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Abstract

Sirenomelia is a severe congenital malformation of the lower body characterized by the fusion of the legs into a single lower
limb. This striking external phenotype consistently associates severe visceral abnormalities, most commonly of the kidneys,
intestine, and genitalia that generally make the condition lethal. Although the causes of sirenomelia remain unknown,
clinical studies have yielded two major hypotheses: i) a primary defect in the generation of caudal mesoderm, ii) a primary
vascular defect that leaves the caudal part of the embryo hypoperfused. Interestingly, Sirenomelia has been shown to have a
genetic basis in mice, and although it has been considered a sporadic condition in humans, recently some possible familial
cases have been reported. Here, we report that the removal of one or both functional alleles of Shh from the Bmp7-null
background leads to a sirenomelia phenotype that faithfully replicates the constellation of external and internal
malformations, typical of the human condition. These mutants represent an invaluable model in which we have analyzed
the pathogenesis of sirenomelia. We show that the signaling defect predominantly impacts the morphogenesis of the
hindgut and the development of the caudal end of the dorsal aortas. The deficient formation of ventral midline structures,
including the interlimb mesoderm caudal to the umbilicus, leads to the approximation and merging of the hindlimb fields.
Our study provides new insights for the understanding of the mechanisms resulting in caudal body malformations,
including sirenomelia.
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Introduction

Sirenomelia, or sirenomelia sequence, is a rare (1.1–4.2 births of

100.000) and striking congenital malformation of the lower body

characterized by the fusion of the lower limbs [1,2,3,4,5,6] . This

feature, which is pathognomonic for the diagnosis, gives fetuses

and newborns a mermaid appearance, thence the alternative

name of Mermaid Syndrome. Sirenomelia is a multisystemic condition

because of the constant association of significant anomalies, mostly

but not exclusively of the caudal body. It is a severe condition,

usually lethal in the perinatal period [3,4] although less severe

cases have recently survived with appropriate reconstructive

surgery [7].

Sirenomelia shows an ample spectrum of clinical presentations

due to the variability in the degree of fusion of the lower limbs and

in the combination of visceral malformations [2,4,8,9,10]. Without

exception, genitourinary and gastrointestinal malformations are

found in sirenomelia, since they are features secondary to

oligohydramnios [5,8,11,12]. Agenesis of the terminal colon with

imperforate anus occurs in the majority of cases [3,4,5,8,11]. The

kidneys, ureters, urinary bladder and external genitalia are always

hypoplastic in variable degree whereas the gonads are usually

unaltered. Characteristically, the umbilical cord has a single artery

and major anomalies of the abdominal arterial system are also

common [3,4,10,13].

Although the causes of human sirenomelia remain unknown,

clinical studies have yield two main pathogenetic hypotheses: the

defective blastogenesis hypothesis and the vascular steal hypoth-

esis. The defective blastogenesis hypothesis is supported by the

overall malformation of the caudal body in sirenomelia. This

suggests an early defect, probably a deficient generation of

mesodermal precursors at late gastrula stages, which globally

impairs the development of the caudal embryonic body

[14,15,16]. Under this view, sirenomelia is considered a severe

manifestation of the complex malformation called Caudal

Dysgenesis (CD; OMIM 600145; formerly referred to as Caudal

Regression Syndrome). CD describes a heterogeneous variable

association of malformations of the lower body that always

includes some degree of sacral agenesis [12,15,17,18,19,20].

The vascular steal hypothesis posits a vascular origin for

sirenomelia. This is based on the observation that fetuses with

sirenomelia almost invariably exhibit a single umbilical artery (SUA),

instead of the normal two [13,21]. The SUA originates quite high

from the abdominal aorta, usually immediately beneath the celiac

branch, and below its origin the abdominal aorta is highly

hypoplastic and lacks most of its branches. It has been proposed
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that the SUA diverts the normal blood flow to the placenta leaving

the lower part of the body with a severely deficient circulation

incompatible with normal development [2,8,21]. The SUA has

also been referred to as persistent vitelline artery to indicate its

possible origin in the vitelline plexus and its presence is considered

by some authors as pathognomonic of sirenomelia although it has

occasionally been reported in other conditions

[2,8,14,18,21,22,23,24]. In this view, sirenomelia and CD are

considered two separate conditions. Therefore, some debate

remains in the clinic on whether sirenomelia and CD are separate

conditions or just different degrees of the same multisystemic

malformation [12,24].

Besides clinical data, experimental data in mouse indicate a

genetic origin for sirenomelia as this malformation has been found in

several genetically modified mouse strains with either loss-of-

function of bone morphogenetic protein (Bmp) signaling or with

gain-of-function of retinoic acid (RA) signaling [25,26]. Yet,

human sirenomelia has mainly been considered sporadic since

familial cases have only been reported very recently [27].

However, it should be noted that the lack of evidence for a major

genetic influence in human mermaid syndrome may rely, at least

in part, on the poor documentation of abortions [4,28].

The implication of Bmp signaling in sirenomelia came from the

observation that the double Bmp7;Tsg (Twisted gastrulation) mutant

mouse displayed this malformation [26]. Tsg is a modulator of

Bmp signaling that in the caudal body positively influences Bmp

signaling. Therefore, the removal of one or both copies of Tsg from

the Bmp7 background further reduces Bmp signaling resulting in

caudal abnormalities and sirenomelia [26].

The implication of RA signaling in sirenomelia came from the

observation that excess of administration of RA to pregnant mice

led to caudal malformation of the offspring including sirenomelia in

some cases [29]. This has been confirmed by the occasional

presentation of sirenomelia in the genetic disruption of Cyp26a1, an

enzyme that degrades RA [25,30] and in the disruption of other

genes that interact with the Cyp26 family of enzymes

[31,32,33,34].

Unfortunately, the low penetrance and early embryonic

lethality of Bmp7;Tsg and of Cyp26a1 mutants exclude them as

suitable models of human sirenomelia. The availability of an animal

model of sirenomelia would be an invaluable tool to unravel its

pathogenesis and it could provide insights on the development of

the caudal body. Such a model will also permit to analyze the

relationship between sirenomelia and CD and the influence of

epigenetic factors including RA and maternal diabetes.

