorithm allows us to obtain a closed-form of the revised estimate

dependent on an alternative, working response z. The proof follows below.

Proof. From (2.26) the Fisher’s Scoring method updates as follows:

β1 = β0 + I−1(β0)u(β0), (4.18)

where β1 and β0 represent the new and old estimates respectively, and the Fisher informa-

tion matrix I and the gradient u are given by (4.16) and (4.17) respectively. Incorporating

these expressions,

β1 = β0 + (XTWX + λI)−1
[
XT (y − µ)− λβ0

]
, (4.19)

2From now on we can omit the use of hats to denote the estimated parameter for the sake of simplicity.
3We limit ourselves to the use of matrix notation along the derivation, hence the use of bold letters to

denote matrix and vectors can be ignored for once.
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and pre-multiplying the first parte of the right-hand side of the equation by (XTWX +
λIn)

−1(XTWX + λI) gives

β1 = (XTWX+λIn)
−1(XTWX+λI)β0+(XTWX+λIn)

−1
[
XT (y − µ)− λβ0

]
, (4.20)

and by expanding the equation and adding WW−1 just before (y − µ) we obtain

β1 = (XTWX + λI)−1XTWXβ0 + (XTWX + λI)−1λβ0

+ (XTWX + λI)−1XTWW−1(y − µ)− (XTWX + λI)−1λβ0

= (XTWX + λI)−1XTWXβ0 + (XTWX + λIn)
−1XTWW−1(y − µ)

= (XTWX + λI)−1XTW
{
Xβ0 +W−1(y − µ)

}
. (4.21)

Thus the revised penalized estimate has the form

βλ = (X ′WX + λI)−1XTWz, (4.22)

where the working dependent variable z has the usual form z = Xβ +W−1(y − µ).

The penalized parameter has the same form as in the unregularized case (see equa-

tion 3.39), but a constant value λ to the XTWX matrix is added before taking its inverse.

As we can see from (4.22), the ridge parameter λ controls the amount of shrinkage ap-

plied to the parameters. When λ = 0, the estimate βλ has the known form derived in

Section 3, so that this specification contains the usual logistic regression as a particular

case. Conversely, as λ tends to infinity βλ is shrunk towards zero.

As an extension to the fact that the IRLS algorithm solves a WLS problem at each iter-

ation, resulting in the estimate given by equation (3.39), it can be shown that the penalized

IRLS algorithm solves a penalized WLS problem at each iteration.

Proof. The `2-penalized residual sum of squares of a WLS problem could be written as:

PRSS(β) = (z −Xβ)TW (z −Xβ) + λ‖β‖22, (4.23)

where the penalization term adds up as the residual sum of squares is to be minimized.

Taking first derivatives and setting the equations to zero gives

∂PRSS(β)

∂β
= −2XTW (z −Xβ) + 2λβ = 0, (4.24)

and rearranging gives

XTWz = (XTWX + λI)β. (4.25)

The penalized estimate follows,

βλ = (XTWX + λI)−1XTWz, (4.26)

which has the exact form as in (4.22).

4.2.1. Bias and variance of the penalized estimator

Throughout this section, we try to obtain an expression for the bias and variance of the

penalized estimator, following Le Cessie and Houwelingen (1992). In addition, we discuss

the issues posed by regularization in inference and standard errors.

Consider again the ridge log-likelihood as defined in equation (4.15),

`λ(β) = `(β)− λ‖β‖22, (4.27)
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where we have trivially omitted the constant 1/2 from the penalty term to keep consistency

with the results of Le Cessie and Houwelingen (1992). Going through the maximization

procedure again, the gradient, which is equivalent to the one derived in equation (4.16),

may now be written as

uλ(β) = XT (y − µ)− 2λβ = u(β)− 2λβ, (4.28)

where u(β) is the unregularized gradient. The negative of the Hessian matrix can be

written as follows with simpler notation

Ωλ(β) = Ω(β) + 2λI, (4.29)

where Ω = XTWX (see equation 4.17). Large sample properties of the regularized

maximum likelihood estimators can be obtained by carrying out a first-order Taylor se-

ries expansion of the gradient about the real population parameter βo (Le Cessie and

Houwelingen 1992, p. 194). Thus

uλ(β̂λ) = uλ(β0)− (β̂λ − β0)
′Ωλ(β0) +R1(β̂

λ) (4.30)

where the remainder R1(β̂
λ) is negligible. Using the well-known fact that the gradient

evaluated at β̂λ equals zero uλ(β̂λ) = 0 , the expression translates into a Newton-Raphson
algorithm,

uλ(β0)− (β̂λ − β0)
′Ωλ(β0) = 0

β̂λ′
Ωλ(β0) = uλ(β0) + β′

0Ω
λ(β0) (4.31)

from which we can obtain a first approximation to β̂λ, using (4.29) and (4.30) for β0 as

follows
β̂λ = Ωλ(β0)

−1uλ(β0) + β0

= β0 +
{
Ω(β0) + 2λI

}−1 {
u(β0)− 2λβ0

}
, (4.32)

thus setting λ = 0 follows that a first approximation to the unregularized MLE estimator

could be

β̂ = β0 +Ω−1(β0)u(β0). (4.33)

It is well-known that under certain regularity conditions, the MLE is asymptotically unbi-

ased and its covariance matrix is given by Ω(β0)
−1. We can now show that the ridge

logistic estimator is biased, obtain an expression for this bias, and derive and expression

for the variance.

