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Abstract Surface reconstruction is a very important issue

with outstanding applications in fields such as medical

imaging (computer tomography, magnetic resonance),

biomedical engineering (customized prosthesis and medi-

cal implants), computer-aided design and manufacturing

(reverse engineering for the automotive, aerospace and

shipbuilding industries), rapid prototyping (scale models of

physical parts from CAD data), computer animation and

film industry (motion capture, character modeling),

archaeology (digital representation and storage of archae-

ological sites and assets), virtual/augmented reality, and

many others. In this paper we address the surface recon-

struction problem by using rational Bézier surfaces. This

problem is by far more complex than the case for curves we

solved in a previous paper. In addition, we deal with data

points subjected to measurement noise and irregular sam-

pling, replicating the usual conditions of real-world appli-

cations. Our method is based on a memetic approach

combining a powerful metaheuristic method for global

optimization (the electromagnetism algorithm) with a local

search method. This method is applied to a benchmark of

five illustrative examples exhibiting challenging features.

Our experimental results show that the method performs

very well, and it can recover the underlying shape of sur-

faces with very good accuracy.

Keywords Surface reconstruction � Rational surfaces �
Memetic approach � Electromagnetism algorithm � Local
search

1 Introduction

1.1 Motivation

The problem of obtaining a mathematical surface fitting a

given set of data points (usually referred to as surface

approximation or surface reconstruction) has been a very

hot topic of research during the last few decades. From a

theoretical point of view, it is a key tool in fields such as

approximation theory (Cox 1993; Franke and Schumaker

1986), statistics (Draper and Smith 1998), numerical

analysis (Forsey and Bartels 1995; Pottmann et al. 2002),

geometric modeling (Eck and Hoppe 1996; Gálvez et al.

2007; Varady and Martin 2002) and computer-aided geo-

metric design (CAGD) (Iglesias and Gálvez 2001; Piegl

and Tiller 1997). Most of interest on this subject can be

attributed to the wide range of applications of this tech-

nology in several fields. A well-known example is given by

reverse engineering, a field where a (usually large) col-

lection of data points is acquired from an already existing

physical object. These data points are then approximated

by mathematical functions in order to obtain a fully usable

digital model (Barhak and Fischer 2001; Hoffmann 2005;

Ma and Kruth 1995). There are many advantages in this

process: the digital models are easier and cheaper to

modify than their real counterparts. They also can readily

be transferred and become available anytime and anywhere

by taking advantage of current high-speed telecommuni-

cation networks. Owing to these remarkable advantages,

reverse engineering is becoming the prevalent technology
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in industrial fields such as computer-aided design and

manufacturing (CAD/CAM) (Farin 2002; Varady and

Martin 2002) and computer-numerically-controlled (CNC)

milling and machining (Patrikalakis and Maekawa 2002)

for automotive, aerospace, and ship hull building industries

(Pottmann et al. 2005). Another popular field of applica-

tion is rapid prototyping (the generation of scale models of

physical parts from CAD data). A major reason of this

popularity is the quick availability of very efficient meth-

ods for generating physical prototypes, particularly 3D

printing and additive layer manufacturing technology. Due

to the fast spread and sharp decline in prices of these

technologies, they are a truly emerging field nowadays,

particularly regarding the mass customization of personal

goods. Surface reconstruction is also very common in

biomedical engineering, for the design and manufacturing

of prosthesis of different types and customized medical

implants. Other relevant examples include computer

graphics and animation (e.g., motion capture, inverse

kinematics, camera walkthrough rendering, character

modeling), entertainment industries, shoe industry (e.g.,

cutting die making, shoe last design, sole mould design),

cultural heritage preservation (Levoy et al. 2000), data

processing and scientific visualization (Prasad 2006), vir-

tual and augmented reality (Leu et al. 2005), and medical

imaging (computer tomography, magnetic resonance

imaging) (Alvino and Yezzi 2004), to mention just a few.

In many cases (particularly, for real-world applications),

data points are usually acquired by using 3D laser scanners

and other digitizing devices (such as tactile scanners or

coordinate measuring machines). The cloud of data points

thus obtained is generally affected by measurement noise,

irregular sampling, and other artifacts (Barnhill 1992;

Patrikalakis and Maekawa 2002; Pottmann et al. 2005).

Therefore, the accurate fitting of data requires approxi-

mation schemes, in which the fitting surface is not required

to pass through all input data points, but just near to them,

according to some prescribed distance criteria. In this case,

surface reconstruction can be mathematically formulated as

an optimization problem. As such, it requires an adequate

choice of the fitting functions. A number of choices have

been described in the literature (see Sect. 2 for details).

Among them, the free-form parametric functions (such as

Bézier, B-spline and NURBS) are widely applied in many

industrial settings due to their great flexibility and the fact

that they can represent smooth shapes with only a few

parameters (Barnhill 1992; Jing and Sun 2005; Li et al.

2005; Park 2004; Park and Lee 2007). Although it is pos-

sible to obtain good fitting results for a number of shapes,

these families of functions are still limited: since they are

based on polynomials, they cannot adequately describe

some particular shapes, such as the quadrics (see our dis-

cussion in Sect. 3.1 for details). As a consequence, there is

still a need for more powerful and more general blending

functions.

An interesting extension in this regard is given by the

rational basis functions, which are mathematically descri-

bed as the quotient of two polynomials. A remarkable

advantage of this rational scheme is that the quadrics and

other shapes can be canonically described as rational

functions. Unfortunately, this rational approach becomes

more difficult than the polynomial one, since new param-

eters are now introduced into the problem. Consequently,

we are confronted with the challenge of obtaining optimal

values for many (qualitatively different) parameters,

namely, data parameters, poles, and weights. This leads to

a very difficult over-determined multivariate nonlinear

continuous optimization problem.