Here we identify and characterize the sirenomelia phenotype in

Bmp7;Shh compound mutants. We show that Bmp72/2;Shh2/2 and

Bmp72/2;Shh+/2 mutants conjointly replicate the constellation of

external and internal malformations in the human condition and

thus we propose these mutants as the most suitable animal model

for human sirenomelia to date.

The analysis we have performed shows the early onset of the

malformation that is detectable at E9.5. The atrophic hindgut and

cloaca together with the defective development of the caudal end

of the dorsal aortas, which form by vasculogenesis [35,36], result

in a defective midline and ventral mesoderm caudal to the

umbilicus that leads to the junction of the hindlimb fields. Our

results suggest that the lower limb fusion in sirenomelia, although

giving the name to the condition, is a secondary event and that

sirenomelia phenotypes may occur without significant impact in

dorsal structures.

Materials and Methods

Mutant mice
Studies with mice were performed strictly following the EU

regulations and 3R principles. The Bmp7 [University of Oxford,

Oxford, UK; 37] and Shh [University Hospital Basel, Department

of Biomedicine, Switzerland; 38] mutant mice lines used in this

study were kindly provided by Elisabeth Robertson (University of

Oxford, Oxford, UK) and Rolf Zeller (University of Basel,

Switzerland) respectively. The mice were maintained on a mixed

genetic background and genotyped using tail or embryonic

membranes biopsies as previously reported. Wild type and mutant

embryos of the desired embryonic stage were obtained following

standard protocols.

Skeletal preparations, X-Gal staining and in situ
hybridization

After removing skin and viscera, mouse embryos were fixed in

95% ethanol. Alizarin Red and Alcian blue skeletal staining was

performed according to standard protocols cleared by KOH

treatment and stored in glycerol. X-Gal staining in Whole-mount

embryos was performed as previously described [37]. After

staining, the embryos were fixed and processed for inclusion in

paraffin if desired.

In situ hybridization (ISH) using digoxigenin labeled antisense

riboprobes was performed in whole-mount and in sections [39].

The probes for mouse mRNA used were Shh, Bmp4, Pitx1, Islet1,

Fgf8, Tbx4, Cdh5, Lmx1b, Msx2, [kindly provided by G. Martin

(University of California at San Francisco, San Francisco, USA),

B. Robert (Institut Pasteur, Paris, France), P. Bovolenta (Instituto

Cajal, CSIC, Madrid, Spain), M. Logan (National Institute for

Medical Research, London, England), and C. Tabin (Harvard

Medical School, Boston, USA)].

Semithin sections
E8.5 and E9.5 embryos were fixed in Glutaraldehyde,

embedded in araldite, sectioned (1 micron thick) and stained with

Methylene Blue following standard protocols.

Cell death and cell proliferation assays
Detection of cell death in sections of paraffin-embedded tissue

was performed using terminal deoxynucleotidyl transferase medi-

ated dUTP nick-end labelling (TUNEL) with the Apoptag

Fluorescein Direct In Situ Apoptosis Detection Kit (Intergen)

and following the manufactured instructions. Detection of cell

proliferation in sections was performed by immunohistochemical

assay using the anti phosphorylated histone H3 antibody (rabbit

polyclonal Phospho H3 from Upstate Biotechnology, USA) diluted

at 1/100.

Results

Reduction of Shh from the Bmp7 null background results
in sirenomelia

In the context of other studies on limb development [40] we

found that the reduction of one or both Shh functional alleles from

the Bmp7-null background led to sirenomelia. To study this

phenotype in depth, mice heterozygous for the Bmp7 null allele

(Bmp7+/2) were crossed to mice heterozygous for the Shh null allele

(Shh+/2) and the double heterozygous (Bmp7+/2; Shh+/2) mice

obtained were subsequently crossed between them.

From these crosses, the sirenomelia phenotype was found re-

stricted to embryos and neonates with the Bmp72/2;Shh2/2 and

Bmp72/2;Shh+/2 genotypes. Single Bmp72/2 and single Shh2/2
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mutants displayed their previously described phenotypes

[38,41,42] whereas single heterozygous and double heterozygous

were phenotypically normal. Interestingly, Bmp7+/2;Shh2/2 dis-

played a phenotype indistinguishable from that of Shh2/2 mutants

that do not display sirenomelia (not shown) indicating that the dose

of Bmp7 is the limiting factor for the this malformation.

Up to E12.5 all genotypes were recovered at the expected

Mendelian ratios, but subsequently the frequency of recovery of

double homozygous mutants (Bmp72/2;Shh2/2) progressively

declined to be less than 2% at late gestational stages (6.25%

expected). Thus, double homozygous shows an earlier embryonic

lethality than single Bmp72/2 mutants, which are recovered at

the expected Mendelian rates at birth and to single Shh2/2

mutants, which die at the end of the gestational period. Of the 170

neonates obtained, only 3 were double homozygous mutants while

Bmp72/2;Shh+/2 were recovered at the expected Mendelian ratio

(Table S1). These two types of mutants died in the first few hours

after birth due to the multisystemic visceral malformations.

Double null Bmp72/2;Shh2/2 mutants displayed sirenomelia with

complete penetrance (100%) in addition to the typical traits of the

Shh null phenotype such as cyclopia, proboscide and truncated

forelimbs Fig. 1B; [38]. Bmp72/2;Shh+/2 mutants, in which one

functional copy of Shh remains, displayed a milder form of

sirenomelia with about 50% penetrance (11 out of 21 neonates;

Fig. 1C). The hindlimb fusion in Bmp72/2;Shh+/2 mutants ranged

from a partial merging at proximal/tight level (Fig. 1D) to a

complete fusion all along the proximo-distal length of the

hindlimbs (Fig. 1E). It should be mentioned that in those

Bmp72/2;Shh+/2 mutants that did not display a clear mermaid

phenotype, the position of the hindlimbs was closer to the ventral

midline than normal (compare panel A with F in Fig. 1).