Proof. From (4.32) and taking expectations,

β̂λ = β0 +
{
Ω(β0) + 2λI

}−1 {
u(β0)− 2λβ0

}
E(β̂λ) = β0 +

{
Ω(β0) + 2λI

}−1
{
E
[
u(β0)

]
− 2λβ0

}
, (4.34)

and using the fact that the score evaluated at the true parameter value has mean zero,

E[u(β0)] = 0, we obtain

E(β̂λ) = β0 − 2λ
{
Ω(β0) + 2λI

}−1
β0Bias (4.35)

thus the ridge logistic estimate is asymptotically biased. When λ = 0, it follows that the

MLE estimator β̂ is asymptotically unbiased. Hence the asymptotic bias is

E
[
β̂λ − β0

]
= −2λ

{
Ω(β0) + 2λIn

}−1
β0. (4.36)
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The asymptotic variance of the ridge logistic estimator can be derived as follows. Subtract

equation (4.35) from (4.32),

β̂λ − E(β̂λ) = β0 +
{
Ω(β0) + 2λI

}−1 {
u(β0)− 2λβ0

}
−
[
β0 − 2λ

{
Ω(β0) + 2λI

}−1
β0

]
=
{
Ω(β0) + 2λI

}−1
u(β0), (4.37)

now square the expression,[
β̂λ − E(β̂λ)

] [
β̂λ − E(β̂λ)

]′
=
{
Ω(β0) + 2λI

}−1
u(β0)u(β0)

′ {Ω(β0) + 2λI
}−1

, (4.38)

and finally take the expected value

E
[
β̂λ − E(β̂λ)

] [
β̂λ − E(β̂λ)

]′
=
{
Ω(β0) + 2λI

}−1
E
[
u(β0)u(β0)

′] {Ω(β0) + 2λI
}−1

.

(4.39)

Another useful statistical property of the score function (Rodríguez 2007) is that its covari-

ance matrix is given by the observed information matrix var[u(β0)] = E
[
u(β0)u(β0)

′] =
J (β0) which as we said is replaced by the Fisher information I(β0) in practice. From

(4.29), we know that I(β0) = Ω(β0) using our notation, so that finally

E
[
β̂λ − E(β̂λ)

] [
β̂λ − E(β̂λ)

]′
=
{
Ω(β0) + 2λI

}−1
Ω(β0)

{
Ω(β0) + 2λI

}−1
. Variance(4.40)

It allows us to demonstrate that the asymptotic variance of the unrestricted MLE is in fact

E
[
β̂ − E(β̂)

] [
β̂ − E(β̂)

]′
= Ω(β0)

−1 (4.41)

when λ = 0.

These expressions are derived as a function of the true population parameter β0. Their
usefulness lies in the ability to provide a formal explanation to the introduction of bias in

the estimator and the fact that you can think of unregularized logistic regression as a

particular case of these more complex expressions.

4.2.2. A note on standard errors

It is fairly common to report the standard errors, t-ratios, confidence intervals or p-values

of the estimated parameters β̂ in econometric problems. We may wonder whether these

techniques have an extension to penalized regression.

Although as we have seen that it can be difficult to obtain closed mathematical expres-

sions for such measures, some insights into the variability of the estimators and standard

errors can be drawn. Le Cessie and Houwelingen (1992, p. 194) cites jackknife and

bootstrapping as feasible statistical methods. However, the usual practice in penalized

regression applications is not to report standard errors. The reason is that as regular-

ization introduces significant bias and artificially reduces the variance, the standard er-

rors themselves would be biased, not being as informative as in the classical model. In

fact, some software packages that incorporate penalized regression explicitly address

this issue by arguing that they do not provide standard errors as these are meaningless

(Goeman 2010). This view is also shared by Le Cessie and Houwelingen (1992, p. 194),

who notes that the approximation given in (4.40) cannot be used to construct confidence

intervals, as we need to account for the bias of the estimate.

Standard errors in a regularized regression problem may give a wrong impression of

precision. The fact that estimates are considerably biased should not be overlooked, as it

is an important source of inaccuracy and unbiasedness still remains a desirable property.
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4.2.3. A penalized IRLS algorithm

In Section 3 we outlined the IRLS procedure and in Algorithm 2 we described the iterative

process used to estimate the coefficients. Now, we aim at generalizing Algorithm 2 to

handle the introduction of a regularization constraint in the form of a ridge penalty, as

given in equation (4.8).

Algorithm 3 describes this generalized IRLS algorithm. It allows for the introduction of

a penalty term depending on the value of λ, so that unconstrained regression can still be

obtained by setting λ = 0. 4

One of the most common R packages to fit regularized Generalized Linear Models is

the glmnet package, developed by Friedman, Hastie, andTibshirani (2010). The algorithm

used is a form of cyclical coordinate descent, however the resulting coefficients should be

the same as those calculated by our algorithm. In fact, this is how we have checked that

our algorithm was correct. In order to obtain the same results, care should be taken as the

objective function is slightly different from that in (4.15). Here the negative log-likelihood

is used, thus the following function is to be minimized

`glmnet(β) = − 1

n
`(β) + λ

[
(1− α)||β||22/2 + α||β||1

]
, (4.42)

where the tuning parameter λ is now accompanied by the parameter α, which is used to

select the regularization technique to be applied to the data. If α = 0, then a ridge penalty

is used. Conversely, if α = 1 a method known as LASSO regression is applied.

Check Figure A.1 in Appendix A.1 for the R code of our algorithm, a more detailed

description and the correct specification needed to as to obtain exactly the same results

using the glmnet package.