1.2 Aims and structure of the paper

In a previous paper presented at the conference ICSI 2015,

we introduced a method to obtain the rational Bézier curve

of a certain degree providing the optimal fit to a cloud of

data points (Iglesias and Gálvez 2015). Our scheme was a

memetic approach based on the combination of a powerful

physics-based algorithm called electromagnetism algo-

rithm and aimed at solving global optimization problems,

and a local search procedure. This approach exhibited a

very good performance in the previous curve fitting prob-

lem, as we could reconstruct difficult shapes such as conics

by rational Bézier curves with high accuracy.

The aim of the present paper is to extend our previous

method to the (more challenging) case of rational surfaces.

This problem is more difficult than it might seem at first

sight. The main reasons are:

1. Rational free-form surfaces depend on many different

parameters (data parameters, poles, weights, surface

degree) that are strongly intertwined each other,

leading to a strongly nonlinear continuous optimization

problem.

2. It is also a multivariate problem, as it typically

involves a large number of unknown variables for a

large number of data points, the most common case in

real-world applications.

3. The number of parameters of the fitting surface is very

critical. On one hand, we expect to obtain an approx-

imating surface with many fewer parameters than the

number of data points. This feature is very desirable in

order to save computer memory and storage capacity

and make the model more manageable. The counter-

part is that the problem becomes over-determined. On

the other hand, a high number of parameters might lead

to over-fitting. As we will shown later on, our method

will allows us to determine the best choice of the
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number of parameters by selecting the optimal surface

degree (see Sect. 5.3 for details).

4. Finally, the problem is also multimodal, i.e., the least-

squares objective function can exhibit many local

optima, meaning that the problem might have several

(global and/or local) good solutions.

The structure of this paper is as follows: Sect. 2 summa-

rizes briefly the previous work in the field. Some basic

mathematical concepts and definitions and the surface fit-

ting problem with rational Bézier surfaces are described in

Sect. 3. The fundamentals and main steps of the memetic

electromagnetism algorithm are briefly explained in

Sect. 4. Our proposed approach for surface reconstruction

with rational Bézier surfaces is described in Sect. 5. To

check the performance of our approach, it has been applied

to five illustrative examples discussed in Sect. 6. Our

experimental results show that the presented method per-

forms very well, being able to replicate the underlying

shape of data very accurately. To gain a better insight about

our method and further establish its applicability, some

additional experiments for comparative work are reported

in Sect. 7. The paper closes in Sect. 8 with the main con-

clusions of this contribution and our plans for future work

in the field.

2 Previous work

In general, surface reconstruction methods are classified in

terms of the available input (2D slices, iso-parametric

curves, clouds of points, mixed information, etc.). For

instance, authors in Bajaj et al. (2005), Jones and Chen

(1994), Meyers et al. (1992) and Park and Kim (1997)

address the problem of obtaining a surface model from a

set of given cross-sections, a classical problem in medical

science, biomedical engineering and CAD/CAM. Other

classical input data include iso-parametric curves on the

surface (Gordon 1969) and even mixed information, such

as scattered points and contours (Fuchs et al. 1977; Mae-

kawa and Ko 2002; Savchenko et al. 1995) or iso-para-

metric curves and data points (Echevarrı́a et al. 2002;

Iglesias et al. 2004; Iglesias and Gálvez 2001).

In most cases, however, the available information about

the surface is typically a dense set of (usually unorganized)

3D data points obtained by using some sort of digitizing

devices, see e.g. (Gu and Yan 1995; Ma and Kruth 1995).

In that case, the reconstructed surface can be described

using three different representations providing different

levels of accuracy. The simplest one is given by the

polygonal meshes, where the data points are used as ver-

tices connected by lines (edges) that work together to

create a 3D model, comprised of vertices, edges and faces.

Although it is the coarsest representation, it is also the most

popular one because of its simplicity, flexibility and

excellent performance with current graphical cards. Sur-

face reconstruction methods with polygonal meshes can be

found, for instance, in Levoy et al. (2000) and Prasad

(2006) and references therein. The next level is given by

the CSG (Constructive Solid Geometry) models, where

elementary geometries (such as spheres, boxes, cylinders,

or cones) are combined in order to produce more elabo-

rated shapes by applying some simple (Boolean) operators:

union, intersection, difference. This methodology works

well but presents a low level of flexibility, being severely

limited to very simple shapes. The most sophisticated and

most accurate level consists of obtaining the real mathe-

matical surface fitting the data points. This issue has been

analyzed from several points of view, such as parametric

methods (Bolle and Vemuri 1991), subdivision surfaces

(Schmitt et al. 1986), function reconstruction (Foley 1990;

Sclaroff and Pentland 1991), implicit surfaces (Lim et al.

1995), algebraic surfaces (Pratt 1987), etc.

Artificial neural networks have also been applied to this

problem (Gu and Yan 1995; Hoffmann 2005), mostly for

arranging the input data in case of unorganized points.

After this pre-processing step, any other classical surface

reconstruction method operating on organized points is

subsequently applied. A work using a combination of

neural networks and Partial Differential Equation (PDE)

techniques for the parameterization and reconstruction of

surfaces from 3D scattered points can be found in Barhak

and Fischer (2001). Two previous papers by the authors

have also addressed this problem by using functional net-

works (Gálvez et al. 2007; Iglesias et al. 2004), a powerful

generalization of neural networks based on functional

equations (Castillo and Iglesias 1997; Castillo et al. 2005).

Both works show, however, that the single application of

functional networks is still unable to solve the general case.

The work in Iglesias et al. (2004) addresses the particular

case of B-spline surface reconstruction when some addi-

tional information (iso-parametric curves) is available in

addition to the data points. The paper in Iglesias and

Gálvez (2014) describes the application of a hybrid neural-

functional network to NURBS surface reconstruction.

