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Abstract

T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome,

in which targeted treatments are still at a preliminary phase. To gain deeper insights into the

deregulated mechanisms promoting this disease, we searched a panel of 31 representative

T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to tar-

geted therapy. To this end, targeted sequencing was performed alongside the expression of

specific biomarkers corresponding to potentially activated survival pathways. The study

identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also

found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical

analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT

(44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lym-

phoproliferative processes samples, with the partial exception of AITL cases. Integrated

mutational and immunohistochemical analysis shows that mutational changes cannot fully

explain the activation of key survival pathways and the resulting phenotypes. The combined

integration of mutational/expression changes forms a useful tool with which new compounds

may be assayed.

Introduction

T and NK-cell leukemia/lymphoma is a collection of aggressive disorders with unfavorable

outcome accounting for 10–15% of non-Hodgkin lymphomas. The most recent WHO
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Classification established 23 subtypes grouped by clinical presentation [1]. T-cell lymphomas

(TCLs) are the most common group, and within this subgroup the major subtypes are periph-

eral TCL (PTCL), not otherwise specified (PTCL-NOS), angioimmunoblastic T cell lymphoma

(AITL), anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL)

and ALK-negative ALCL. Among these, PTCL-NOS is the most widespread subtype world-

wide and typically represents a variant that does not meet the criteria for other subtypes [2].

On the other hand, T-cell acute lymphoblastic leukemia (T-ALL), a T-cell neoplasm of lym-

phoblasts, accounts for about 15% and 25% of acute lymphoblastic leukemia (ALL) cases in

pediatric and adult cohorts, respectively.

Nowadays, PTCL diagnosis requires the integration of information about clinical status,

morphology, immunohistochemistry, flow cytometry, cytogenetics and molecular biology

[3,4]. The treatment approach of PTCL has customarily been based on the knowledge accumu-

lated from diffuse large B cell lymphoma treatment. The standard first-line therapy still con-

sists of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or a CHOP-like

regimen, although the outcome is poor, with frequent relapses and low 5-year overall survival

and failure-free survival [5,6]. Routine introduction of targeted therapy for PTCL and other

TCL types still requires the identification of solid predictor biomarkers that relate clinical and

phenotypic variability to existing therapeutic options.

Thus, it is possible that, having molecularly characterized the individual TCL cases, we

could identify potential candidates for targeted therapy. In this study, we integrated targeted

deep sequencing with immunohistochemical analysis in a large cohort of 33 well-characterized

T/NK-cell lymphoma/leukemia cell lines. This has provided insights into the specific molecu-

lar mechanisms underlying the pathogenesis of TCL and into the potential implications for

future diagnosis and targeted therapy of TCL patients.

Material and methods

Cell lines

33 T/NK-cell lymphoma/leukemia cell lines were obtained from various sources (S1 Table).

These included T-ALL (n = 20), ALCL (n = 5), CTCL (cutaneous T-cell lymphoma, n = 3),

ATLL (adult T-cell lymphoblastic leukemia, n = 2), NK lymphoma subtypes (n = 2), and T-

large granular lymphoma (T-LGL, n = 1) PTCL subtypes. Cell lines were cultured under basal

conditions following the manufacturer’s instructions. All cell lines were purchased or authenti-

cated before use and were tested for mycoplasma (MycoAlert™ mycoplasma detection kit;

Lonza, Basel, Switzerland).