4Note that we take advantage of the fact that standardization of the covariates is convenient to center the

response variable y and hence omit the intercept.
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Algorithm 3 IRLS for Ridge Logistic Regression

1: Set the initial estimate for the parameters to zero

β = 0

2: Set the value of the tuning parameter lambda λ
3: while k<MaxIterations do

4: Compute the linear predictor

η =

p∑
j=1

βjxj

5: Compute the fitted value

µ ≡ π =
1

1 + exp(−η)

6: Calculate the weights and define the weight matrix

w = π(1− π); W = diag {w}

7: Construct the working dependent variable

z = η +
(y − µ)

w

8: Regress z on the covariates and weight W to solve the penalized WLS problem

so as to obtain the new estimate βk+1

βλ = (X ′WX + λI)−1XTWz where I is the p× p identity matrix

9: if the stopping criterion is satisfied then

10: Break;

11: end if

12: end while
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5. EXTENSIONS: A LASSO SHRINKAGE PARAMETER

The availability of huge data sets has led to the apparition of many new regularization

techniques. We will focus here on one of these alternatives, known as LASSO regression.

5.1. LASSO REGRESSION

The LASSO is an estimation method that stands for ‘least absolute shrinkage and selec-

tion operator’. It was proposed by Tibshirani (1996).

It retains the good features of ridge regression, namely it performs coefficient shrink-

age and may improve prediction accuracy and MSE compared to OLS estimates. In

addition, it possesses a differential feature, which tackles another reason why the prac-

titioner may not be satisfied with the OLS solution: it performs variable selection. Often

we have a large number of explanatory variables p and we are interested in isolating a

smaller subset which retains the variables exhibiting the strongest effects, for the sake of

interpretation. Ridge regression is not able to do that, as it only penalizes the size of the

coefficients but retains the p predictors in the final model. Only if λ = ∞ the coefficients

will all be set equal to zero and we will obtain a sparse, simple model. As Tibshirani (1996)

notes, the LASSO tries to outperform the standard shrinkage method - ridge regression -

and the standard variable selection method - known as subset selection, which is an un-

stable procedure in the sense that selection is a discrete mechanism strongly influenced

by small changes in the data -. To do so, the LASSO shrinks some coefficients toward

zero and directly sets others to zero, resulting in a more interpretable model.

The intuitive way to understand how the LASSO penalty works is depicted in Fig-

ure 5.1, where again β̂ represents the OLS estimates in the two-dimensional plane and

this vector is surrounded by ellipses representing equal RSS.

Figure 5.1: Ridge regression

Source: James et al. (2013, p. 222)

The LASSO constraint is now pictured as a diamond in the bi-dimensional space be-

cause it imposes an `1-norm penalty on the coefficients. The length of the vector β from

(4.6) as measured by an `1-norm is given by

‖β‖1 = |β1|+ |β2|. (5.1)

Following the same intuition as for ridge estimates, it can as well be seen that LASSO

estimates would be biased and show smaller variance than OLS estimates. However,
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this specific characterization allows for a very special departure from ridge regression.

Since the ridge constraint was a circle, the intersection of the shaded region and the RSS

curves will not generally occur over one of the axis in the bi-dimensional space, and the

vector of estimates would not have zero entries. However, the LASSO constraint has

sharp points at the axis, and the solution to the problem will often fall within one of them.

Generalizing the example to higher dimensions, this implies that many coefficients will

be set equal to exactly zero, thus performing feature selection (James et al. 2013) by

identifying the most relevant subset of covariates. The diamond representation comes

from the fact that the `1-norm penalty simply means that the sum of absolute magnitudes

of the two coefficients must be equal or less than some fixed value.

Lasso regression is technically defined as follows. The LASSO coefficients β̃j mini-

mize a penalized RSS (James et al. 2013) given by

PRSS =
n∑

i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |, (5.2)

where λ ≥ 0 is again the tuning parameter which serves to regulate the amount of shrink-

age applied to the coefficients and the only difference from ridge regression is the substi-

tution of an `2-norm penalty for an `1-norm penalty. Tibshirani (1996) does also mention

that the LASSO assumes standardized explanatory variables.

Similarly to ridge regression, we can reformulate (5.2) to present the problem as Tib-

shirani (1996) does

(α̂, β̂) = arg min


n∑

i=1

yi − α−
p∑

j=1

βjxij

2
 subject to

p∑
j=1

|βj | ≤ t, (5.3)

where s ≥ 0 is a tuning parameter. This formulation allows us to intuitively understand

how the LASSO solution is achieved and compare Figures 4.2 and 5.1. When p = 2, the
LASSO regression estimates are chosen so as to minimize the RSS given that they must

live within the constraint given by |β1|+ |β2| ≤ t.
Themain problem posed by the LASSOpenalty is that it is non-linear and non-differentiable,

hence it is not possible to derive an analytical solution as in ridge regression (4.14).

5.2. L1-PENALIZED LOGISTIC REGRESSION

The extension of the LASSO to logistic regression suffers from the same problem. As it

stands, it is not possible to obtain a closed-form solution for the LASSO logistic estimator

and investigate the behaviour of its bias and variance.

In an effort to better understand the workings of the LASSO parameter and to offer a

mathematical approximation, we may follow the advice of Tibshirani (1996, p. 272) who

considers that an approximate estimate may be derived by rewriting the LASSO penalty

λ
∑

|βj | as
λ
∑

β2
j /|βj |. (5.4)

This allows us in principle to rearrange a mathematical expression for the LASSO logistic

estimator β̃. Tibshirani (1996) does so for multiple linear regression, hence proposing that

the LASSO estimate may be approximated by a ridge regression of the form

β∗ = (XT + λW−)−1XT y, (5.5)

where W = diag
{

˜|βj |
}
and W− refers to its generalized inverse. The reason why the

author uses W− may be to avoid a singular matrix, as there may be some β̃j = 0.5 In

5See Rao (2002, p. 24) for more details about generalized inverses.
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addition, the proposed approximation to the covariance matrix is

(XT + λW−)−1XTX(XT + λW−)−1σ̂2, (5.6)

where σ̂2 is the error variance estimate.