External inspection of double homozygous mutants neonates, in

comparison with wild type littermates, revealed a complete

absence of genital tubercle and imperforate cloacal membrane

(compare Fig. 1G with Fig. 1H). Bmp72/2;Shh+/2 mutants

displayed a variable range of underdeveloped genital tubercle

and anal malformations including imperforated and prolapsed

anus (Fig. 1I). The rudimentary genital tubercle and any evidence

of anus, if present, were always located caudal to the fused

hindlimbs (Fig. 1H–I).

Skeletal phenotype of sirenomelia mutants
To examine the skeletal morphology of the fused hindlimbs, we

performed skeletal preparations of neonates (Alizarin red and

Alcian blue and Victoria blue staining, see M&M). The skeletal

preparations, in comparison with wild type (Fig. 2A), demonstrat-

ed that the single medial hindlimb typical of the severe sirenomelia

of double homozygous (Bmp72/2;Shh2/2; Fig. 2B) was the result

of the fusion of two independent hindlimbs. It consisted of two

proximally fused femora followed by two tibia arranged in parallel

with a single fibula between them. At its proximal (knee) and distal

(ankle) ends it was possible to discern that the single fibula derived

from the fusion of the two bilateral fibulae. In the foot one or two

digits were scored as corresponded to the Shh mutant phenotype

that only displays one digit in each hindlimb [43,44]. Interestingly,

the zeugopod (intermediate limb segment) showed an improved

morphology compared to Shh null embryos [43,44] indicating that,

at least part of the Shh-limb phenotype was due to increased Bmp

signaling (Fig. S1). The hindlimb fusion exhibited by Bmp72/2;

Shh2/2 double homozygous corresponds to Types IV–V in

Stocker and Heifetz classification [3,10].

In Bmp72/2;Shh+/2 mutants the hindlimb fusion was mainly of

soft tissue with each of the fused hindlimbs showing a complete set

of skeletal elements (Fig. 2C). In the majority of cases the two fused

limbs diverged from the ankle and nine or ten digits were scored

depending on whether the two pinky digits, which were in medial

position, were fused. Bone fusion between tarsal-metatarsal

elements of the two bilateral feet was also observed (Fig. 2C).

The sirenomelia of Bmp72/2;Shh+/2 mutants can be classified as

Type I of Stocker and Heifetz classification [3,10].

Importantly, all degrees of sirenomelia showed a characteristic

absence of hindlimb rotation that resulted in the medial position of

the fibulae (or single fibula) between the two tibiae (Fig. 2B–C).

The patella, when present, was consistently found in a luxated

medial position (arrowheads in Fig. 2C) and the soles of the feet

faced anteriorly. This very same skeletal arrangement is found in

human cases of sirenomelia [4,10,28]. An early merging of the left

and right hindlimb fields in the midline along their posterior

borders would prevent the subsequent rotation of the hindlimbs.

Abnormalities of the pelvic skeleton were also scored in mermaid

newborns (Fig. 2D–E). The pelvic (hip) bone is formed by the fusion

of three distinctly developed skeletal elements: the ilium, the ischium

and the pubis (see drawing in Fig. 2D). Bmp72/2;Shh2/2 double

homozygous showed the complete absence of caudal vertebral

column described for the Shh mutant phenotype ([38], data not

Figure 1. Sirenomelia in Bmp72/2;Shh2/2 and Bmp72/2;Shh+/2

compound mutants. (A) Ventral view of the caudal body of a wild
type newborn. (B) Severe sirenomelia typical of Bmp72/2;Shh2/2

mutants. Note the centrally positioned atrophic hindlimb and also the
typical features of Shh mutants including proboscide, cyclopia and trun-
cated forelimbs (insert in B). (C) Milder sirenomelia typical of Bmp72/2;
Shh+/2 mutants in which the two hindlimbs can still be distinguished.
(D and E) Bmp72/2;Shh+/2 neonates showing different degrees of fusion
of the hindlimbs. (F) Bmp72/2;Shh+/2 neonate that does not display a
clear sirenomelia but showing midline approximation of the hindlimbs.
(G) Normal appearance of the genital tubercle and anus in a wild type
neonate. (H) Dorsal view of a double homozygous mutant showing
imperforate anus. (I) Imperforate anus and absence of genital tubercle
in a Bmp72/2;Shh+/2 newborn. Note the presence of a practically
normal tail in Bmp72/2;Shh+/2 newborns. Genotypes indicated at the
top of the panels. Blue arrow points to the genital tubercle and the
yellow arrow to the anus.
doi:10.1371/journal.pone.0044962.g001
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shown) whereas the vertebral column, the sacrum and the tail

showed a normal development in Bmp72/2;Shh+/2 mutants except

for the distal kinked tail typical of Bmp7 homozygous mutants (data

not shown). Interestingly, Bmp72/2;Shh+/2 mutants showed pelvic

defects characterized by a variable degree of truncation of the pubis

and midline fusion of the two bilateral ischia whereas the ilia were

normal (Fig. 2E). This led to an anomalous lesser pelvis that must

impact the perineum and hindlimb musculature. This particular

morphology of the pelvis, with both ischia fused in the midline and

the pubes laterally separated, likely derives from the impossibility of

the fused hindlimbs to rotate.

To sum up, our analysis shows a variable degree of approxima-

tion and fusion of the leg and pelvic skeletal elements in correlation

with the genotype; fusion of leg bones was only observed in double

homozygous. In all cases there is a constant absence of the normal

rotation of the hindlimbs, which influences the arrangement of the

skeletal elements including the pelvic bone. Finally, it should be

stressed that, the mild sirenomelia of Bmp72/2;Shh+/2 occurs with a

normal development of the sacrum and tail.

Visceral phenotype of sirenomelia mutants
To study the visceral component in our mutants with sirenomelia,

we first performed a gross anatomy dissection of the abdominal

organs in newborn specimens (Fig. 3). The macroscopic dissection

showed absence of obvious anomalies in the liver, stomach and

midgut. We focused our analysis on the Bmp72/2;Shh+/2 genotype

because the milder phenotype makes it more informative. In

Bmp72/2;Shh+/2 newborns the gross anatomy malformations

concentrated in the urogenital track and hindgut. The kidneys

and ureters were always severely affected, highly hipoplastic and

frequently hydronephrotic and the bladder was consistently absent

(Fig. 3A–B). The hindgut was narrower than normal and

frequently ended blind. In some cases the intestine and stomach

were distended with gas (not shown) probably secondary to the

anal atresia and/or to a possible tracheo-esophageal fistula as has

been shown for Bmp7 mutants [45]. In contrast, the gonads and

adrenal glands were easily identifiable and no obvious gross

abnormalities of the gonadal ducts of either sex were observed

(Fig. 3A–B; scheme).