Targeted amplicon-based enrichment and sequencing

16 genes were selected for sequencing. This set consisted of genes that are known potentially

to play a role in tumorigenesis [7–20] (S2 Table). The gene panel was designed by Illumina

Design Studio and comprised 547 amplicons, each of 170–190 bp. Libraries were prepared

using the Illumina TruSeq Custom Amplicon Kit v1.5 and sequenced on a MiSeq sequencer

(Illumina, San Diego, CA), following the manufacturer’s instructions. Variants were called

using MiSeq Reporter and RUbioSeq [21], employing the default settings, and were visually

inspected on IGV (www.broadinstitute.org/igv/). Variants were annotated with Variant Effect

Predictor (GRCh37, http://grch37.ensembl.org/Tools/VEP). Known SNPs with an allelic fre-

quency greater than 1% in public databases (dbSNP138, 1000 Genomes Project, Exome

Sequencing Project, Exome Aggregation Consortium) were filtered out. In order to avoid

false-positive calls, we performed duplicates with separate library preparation and sequencing

in independent runs. Only variants called by both runs were considered.
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Tissue microarrays and immunostaining

Tissue microarrays (TMAs) were designed as described previously [22]using two 0.6-mm tis-

sue cores per case, taken from formalin-fixed, paraffin-embedded archival tumor blocks. All

immunostaining was done following standardized protocols. The panel of antibodies was cho-

sen on the basis of their biological and clinical relevance in clinical classification and pathogen-

esis of TCL as well as with respect to their pharmacological implications (S3 Table). New

antibodies were titrated with four or five dilutions (with an at least 2-fold difference between

each) on the whole-mount tissue sections, according to the manufacturer’s recommendation.

Each TMA was analyzed by at least two independent pathologists, who considered either the

cytoplasmic or membranous staining intensity, or the percentage of positive nuclei. Specific

thresholds are described in the S3 Table.

Statistical analysis

Unsupervised hierarchical clustering with an average linkage algorithm was performed using

Gene-E software v3.0.206 (www.broadinstitute.org/cancer/software/GENE-E). The Mann-

Whitney U or Kruskal-Wallis tests were used to determine group differences. The chi-square

or Fisher exact test was used as appropriate to determine associations between the presence or

absence of markers. Statistical analyses were carried out using SPSS for Windows version 15

(Chicago, IL).

Other resources and repositories

We consulted repositories with genomic data of TCL cell lines in order to ensure a broad land-

scape. Specifically, we unified genomic data from the CCLE (Cancer Cell Line Encyclopedia,

http://www.broadinstitute.org/ccle), the COSMIC Cell Lines Project (http://cancer.sanger.ac.

uk/cell_lines) [23], EGAS00001000268 [24] from the European Genome-Phenome Archive

(https://www.ebi.ac.uk/ega/), and data from four exomes produced by our group in HH,

HUT-78, MJ and Myla cell lines (S4 Table). Sequencing data have been deposited in the

Sequence Read Archive (SRA) under accession reference SUB2029552.

Results

Variants identified by target enrichment and deep sequencing

33 T/NK-cell lymphoma/leukemia cell lines were subjected to target amplicon-based enrich-

ment and sequencing of the 16 selected genes (see details in S2 Table). On average, 91% of the

amplicons in the panel studied had a depth of>100X, with 73% exceeding 500X. After conser-

vative filtering, we validated 102 variants (S5 Table) in 15 genes from 30/33 samples (91%),

including missense (74), frameshift (11), nonsense (8), splicing (7), and 3´/5´- UTR (2) vari-

ants (S5 Table and Fig 1). A mean of 3.1 SNVs per cell line (range: 0–11) was observed. We did

not detect any SNVs in CCR4,CD28 or IDH2.

TP53, NOTCH1 and DNMT3Awere altered in 72.7%, 42.4% and 18.2% of the cell lines, re-

spectively. TP53 harbored a large number of mutations, most of which were missense (21/33)

and truncating mutations (7/33) (Figs 1 and 2A). Residues 248 and 273 were recurrently

mutated, which produced different alterations at the nucleotide level. The P12-Ichikawa cell

line carried a double-heterozygous mutation in the same nucleotide (c.743G>A/C; p.Arg248Gln/

p.Arg248Pro) and seven cell lines had two or more TP53 variants.