We now prove that an extension of this approximation is viable for LASSO logistic

regression. The ridge logistic framework outlined in Section 4 will be of help throughout

the derivation.

Proof. Using the ridge log-likelihood in (4.27) as a baseline, we should modify the ridge

penalty as proposed in equation (5.4),

`∗(β) = `(β)− λβ′W−β. (5.7)

We now go through the maximization procedure, taking into account that a derivative with

respect to β does not affect the components |β̃| of the generalized inverse, so that the

matrix is taken as a constant. Similarly to (4.28), the gradient becomes

u∗(β) = u(β)− 2λW−β, (5.8)

and the Fisher information

Ω∗(β) = Ω(β) + 2λW−. (5.9)

A first-order Taylor series expansion about the real population parameter β0 gives

u∗(β̂∗) = u∗(β0)− (β̂∗ − β0)
′Ω∗(β0) +R1(β̂

∗), (5.10)

where the remainder is again negligible. Using u∗(β̂∗) = 0, a first approximation to the

estimate may be obtained as

β̂∗ = Ω∗(β0)
−1u∗(β0) + β0

= β0 +
{
Ω(β0) + 2λW−

}−1 {
u(β0)− 2λ.W−β0

}
(5.11)

Equivalently, taking expectations it can be shown that the approximated LASSO logistic

estimate is asymptotically biased

E(β̂∗) = β0 +
{
Ω(β0) + 2λW−

}−1 {
E
[
u(β0)

]
− 2λW−β0

}
= β0 − 2λ

{
Ω(β0) + 2λW−

}−1
W−β0, (5.12)

with bias given by

E(β̂∗ − β0) = −2λ
{
Ω(β0) + 2λW−

}−1
W−β0. (5.13)

Following the same steps as in the ridge logistic part, the asymptotic variance of this

approximated LASSO estimator is obtained as follows from (5.11) and (5.12),

β̂∗ − E(β̂∗) = β0 +
{
Ω(β0) + 2λW−

}−1 {
u(β0)− 2λW−β0

}
−
[
β0 − 2λ

{
Ω(β0) + 2λW−

}−1
W−β0

]
=
{
Ω(β0) + 2λW−

}−1
u(β0), (5.14)
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and taking the expectation of the squared difference,[
β̂∗ − E(β̂∗)

] [
β̂∗ − E(β̂∗)

]′
=
{
Ω(β0) + 2λW−

}−1
u(β0)u(β0)

′
{
Ω(β0) + 2λW−

}−1

E
[
β̂∗ − E(β̂∗)

] [
β̂∗ − E(β̂∗)

]′
=
{
Ω(β0) + 2λW−

}−1
E
[
u(β0)u(β0)

′] {Ω(β0) + 2λW−
}−1

(5.15)

and finally replacing E
[
u(β0)u(β0)

′] = J (β0) by the Fisher information I(β0)

E
[
β̂∗ − E(β̂∗)

] [
β̂∗ − E(β̂∗)

]′
=
{
Ω(β0) + 2λW−

}−1
Ω(β0)

{
Ω(β0) + 2λW−

}−1
.

(5.16)

It turns out that the LASSO regression approximation proposed by Le Cessie and

Houwelingen (1992) can be extended to LASSO logistic regression in this way. The usual

asymptotically unbiased MLE estimator and its variance can still be obtained by setting

λ = 0., and the only difference with the ridge bias in (4.35) and variance in (4.40) is the

generalized inverse matrix.

Finally, as discussed in Section 4.2.2, standard errors may be computed using boot-

strap techniques, although as we noted they lack significance within the regularized re-

gression framework. Kyung et al. (2010) discuss some alternatives for its computation,

and suggests that there is not much consensus on a statistically accurate method.

5.2.1. Fitting the model

The approximation to the LASSO penalty given in (5.4) suggests that we may use an ex-

tension of the ridge regression algorithm to compute the LASSO estimate itself, however

Tibshirani (1996) notes that it is quite inefficient.

Different estimation methods have been proposed. As an example, consider Least

Angle Regression by Efron et al. (2004). In Section 6 we will use the R glmnet package

to test the model. As noted in equation (4.41), the penalized log-likelihood in this package

is given by

`glmnet(β) = − 1

n
`(β) + λ

[
(1− α)||β||22/2 + α||β||1

]
, (5.17)

so we will set α = 1 whenever we want to conduct `1 penalized logistic regression. To be

consistent with the specification made in Algorithm 3 and the way glmnet fits ridge logistic

regression, the adjustment proposed in equation (A.3) from Appendix A is needed.
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6. MONTE CARLO SIMULATION RESULTS

Throughout this section, we explore how the logistic regressionmodel reacts to regulariza-

tion. The simulations are done using the software R and the glmnet package described in

Section 4. Occasionally we use glmnet instead of our algorithm as the code looks cleaner,

however remember that these are equivalent and substituting one for the another leads

exactly the same results under the modifications proposed in Appendix A.1.

6.1. A LATENT-VARIABLE FORMULATION

In order to specify the model used in the experiments, we introduce a different math-

ematical formulation for logistic regression. The formulation given in Section 2 has an

equivalent specification as a latent-variable model. A comprehensive derivation is in-

cluded in Long (1997), which we follow here.

Suppose that there is a continuous latent variable which is unobserved and can be

written as a function of a set of explanatory variables and a random error term that is

distributed according to a standard logistic distribution with mean zero and variance π2/3

y∗i = Xiβ + εi where εi ∼ Logistic(0, π2/3). (6.1)

The latent variable could represent utility, for example in the labor force participation prob-

lem it could measure the underlying propensity to work that motivates the decision of the

individual. This unobservable variable is linked to the observed binary response yi by the
equation

yi =

{
1, if y∗i > 0

0, if y∗i ≤ 0,
(6.2)

where the thresold or cutpoint is assumed to be zero without loss of generality. This helps

us avoid a source of unidentification of the intercept because we set τ = 0. Note that we

have previously discussed the convenience of setting the intercept equal to zero, which

may also avoid this problem.

