
UNIVERSIDAD DE CANTABRIA

SIMULACIÓN Y VERIFICACIÓN DE
PROPIEDADES NO-FUNCIONALES PARA

SISTEMAS EMBEBIDOS
SIMULATION AND VERIFICATION OF NON-FUNCTIONAL PROPERTIES FOR EMBEDDED SYSTEMS

Por

Pablo González de Aledo Marugán
INGENIERO DE TELECOMUNICACIÓN

Dirigida por Pablo Sánchez y Franck Cassez

MEMORIA PRESENTADA PARA OPTAR AL TÍTULO DE DOCTOR EN CIENCIAS, TECNOLOGÍA

Y COMPUTACIÓN POR LA UNIVERSIDAD DE CANTABRIA.

Departmento de Tecnología Electrónica, Ingeniería de Sistemas y Automática

Santander, Abril 2017

mailto:pablo-gonzlez-de-aledo@students.mq.edu.au

ii

c© Pablo González de Aledo Marugán, 2017.

Typeset in LATEX 2ε.

mailto:pablo-gonzlez-de-aledo@students.mq.edu.au

iii

Este trabajo ha sido financiado por el Ministerio de Economía y Competitividad de

España a través de los proyectos ART-010000-2012-5, TSI-020400-2010-82, ART-

010000-2009-9 y TEC2011-28666-C04-02. Durante la ejecución del presente

trabajo, su autor, Pablo González, ha disfrutado de una beca F.P.I. (Formación

del Personal Investigador) del Ministerio de Ciencia e Innovación de España con

referencia BES-2012-055572.

Asimismo, Pablo González ha disfrutado de varias ayudas a la movilidad predoc-

toral concedidas por el Ministerio de Economía y Competitividad de España, el

Gobierno Australiano (Endeavour Fellowship), el centro de investigación NICTA,

la empresa RedLizards, la Universidad de Bremen y la Universidad MacQuarie.

Por todo ello, el autor expresa su más sincero agradecimiento hacia dichas

instituciones y entidades.

iv

Agradecimientos

En primer lugar, a mis supervisores Pablo Sánchez y Franck Cassez, por su ayuda y por

todo lo que me han enseñado sobre cómo hacer trabajo de investigación original, cómo

mantenerme motivado y por las pacientes discusiones que han tenido conmigo sobre los

detalles de nuestro trabajo. Al final de mi viaje, sólo siento no haber aprendido más de

ellos.

A mi familia (especialmente Carolina), por su apoyo y por todo el tiempo que esta

tesis les ha robado.

Durante mi doctorado, conocer gente que se interesase por mi trabajo ha sido una de

las experiencias más gratificantes, y trabajar con ellos un magnífico regalo. Me gustaría

agradecerles especialmente a Ralf Huuck, Nils Przigoda y Robert Willie su ayuda, y el que

hayan compartido conmigo su experiencia.

Finalmente, me gustaría mencionar a gente que (sin saberlo) me ha motivado a dar lo

mejor de mi mismo y que ha influenciado en algunas decisiones que he tomado en mi

doctorado: Fernando, Hector, LUIS y Danıelπππ

.

– Pablo

v

vi AGRADECIMIENTOS

Resumen

Este es un resumen de la tesis “Simulación y Verificación de propiedades no-funcionales

para Sistemas Embebidos”, desarrollada por Pablo González de Aledo Marugán y dirigida

por Pablo Sánchez Espeso y Franck Cassez, bajo un acuerdo de cotutela entre la universidad

Macquarie y la Universidad de Cantabria.

Introducción

Al contrario que otros sistemas de cómputo genéricos, los sistemas embebidos de tiempo

real (ERTSs) interaccionan con su entorno y están sujetos a restricciones específicas, por

lo que su diseño implica desafíos que son únicos en esta disciplina. En estos sistemas,

la validez del diseño depende no sólo del hecho de que se calcule un resultado, sino

también del hecho de que dicho resultado sea computado antes de un tiempo límite,

con un bajo consumo energético, con un uso mínimo de memoria o de tal modo que el

comportamiento térmico del chip no degrade su funcionalidad ni su fiabilidad. Estas

propiedades no funcionales son tan importantes (o incluso más importantes) que el

resultado del cómputo per se. Entre las propiedades no funcionales se incluye el consumo

energético, las transacciones con memoria, la contención en el bus o en la red en chip, el

balanceo de carga, el tiempo de ejecución, el comportamiento térmico... La optimización

de estas propiedades induce una mayor duración de la batería, una interacción con el

usuario más fluida, mejor calidad en las transmisiones o una mayor fiabilidad del sistema.