Other approaches are based on the application of nature-

inspired metaheuristic techniques, which have been inten-

sively applied to solve difficult optimization problems that

cannot be tackled through traditional optimization algo-

rithms. Genetic algorithms have been applied to this

problem in both the discrete version (Sarfraz and Raza

2001) and the continuous version (Gálvez et al. 2012;

Yoshimoto et al. 2003). Other metaheuristic approaches

applied to this problem include the use of the popular

particle swarm optimization technique (Gálvez et al. 2008;

Gálvez and Iglesias 2011, 2012), artificial immune systems
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(Gálvez et al. 2013, 2015; Gálvez and Iglesias 2016),

firefly algorithm (Gálvez and Iglesias 2013b, c), estimation

of distribution algorithms (Zhao et al. 2011), memetic

algorithms (Gálvez 2014), and hybrid techniques (Gálvez

and Iglesias 2013a), (Sarfraz and Raza 2001).

3 Description of the problem

3.1 Basic concepts and definitions

A three-dimensional surface is a geometric shape that

depends on two independent variables. Mathematically, it

can be represented in three different ways: explicit,

implicit, and parametric. In explicit form, the surface is

given by the expression z ¼ f ðx; yÞ, where x and y are the

independent variables and z 2 R is a dependent variable

associated with the pair (x, y) through f. Intuitively, z can

be interpreted as the ‘‘height’’ of the surface at the point

(x, y), so the explicit representation is often understood as a

height map. The explicit representation is arguably the

simplest one, but it is also severely limited: it can only

associate one value z to each pair (x, y), thus precluding a

proper description of closed surfaces and many other useful

shapes.

A powerful extension is given by the implicit represen-

tation, where the surface is represented by the set of zeros of a

function of three variables, as Fðx; y; zÞ ¼ 0. The implicit

representation is more general than the explicit one, since

any explicit surface z ¼ f ðx; yÞ can be converted into the

implicit form (simply take Fðx; y; zÞ ¼ z� f ðx; yÞ ¼ 0),

while the opposite is not true. For instance, surfaces with

multiple sheets or closed surfaces such as the sphere can be

represented with a single implicit equation but not with an

explicit one. In addition, they can represent well any alge-

braic shape such as the quadrics. Unfortunately, implicit

surfaces are very difficult to draw and manipulate, requiring

sophisticated and time-consuming methods to handle them.

The most common surface representation in real-world

applications is given by the parametric representation. A

three-dimensional parametric surface is defined as a map-

ping S : D � R2 �! R3, so that any pair ðs; tÞ 2 D is

transformed into a three-dimensional vector Sðs; tÞ ¼
ðxðs; tÞ; yðs; tÞ; zðs; tÞÞ. The set D is called the domain of the

surface, and s and t are called the surface parameters. If

functions x(s, t), y(s, t), and z(s, t) are polynomials in s and

t, S is called a polynomial parametric surface. The degree of

S in variable s (resp. t) is the highest degree of polynomials

x(s, t), y(s, t), and z(s, t) in s (resp. t).

In this context, a free-form polynomial Bézier surface

Uðs; fÞ of degree ðg; rÞ in Rd is given by:

Uðs; fÞ ¼
Xg

i¼0

Xr

j¼0

Ki;j/
g
i ðsÞ/r

j ðfÞ ð1Þ

where fKi;jgi¼0;...;g;j¼0;...;r are vector coefficients called the

poles, and the functions /q
k ðtÞ are the Bernstein polyno-

mials of index k and degree q, given by:

/q
k ðtÞ ¼

q

k

� �
tkð1� tÞq�k ð2Þ

with
q
k

� �
¼ q!

k!ðq� kÞ! for k ¼ 0; . . .; q and where t is the

curve parameter, defined on the unit interval [0, 1]. By

convention, 0! ¼ 1. Note that in this paper vectors are

denoted in bold.

The polynomial representation in Eqs. (1)–(2) is not

powerful enough to represent a variety of shapes, particu-

larly the quadratic surfaces or quadrics, such as cones,

cylinders, ellipsoids, paraboloids, hyperboloids, spheres,

and spheroids, which are very important in many different

fields. One way to overcome this limitation is to use

homogeneous coordinates (see Farin 2002; Piegl and Tiller

1997 for details). The basic idea is to consider the pro-

jection of the standard polynomial Bézier surface in Rdþ1,

with new poles Kh
i;j. The resulting surface in Rd is called a

rational Bézier surface. Mathematically, this surface can be

described as a quotient of two bivariate polynomial func-

tions. In particular, a free-form rational Bézier surface

Wðs; fÞ of degree ðg; rÞ in Rd is given by:

Wðs; fÞ ¼

Xg

i¼0

Xr

j¼0

xi;jKi;j/
g
i ðsÞ/r

j ðfÞ

Xg

i¼0

Xr

j¼0

xi;j/
g
i ðsÞ/r

j ðfÞ
ð3Þ

where xj are their scalar weights associated with the poles

Ki;j. Considering the rational bivariate Bernstein basis

functions:

Xg;r
k;l ðs; fÞ ¼

xk;l/
g
kðsÞ/

r
l ðfÞ

Xg

i¼0

Xr

j¼0

xi;j/
g
i ðsÞ/r

j ðfÞ

ðk ¼ 0; . . .; g; l ¼ 0; . . .; rÞ

ð4Þ

expression (3) can be rewritten as:

Wðs; fÞ ¼
Xg

k¼0

Xr

l¼0

Kk;l X
g;r
k;l ðs; fÞ: ð5Þ

Note that weights wi;j are the last coordinates of the

homogeneous poles Kh
k;l. This new set of parameters pro-

vides us with additional degrees of freedom for better

shape approximation. They also increase the model
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complexity, however, as we introduce a new set of

parameters that have to be computed as well.