A careful histological analysis of serial sagittal sections at E12.5

and E15.5 (Fig. 3) confirmed the results of the anatomic

dissection in newborns. Whereas the urogenital septum separated

the urogenital and anorectal tracts in wild type embryos (asterisk

in Fig. 3C), it was never observed in mutants. Only the atrophic

and frequently ending blind hindgut was distinguishable in

Bmp72/2;Shh+/2 mutants (Fig. 3D). Interestingly, a blind

termination of the urachus (an epithelial duct connecting the

allantois and the bladder), due to the absence of bladder was also

observed (Fig. 3D).

Thus, the spectrum of visceral malformations exhibited by

Bmp72/2;Shh2/2 and Bmp72/2;Shh+/2 mutants faithfully recapit-

ulates that reported in human cases of sirenomelia. Finally, it should

be pointed out that Bmp72/2;Shh2/2 and Bmp72/2;Shh+/2

mutants also display the traits typical of the Bmp7 deficiency

including microphtalmia, heart and thoracic skeletal defects (not

shown) [42]. In this regard, human sirenomelia has been also

associated with malformations of the cranial body [4].

Molecular defect in the sirenomelia mutants
The phenotype of our mutants must result from reduced Bmp

and Shh signaling. To understand and localize the origin of the

defect, we first investigated the pattern of expression of Shh and

Bmp7 during the early normal embryonic development of the

caudal body.

Shh expression was analyzed by whole mount in situ hybridiza-

tion (ISH) followed by section analysis. As previously described,

Shh transcription occurred in the notochord and ventral hindgut

[38], both at E8.5 (10–12 pairs of somites; before the turning of the

embryo) and at E9.5 (Fig. 4A–E).

As the Bmp7 null allele carries LacZ [37,41], we used X-gal

staining in Bmp7 heterozygous embryos to detect Bmp7-expressing

cells. At E8.5, Bmp7 expression was restricted to the notochord as

can be observed in the whole mount staining and in corresponding

Figure 2. Skeletal analysis of sirenomelia phenotypes at birth.
(A–C) Ventral views of Victoria Blue cartilage staining of representative
wild type (A), Bmp72/2;Shh2/2 homozygous (B) and Bmp72/2;Shh+/2

mutant (C). Note the isquia, proximal femora (arrow) and fibula (f)
fusion in double homozygous (B) and the medial position of the fibulae
due to the absence of hindlimb rotation (B–C). (D and E) Ventral view,
with corresponding scheme below, and lateral view of Alcian Blue and
Alizarin Red stained pelvis of wild type (D) and Bmp72/2;Shh+/2

neonates (E). The abnormal morphology of the hip is characterized by
medial approximation and fusion of the ischia, truncation of the pubes
but normal sacrum (E). Abbreviations: f: femur; fi: fibula; il: illium; is:
ischium; pu: pubis; t: tibia. The arrowheads in C point to the patellae.
doi:10.1371/journal.pone.0044962.g002
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transverse section (Fig. 4F–G). At E9.5, Bmp7 expression was

mainly detected in the ventral ectoderm, caudal to the allantois,

and corresponding to the level of the cloaca as can be appreciated

in the whole-mount staining and medial sagittal section (Fig. 4H–J)

[46,47]. This area of expression overlaps the ventral ectodermal

ridge (VER), a remnant of the primitive streak [46]. A faint X-gal

staining also remained in the notochord at this stage. A scheme

depicting the pattern of expression of Shh (redish) and Bmp7 (blue)

at E9.5 is shown in Fig. 4K.

To identify the state of Bmp and Shh signaling in our mutants,

we compared the expression of well-established downstream

targets of each pathway in wild type and mutant embryos at

E9.5 focusing on the caudal embryo body. First, as expected for

Shh heterozygous, we found that the domain of Shh expression was

similar in Bmp72/2;Shh+/2 mutants and wild type embryos

(Fig. 4L). The expression of Ptc1 was used as reporter of Shh

activity. In wild-type embryos, Ptc1 transcripts were detected in the

ventral neural tube and notochord, medial somites, splancho-

pleure, hindgut and the ventral caudal mesoderm in control

embryos (Fig. 4M). In Bmp72/2;Shh+/2 mutant embryos, Ptc1

expression in the ventral caudal mesoderm was clearly downreg-

ulated suggesting a decrease in hh signaling at this level (Fig. 4M).

The expression of Msx2, a bona fide target of Bmp signalling, that

normally occurs in the ventral caudal mesoderm and ectoderm of

control embryos, was dramatically downregulated in Bmp72/

2;Shh+/2 embryos (Fig. 4N). The downregulation in Msx2 in

compound mutants reflects the loss of Bmp7 signalling as is

similarly observed in Bmp7 single mutants but not observed in Shh

single mutants (not shown). Also, the expression of Bmp4 and Bmp2

ligands was not significantly changed in our mutants (Fig. S2 and

not shown).

Thus, our analysis localizes the region with defective signaling in

the ventral caudal mesoderm between the allantois and the cloaca.

This corresponds to the pericloacal ventral region and is encircled

in Fig. 4K.

Onset of the mutant phenotype
To get insights into the way the mermaid phenotype was

established, we performed a histological analysis in our allelic

series of embryos. The analysis focused on the caudal body, and

was performed at E8.5 (10–12 Somites) and E9.5 (22–23 Somites)

before posterior morphogenesis was heavily altered. For a

maximum detail, it was performed in semithin (1 micron thick)

transverse serial sections of araldite embedded embryos.