Esta tesis presenta varias técnicas para analizar las propiedades no funcionales de sistemas

vii

viii RESUMEN

embebidos de tiempo real.

• La primera parte describe varios avances en la técnica de simulación nativa que

permiten obtener estimaciones sobre requerimientos no funcionales en las primeras

etapas del flujo de diseño. Este enfoque particular en las primeras etapas del flujo

de diseño está motivado por la necesidad de elegir una plataforma válida cuando la

aplicación aún no ha sido optimizada para ningún objetivo en particular. En esta

parte describimos nuestro enfoque acerca de cómo separar el dominio de simulación

en tres subdominios (plataformas de un solo núcleo, de varios núcleos comunicados

mediante una red-en-chip y plataformas con aceleradores hardware implementados

en una FPGA) y combinarlos para obtener resultados rápidos y precisos.

• La segunda parte de esta disertación comienza describiendo un sistema de ejecución

simbólica para programas LLVM que genera automáticamente trazas que pueden

usarse como candidatos para encontrar condiciones de falsificación de propiedades

de programas. Para evitar generar trazas inútiles, la ejecución simbólica está guiada

por un análisis estático. Para expresar las propiedades a comprobar, el sistema se

ha combinado con modelos UML/OCL del comportamiento esperado.

Dicho sistema de ejecución simbólica es utilizado en primer lugar para buscar

errores en las propiedades funcionales del sistema, y se extiende posteriormente

para obtener el tiempo de ejecución de peor caso en programas binarios. Para ello,

los modelos de simulación se concretizan para una plataforma particular (ARM920-

T) y se combinan con la representación simbólica del estado del programa para

obtener límites probados y ajustados del tiempo de ejecución cuando el programa se

ejecuta sobre dicha plataforma (WCET).

En cada parte, la velocidad, precisión y conveniencia de las herramientas han sido

evaluadas con varios ejemplos de diseños industriales y de investigación. Los ejemplos

son interesantes por derecho propio, e ilustran algunos de los problemas reales que se

enfrentan al diseñar sistemas embebidos en tiempo real y de alto rendimiento.

La tesis concluye que información útil sobre las propiedades no funcionales de un

programa cuando se ejecuta sobre un sistema embebido puede ser obtenida con una

ix

combinación de las técnicas “simulación nativa”, “ejecución simbólica” y “refinamiento de

trazas”. En escenarios en los que la plataforma de destino es bien conocida y bajo ciertas

condiciones, los límites sobre el tiempo de ejecución de peor caso se pueden derivar

automáticamente utilizando estas técnicas.

La tesis se compone de un capítulo introductorio (Capítulo 1) y tres capítulos en los

que se desarrollan las técnicas de instrumentación y análisis del código fuente (Capítulo

2), simulación (Capítulo 3) y verificación (Capítulo 4).

Capítulo 2: Instrumentación y Análisis del código fuente

La mayoría de las técnicas descritas en esta tesis pueden clasificarse dentro del marco

“Simulación Nativa”. En este enfoque, el código fuente se compila y se ejecuta en el orde-

nador del desarrollador, pero durante su ejecución, algunas funcionalidades adicionales

permiten obtener estimaciones de rendimiento sobre cómo se comportaría cuando se

ejecuta en la plataforma de destino. Este código de instrumentación se ejecuta conjunta-

mente con el ejecutable, normalmente sin alterar su flujo, pero computando información

adicional que puede ser útil para el desarrollador o el diseñador. El código se analiza en

dos niveles de abstracción; a nivel código intermedio de LLVM y a nivel binario.

Instrumentación LLVM

La primera parte de la tesis describe las funciones de instrumentación para implementar

estas técnicas. En particular, esta tesis enfatiza la importancia de considerar representa-

ciones intermedias que se encuentran entre lenguajes de alto nivel y código máquina para

este propósito. En esta sección se describe qué elementos de la representación intermedia

se instrumentan y cómo.