3.2 The surface fitting problem

Let now Dkf gk¼1;...;j be a set of data points in Rd. The

problem consists of obtaining the rational Bézier surface,

Wðs; fÞ, of a certain degree ðg; rÞ providing the best least-

squares fitting of the data points. This leads to a mini-

mization problem of the least-squares error functional !,
related to the weighted sum of squares of the residuals:

! ¼ minimize

fxi;jgi;j
fKi;jgi;j
ffkgk
fskgk

Xj

k¼1

Dk �

Xg

i¼0

Xr

j¼0
xi;jKi;j/

g
i ðskÞ/r

j ðfkÞXg

i¼0

Xr

j¼0
xi;j/

g
i ðskÞ/r

j ðfkÞ

0

@

1

A
22

4

3

5

ð6Þ

Note that solving this problem (6) requires to compute all

parameters (i.e. polesKi;j, weightsxi;j, and parameters sk and
fk associated with data points Dk (for k ¼ 1; . . .; j; i ¼ 0;

. . .; g; j ¼ 0; . . .; r)) of the approximating surface. It is obvi-

ous that, since each blending function in (2) and (4) is non-

linear in s and f, the system(6) becomeshighlynon-linear. It is

also a continuous problem, since all parameters are real-val-

ued. In other words, we have to deal with a highly nonlinear

multivariate continuous optimization problem. The problem

is also multimodal, since there can be several optima of the

target function. Unfortunately, classical optimization tech-

niques cannot solve this problem in all its generality. Clearly,

more powerful strategies are needed. This paper aims at

overcoming this limitation by applying thememetic approach

described in next section.

4 Our memetic approach

During the last two decades, there has been an increasing

interest upon the application of soft computing approaches

(particularly, metaheuristic techniques) to solve hard opti-

mization problems. Among them, the memetic algorithms—

based on a metaheuristic strategy for global optimization

coupled with a local search procedure—have shown a great

potential for solving difficult nonlinear optimization prob-

lems. Inspired by this idea, in a previous paper we considered

a memetic approach combining the electromagnetism algo-

rithm and a local search method to solve the curve fitting

problem with rational Bézier curves Iglesias and Gálvez

(2015). Our good results in that work encouraged us to

extend this method to the case of rational Bézier surfaces, a

problem by far more complex than the case for curves.

Before describing why this problem is more complex and

howwe solve it, we describe ourmemetic approach. Itwill be

subsequentlymodified to adapt it to our current problemwith

surfaces, as discussed in Sect. 5.

4.1 The electromagnetism algorithm

The electromagnetism algorithm (EMA) is a metaheuristic

introduced by Birbil and Fang (2003) for optimization

problems. This method utilizes an attraction–repulsion

mechanism to move sample points towards optimality.

Each point (called particle) is treated as a potential solution

and an electric charge is assigned to each particle. Better

solutions have stronger charges and each particle has an

impact on others through charge. The exact value of the

impact is given by a modification of original Coulomb’s

Law. In EMA, the power of the connection between two

particles is proportional to the product of their charges and

reciprocal to the distance between them. In other words, the

particles with a higher charge will force the movement of

other particles in their direction more strongly. Beside that,

the best particle in this electromagnetic mechanism will

stay unchanged. The charge of each particle relates to the

objective function value, which is the subject of opti-

mization. The reader is also referred to Birbil et al. (2004)

for a comprehensive study about the convergence of the

EMA approach.

The electromagnetism algorithm was originally pro-

posed to study a special class of optimization problems

with bounded variables in the form:

minuðHÞ such that H 2 ½L;U� ð7Þ

where ½L;U� :¼ fH 2 Rm=lk �Hk � uk; k ¼ 1; . . .; mg; m is

the dimension of the problem, L ¼ flkgk and U ¼ fukgk
represent respectively the lower bound and upper bound in

Rm, and uðHÞ is the function to be optimized. The algorithm

consists of four main steps, which are summarized in next

paragraphs. The corresponding pseudocode is depicted in

Table 1. Note that in this paper vectors are denoted in bold.

4.1.1 Step 1: Initialization

In this step, l sample points are selected at random from

the feasible region, which is an m-dimensional hypercube.

To this purpose, each coordinate of the sampled point is

assumed to be uniformly distributed between the corre-

sponding lower and upper bound. Then, the objective

function value of each sampled point is computed, and the

point that has the best global value is stored in Hbest.

4.1.2 Step 2: Local search

In this step, a local search is carried out to gather the local

information for each point Hi and exploit the local minima.
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To this aim, a LocalSearch procedure similar to that in

Birbil and Fang (2003) is applied. The procedure depends

on a multiplier d which is used to compute the maximum

feasible step length for the local search. The search is

performed for each coordinate and for a given number of

iterations. In case a better point is obtained (according to

the fitness function), the current point is replaced by this

new (better) alternative. Note that this procedure does not

require any gradient information. Note also that any other

local search procedure might be alternatively used, opening

the door for other hybridized schemes.

4.1.3 Step 3: Calculation of total force

In this step, the vector of the total force exerted on each

particle from all other particles is computed. Firstly, a

charged-like value ni is assigned to each particle. The

charge of a particle i determines its power of attraction or

repulsion, and is evaluated as:

ni ¼ exp �m
uðHiÞ � uðHbestÞ

Pl
k¼1 uðHkÞ � uðHbestÞ
� �

 !
ð8Þ

Then, the attraction/repulsion force between two particles

is computed using a mechanism inspired in the electro-

magnetism theory for the charged particles. According to

Birbil and Fang (2003), the computation of this force is

given by:

Ni ¼
Xl

j¼1;j 6¼i

ni nj

jjHj �Hijj2

ðHj �HiÞ if uðHjÞ\uðHiÞ

ðHi �HjÞ if uðHjÞ�uðHiÞ

8
><

>:

ð9Þ

Note, however, that the force computed in this way does

not follow exactly Coulomb’s law, where the force is

inversely proportional to the square of the distance. Note

also that, unlike electrical charges, there is no sign on the

charge of individual particles in Eq. (8). Instead, the

direction of a particular force between two particles is

determined by comparing the objective function values at

such particles. Then, the particle with a better fitness value

attracts the other one, while the particle with a worse fit-

ness value repels the other, as indicated by Eq. (9).