The assumption about the error term of the latent-variable specification may seem

unusual, but is convenient because it leads to a particularly simple cumulative distribution

function (Long 1997, p.42)

Λ(ε) =
exp(ε)

1 + exp(ε)
, (6.3)

which is the logistic function. Thus the probability of observing a positive outcome given

X is

Pr(y = 1|X) = Pr(y∗ > 0|X) = Pr(Xβ + ε > 0|X), (6.4)

and rearranging gives

Pr(y = 1|X) = Pr(ε > −Xβ|X), (6.5)

and since the cumulative distribution function is defined in terms of the probability of the

random variable being less than some value, we change the direction of the inequality as

Pr(y = 1|X) = Pr(ε > −Xβ|X) = 1− Pr(ε ≤ −Xβ|X), (6.6)

which gives the cumulative distribution function of the error term evaluated at−Xβ. Using
(6.3), this can be expressed as

Pr(y = 1|X) = 1− Λ(−Xβ). (6.7)
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Given that the logistic distribution is symmetric about zero, F (ε) = 1−F (−ε), we can write

Pr(y = 1|X) = Λ(Xβ) =
exp(Xβ)

1 + exp(Xβ)
= π, (6.8)

which is the logistic regression model as specified in equation (3.17).

By assuming that the errors follow the standard logistic distribution function given in

(6.3), we avoid another source of unidentification. As noted by Long (1997, p. 47), this is

an arbitrary but necessary assumption to identify the model. Imagine that the error term

has a variance with scale four εi ∼ Logistic(0, 4 × π2/3). Then, to obtain the function

given in (6.3), some standardization is needed

ε ∼ L(0, 4× π2/3) → ε

2× π/
√
3
∼ L(0, 1) → ε

2× π/
√
3
π/

√
3 ∼ L(0, π2/3)

→ ε

2
∼ L(0, π2/3). (6.9)

This has a similar effect to the introduction of a nonzero cutpoint, but in this case it rescales

all the coefficients as β̂j = β̂∗
j /2. If the variance of the error is known, then the assump-

tion made about the error variance is trivial, because we can simply multiply the estimated

coefficients by 2. However, if the variance is unknown, the β̂∗
j parameters remain uniden-

tified.

The logit model is sometimes derived from a two-way latent-variable model, where

the latent model is understood as a utility index model. A good review of these models is

given by Train (2009).
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6.2. COEFFICIENT SHRINKAGE

In this section we are concerned with showing how the coefficients of a penalized logistic

regression model shrink toward zero as the value of the tuning parameter λ increases.

The R code used for this experiment can be found in Appendix A.2 in Figure A.3.

In brief, we set-up a latent-variable model, where the explanatory variables are stan-

dardized and correlated and follow the uniform distribution, while the error term follows

the standard logistic distribution. As described in the previous section in equation (6.2),

the latent response assigns the values of the observed binary dependent variable de-

pending on a zero cutpoint. Then, we obtain the coefficients of an unregularized logistic

model, a ridge logistic model and a LASSO logistic model using the package glmnet - or,

in the case of the ridge penalty, our algorithm -. This is done for a sequence of values of

λ, which in this case ranges from 0 to 200 by 0.5 intervals. In this experiment we use a

sample size equal to 1000 observations and introduce eight explanatory variables, where

the true parameters are given by the vector 6

β = (−3 5 2 0.7 −0.3 0.5 −0.8 1 ).

Figure 6.1 shows the behavior of the `2-penalized logistic regression model coeffi-

cients. Note that we are not interested in identifying a particular coefficient itself but in

looking at the whole picture, thus we do not label the coefficients.

Figure 6.1: `2-penalized logistic regression

Source: Own elaboration

As expected, it can be seen that the coefficients approach zero as the value of the

tuning parameter increases. Notice that the sequence of values of λ included has very

6In fact, we just need to define the vector of true parameters, and the code itself matches the number of

predictors needed. For further details see Appendix A.2.
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high values, which are probably not optimal, but interesting to study the behaviour of β.
Although for small values of λ there are still notable differences among the coefficients,

as it approaches λ = 200 all of them are shrunk toward zero and toward each other. It

can also be checked that ridge regression does not perform variable selection, and all

the covariates are still included in the model although all the coefficients get very close

to zero. Note that according to Tibshirani (1996, p. 272), when the explanatory variables

are correlated ridge regression does not necessarily perform proportional shrinkage, and

estimates may be shrunken differently, so that a strange behaviour of some coefficients

should not be surprising.

On the other hand, Figure 6.2 shows the behavior of the `2-penalized logistic regres-

sion model coefficients.

Figure 6.2: `1-penalized logistic regression

Source: Own elaboration

Although the shrinkage property of the LASSO is equally clear in this case, and for

values of λ very close to zero the behavior of the parameters looks similar to the previous

case, there are some striking differences, in line with the theory, namely the variable

selection feature of the LASSO. The parameters that were close to zero in the unrestricted

model are set to zero quite early in the sequence, in fact and for λ = 50 some explanatory

variables would be dropped from the final model. As λ = ∞, the penalty gives the null

model, with all coefficients set to zero. In fact, for λ = 200 only the parameter βj = 5 is

still nonzero.

One of the drawbacks of the LASSO is that if there is a group of highly correlated

variables, as this may be the case, it tends to arbitrarily pick one and discard the others.