Análisis binario del código ARM

Incluso cuando el uso de niveles más altos de abstracción en el análisis de programas

puede ser beneficioso, ya que representa un equilibrio entre precisión y velocidad, un

x RESUMEN

análisis sólido y preciso (por ejemplo, la obtención del tiempo de ejecución de peor caso

(WCET)) sólo se puede realizar sobre el código binario. Para aquellos casos en los que la

forma binaria es la única representación del programa que se contiene toda la información

necesaria para el análisis, esta tesis proporciona los elementos necesarios para analizar el

conjunto de instrucciones ARM. Este conjunto de instrucciones difiere considerablemente

de la representación intermedia de LLVM. En particular, identificamos las diferencias

principales como una semántica diferente para las instrucciones y la ausencia de un Grafo

de Control de Flujo (CFG) explícito. A fin de poder aplicar las mismas técnicas sobre el

código intermedio LLVM y el código binario, deberemos por tanto ser capaces de obtener

el CFG a partir del código binario, lo cual presenta varios desafíos:

• El uso de instrucciones de salto dependientes del valor de un registro es predomi-

nante en el lenguaje ensamblador. El valor concreto que dichos registros toman en

ejecución no se puede determinar de forma estática a partir del código binario, por

lo que se requiere un análisis más profundo.

• Varias instrucciones tienen diferentes sucesores dependiendo del contexto.

• La presencia de lazos complica la reconstrucción del CFG a partir de trazas de

ejecución.

La segunda parte de esta sección presenta una herramienta para reconstruir el CFG a

partir del código binario ARM. Estos resultados se utilizarán más adelante en la tesis para

calcular los tiempos de ejecución del peor caso y para analizar propiedades del código

binario.

Capítulo 3: Simulación

El objetivo de este capítulo es comprender las propiedades no funcionales del sistema a

través de la simulación.

El capítulo comienza con una revisión del estado del arte respecto a diversas técnicas

para analizar las características no funcionales de un programa. Basándonos en esta

xi

revisión bibliográfica, hemos detectado una falta de herramientas que estén disponibles

en las primeras etapas del flujo de diseño, cuando ni la plataforma ni el programa se

han optimizado con un objetivo particular en mente. Sin embargo, es en estas primeras

etapas del proceso de diseño donde se puede explorar el mayor beneficio de la interacción

entre hardware y software. En lugar de reducir el nivel de descripción de todo el sistema

a niveles más precisos de detalle, proponemos dividir el dominio de simulación en tres

subdominios y proporcionar técnicas rápidas pero razonablemente precisas para simular

cada uno de estos dominios. Cada uno de dichos sub-dominios se analiza en una sección

diferente:

Simulación de plataformas con un solo núcleo (Sección 3.4).

Esta sección explica el desarrollo de una herramienta que realiza simulaciones rápidas de

plataformas genéricas de un solo núcleo basándose en la instrumentación introducida

en el primer capítulo. Al proveer diversos niveles de abstracción en el equilibrio entre la

velocidad de simulación y la precisión, concluimos que se pueden obtener resultados de

simulación rápidos (alrededor de 2 órdenes de magnitud más rápido que un simulador

de tipo ISS) y precisos (alrededor del 20%). La utilidad de estas técnicas se ilustra con un

ejemplo del undécimo desafío de diseño de MEMOCODE. El ejemplo muestra cómo un

análisis cuidadoso de las cachés, así como las instrucciones del microcontrolador puede

reducir a la mitad el tiempo de ejecución de un programa moderadamente complejo

cuando se ejecuta en una plataforma de un solo núcleo.

Simulación de plataformas Many-Core (Sección 3.5).

Esta sección detalla las extensiones que se han realizado en la herramienta de simulación

descrita anteriormente para permitir la simulación de plataformas many-core. La utilidad

de estas técnicas se ilustra con un ejemplo del “Intel Modern Code Challenge”; una

competición organizada en colaboración entre Intel Corporation, la Organización Europea

para la Investigación Nuclear (CERN) y la Universidad de NewCastle. Gracias a las técnicas

y herramientas descritas en esta sección, el tiempo de ejecución de un programa que

xii RESUMEN

realiza complejas simulaciones biológicas se mejora por un factor de 320x.

Simulación de plataformas con aceleradores hardware (Sección 3.6).