Transverse sections through the caudal region of E8.5

Bmp72/2; Shh+/2 and Bmp72/2; Shh2/2 embryos failed to

detect any abnormality compared with equivalent stage wild

type embryos (Fig. 5A–C). At this stage, the hindgut, the dorsal

aortas and the primitive omphalomesenteric artery, a single

vessel that forms immediately ventral to the hindgut as the

splanchnopleural folds coalescence and fuse, showed similar

morphology in all genotypes.

However, morphological differences between wild type and

mutant embryos were evident by E9.5 (Fig. 5D–F0). In wild type

embryos, transverse sections at the most caudal level showed the

centrally positioned cloaca, the bilateral coelomic cavities and the

dorsal aortas and their ventral recurved portions (Fig. 5D). A

section through a more cranial level revealed the omphalomesen-

teric artery derived from the fusion of the two ventral recurved

aorta portions (Fig. 5D9). The omphalomesenteric artery that, at

this stage, was of big caliber, contacted the hindgut dorsally and

the ventral body wall ventrally (Fig. 5D9) dividing the coelomic

cavity into two independent bilateral cavities, at this low

abdominal (pelvic) level.

Our study revealed similar defects in Bmp72/2;Shh2/2 and

Bmp72/2;Shh+/2 mutants at this stage. First, the diameter of the

mutant hindgut and cloaca was significantly reduced compared to

wild type embryos (Fig. 5E–F compare with Fig. 5D). In fact, the

final dilatation typical of the cloaca was only observed in much

fewer sections than in wild type littermates indicating its poor

development (Fig. 5E–F). Second, the final recurved portions of

the paired dorsal aortas were not identified in the mutants and

neither was the omphalomesenteric artery derived from their

fusion (Fig. 5E–E9, F–F9). In contrast, the omphalomesenteric

artery continued ventral to the hindgut, as in previous stages. It

showed a variably poor development and in the majority of cases

did not contact the ventral body wall thus leaving the coelomic

cavity undivided in mutants (Fig. 5E9–F9).

Abnormal caudal vascular development in sirenomelia
embryos

The above-described vascular phenotype was confirmed by the

expression of a specific endothelial marker, cadherin5 (Cdh5, also

VE-cadherin, [48]), in whole mount ISH followed by section

analysis of hybridized embryos (Fig. 6). The expression of Cdh5

marks the distribution of endothelial cells and revealed the poor

development of the local plexus of the caudal ventral body wall in

compound mutants (arrowheads in Fig. 6D–E). The recurved

Figure 3. Visceral analysis in wild type and mutants. (A–B)
Autopsy preparations of abdominal viscera in newborns. Superficial (left
panel), profound (medium panel) and corresponding scheme (right
panel) are shown. Mutant embryos exhibit relatively normal stomach
and midgut but hypoplastic kidneys and hindgut and absence of
bladder. (C–D) H&E-stained mid sagittal sections of wild-type (C) and
Bmp72/2;Shh+/2 mutants (D) at the embryonic stage indicated at the
top. The yellow arrows indicate the hindgut and the blue arrows the
urethra. Note the absence of urogenital duct and septum in mutants.
Abbreviations: b: bladder; g: gonad and gonadal duct; hg: hindgut; k:
kidney; u: urachus. The urogenital septum is indicated by an asterisk.
doi:10.1371/journal.pone.0044962.g003
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portions of the aorta were not identified and the omphalomesen-

teric artery was always narrower and dorsally positioned in the

compound mutants than in the other genotypes (Fig. 6A9–E9). It

should be noted that the morphology of the allantois was normal

in the complete genotypic series.

In summary, our results demonstrate that sirenomelia has an early

onset as the defects are present at E9.5. There is a concomitant

impact on the hindgut, which is narrower than normal and shows

a reduced cloacal dilatation, and in the caudal development of the

dorsal aortas that fail to elongate and form the recurved portions.

As a result the caudal midline of the embryo results highly affected.

Analysis of cell death and cell proliferation
Changes in cell proliferation or abnormal cell death in

mesodermal precursors could in principle explain the hindgut

and vascular phenotype. Indeed, a shortage in mesenchymal cells

is considered the primary gut defect in Shh mutants [49].

Therefore, we performed a sequential analysis of cell death and

Figure 4. Reduced Bmp7 and Shh signaling in the ventral caudal mesoderm of mutant embryos. (A–E) Expression of Shh in whole mount
ISH and corresponding transverse section (level indicated by bar) at E8.5 (A–B) and E9.5 (C–E). (F–J) Expression of Bmp7 by Bmp7-LacZ reporter in
Bmp7+/2 embryos at E8.5 (F–G) and E9.5 (H–J). (K) Cartoon showing the pattern of expression of Shh and Bmp7 at E9.5, the area influenced by both
signals is encircled. (L–N) Expression of Shh (L), Ptc1 (M) and Msx2 (N) in transverse caudal sections of E9.5 wild type and Bmp72/2;Shh+/2 embryos as
indicated at the top of each panel. Abbreviations: c: coelomic cavity; da: dorsal aorta; hg: hindgut; n: notochord; nt: neural tube; o:
omphalomesenteric artery.
doi:10.1371/journal.pone.0044962.g004

Figure 5. Onset of the morphology defect. Semithin (1 micron thick) transverse serial sections stained with toluidine blue of control and mutant
embryos (genotype indicated on the left) at E8.5 (A–C) and E9.5 (D–F9). The level of the section is indicated in the pictures on the right. (A–C) Sections
at the tip of the tailbud of E8.5 embryos. No differences between wild type and mutants are observed. (D–F9) Section at two different caudal levels, as
indicated on the right. Note the narrower hindgut and the absence of the recurved portions of the dorsal aorta in mutants. (D0–F0) Schematic
representation of the sections with the structures marked. Abbreviations: hg:hindgut; da: dorsal aortas; nt: neural tube; c: choelomic cavity; o:
omphalomesenteric artery. The presence of red blood cells in the coelomic cavity of mutants is an artifact that sometimes occurs when dissecting the
embryo disregarding the genotype.
doi:10.1371/journal.pone.0044962.g005
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proliferation during the time the phenotype is being generated

(E8.5 and E9.5). The TUNEL assays in transverse sections failed

to detect differences in the amount or distribution of apoptotic

cells between wild type and mutant embryos at E8.5 (Fig. S3). By

E9.5, the analysis of serial transverse sections showed some

scattered apoptotic cells in the hindgut and in the ventral caudal

mesoderm of single Bmp72/2, single Shh2/2 and double Bmp72/2;

Shh+/2 mutants while no cell death was detected in these locations

in wild type embryos (Fig. S3). At this stage, cell death was more

prominent in double homozygous Bmp72/2;Shh2/2 embryos all

across the dorso-ventral midline of the embryo (Fig. S3).