NOTCH1 mainly harbored missense and truncating mutations (26 and 5 of 32 SNVs,

respectively). We found more than one variant of NOTCH1 per TCL cell line in six cell lines,

with up to eight variants in MOLT4. NOTCH1 SNVs were distributed throughout the whole
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gene. We found only truncating mutations in the PEST domain; these are known to lead to

aberrantly prolonged signaling in the nucleus in this domain [25].

We detected 17 SNVs associated with the JAK/STAT pathway. JAK3 and JAK1 harbored

seven and five variants, five and four of them being missense mutations, respectively. Three

and two variants were found in STAT5B and STAT3, respectively. Interestingly, Jurkat har-

bored the three STAT5B and the one STAT3 variants.

With respect to epigenetic-related genes, DNMT3Awas the most frequently mutated gene

with high diversity: we found seven variants, four of which were missense, two were truncating

variants and one was located in the 5´UTR region. TET2 had three missense variants and one

truncating variant, whereas IDH2 harbored no SNVs.

We found little variation in the other genes. We detected the same mutation (p.V385M) in

HPB-ALL and MHH-TALL-2 in the TNFRSF1B gene. Two mutations were detected in PLCG1
(both in the DND-41 cell line), DDX3X and RHOA and one was found in SYK (S5 Table).

Variants identified by subtype

Among the cell lines, the T-ALL subtype carried the greatest frequency of SNVs (85/102, 4.25

SNVs per cell line). ATLL and CTCL both harbored 4/102 variants (2 and 1.33 SNVs per cell

line, respectively) (Fig 1). We detected four and two variants (one SNV per cell line) in the

ALCL and NK subtypes. TP53 and NOTCH1 mutations co-occurred in the T-ALL (11/20)

and T-LGL cell lines (1/1), but not in any other subtype. NK cell lines featured solely TP53
mutations. Mutations in genes involved in the JAK/STAT pathway were most frequently

Fig 1. Mutational landscape of TCL cell lines. The results of targeted deep sequencing of 16 genes in 20

T-ALL (black), 5 ALCL (dark grey), 3 CTCL (medium grey), 2 NK (light grey), 2 ATLL (diagonal lines) and one

T-LGL (dots) cell lines. Mutated genes (rows) are arranged in decreasing order of mutation frequency. Cell

lines (columns) are arranged from left to right on the basis of their mutational frequency following gene

ranking. HTLV-1-positive cell lines (green) and translocation t(2;5)(p23;q35) (ALK +, dark blue) are showed.

https://doi.org/10.1371/journal.pone.0177524.g001
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mutated in T-ALL. In this respect, four JAK1 mutations, six JAK3 mutations, and all STAT3
and STAT5B mutations occurred in T-ALL cell lines. Only one mutation in the JAK1 and in

JAK3 genes was detected in CTCL, which co-occurred in HUT-78. Similarly, the epigenetic

genes DNMT3A and TET2, most of which were related to T-ALL, were found to be altered in

these subtypes. Furthermore, DNMT3Awas mutated in one ALCL and ATLL case each. Two

novel PLCG1 mutations were found in a single case of T-ALL (p.Q152H and p.D1199N).

Expression of immunomarkers

In order to identify a number of potentially deregulated disease actionable mechanisms, we

used a set of 26 immunomarkers chosen not only on the basis of their biological and clinical

relevance to clinical classification and pathogenesis of TCL, but also for their pharmacological

implications (S3 Table). Hence, as shown in Fig 3, the NFKB pathway was activated in roughly

half of the cell lines, both the canonical (p50/p65) and the non-canonical (p52/RelB), as indi-

cated by the nuclear expression of the NFKB subunits. Nuclear NFAT was found in eight cases

(24.2%), ERK and STATs proteins were activated in 30% and in 21–33% of cell lines, respec-

tively, with STAT3 being the most frequent (Fig 3). The CD30 surface marker was expressed

in 60.6% of cases, while CD10 and CD56 were detected in only 21.2% and 6.1%, respectively.