4.1.4 Step 4: Movement according to the total force

The force vector computed in previous step determines the

direction of movement for the corresponding particle

according to Eq. (10):

Hiþ1 ¼ Hi þ k
Ni

jjNijj
� u ð10Þ

where u is the vector of the feasible movement toward the

upper/lower bound for the corresponding dimension, k is a

random variable following the uniform distribution, and �
denotes the Hadamard product.

4.2 Local optimization method

The EMA is improved by its hybridization with a local

search procedure. We apply the Luus–Jaakola local search

method, a heuristic for optimization of real-valued func-

tions (Luus and Jaakola 1973). This method starts with an

initialization step, where random uniform values are cho-

sen within the search space. Then, a random uniform value

in-between boundary values is sampled for each compo-

nent. This value is added to the current position of the

potential solution to generate a new candidate solution,

which replaces the current one only if the value of the

Table 1 General pseudocode of the electromagnetism algorithm

INPUT:
μ: number of sampled points
ν: dimension of the problem
max iter: maximum number of iterations for global loop
max lsiter: maximum number of iterations for local search
δ: multiplier for local search

Step 1: Initialization
for i=1 to μ do

for k=1 to ν do
Θi

k ← lk + σ(uk − lk) // σ ∼ U(0, 1)
end for

end for
Θbest ← BestFitting({Θi}i=1,...,µ) // initial best
iter ← 1
while iter< max iter do // global loop

Step 2: Local Search
liter ← 1
for i=1 to μ do

for k=1 to ν do
while liter< max lsiter do

Θi
k ← LocalSearch(δ) // local search improvement

liter ← liter +1
end while

end for
end for
Step 3: Total Force Computation
for i=1 to μ do

ξi ← ChargeEvaluation() // given by Eq. (8)
end for
for i=1 to μ do

Ξi ← ForceEvaluation() // given by Eq. (9)
end for
Step 4: Movement According Total Force
for i=1 to μ do

if i=best then
Θi ← Movement() // given by Eq. (10)

end if
end for
iter ← iter +1

end while

OUTPUT:
Θbest: best global solution
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fitness is improved. Otherwise, the sampling space is

multiplicatively decreased by a self-adaptive size of a

factor whose strength depends on the difference between

consecutive parameters, with the effect of speeding up the

convergence to the steady state. This process is repeated

iteratively. With each iteration, the neighborhood of the

point decreases, so the procedure eventually collapses to a

point.

5 The proposed method

As discussed above, our problem consists of reconstructing

the underlying shape of a cloud of data points by using a

rational Bézier surface. This requires to solve a nonlinear

least-squares minimization problem while simultaneously

minimizing the required number of free parameters. Solv-

ing this problem requires to compute four different sets of

unknowns: data parameters, poles, weights, and surface

degrees. The proposed method to tackle this issue is a

hybrid strategy combining a memetic algorithm comprised

of a global-search metaheuristic approach (the electro-

magnetism algorithm described in Sect. 4.1) with a local

search method (described in Sect. 4.2), classical methods

(least-squares minimization), and information science

metrics (Akaike Information Criterion, AIC). It consists of

three major steps: data parametrization and weight com-

putation, data fitting, and degree determination. The

method can be summarized as follows: we initially set a

reasonable range for the surface degrees ðg; rÞ (this choice
is not critical at all, since their best value will be computed

afterwards); then, for each value of this parameter within

that range, we apply the memetic approach to perform data

parameterization and weight computation in Sect. 5.1.

Then, data fitting is performed via least-squares to compute

the poles of the surface in Sect. 5.2. Finally, AIC is applied

to obtain the best values for ðg; rÞ in Sect. 5.3. All these

steps are explained in detail in next sections.

5.1 Data parameterization and weight computation

The goal of this step is to obtain an association between the

set of parameters sk; fkf gjk¼1 and the data points Dkf g as well
as to compute the best values for the weights. It is performed

by using the memetic approach described in Sect. 4. In our

problem, the parameter vectors fskg and ffkg and weights

xi;j are considered particles, and the fitness function is given

by Eq. (6). All data parameters are initialized with random

numbers within the hypercube ½0; 1�j � Rj. The weights are

randomly initialized within the search domain

ð0; 100�ðgþ1Þ	ðrþ1Þ
. For computational efficiency, we store

the particles as the super-vectorV ¼ fT ;Z;Wg, where T ¼

fskg;Z ¼ ffkg; W ¼ vec ðfxi;jgÞT
� �

; vecð:Þ denotes the

vectorization of a matrix (the linear transformation which

converts the matrix into a column vector by stacking its

columns on top of one another) and ð:ÞT denotes the trans-

pose of a vector or matrix. We also set the number of itera-

tions for the global loop and the local search. Regarding our

stopping criterion, we run our method until there is no

improvement after 30 consecutive iterations.

5.2 Data fitting

Using the parameterization and weights calculated in pre-

vious step, the surface poles fbjgnj¼0 are now computed.