To study cell proliferation we processed sections for anti-

phosphorylated histone H3 immunohistochemistry that detects

cells in mitosis. Our analysis failed to detect obvious differences

between wild type, single and double mutants at E8.5 (not shown)

and E9.5 (Fig. S4).

The finding that Bmp72/2; Shh+/2 mutants, which display

sirenomelia, only showed a minimal increase in cell death intensity

suggests that abnormal cell death or proliferation are not a major

cause for the phenotype. Nevertheless, differences in proliferation

or cell death of a few critical precursors at an undefined early stage

may still occur.

Normal development of the leg buds except for their
merging

It has already been suggested that the fusion of the lower legs in

sirenomelia, although giving the name to the condition, is secondary

to the absence of the midline structures that usually separate the

left and right hindlimb fields [16,50,51]. Our results support this

hypothesis.

To explore the situation of the interlimb region, we analyzed the

expression of Islet1 (Isl1), a gene that is expressed in this location

and that is important for hindlimb development. Isl1 is a LIM

homeodomain transcription factor with multiple functions in

cardiac, neural and hindlimb development [52,53,54,55,56]. It has

been shown that its expression is regulated by Shh in neural tissues

[57] and by Bmp4 in the oral epithelium [58]. Interestingly, Isl1

expression was highly downregulated in the caudal body of

Bmp72/2;Shh+/2 mutants compared with wild-type littermates

(Fig. 7A–B). At E9.5 Isl1 transcripts were found in the ventral

hindgut, splanchopleure and ventral interlimb mesoderm of wild-

type embryos whereas only some transcripts were detected in the

splanchopleure of mutants. At E10.5 Isl1 was prominently

expressed in the interlimb tissue particularly around the cloaca

and recurved portions of the aortas (Fig. 7C) whereas in mutant

embryos the expression was much reduced around the hindgut

and in the splanchopleure (Fig. 7D). These results support the

hypothesis that the midline tissues including the interlimb ventral

body wall are not present in sirenomelia (Fig. 7D, compare with

Fig. 7C).

We next examined Tbx4 and Pitx1 expression, specific markers

of the hindlimb mesenchyme [54]. At E10.5 both Tbx4 and Pitx1

were conspicuously expressed in the hindlimb mesoderm and

interlimb anterior mesoderm of wild-type embryos (Fig. 7E, G). In

sirenomelia mutants, the expression of Tbx4 and Pitx1 occurred in a

continuous domain reflecting the joining of both hindlimbs

(Fig. 7F, H).

Except for their fusion, the development of the hindlimbs

followed a normal course. The expression of Fgf8, a marker of the

apical ectodermal ridge (AER) that is a signaling center crucial for

limb development, was detected in mutants in a continuous stripe

(shown for homozygous mutants in Fig. 8G, compare with wild-

type in Fig. 8B) as the fusion of the leg buds along their posterior

border resulted in the continuation of the AERs of both hindlimbs.

Bmp4 and Msx2 were normally expressed both in the AER (Fig. 8

C–D and Fig. 8H–I) and mesoderm (not shown) of double

homozygous mutants. Finally, Lmx1b expression, a marker of the

dorsal mesoderm, also revealed the abnormal dorso-ventral

position of the fused hindlimbs (Fig. 8E and J). These results

Figure 6. Expression of Cadherin5 in wild-type and mutant embryos at E9.5. (A–E) Ventral views of the caudal region of E9.5 embryos
hybridized for Cadh5. (A9–E9) Transverse sections of the hybridized embryos at the level indicated by the horizontal bar. The genotypes are indicted at
the top. The red arrowheads point to the poorly local ventral mesoderm vascular plexus in Bmp72/2;Shh+/2 and Bmp72/2;Shh2/2 mutants.
doi:10.1371/journal.pone.0044962.g006

Figure 7. Spatial distribution of Islet1, Tbx4 and Pitx1 mRNA in
wild-type and mutants. (A–D) Islet1 expression in transverse sections
through the caudal region of E9.5 (A–B) and 10.5 (C–D) wild type and
mutant embryos. Note the strong downregulation of expression in the
midline tissues and in the interlimb mesoderm of mutants. Note the
absence of the recurved portions of the dorsal aortas in E10.5 mutant
embryos. (E–H) Expression of Tbx4 (E–F) and Pitx1 (G–H) specific
hindlimb markers in consecutive sections of E10.5 wild-type and mutant
embryos showing the abnormal connection between both hindlimbs.
Note the absence of the recurved portions of the aorta in mutants.
Genotypes indicated on the left. Da: dorsal aorta; rda: recurved portion
of aorta.
doi:10.1371/journal.pone.0044962.g007
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allow the conclusion that limb development is not impaired in

sirenomelia in agreement with the complete hindlimb development

exhibited by Bmp72/2;Shh+/2 newborns (Fig. 1D–F and Fig. 2. C).

The impaired final limb phenotype of double homozygous

(Bmp72/2;Shh2/2) corresponds to that of the Shh deficit with the

above described improvement at zeugopod level due to the

decreased in Bmp signaling [43,44].

Discussion

A new animal model for human sirenomelia
Our results show a genetic interaction between Bmp7 and Shh

that results in a spectrum of phenotypes including leg fusion and

visceral malformations that are morphologically identical to

human cases of sirenomelia. Based on the similarity of the

phenotypes we consider that Bmp72/2;Shh2/2 and Bmp72/2;

Shh+/2 mutants conjointly constitute an excellent animal model in

which study the mechanisms involved in the development of this

devastating human malformation. Because double homozygous

associates the traits typical of the Shh deficiency (Cyclopia,

proboscide, abscence of ribs… [38]), they may be a less suitable

model although it is important to note that human cases of

sirenomelia with cyclopia have been reported, including a recent

cluster in Cali Colombia [9,28,59,60].