Tumor suppressors p53 and RB were detected in 57.6% and 81.8% of cell lines, respectively.

Notch1 was found in the nucleus (the active form) in five cases (15.2%) and its downstream

target MYC was detected in 84.8%. GATA-3, ROR-gamma and TIA-1 showed positive expres-

sion in 15, 14 and 9 cell lines (45.5%, 42.4% and 27.2%), respectively (Fig 3).

Unsupervised hierarchical clustering analysis of tissue microarray

immunostaining

In order to classify our cases by specific immunohistochemical biomarkers, and to identify

their potential association with pathogenesis, an unsupervised hierarchical clustering analysis

Fig 2. Mapping of variants in a TCL gene panel. Schematic of the alterations encoded by SNVs in TP53, NOTCH1, DNMT3A, JAK1,

JAK3, STAT3 and STAT5B. Type of variation and disease are represented by color and shape, respectively. TAD: transactivation

domain; PRD: proline-rich domain; TD: tetramerization domain; C-term: C-terminal domain; HD: heterodimerization domain; TM:

transmembrane domain; RAM: Rbp-associated molecule domain; ANK: ankyrin domain; PEST: proline (P), glutamic acid (E), serine

(S), threonine (T) degradation domain; ZNF: zinc-finger domain; Mtase: methyltransferase domain.

https://doi.org/10.1371/journal.pone.0177524.g002
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(average linkage method) of the TMAs was undertaken. This produced a dendrogram with six

well-defined clusters (Fig 3).

Most of the groups were defined by specific biomarkers. All groups clearly showed positive

MYC and TCRBF1 expression, with the possible exception of group 6, which had limited

TCRBF1 expression. Group 1 had differential positive PD1 expression alongside activated

MAPK-ERK, GATA-3 and ROR-gamma-T. In group 2, the cluster featured broad RB staining

(12/14) and heterogeneous expression of TP53, MAPK-ERK, NFAT and CD30. Group 3

showed the strongest activation of both canonical and non-canonical NFKB pathways, with

positive expression of CD30 and NFAT in three of five cases. Group 4 showed characteristic

constitutive activation of STAT 1, 3 and 5, with positive CD30 expression in all cases, along

with the heterogeneous activation of the NFKB pathway in three of the four of cell lines.

Group 5, formed exclusively of ALCL-ALK+ cell lines, was defined by strongly positive ALK,

BCL6, CD30 Granzyme B and TIA-1 expression, together with STAT 3 activation. Group 6,

comprised the two NK cell lines included in the study. They showed a typical NK signature

positive for the expression of CD56, Granzyme B and TIA-1. This small group also showed

activation of STAT 3 and 5. It is worth noting that under these circumstances, CTCL cell lines

were dispersed into different groups.

Fig 3. Unsupervised hierarchical clustering analysis with 26 immunomarkers. Each row represents a

single cell line; each column represents a single immunomarker. Blue (score 0); white, weak immunostaining

(score 1); light red (score 2); red, strong immunoreactivity (score 3); grey, missing data.

https://doi.org/10.1371/journal.pone.0177524.g003
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Immunohistochemistry (IHC) scores were dichotomized to enable associations between

markers to be determined (IHC score >1 = positive; IHC score�1 = negative) in all cell lines

(S7 Table). Overall, the presence of canonical and of non-canonical NFKB pathway markers

was significantly associated (p<0.05). Furthermore, the NFKB pathway was directly associated

with NFAT (p65 RelA), CD30 (c-Rel) and GATA-3 (RelB), but inversely associated with ROR-

gamma, p53 and RB (canonical NFKB), and MAPK-ERK (c-Rel). We found a positive associa-

tion of the presence of ALK, Granzyme B, TIA-1 and BCL-6 with the activation of STAT 3

(p<0.05).