Using Eqs. (3), (6) can be rewritten as:

D ¼ R:K ð11Þ

where D ¼ vec ðfDkgÞT
� �

;K ¼ vec ðfKi;jgÞT
� �

, and where

the matrix R represents the vector of all rational basis

functions given by Eq. (4) at the best parameter values,

given by:

R ¼ vec vec ðfXg;r
k;l ðsk; fkÞgkÞ

T
� 	n o

i;j

� �T
" #

Note that vector D is of length j while vector K is of length

ðgþ 1Þ 	 ðrþ 1Þ, so the system (11) is over-determined,

meaning that no analytical solution can be obtained. Pre-

multiplication of both sides of (11) by RT gives:

RT :D ¼ RT :R:K ð12Þ

which can now be solved numerically by a classical linear

least-squares minimization. From a computational point of

view, it can be obtained by either LU decomposition or

singular value decomposition (SVD). In this work, we

choose SVD because it returns the best answer of this least-

squares problem. To this purpose, SVD computes the

generalized inverse (also known as Moore–Penrose

pseudo-inverse) of R, denoted by Rþ. Then, K ¼ Rþ:D is

the least-squares solution of this data fitting problem.

5.3 Degree determination

Previous steps assumed a given degree ðg; rÞ for the

rational Bézier fitting surface. However, the optimal degree

is a problem-dependent issue, so we need a method to

compute it. This is not an easy task, since it requires to get

an adequate trade-off between two competing factors: the

accuracy of the fitting and the complexity of the model.

Essentially, increasing the number of poles increases the

accuracy of the model, because we have more degrees of

freedom (i.e., additional poles and weights) to adjust the

data. However, this process also increases the complexity
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of the model and can eventually lead to over-fitting. In

order to prevent these undesirable effects, in this paper we

use the Akaike Information Criterion (AIC) for the result-

ing model. The AIC is an information criterion providing a

good compromise between data-fidelity and model com-

plexity Akaike (1973), Akaike (1974). Such a trade-off is

attained by introducing an additional term into the target

function to penalize more complex models. As a result, the

resulting fitness function becomes:

AIC ¼ j log !ð Þ þ 2n ð13Þ

where n accounts for the number of free parameters of the

model. Note that for fixed values of j and n, the AIC

behaves like a classical error function. If we fix a value of j
and !, the criterion penalizes those models with a higher

number of parameters. Therefore, AIC constitutes a pow-

erful procedure to compute the optimal value for the degree

of the fitting surface while keeping the model as simple as

possible. The best choice always corresponds to the

parameter values ðg; rÞ providing the smallest value for the

AIC.

6 Experimental results

The method described in previous section has been applied

to several examples. In this section we describe only five of

them to keep the paper in manageable size. We think,

however, that the examples reported here will be useful to

readers to determine the good applicability of our method

to this problem. The examples correspond to three real-

world free-form shapes and two academic examples with

several changes of curvature. In all cases, data points are

affected by noise and irregular sampling, so they actually

replicate the usual conditions of real-world applications at

full extent.

First example corresponds to the upper surface of a

mobile phone model commercially available years ago.

From it, a set of 2347 data points have been extracted by

manual operation with a domestic low-price (but highly

noisy) scanner device. This cloud of points is shown in

Fig. 1 (top). We applied our method to this example. The

best fitting surface we obtained is displayed in Fig. 1

(middle). It corresponds to a rational Bézier surface of

degree (19, 17). We also combine both pictures in Fig. 1

(bottom) for the sake of comparison. As the reader can see,

the surface fits the cloud of data points very well, even

although the cloud is affected by measurement noise. In

this case, the signal-to-noise (SNR) ratio is SNR ¼ 25:5,

corresponding to a low-intensity noise for our problem.

This example is more complex than it appears at first sight

because the range for the vertical component is very small

in comparison with the horizontal axis. Still, the surface

has a complicated shape requiring a high degree for opti-

mal fitting.

Second example corresponds to the half part of a teapot

spout, represented in Fig. 2 (the description of the pictures

in this figure is similar to the previous example—but

placed from left to right—and will be omitted here to avoid

redundant material). In this example, we consider a set of

2074 data points, which are affected by a noise of signal-

to-ratio SNR ¼ 13:2, corresponding to noise of medium

intensity for our problem. Best fitting surface, displayed in

Fig. 2(middle) corresponds to the case of degree (3, 3).

Third example corresponds to the closed shape of an

apple, represented in Fig. 3. In this example, we consider a

set of 2918 data points affected by a noise of signal-to-ratio

SNR ¼ 15, corresponding to noise of relatively medium

intensity for our problem. Best fitting surface corresponds

to the case of degree (8, 12). This example is particularly

challenging because it contains a number of very difficult

features. On one hand, it is a closed surface in vertical and

horizontal directions. In addition, it contains some turning

Fig. 1 Application of our memetic electromagnetism algorithm to the

mobile phone surface example: top cloud of data points; middle best

fitting rational Bézier surface; bottom combination of the cloud of

data points and their best fitting surface for better visualization
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points, where the surface is no longer differentiable. It is

also greatly affected by irregular sampling. As the reader

can see in Fig. 3(top), there is a significant accumulation of

data points in the north and south poles of the shape.

Finally, we also include the apple tail in our shape. This

differs from the classical approaches in computer graphics

where the apple and its tail are considered different objects

and hence, represented with different surfaces. Instead, in

our model we are able to describe the whole apple with just

a single rational surface. In our opinion, this is a very

remarkable feature with potential applications in several

fields. In spite of all these challenging features, the method

performs very well, being able to replicate the original

shape with high accuracy. Note, for instance, the good

visual matching between the original data points and the

approximating surface.