This novel animal model has allowed us to investigate the onset

of the sirenomelia malformation. Our results show a defective

formation of midline structures in the caudal embryonic region

coincident with the area in which decreased Bmp and Shh

signaling is detected. The signaling defects result in a hypoplastic

hindgut and precludes the appropriate vasculogenesis of the

caudal end of the dorsal aortas and the remodeling of the primitive

vascular plexus. The atrophic hindgut and cloaca, together with

the vascular defect, results in a defective midline that leads to the

junction of the limb fields.

The merging of the lower limbs is a secondary event in
sirenomelia

Our results strongly suggest that the approximation and

merging of the hindlimb fields are the result of the early visceral

defect that leads to a considerably midline reduction. Therefore,

the limb fusion phenotype, although giving the name to the

condition, is a secondary event in sirenomelia as it has already been

proposed [16,50,51].

The diagnosis of sirenomelia is certain since it relies on the fusion

of the lower limbs. The grade of lower limb fusion considerably

varies generally in correlation with the severity of the visceral

associated malformations [3,10]. The mildest cases, types I and II

of Stocker and Heifetz classification, are characterized by the

midline merging of two almost normal legs except for their

malposition. The most severe cases, types VI and VII of Stocker

and Heifetz classification, are characterized by a single central

tapering appendage that misses clear leg features. These two

extreme phenotypes are seen in our mutants: sirenomelia type I and

II is typically found in Bmp72/2;Shh+/2 mutants, while type V is

typically found in Bmp72/2;Shh2/2 double homozygous. Interest-

ingly, the mild phenotypes show that the approximation and

merging of the lower limbs do not interfere with normal limb

morphogenesis except for the absence of rotation. This conclusion

is supported by the gene expression study of limb development we

have performed in the double mutants. Our analysis also indicates

that the most severe lower limb phenotypes may result from late

deficits in limb development independent of the merging event.

For example, in our mutants, the deficit in Bmp and Shh signaling

has an early impact in generating sirenomelia and an additional later

effect in limb development.

One particularly interesting feature of the phenotype, which is

constantly observed in all cases of sirenomelia, is the abnormal

position of the legs with the soles of the feet facing anteriorly and

the great toes in a lateral position. This position corresponds to a

180u rotation with regard to the normal position and results from

the absence of the rotation that hindlimbs normally experience

during embryonic development. Very little is known about the

mechanisms that direct this rotation, but it seems obvious that the

merging of the limb buds would prevent them from operating.

This lack of rotation may also contribute to the altered pelvic

morphology of our mutants, with both ischia fused in the midline

and the pubes laterally separated. In wild type embryos, the two

bilateral hip bones progressively join in the anterior midline

forming the pubic symphysis by E16.5 [61,62,63]. In our mutants,

the approximation of both pubes to the midline does not occur

and therefore the pubic symphysis does not form whereas both

ischia fuse in the midline. Thus, it seems reasonable to propose

that the early merging of the leg buds would preclude the normal

morphogenetic movements that reposition the pelvic girdle and

lower limb and therefore leading to the observed phenotype.

A reevaluation of the etiopathogenic hypotheses of
sirenomelia

As a result of the clinical studies of series of fetuses and

newborns with sirenomelia, two main hypotheses have been

proposed to explain this devastating malformation. First, based

on the general impact in the caudal body, sirenomelia is envisaged as

Figure 8. Gene expression analysis in hindlimbs of wild-type and Bmp72/2;Shh2/2 littermates at E10.5. The expression of limb bud
markers is normal in mutant hindlimbs except for the merged phenotype. The domain of expression of Fgf8 (G), Bmp4 (H) and Msx2 (I) in the apical
ectodermal ridge of both hindlimb is continuous because of the merging. The expression of Lmx1b reflects the abnormal position of the limbs (J–E).
doi:10.1371/journal.pone.0044962.g008
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resulting from a deficient blastogenesis that failed to produce

sufficient mesodermal precursors [3,8,14]. Second, based on the

almost constant abnormal development of the umbilical vessels,

sirenomelia is considered the result of a vascular defect that leaves

the lower part of the body with a severely deficient circulation

incompatible with normal development [2,21,64,65].

According to the deficient blastogenesis hypothesis, sirenomelia

may be considered as a severe form of caudal dysgenesis (CD). CD

is a heterogeneous assemblage of caudal anomalies that always

include some degree of sacral agenesis [17,20]. The milder

sirenomelia phenotype of Bmp72/2;Shh+/2 mutants, although

associating major visceral defects in the urogenital and low

intestinal tracts, exhibits a normal development of the sacrum and

tail. This allows the conclusion that sirenomelia may exist as a

pathologic entity distinct from CD. Interestingly, human cases

with minimum or even absent dorsal skeletal and neurological

component have also been reported [66,67].

Sirens resulting from reduced Bmp signaling (Bmp7;Tsg and our

mutant) exhibit minor, if any, malformation of the sacrum and tail

indicating normal anterior-posterior axis elongation. However,

sirens resulting from excess RA signaling present impaired

elongation of the caudal body [25,68] and therefore they could

be considered part of the CD. These observations indicate the

existence of at least two different presentations of sirenomelia

depending on the presence of dorsal malformations and suggest

that different regions (dorsal and ventral) of the caudal body may

be subject to different developmental regulation. Some of these

signals may be restricted to particular caudal regions while others

may have a broader effect. Bmp and Shh signaling appear to be

particularly important for the development of the ventral midline

and body wall while Wnt signaling and RA signaling may have a

more general effect. Thus, the heterogeneity in sirenomelia clinical

presentations likely reflects different etiologies that distinctly affect

different signaling pathways.