Relation between IHC expression and mutational status

We analyzed the relation between mutational status and expression of specific immunomar-

kers. We subdivided TP53 status into wild type, and missense and truncating mutation group.

The expression of p53 was strongly associated with the presence of missense mutations com-

pared with wild type and truncating mutations (p<0.001), (S1 Fig). However, we did not find

any differences between NOTCH1 status and Notch1 (S1 Fig) or MYC expression. In the case

of MYC, 28/33 cell lines showed positive MYC expression, so we can conclude that MYC

expression is not dependent on NOTCH1 mutational status. Likewise, it is important to note

that JAK mutations were not associated with the expression of their downstream targets. Only

three of ten (30%) cell lines with mutated JAK showed STAT activation, as defined by nuclear

staining. By contrast, ten out of 23 (43.5%) cell lines with JAK wild type showed STAT activa-

tion (S2 Fig).

Discussion

Our growing knowledge about the molecular basis of T- and NK-cell lymphoma is leading to a

better understanding of their pathogenesis and is helping refine the subclassification of TCL.

Nevertheless, despite this progress, targeted therapy is still in a preliminary phase. The results

presented here can help identify the more commonly deregulated mechanisms driving tumori-

genesis in TCL, and provide a useful tool for analyzing the interaction between gene mutations

and the activation of key survival pathways.

However, the panel of TCL cell lines tested has some limitations inherent to the difficulty of

generating cell lines derived from particular T-cell lymphoma subtypes, notably AITL and

PTCL-NOS. The panel is more representative for T-ALL, ATLL, CTCL, ALCL-ALK+ and NK

subtypes. Despite these limitations, our results show that most T-cell lymphoma subtypes

share mutations and activation of some essential pathways, such as JAK-STAT, NFKB, NFAT,

chromatin regulation and others.

In this study we have examined 16 genes related to TCL pathogenesis [7–20], selected

because of the presence of somatic mutations identified in previous studies, or due to their

importance in TCL biology. We have identified 102 variants. A review of the data available in

public repositories validated 64 of these SNVs (S6 Table) and identified 4 SNVs that were not

picked up by our algorithm. On the other hand, 27 SNVs found in public repositories were not

detected by our amplicon-based enrichment method. This discrepancy highlights how differ-

ent methods may yield different results.

TP53 was the mutated gene in our cell lines (72.7%). Truncating and missense mutations

were correlated with low and high levels of p53 expression, respectively. The NOTCH1 gene

was also frequently mutated, with five truncating mutations located in the PEST domain. Only

the MOLT-4 cell line showed a high level of expression of Notch1; it was not expressed in the

other cell lines (DND-41, HPB-ALL, KE-37 and PF-382). Whereas KE-37 cell line harbored

only one mutation in the PEST domain, the DND-41, HPB-ALL, MOLT-4 and PF-382 cell
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lines were also found to be mutated in the HD domain. The MOLT-4 cell line harbored eight

mutations in NOTCH1, localized in different domains from the PEST and HD domain. It has

been reported that truncating mutations in the PEST domain lead to aberrantly prolonged sig-

naling in the nucleus, but are only functional in the presence of Notch ligands [25]. Mutations

in the HD domain, which comprises exons 26 and 27, destabilize the interaction between the

N- and C-terminal HD subunits, resulting in increased signaling through either ligand-inde-

pendent or ligand-hypersensitive activation of Notch1, or in the displacement of the process-

ing site for ADAM cleavage, allowing for constitutive ligand-independent metalloprotease

processing [25]. Mutations in other domains need to be functionally elucidated. Therefore,

understanding the complexity and consequences of Notch activation is critical for defining

optimal therapeutic strategies targeting the Notch pathway.