Conversely, the ridge penalty shrinks the coefficients towards each other.
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6.3. THE BIAS-VARIANCE TRADE-OFF

We explore here the bias-variance trade-off for the two penalized logistic regression mod-

els outlined before. In Section 4.1.1 we proposed the MSE of an estimator as a loss func-

tion which could be decomposed in bias and variance, as shown in (4.1). We will check

here whether the regularization methods actually lead to lower MSE than the unregular-

ized case.

As β is not a scalar, the MSE is written as

MSE(β̂) = E(β̂ − β)(β̂ − β)T , (6.10)

and we add and subtract E(β̂) to both terms

MSE(β̂) = E
[
β̂ − β + E(β̂)− E(β̂)

] [
β̂ − β + E(β̂)− E(β̂)

]T
= E

[
β̂ − E(β̂)

] [
β̂ − E(β̂)

]T
+
[
E(β̂)− β

] [
E(β̂)− β

]T
,

(6.11)

where the first term is the variance-covariance matrix and the second term the squared

bias. In order to do comparisons, working with the variance-covariance matrix is not as

practical as working with the variance as in the scalar case. Thus we redefine the MSE

function as an alternative risk function given by

risk(β̂) = E(β̂ − β)T (β̂ − β), (6.12)

which is a scalar. Using the property of the trace tr(c) = c for some scalar c this becomes

risk(β̂) = tr
{
E(β̂ − β)T (β̂ − β)

}
, (6.13)

and by the fact that the trace is a linear operator so that it commutes with the mathematical

expectation and using the property tr(AB) = tr(BA) where A and B are matrices, the

risk function becomes

risk(β̂) = E
{
tr(β̂ − β)T (β̂ − β)

}
= E

{
tr(β̂ − β)(β̂ − β)T

}
. (6.14)

Finally, commuting the trace and the expectation once again, we obtain that the risk func-

tion defined in (6.15) is the sum of the diagonal elements of the MSE matrix

risk(β̂) = tr
{
E(β̂ − β)(β̂ − β)T

}
= tr

[
V (β̂)

]
+ ‖bias(β̂)‖2, (6.15)

where V (β̂) is the covariance matrix and ‖bias(β̂)‖2 ≡
∑p

j=1(E(β̂j) − βj)
2. The former

adds up the variances and the latter implies that risk(β̂) is E
[∑p

j=1(β̂j − βj)
2
]
. This is

in fact the MSE for the multivariate case, where we use the `2 norm to measure the size

of the vector (Flury 1997), but we will refer to it as our risk function to avoid confusion.

We check whether this loss function decreases or not when we introduce a regulariza-

tion method. The R code for the experiment can be found in Figure A.4 of Appendix A.3.

The set-up of the logistic regression model is the same outlined in Section 6.2. The only

differences are that we consider now a larger vector of coefficients

β = (−3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) (6.16)

and that the value of λ is unique and chosen ad-hoc. The former difference aims at

highlighting the variable selection feature of the LASSO, while the latter simplifies the

problem, as we want to show that for some values of λ regularization performs well. We
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set a conservative value λ = 0.5. The sample size is 1000 observations and we conduct

1000 replications.

The code is designed so as to compute the β for the three different models - unregu-

larized, ridge and LASSO logistic regression -, and then compute the empirical bias and

variance for each coefficient as

bias = E
[
β̂ − β

]
variance = E

[
β̂ − E(β̂)

] [
β̂ − E(β̂)

]T
,

(6.17)

and then compute the MSE of each coefficient. Finally, as we sum over all the coefficients

for each model, we are in fact computing the risk as defined in equation (6.15). The

results of the experiment are summarized in the Table 6.1, which shows that regularization

substantially decreases the risk or expected squared error, thus reinforcing the theoretical

results outlined before.

Unregularized Ridge Lasso

1.233519 0.823114 0.8822589

Table 6.1: Risk results of the experiment

Source: Own elaboration

It looks that the ridge penalty performs slightly better than the LASSO penalty in this

case, which may be due to the degree of correlation introduced among the predictors. In

these cases, the arbitrary selection performed by the LASSO may lead ridge regression

to perform better, as noted by Tibshirani (1996, p.283).

These results are mostly based on the fact that the choice of λ was ad-hoc. Therefore,

it may be interesting to look at a sequence of λ values to see how the various components

of the risk behave. We conduct a second experiment that builds on the code used for the

first one but extends it so as to compute the risk and its bias and variance components

for a user-provided sequence of λ values. The R code can be found in Figure A.5 of

Appendix A.3. We now use a different vector of coefficients

β = (−3 4 2 1 −1 −0.5 0.5 2.5 0 0 0 0 0 ) (6.18)

and re-sample the results 2000 times for an again 1000 observations sample size. Fig-

ure 6.3 shows the risk components for the ridge logistic model and Figure 6.4 plots the

risk components for the LASSO logistic model.

The results show that there exists, in fact, a critical value λ∗ which minimizes the

bias and variance components of the risk function. Both figures show how the higher

the shrinkage parameter, the lower the variance and the higher the bias incurred. This

illustrates the bias-variance trade-off described in Section 4.1.1. Note that for high values

of λ the aggregate risk explodes, mainly due to the fact that the bias is squared.

We can also see that the value λ = 0.5 chosen in the previous experiment would be

a fairly good choice here as well, in the sense that it is close to the one yielding the lower

risk. This is in fact the criterion that can be used to determine the optimal value of the

tuning parameter, as we mentioned in Section 4.1.2. It can be seen that for moderately

small penalties we can trade a substantial decrease in variance for a very small increase

in bias, thus leading to a lower error.