Actualmente, los sistemas embebidos están compuestos generalmente por una parte

hardware y una parte software. El proceso de decidir qué elementos de la funcionalidad

se implementan en el software y cuáles se sintetizan como hardware es esencial para el

buen desarrollo de todo el sistema. Sin embargo, las herramientas actuales que ayudan

a realizar este proceso de “particionado” tienen varias limitaciones que dificultan dicho

proceso. Además, normalmente requieren múltiples transformaciones manuales en el

código fuente que se va a implementar en hardware y, por lo tanto, no son adecuadas para

una evaluación flexible y rápida del beneficio de los diferentes esquemas de particionado.

Esta parte de la tesis presenta una herramienta que no requiere transformaciones manuales

del código y por lo tanto puede ayudar efectivamente en el proceso. Los beneficios de la

herramienta se presentan con un ejemplo que consiste en reconstruir el volumen convexo

de un conjunto de siluetas tomadas de varias cámaras. El uso de estas técnicas ayuda a

desarrollar una solución que supera por un factor de 3 los resultados presentados por

otras técnicas del estado del arte.

Análisis Térmico (Sección 3.7).

Esta sección comienza motivando la importancia de la simulación del comportamiento

térmico de un sistema embebido. El análisis de dicho comportamiento permite la detección

temprana de problemas que en otro caso podrían no ser detectados hasta meses después

de que el sistema haya salido al mercado, incluyendo la degradación del substrato por

estrés térmico o la pérdida de rendimiento por el sobrecalentamiento del chip. Dicha

evaluación es compleja puesto que combina el análisis de parámetros hardware, software

y térmicos. En esta sección la herramienta de simulación descrita anteriormente se

integra con un simulador térmico de modo que permita la consideración conjunta del

comportamiento térmico junto con la evaluación de rendimiento. La herramienta se evalúa

mediante la simulación de un sistema heterogéneo en el que se codifica y decodifica audio

xiii

y vídeo de forma concurrente, a la vez que se modela la interacción entre los parámetros

térmicos del sistema-en-chip y las políticas de escalado de voltaje y frecuencia (DVFS).

En el citado ejemplo se demuestra que el entorno propuesto permite la detección de

problemas térmicos en las primeras etapas del flujo de diseño, permitiendo la exploración

de diferentes alternativas tanto en el dominio software como en el hardware.

Capítulo 4: Verificación

En la parte anterior de la tesis nos hemos centrado en técnicas de simulación. Una deficien-

cia importante de este enfoque es que las conclusiones obtenidas mediante simulaciones

no se pueden generalizar a otros escenarios que no hayan sido explícitamente indicados en

los patrones de test. En esta parte nos centramos en cómo probar o refutar la presencia de

comportamientos no deseados incluso considerando que la entrada del programa puede

ser arbitraria, y por lo tanto no sabemos de antemano qué instrucciones se van a ejecutar.

En la parte introductoria de este capítulo se muestra cómo la instrumentación descrita

en el Capítulo I puede utilizarse para obtener una representación lógica del estado actual

del programa. Dicha representación simbólica combina un conjunto de posibles estados

concretos del programa en una fórmula que los representa matemáticamente. Tener una

representación simbólica del estado del programa permite analizar su comportamiento

para cualquier entrada y no sólo para los casos concretos que están incluidos en los

vectores de prueba (tal y como ocurre en simulación).

Guiar la ejecución simbólica con análisis estático (Sección 4.5).

A pesar de que esta descripción matemática de un programa es más generalizable que

una representación concreta, incluso el estado simbólico será demasiado grande para ser

manejable en programas de complejidad media. Este es un problema bien conocido en

verificación y es la principal causa que dificulta su aplicación práctica, lo cuál se traduce en

la presencia en el análisis de falsos positivos (avisos sobre errores que no están presentes en

el programa) o falsos negativos (omisión de errores). En la primera parte de este capítulo

presentamos una combinación de análisis estático y ejecución simbólica para minimizar

xiv RESUMEN

falsos positivos y falsos negativos, manteniendo al mismo tiempo la escalabilidad del

análisis. Para la evaluación de dicha solución integrada usamos los benchmarks de SV-

COMP; un conjunto de programas comúnmente empleados en la comunidad de verificación

automatizada para resaltar complejos problemas de verificación y para probar la madurez

de las herramientas de verificación automáticas. La técnica presentada tiene una tasa

de detección del 98 % y es capaz de probar la ausencia de errores en un 35 % de los

programas.