Mutations in the JAK/STAT pathway have been reported in PTCL patients [11,12,20]. We

found 17 different mutations in 12 cell lines, which enabled us to detect mutations in JAK1
and JAK3 genes in 27.3% of the cell lines analyzed. HUT-78 showed mutations in JAK1 and

JAK3 pseudokinase domains [20] and MOLT-14 in JAK1 the pseudokinase domain. Muta-

tions in these domains have been widely reported and are usually associated with increased

downstream signaling in some hematological malignancies as well as in solid tumors. Thus, it

has been shown that JAK pseudokinases are autoinhibitory domains that keep the kinase

domain inactive until receptor dimerization stimulates transition to an active state. Nonethe-

less, these three cell lines showed no activation of STAT proteins. This lack of a genotype-

phenotype correlation between mutations in the pseudokinase domain and STAT expression

(S1 Fig) can be explained by the basal conditions (e.g., without cytokines) in which the cells

were cultured [26]. Mutations in the JAK1 kinase domain were found in three cases (HPB-

ALL, MHH-TALL-2 and MOTN-1 cell lines). It is important to note that the HPB-ALL and

MHH-TALL-2 cell lines shared the same mutation (p.Q966V), but STAT was activated only

in the MHH-TALL-2 cell line. The molecular significance of these mutations is not easy to

interpret, since they could act in a receptor-dependent or independent manner with respect to

activation. Therefore, although JAK inhibitors (JAKis) constitute a new therapeutic option for

the treatment of PTCL patients [20,26], further studies are needed to elucidate the relation

between mutations and the activation of the JAK/STAT pathway as well as the mechanisms of

JAKi resistance.

Mutations of epigenetic regulators are so common in PTCL that they constitute one of the

largest groups of mutation, including those affecting the splicing machinery, signaling path-

ways and transcription factors [2]. Mutations in DNMT3A and TET2 were found in 18.2% and

9.1% of our panel of cell lines, respectively. DNMT3A encodes a protein that catalyzes methyla-

tion and demethylation of DNA, depending on the microenvironment conditions [27]. The

specific relevance of DNMT3Amutations to the cancer phenotype has not been explored,

except for p.R882 mutations, which predict poor prognosis in acute myeloid leukemia [28,29].

TET family proteins are known to play critical roles in DNA demethylation by converting

5-mC to 5-hydroxymethylcytosine (5-hmC) in α-KG-dependent and a Fe (II)-dependent

manner [30]. Mutations that disrupt the catalytic domain or lead to a truncated TET2 have

been linked to the development of hematological malignancies [31]. In fact, several leukemia

and lymphoma disorders have a TET2 that is mutated at notably high frequencies (chronic

myelomonocytic leukemia: 35–50%; AITL: 50–80%; PTCL-NOS: 40–50%) [32–37]. Some epi-

genetic drugs, such as vorinostat, belinostat and romidepsin, have been positioned as a second

line for TCL treatment, and have produced improved response rates.

This study found two mutations in PLCG1 (encoding p.Gln152His and p.Asp1199Asn),

both of which were present in a T-ALL cell line, DND-41. Recently, two hot-spot PLCG1
mutations (encoding p.Ser345Phe and p.Ser520Phe) that enhance PLCγ activity have been
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reported in T-cell lymphoma [19,38]. PLCG1 encodes phospholipase Cγ1 (PLCγ1), a key regu-

lator of proximal TCR signaling [38]. Interestingly, NFAT expression was positive in the cells

harboring PLCG1 mutations, suggesting that these mutations may promote deregulated activa-

tion of downstream PLCγ1 signaling. This activation may support the idea that specific target-

ing of PLC downstream signaling, like tacrolimus, which acts as a calcineurin inhibitor, could

be a therapeutic option for the treatment of patients with mutations in PLCG1.

Two RHOA mutations were detected, both of them in T-ALL. Several research groups

have found frequent RHOA mutations, specifically the p.G17V mutation, in AITL and PTCL

patients [37,39]. Interestingly this p.G17V mutation appears to act similarly to well-character-

ized dominant negative mutations of RHOA, rather than as an activating mutation. Although

none of the mutations found in our study corresponds to the p.G17V variant, it is important

to note that both cells lines in our study that harbor RHOA mutations showed robust MYC

expression. In this context, it has been reported that there is cross-regulation between MYC

and RhoA activation [40].