In the particular case of the LASSO regularization, it looks like it may accept slightly

larger penalties. This may be due to its variable selection feature, as some of the true

parameters were exactly equal to zero and still included in the model. The inclusion of a

penalty sets these coefficients to exactly zero, leading to a zero average deviation (bias).

In fact, the path of the squared bias in Figure 6.4 is has a smoother slope than in Figure 6.3.
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Figure 6.3: Risk components for `2-penalized logistic regression

Source: Own elaboration

Figure 6.4: Risk components for `1-penalized logistic regressionn

Source: Own elaboration
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7. CONCLUSIONS

In this dissertation we have presented a new algorithm to estimate penalized (ridge) logis-

tic regression. In order to do so, the literature of Generalized Linear Models and penalized

likelihood approaches is revised. It turns out that some standard results of these fields

may be used used to develop an algorithm to fit penalized logistic regression models,

departing from the standard Iteratively Reweighted Least Squares approach. As an ex-

tension, we have compared through a simulation exercise the results obtained with our

estimator against the corresponding LASSO estimators. Particularly, we were concerned

with showing how these techniques would trade a little increase in bias for a substantial

decrease in variance, thus leading to a lower Mean Squared Error. It turns out that under

certain situations, such as the presence of highly correlated variables and the inclusion of

many explanatory variables, regularization techniques may outperform the unregularized

logistic regression estimators. We have also studied the crucial role that plays in the fitting

of these models the so-called shrinkage parameter.
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A. R CODE

A.1. CODE FOR ALGORITHM 3

ridgeIRLS <- function(X, y, lambda , maxIter=10, tol=1E-6){

b <- bLast <- rep(0, ncol(X))
it <- 1
while (it <= maxIter){

eta <- X %*% b
mu <- 1/(1 + exp(-eta))
w <- as.vector(mu*(1 - mu))
W <- diag(w)
z <- eta + (y - mu)/w
b <- solve(t(X)%*%W%*%X+lambda*diag(ncol(X)))%*%t(X)%*%W%*%z

if (max(abs(b - bLast)/(abs(bLast) + 0.01*tol)) < tol)
break

bLast <- b
it <- it + 1

}

if (it > maxIter) warning('maximum␣iterations␣exceeded')

list(coefficients=b, iterations=it)
}

Figure A.1: A ridge IRLS algorithm

Source: Own elaboration

Figure A.1 contains the R code for Algorithm 3. The arguments included are:

1. The matrix of explanatory variables X.

2. The vector of observations of the dependent variable y.

3. The value of the tuning parameteR lambda.

4. The maximum number of iterations maxIter, which is set at 10 by default.

5. A tolerance criterion tol, which is set at 1e−6 by default.

The vector of estimates b is set at zero at the first iteration, and it is iteratively updated.
At each iteration and until the convergence criterion is satisfied or the maximum number

of iterations is reached, we compute the linear predictor eta η 7, the probabilities mu µ,
and the weights w. Using this information, we construct the working dependent variable

z and solve the penalized WLS problem, which results in an estimate of the form given in

(4.22).

7The probabilities are specified here as 1/1+exp(−η), which results from dividing exp(η)/1+exp(η) over
exp(η).
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The convergence criterion is given by

max

[
|b− bLast|

|bLast+ 0.01× tol|

]
< tol, (A.1)

where bLast refers to the vector of estimates obtained in the previous iteration. Finally,

the algorithm is set so as to display the estimated coefficients and the number of iterations

needed to reach convergence.

It should be noted that the algorithm is constructed to input a matrix of standardized

explanatory variables X and a centered dependent variable y. This removes the need

for an intercept in the regression model.

Regarding the package glmnet, in order to replicate the results it is needed to take into

account equation the penalized log-likelihood given by (4.41)

`glmnet(β) = − 1

n
`(β) + λ

[
(1− α)||β||22/2 + α||β||1

]
. (A.2)

Note that the unrestricted log-likelihood is divided over the number of observations n, thus
the value of λ here needs to be redefined as

λ = λ∗/n, (A.3)

where λ∗ stands for the tuning parameter used as an argument in our algorithm. In ad-

dition, glmnet does not center the response variable and unstandardizes the resulting

coefficients. To keep consistency with our algorithm, the best solution is to provide stan-

dardized explanatory variables and centered response as inputs.

FigureA.2 shows the exact arguments needed to replicate the results of our algorithm.

#Our algorithm
ridgeIRLS(X,y,lambda , maxIter = 50)

#Package "glmnet"
coef(glmnet(X,y,family = "binomial",standardize = FALSE ,alpha =

0, lambda = lambda/nrow(X), intercept = FALSE))

Figure A.2: Replicating the results of Algorithm 3

Source: Own elaboration
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A.2. CODE FOR SECTION 6.2

coeffs <- function(seq_lambda , b, n){

b_unreg <- matrix(nrow = length(b), ncol = length(seq_lambda))
b_ridge <- matrix(nrow = length(b), ncol = length(seq_lambda))
b_lasso <- matrix(nrow = length(b), ncol = length(seq_lambda))

X <- matrix(nrow= n, ncol= length(b))
u <- double(length(n))
X[,1] <- runif(n, min = -3, max = 3)
X[,1] <- scale(X[,1])*sqrt((length(X[,1])/(length(X[,1]) -1)))
for(j in 2:length(b)){

X[,j] <- 0.5*runif(n, min = -3, max = 3) + 0.5*X[,(j-1)]
X[,j] <- scale(X[,j])*sqrt((length(X[,j])/(length(X[,j])-1))