Verificación del tiempo de ejecución de peor caso (Sección 4.6)

En esta parte de la tesis nos centramos en verificar el comportamiento temporal de

sistemas embebidos denominados “safety-critical”. Para ello se extienden las técnicas

anteriores enfocadas en la funcionalidad del programa a la verificación de propiedades no-

funcionales, centrándonos en la obtención del tiempo de ejecución de peor caso (WCET).

En esta sección se hace particular énfasis en los siguientes puntos: 1) El resultado de la

estimación es un límite superior, y no proviene de la simulación de varios casos concretos,

2) la estimación del tiempo de ejecución de peor caso se espera que sea precisa o la

implementación del sistema incurrirá en costes derivados de una aproximación muy

pesimista y 3) la obtención del tiempo de ejecución de peor caso de un programa sobre

un sistema embebido requiere de un modelo formal de la plataforma.

Las técnicas empleadas en la sección anterior para probar las propiedades funcionales

se extienden en esta sección, en la que describimos un modelo formal del microcontrolador

ARM920T realizado en UPPAAL y su integración con el resto de las técnicas desarrolladas

en la tésis. La técnica desarrollada tiene las siguientes ventajas en comparación con los

métodos anteriores descritos en el estado del arte:

• El método descrito opera directamente con el programa binario por lo que no

requiere anotaciones manuales en el código ni la detección de vínculos entre la

representación de alto nivel del programa y el código binario final. Con los re-

cientes avances en los compiladores, este proceso de anotación se ha vuelto muy

discutible, ya que el compilador introduce transformaciones que pueden romper la

xv

correspondencia entre las representaciones de alto y bajo nivel del programa.

• El enfoque es robusto contra las denominadas “timing anomalies”.

• El enfoque no supone un estado inicial de los elementos software ni hadware del

sistema.

La herramienta presentada se ha evaluado con un subconjunto de los benchmarks

de Mälardalen, un conjunto de programas centrados en la presentación de ejemplos

complejos para el análisis automático del tiempo de ejecución de peor caso.

Combinación de la representación simbólica con UML/OCL (Sección

4.7)

El uso de modelos formales para describir las primeras versiones de la estructura y el

comportamiento de un sistema con UML y OCL se ha convertido en una práctica común

en la industria. Sin embargo, los resultados de la verificación normalmente no se vuelven

a utilizar en etapas de diseño posteriores. De hecho, se aplican de nuevo tareas de

verificación similares, por ejemplo, una vez completada la implementación. Esto es una

tarea redundante, pero los métodos existentes no permiten transferir los resultados de

verificación desde el nivel formal de especificación hasta el nivel de implementación.

En este capítulo, abordamos este problema combinando la representación simbólica del

programa con una representación simbólica de la especificación UML/OCL.

La metodología propuesta se aplica para verificar un indicador de giro empleado en

un contexto automovilístico. Para evaluar las capacidades de la metodología propuesta,

introducimos algunos fallos en el diseño y demostramos cómo el enfoque presentado

puede ayudar en la detección de dichos errores u otros similares.