From a therapeutic perspective, our results highlight important disease mechanisms that

have the potential to serve as targets for therapy. In this regard, the immunohistochemical

analysis identified an activated NFKB pathway in about 62% of TCL cell lines (Fig 3). Recently,

Odqvist and colleagues reported worse overall survival in PTCL patients associated with

nuclear expression of classical or alternative NFKB components, implying that NFKB-induc-

ing kinase (NIK) silencing could be an effective target for abrogating the NIK-dependent

NFKB activation [41]. The number of NIK inhibitors currently known is limited. A preclinical

study with ALK-negative ALCL patient cells [42] and CTCL cell lines [43] reported the poten-

tial for the effective use of bortezomib, but a phase II study in refractory ATLL patients was

cancelled because single-agent activity did not produce significant improvements in patients

[44]. NIK and IKK inhibitors may be promising agents in T-cell lymphomas with an activated

NFKB pathway, but further studies and clinical trials are needed to evaluate the real potential

of these agents in single and combined usage.

The second most frequently activated pathway in cell lines was JAK/STAT (42.4%), making

the blockade of this pathway a promising means of treating TCL patients. Ruxolitinib has been

demonstrated to inhibit CTCL cell line proliferation at micromolar concentrations [20] and

clinical trials are now ongoing (www.clinicaltrials.gov; accessed September 2016) in T-cell

lymphomas and other hematological malignancies. Tofacitinib has been shown to inhibit

JAK3 in CTCL [45] but other JAK inhibitors such as momelotinib, baricitinib or filgotinib

have not been tested in TCL. Although few preclinical and clinical data are available, STAT3

inhibitors, which seem to have a low toxicity profile [46], are other emerging targets.

Unsupervised hierarchical clustering identified six groups on the basis of their expression

profile. We can propose a targeted therapy that takes into account the mutational background

of each group (S2 Fig). Group 1 had a differentially positive PD1 expression and activated

MAPK-ERK. Given this, anti-PD1 and ERK inhibitors could constitute an effective therapy

for this group. A recent phase I study noted a response rate of 17% with nivolumab treatment

[47]. Group 2, mainly composed of T-ALL cell lines, was complex because of the heteroge-

neous expression of immunomarkers, so different approaches should be adopted to treat such

patients. Group 3 exhibited the strongest activation of both canonical and non-canonical

NFKB pathways, with strong expression of CD30, so drugs reducing NFKB activation and

anti-CD30 may be good options for therapy. Interestingly, Group 4 showed activation of

STAT 1, 3 and 5, with positive expression of CD30 in all cases. Anti-CD30 and JAKi therapy

could be a treatment option for this group. Group 5, comprising the ALCL-ALK+ cell lines,

was strongly positive for ALK, BCL6, CD30 and STAT3, so the treatment options could

include the use of anti-CD30 antibody and ALK and JAK inhibitors. In fact, brentuximab
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vedotin, an anti-CD30 antibody, has recently been approved to treat ALCL patients [48]. On

the other hand, the ALK inhibitor alectinib was tested in the ALCL-ALK+ cell line KARPAS-

299 [49], in which it showed potent efficacy in a KARPAS-299 mouse xenograft. Group 6 com-

prised only the two NK cell lines included in the study. As recently reported [50], JAKi could

be a new option for treating this lymphoma subtype.

In conclusion, the study identifies commonly deregulated pathways and genes in TCL,

including JAK/STAT, NOTCH, NFKB and chromatin conformation. Activation of these path-

ways is somehow the consequence of somatic mutation and other causes. Our findings may

help in the development of preclinical models for the evaluation of new targeted drugs.
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