)
}
u <- rlogis(n, location = 0, scale = 1)
y <- X%*%b+u
y <- scale(y)
Y <- as.numeric(y>0)
for(i in 1:length(seq_lambda)){

b_unreg[,i] <- coef(glmnet(X,Y,family = "binomial",
standardize = FALSE ,alpha = 0, lambda = 0, intercept =
FALSE))[1:length(b)+1]

b_ridge[,i] <- coef(glmnet(X,Y,family = "binomial",
standardize = FALSE ,alpha = 0, lambda = seq_lambda[i]/
nrow(X), intercept = FALSE))[1:length(b)+1]

b_lasso[,i] <- coef(glmnet(X,Y,family = "binomial",
standardize = FALSE ,alpha = 1, lambda = seq_lambda[i]/
nrow(X), intercept = FALSE))[1:length(b)+1]

}
list(b_unreg=b_unreg , b_ridge=b_ridge , b_lasso=b_lasso)

}

Figure A.3: A ridge IRLS algorithm

Source: Own elaboration

Figure A.3 contains the R code for Section 6.2. Note that the argument seq_lambda
requires a sequence of λ values, while b refers to a vector of true parameters and sampling
introduces randomness in the model. It works for whatever experiment you might want

to run. The logistic regression model is constructed following the formulation given in

Section 6.1 and the variables are internally standardized in the way glmnet does. Some

degree of correlation is introduced among the covariates as well.

Note that this code includes the glmnet package to solve the IRLS problem instead of

our algorithm, but this is just to facilitate running the code without previously loading our

algorithm.
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A.3. CODE FOR SECTION 6.3

empRISK <- function(lambda , b, sampling , n){

b_unreg <- matrix(nrow = length(b), ncol = length(sampling))
b_ridge <- matrix(nrow = length(b), ncol = length(sampling))
b_lasso <- matrix(nrow = length(b), ncol = length(sampling))
bias <- matrix(nrow = length(b), ncol = 3)
var <- matrix(nrow = length(b), ncol = 3)
MSE <- matrix(nrow = length(b), ncol = 3)
sumMSE <- matrix(nrow = 1, ncol = 3)
for(i in sampling){

set.seed(i)
X <- matrix(nrow= n, ncol= length(b))
u <- double(length(n))
X[,1] <-runif(n, min = -3, max = 3)
X[,1] <-scale(X[,1])*sqrt((length(X[,1])/(length(X[,1]) -1)))
for(j in 2:length(b)){

X[,j] <- 0.5*runif(n, min = -3, max = 3) + 0.5*X[,(j-1)]
X[,j] <- scale(X[,j])*sqrt((length(X[,j])/(length(X[,j])

-1)))}
u <- rlogis(n, location = 0, scale = 1)
y <- scale(X%*%b+u)
Y <- as.numeric(y>0)
b_unreg[,which(sampling == i)] <- coef(glmnet(X,Y,family = "

binomial",standardize = FALSE ,alpha = 0, lambda = 0,
intercept = FALSE))[1:length(b)+1]

b_ridge[,which(sampling == i)] <- coef(glmnet(X,Y,family = "
binomial",standardize = FALSE ,alpha = 0, lambda = lambda/
nrow(X), intercept = FALSE))[1:length(b)+1]

b_lasso[,which(sampling == i)] <- coef(glmnet(X,Y,family = "
binomial",standardize = FALSE ,alpha = 1, lambda = lambda/
nrow(X), intercept = FALSE))[1:length(b)+1]

}
for(k in 1:length(b)){

bias[k,1] <- mean(b_unreg[k,])-b[k]
bias[k,2] <- mean(b_ridge[k,])-b[k]
bias[k,3] <- mean(b_lasso[k,])-b[k]
var[k,1] <- mean((b_unreg[k,] - mean(b_unreg[k,]))^2)
var[k,2] <- mean((b_ridge[k,] - mean(b_ridge[k,]))^2)
var[k,3] <- mean((b_lasso[k,] - mean(b_lasso[k,]))^2)}

for(t in 1:3){
MSE[,t] <- bias[,t]^2+var[,t]
RISK[t] <- sum(MSE[,t])}

list(b_unreg=b_unreg , b_ridge=b_ridge , b_lasso=b_lasso , bias=
bias, var=var, MSE=MSE, RISK=RISK)

}

Figure A.4: Empirical risk function

Source: Own elaboration
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Figure A.4 contains the first part of the R code used in Section 6.3. The arguments of the

function require to input a value of λ, a vector of true parameters and to set sampling,
which is how we introduce randomness in the algorithm. Although we did not make use

of it, note that the output includes the matrix of estimated coefficients and allows for the

decomposition of MSE into bias and variance.

RISK_2 <- function(seq_lambda , b, sampling , n){
sumbias <- matrix(nrow = length(seq_lambda), ncol = 3)
sumbias2 <- matrix(nrow = length(seq_lambda), ncol = 3)
sumvar <- matrix(nrow = length(seq_lambda), ncol = 3)
sumMSE <- matrix(nrow = length(seq_lambda), ncol = 3)
for(i in 1:length(seq_lambda)){

trial <- empRISK(lambda = seq_lambda[i],b,sampling ,n)
for(j in 1:3){

sumbias[i,j] <- sum(trial$bias[,j])}
for(w in 1:3){

sumbias2[i,w] <- sum(trial$bias[,w]^2)}
for(k in 1:3){

sumvar[i,k] <- sum(trial$var[,k])}
for(t in 1:3){

RISK[i,t] <- sum(trial$MSE[,t])}
}

list(sumbias=sumbias , sumbias2=sumbias2 , sumvar=sumvar , RISK=
RISK)

}

Figure A.5: Risk for a sequence of λ values

Source: Own elaboration

Figure A.5 contains the second part of the R code used in Section 6.3. It basically

builds on the algorithm of Figure A.4 and outputs the aggregated components of the risk

function in (6.15). Note that it you can decide whether you want to plot the squred bias or

the bias itself.
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