The fourth and fifth examples (labelled as Surface IV

and Surface V) are represented in left and right columns of

Fig. 4, respectively. Instead of real-world shapes, they are

academic examples included here to analyze the

Fig. 2 Application of our memetic electromagnetism algorithm to the teapot spout surface example: left cloud of data points; middle best fitting

rational Bézier surface; right combination of the cloud of data points and their best fitting surface for better visualization

Fig. 3 Application of our memetic electromagnetism algorithm to the apple surface example: left cloud of data points; middle best fitting rational

Bézier surface; right combination of the cloud of data points and their best fitting surface for better visualization
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performance of our approach against several changes of

curvature. To this purpose, both surfaces have been care-

fully chosen so that they exhibit several peaks and valleys

and, hence, several changes of curvature in different

directions. The fourth example consists of a set of 2601

data points affected by noise of SNR ¼ 22. Best fitting

surface, displayed in Fig. 4(left-middle), corresponds to the

case of degree (8, 9). The fifth example is given by a set of

Fig. 4 Application of our memetic electromagnetism algorithm to

two academic examples (labelled as Surface IV and Surface V and

displayed in left and right columns, respectively): top cloud of data

points; middle best fitting rational Bézier surface; bottom combination

of the cloud of data points and their best fitting surface for better

visualization
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634 noisy data points with SNR ¼ 28. In this case, the best

fitting surface has degree (7, 6) [see Fig. 4(right-middle)].

As the reader can see, both surfaces replicate the under-

lying shape of the data points with very good accuracy

even in presence of noise. This fact is particularly notice-

able in last row of Fig. 4, where the best fitting surface and

the cloud of data points are combined into a single picture

for both cases. These examples show that our method

performs vey well even in cases of shapes exhibiting sev-

eral peaks and valleys leading to several changes of

curvature.

This good visual behavior in all cases is confirmed by

our numerical results, shown in Table 2. The different

examples of the benchmark in this paper are arranged in

rows. For each example, the table reports the following

items (in columns): number of data points, degrees of

freedom of the corresponding optimization problem,

degree of the best fitting surface according to the AIC

criterion, and mean and best value of the error functional !
given by Eq. (6). Since this functional does not take into

account the number of data points, we also compute the

RMSE (root-mean squared error), given by:

RMSE ¼
ffiffiffiffi
!
j

r
ð14Þ

The mean and best RMSE for our examples is reported in

the last two columns of Table 2. All results in the

table have been obtained from 50 independent executions

to avoid spurious results derived from the stochasticity of

the process.

A simple observation of our results in Table 2 shows the

good performance of the method for all instances in our

benchmark. Mean values for ! are of order 10�2 while the

best fitting surfaces are of order 10�2 to 10�3. Similarly,

the mean and best RMSE are of order 10�3 in all cases. We

remark that these good results are obtained for challenging

shapes (particularly, the third one is extremely difficult)

and under very unfavorable conditions, such as noisy data

and irregular sampling. These two adverse features put a

strong limitation in the fitting quality, but at the same time,

are very common in real-world situations. This means that

our method can be directly applied to real-world problems

without the need of further pre/post-processing.

Regarding the implementation issues, all computations

in this paper have been performed on a 2.6 GHz. Intel Core

i7 processor with 8 GB. of RAM. The source code has been

implemented by the authors in the native programming

language of the popular scientific program Matlab, version

2013b.

7 Comparative work

We have carried out some additional experiments for

comparative purposes to gain a better insight about our

method and further establish its applicability. Unfortu-

nately, no other method has been described in the literature

so far to address the issue of surface reconstruction with

rational Bézier surfaces, a clear indication of the originality

of our approach. In our comparison we consider four

variations of our memetic approach, depending on whether

or not the two most relevant features of our method are

considered:

1. computation of weights, leading to either a polynomial

scheme (no weights allowed) or a rational scheme, and

2. hybridization with a local search method.

As a result, four different schemes are obtained:

I. Polynomial scheme without local search;

II. Polynomial scheme with local search;

III . Rational scheme without local search;

IV. Rational scheme with local search.

These schemes have been applied to the five examples in

our benchmark by following a similar procedure to that in

previous section. The obtained results are reported in

Tables 3, 4, 5, 6 and 7, respectively.

Some important conclusions can be drawn from our

results in those tables. First of all, the method proposed in

this paper (scheme IV) outperforms the other three meth-

ods for all instances in our benchmark. This is not a sur-

prising fact, since the rational approach is actually an

extension of the polynomial one, based on allowing new

Table 2 Fitting errors for the

examples (arranged in rows)

used in this paper

Surface j DOFs Degree ! (mean) ! (best) RMSE (mean) RMSE (best)

Mobile phone 2347 6022 (19, 17) 1.5653e-2 9.1754e-3 2.5825e-3 1.9772e-3

Teapot spout 2074 4136 (3, 3) 5.1923e-2 2.6891e-2 5.0035e-3 3.6008e-3

Apple 2918 6320 (8, 12) 6.5276e-2 4.3365e-2 4.7297e-3 3.8550e-3

Surface IV 2601 5474 (8, 9) 4.9375e-2 3.4341e-2 4.3474e-3 3.6331e-3

Surface V 634 1420 (7, 6) 5.0964e-2 3.9832e-2 8.9610e-3 7.9246e-3

The following items are reported (in columns): number of data points, degrees of freedom, degree of the

best fitting surface, mean and best ! error, and mean and best RMSE from 50 executions
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free variables (the weights) to be used for better fitting. As

expected, the addition of these extra degrees of freedom

improves the efficiency of the process in all cases. Another

interesting conclusion is that the hybridization with a local

search also improves the fitting errors, but not dramatically.

Clearly, the computation of weights is by far a more

important factor than the local search. This becomes evi-

dent by the simple observation of the degree of the best

fitting surface (second column in Tables 3, 4, 5, 6, 7). In

general, even although the fitting errors always improve

when local search is included, the best degree does not

change with the addition of the local search in the rational

case (from Scheme III to IV) or changes slightly in the

polynomial case (from Scheme I to II). On the contrary, the

computation of weights has a great impact on the quality of

fitting (see, for instance, the significant improvement from

Scheme I to III, or from Scheme II to IV). We also remark

that, even although the fitting errors are still worse, the best

fitting errors for the polynomial case have been obtained

for higher degrees than for the rational case. This means

that any decreasing of fitting errors in the polynomial case

is reached at the expense of introducing extra degrees of

freedom by increasing the polynomial degree of the fitting

surface. This is not true for the rational case, where the

weights are the source for extra degrees of freedom instead.