Regarding vascular steal hypothesis, our study reveals an early

vascular defect in sirenomelia. We have detected a failure in the

formation of the recurved portions of the aortas that leads to a

misorganization of the ventral caudal vasculature. This abnormal

arrangement of the caudal vessels is likely the origin of the

abnormal Single Umbilical Artery (SUA) described in human

cases of Sirenomelia [21,65,69]. This results from the persistence of

the primitive omphalomesenteric artery due to the failure or

underdevelopment of the recurved portions of the aorta. However,

our data do not support a vascular origin for sirenomelia since the

concomitant onset of the vascular and visceral defects precludes a

causal relationship. The absence of the recurved portions of the

aorta certainly contributes to the reduction of midline structures

and subsequent merging of the hindlimb fields but no through a

hypoperfusion mechanism as originally proposed by the vascular

steal hypothesis.

To sum up, our study and the available experimental and

human data fit with a genetic origin of sirenomelia that affects some

of the signaling pathways involved in the development and

organization of the pelvic organs and ventral body wall. The fact

that each of these pathways involves multiple components, it

provides an explanation for the genetic heterogeneity and

phenotypic variability.

Bmp signaling and sirenomelia
Sirenomelia was first associated with reduced Bmp signaling when

it was reported that the compound Bmp7;Tsg mutants exhibited

this phenotype [26]. It should be noted that single Bmp7 mutants

do not exhibit a mermaid phenotype and that a further reduction

in Bmp signaling caused by the removal of one or two functional

copies of the Bmp positive modulator Tsg is required to get the

phenotype [26,41,70]. Also, it has been shown that the removal of

the BMP receptor 1a (Bmpr1a), specifically from the interlimb

mesoderm with the Isl1Cre line, leads to the approximation of both

hindlimbs, but it does not to sirenomelia [53]. Thus, an appropriate

level of Bmp signaling seems to be absolutely required for normal

ventral caudal mesoderm development. This requirement is

conserved across species as it has been confirmed in Xenopus

laevis and in zebrafish [26,71].

The similarity of the sirenomelia phenotype of our mutants and that

of Bmp7;Tsg mutants suggest a common origin. Bmps are well-

accepted targets of Shh in several systems including the gut

[72,73,74,75]. Therefore, it is possible that the decrease of Shh dose

in the absence of Bmp7 results in a further reduction of Bmp

signaling similarly to the double Bmp7;Tsg mutant. However, our

gene expression analysis do not support this hypothesis because the

expression of Msx2 is similarly reduced in Bmp7 single and Bmp7;Shh

compound mutants. Furthermore, a reduction in Shh signaling

could contribute by itself to hindgut and vascular malformations

[49,76,77]. Therefore, we favor the interpretation that the sirenomelia

phenotype in our mutants is the result of the summation effect of

reduced Bmp and reduced Shh signaling. Interestingly, the double

Tsg2/2;Bmp4+/2 mutant presents holoprosencephaly, a character-

istic of Shh loss of function [38,78]. Accordingly, Shh expression was

undetectable in the fore and midbrain of Tsg2/2;Bmp4+/2 mutants,

explaining the holoprosencephaly phenotype. Thus, the possibility

that Shh function is reduced in Bmp7;Tsg sirenomelia mutants should

be explored. In any case, the crosstalk between Bmp and Shh

signaling pathways in the development of the caudal body merits

further investigation.

Besides, the co-localization of the anatomic vascular defect and

the site of maximum signalling defect suggest a causal relationship.

Particularly, the progression of the dorsal aorta is thought to occur

by the direct assembly of endothelial precursor cells (vasculogen-

esis) under the influence of paracrine signals that regulate the

positioning and remodeling of embryonic blood vessels. Interest-

ingly, members of the hedgehog family [77,79,80] and bone

morphogenetic proteins (BMP) [81,82] are among the best-known

paracrine factors that promote vascular development.

Collectively, our findings provide compelling evidence that the

vasculogenesis of the recurved portions of the dorsal aortas and the

reorganization of the vessels in the pericloacal area and ventral

mesoderm caudal to the umbilicus require appropriate Bmp and

Shh signaling. This is a region in which appropriate signaling is

absolutely required to permit the normal development and

organization of pelvic organs and ventral body wall.

Implications for human sirenomelia
Our data support the notion that the primary morphological

defect in sirenomelia is an insufficient formation of midline

structures, mainly the hindgut and caudal vasculature. This fits

very well with the phenotypes observed in human cases of

sirenomelia and contributes to a better understanding of the

mechanisms that lead to this malformation.

Although most human cases of sirenomelia are sporadic, the

information lately gathered from animal models, including our

model, suggests a complex multigenetic basis for sirenomelia,

probably requiring several genetic defects even in heterozygosis.

This can explain the variability in phenotypic traits as well as the

low prevalence in human populations. The recent report of

familial descriptions of sirenomelia further supports this notion (27).

Our study also helps managing the malformations of the caudal

body by determining candidate genes to establish screenings or

develop markers to assist identifying potential couples at a higher
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risk of having an infant with caudal defects. We anticipate that in

the future it will be particularly important to assess the

contribution of human BMP7 gene to the genetic risk for that

spectrum of developmental defects.

Supporting Information

Figure S1 Comparison of zeugopod development in
Shh2/2 versus double Bmp72/2;Shh2/2 mutants. Alizarin

Red-Alcian Blue skeletal preparations are accompanied by an

schematic representation of the skeletal elements. Note the

improvement in the morphology of the zeugopod in the double

mutant compared to that of the single Shh2/2 mutant.

Abbreviations: f:fibula; t:tibia; Z: zeugopod.

(TIF)

Figure S2 Expression of Bmp4 in E9.5 embryos of the
principal genotypes of the Bmp7;Shh allelic series. Note

similar Bmp4 expression in the caudal ventral mesoderm

disregarding the genotype. Genotypes indicated at the top.

(TIF)

Figure S3 Cell death analysis. TUNEL assay in transverse

sections of E8.5 and E9.5 wild type and mutant embryos as

indicated at the top of each panel.

(TIF)

Figure S4 Cell proliferation analysis. The immunohisto-

chemistry with anti pH3, which marks cells in mitosis, failed to

detect obvious differences between genotypes.

(TIF)

Table S1 Characterization of external phenotype of
neonates obtained from Bmp7+/2;Shh+/2 intercrosses.
Table showing the number and percentage of external malfor-

mations observed in neonates of the allelic series. (*) Cyclopia and

regressed tail due to Shh-null background.

(DOCX)
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