A remarkable observation from our experiments is that

although both features (weights and local search) improve

the fitting process in all cases, the improvement rate of the

fitting errors is still problem-dependent. For instance, it is

about one order of magnitude for the first, third, fourth, and

fifth examples (Tables 3, 5, 6, 7, respectively), while the

improvement is modest for the second example. This means

that this example can also be reconstructed with a polyno-

mial scheme without too much loss of quality. In other

words, the improvement rate is strongly related to the geo-

metric shape of the underlying surface, a kind of measure of

the ‘‘rationality’’ of the shape. The better the improvement

rate, the more similar the shape to a rational surface.

To summarize, our memetic approach based on a

rational scheme with local search improves all other

combinations of polynomial or rational schemes with or

without local search for all instances in our benchmark.

This fact is not accidental; instead, it applies to any

example and can be explained by the superior ability of

rational functions to replicate very complicated shapes

compared to strictly polynomial functions.

Table 3 Fitting errors of the

four variations of our memetic

approach applied to the mobile

phone example

Method Degree ! (mean) ! (best) RMSE (mean) RMSE (best)

Scheme I (26, 23) 8.2538e-1 5.8357e-1 1.8753e-2 1.5768e-2

Scheme II (24, 21) 5.9635e-1 4.1636e-1 1.5940e-2 1.3319e-2

Scheme III (19, 17) 2.7149e-2 1.7301e-2 3.4011e-3 2.7150e-3

Scheme IV (19, 17) 1.5653e-2 9.1754e-3 2.5825e-3 1.9772e-3

The following items are reported (in columns): degree of the best fitting surface, mean and best ! error, and

mean and best RMSE

Table 4 Fitting errors of the

four variations of our memetic

approach applied to the teapot

spout example

Method Degree ! (mean) ! (best) RMSE (mean) RMSE (best)

Scheme I (3, 3) 6.1198e-2 3.7854e-2 5.4320e-3 4.2722e-3

Scheme II (3, 3) 6.0726e-2 3.6443e-2 5.4110e-3 4.1918e-3

Scheme III (3, 3) 5.4327e-2 2.7310e-2 5.1180e-3 3.6287e-3

Scheme IV (3, 3) 5.1923e-2 2.6891e-2 5.0035e-3 3.6008e-3

The following items are reported (in columns): degree of the best fitting surface, mean and best ! error, and

mean and best RMSE

Table 5 Fitting errors of the

four variations of our memetic

approach applied to the apple

example

Method Degree ! (mean) ! (best) RMSE (mean) RMSE (best)

Scheme I (26,33) 6.4331e-1 6.0102e-1 1.4848e-2 1.4351e-2

Scheme II (24,32) 2.0623e-1 1.4716e-1 8.4068e-3 7.1015e-3

Scheme III (8,12) 6.8311e-2 4.9102e-2 4.8384e-3 4.1021e-3

Scheme IV (8,12) 6.5276e-2 4.3365e-2 4.7297e-3 3.8550e-3

The following items are reported (in columns): degree of the best fitting surface, mean and best ! error, and

mean and best RMSE
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8 Conclusions and future work

This paper is an extension of a previous paper published in

the conference ICSI 2015, held in Beijing (China) in June

2015 Iglesias and Gálvez (2015). In that paper, we intro-

duced a new memetic electromagnetism method for finite

approximation with rational Bézier curves. The method

was based on a memetic approach combining a powerful

metaheuristic method for global optimization (the electro-

magnetism algorithm) to obtain a very good approximation

of the optimal solution and a local search procedure (the

Luus–Jaakola local search method) for further solution

refinement.

In this work, a similar approach is applied to solve the

problem of surface approximation from noisy data points

with rational Bézier surfaces. This problem is by far more

complex than the case for curves, not only because the

number of free variables is much larger than the case of

curves but also because the rational surfaces are not tensor-

product surfaces. This means that it is not possible to

compute the surface as a combination of a net of curves in

the two parametric directions. Given a set of data points,

the method computes all relevant parameters (poles,

weights, and data parameters) of the rational Bézier fitting

surface as the solution of a difficult over-determined con-

tinuous multivariate nonlinear optimization problem.

Moreover, we are able to determine the optimal value for

the surface degree by using the Akaike information crite-

rion. This allows us to obtain the best fitting surface to the

cloud of data points. In addition, in this work we deal with

data points subjected to measurement noise and irregular

sampling. These features introduce extra difficulties in the

problem. The counterpart is that we can replicate the usual

conditions of real-world applications, meaning that our

results are applicable without further pre/post-processing.

Our method has been applied to a benchmark of five

illustrative examples (three real-world free-form shapes

and two academic examples) exhibiting challenging fea-

tures such as closed shapes, turning points, and several

changes of curvature. Our experimental results show that

the method performs very well, and it can recover the

underlying shape of surfaces with very good accuracy.

Additional experiments reported in this paper show that our

proposal based on a rational scheme with local search

improves all other combinations of polynomial or rational

schemes with or without local search for all instances in

our benchmark. This remarkable feature of our approach

can be explained by the superior ability of rational func-

tions to replicate very complicated shapes compared to

strictly polynomial functions. From this point of view, this

paper opens an interesting and promising line of research

based on the replacement of the classical polynomial

schemes for data fitting by more sophisticated fitting

functions.

Future work includes the extension of this method to

other families of functions, such as the B-splines. We are

also interested to analyze the application of this method to

some industrial processes and other interesting real-world

problems for which the polynomial approximation is not

good enough, thus expanding the potential range of

applications by including more difficult shapes.
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