xvi RESUMEN

Contents

Agradecimientos v

Resumen vii

List of Figures xxi

List of Tables xxv

1 Introduction 1

2 Instrumentation 9

2.1 Instrumentation . 10

2.1.1 LLVM Instrumentation . 12

2.1.2 Implementation . 20

2.2 Binary Analysis . 20

2.2.1 Scope . 20

2.2.2 Difficulties in the analysis of binary code 21

2.2.3 Control-Flow-Graph reconstruction from binary code 23

2.2.4 Algorithm for reconstructing the Control-Flow-Graph 23

2.2.5 Implementation . 30

2.2.6 Results . 31

3 Simulation 37

xvii

xviii CONTENTS

3.1 Introduction and state-of-the-art . 37

3.2 Limitations of the state-of-the-art techniques 40

3.3 Overview of our approach . 42

3.4 Simulating the CPU part of the system . 44

3.4.1 Introduction . 44

3.4.2 State of the art . 44

3.4.3 Our approach . 45

3.4.4 Results . 50

3.4.5 Optimization example . 52

3.4.6 Conclusions . 58

3.5 Simulation of the many-core part of the design 59

3.5.1 Introduction . 59

3.5.2 Our approach . 59

3.5.3 Optimization example . 64

3.5.4 Conclusions . 73

3.6 Simulation of hardware accelerators . 74

3.6.1 Introduction . 74

3.6.2 Our approach . 78

3.6.3 Results . 82

3.6.4 Optimization example . 85

3.6.5 Conclusions . 90

3.7 Simulation of the thermal behavior . 91

3.7.1 Introduction . 91

3.7.2 State of the art and related work . 92

3.7.3 MPSOC thermal estimation . 93

3.7.4 Experimental results . 96

3.7.5 Conclusions . 100

4 Verification 103

4.1 Introduction . 103

CONTENTS xix

4.2 State of the art . 106

4.2.1 Dynamic analysis . 107

4.2.2 Static analysis . 109

4.3 Limitations of the state-of-the-art techniques 112

4.4 Symbolic representation of the program state 113

4.5 Combination with Static Analysis . 121

4.5.1 Introduction . 121

4.5.2 Static Analysis as implemented in Goanna 123

4.5.3 Our approach to combine Static Analysis and Dynamic Execution . 125

4.5.4 Experiments . 126

4.5.5 SV-COMP Benchmark Results. 128

4.5.6 Conclusions . 130

4.6 Verification of non-functional properties . 131

4.6.1 Introduction . 131

4.6.2 The WCET problem . 131

4.6.3 Proposed solution . 133

4.6.4 Hardware model . 135

4.6.5 Tool chain . 139

4.6.6 Results . 142

4.6.7 Hardware refinement . 142

4.6.8 Conclusions . 147

4.7 Combination with UML/OCL Specification . 147

4.7.1 Introduction . 147

4.7.2 UML/OCL in “modelchecker” . 150

4.7.3 Our combined approach . 152

4.7.4 Case Studies . 159

4.7.5 Conclusions . 164

5 Conclusions 167

5.1 Application example . 174

xx CONTENTS

6 Conclusiones 179

References 189

List of Figures

2.1 Example of an optimization in which the compiler removes various loops 12

2.2 Example of instrumentation . 13

2.3 Instrumentation of a conditional branch instruction 16

2.4 Example showing the importance of maintaining the dynamic scope when

creating new annotated variables . 17

2.5 Example of an (erroneous) recursive computation due to an invalid naming

of instrumented variables . 17

2.6 Instrumentation for array access . 19

2.7 Illustrating example . 24

2.8 CFG of program in Figure 2.7 . 25

2.9 First iteration of the expand phase of the CFG reconstruction. 27

2.10 First phase of the analysis. Coarse slicing and sp computation. 28

2.11 Second phase of the analysis. Accurate final slice. 29

2.12 Architecture of the implemented prototype, languages and interfaces . . . 31

2.13 CFG of some medium-sized implementations. 34

2.14 CFG of some medium-sized implementations. 35

3.1 How design decisions affect the final characteristics of a system 42

3.2 Time-Estimation methodology . 47

3.3 Example of code instrumentation . 48

3.4 Speed-up and error of the different methods considered 52

xxi

xxii LIST OF FIGURES

3.5 Function call graph of Emulate8080Op . 54

3.6 RaspberryPi System-on-Chip architecture . 55

3.7 Relative effect of the techniques discussed in 3.4.5. 57

3.8 Double Hierarchy of communications in a modern many-core architecture 60

3.9 APIs involved in OpenMP parallelization and estimation 61

3.10 Localization of variables based on OpenMP pragmas 63

3.11 Data flow of the initial implementation. 66

3.12 Effect of different parallelization techniques 72

3.13 Typical codesign process . 75

3.14 Architecture of the HW/SW Platform . 80

3.15 ASAP scheduling for eight simple operations 81

3.16 Experimental setup . 83

3.17 Comparative results of the different techniques presented in this section . 84

3.18 Reconstruction and several views in visual hull 86

3.19 Classic ray-tracing equations for voxel projection. Camera transformations. 87

3.20 (a) Chip divided into cells. (b) Equivalent RC circuit. 94

3.21 Example of floorplan architecture model file. 95

3.22 Simulation environment to estimate MPSoC temperatures 96

3.23 Thermal Simulation Flow . 96

3.24 Floorplans used in accuracy comparison . 97

3.25 Transient thermal estimation comparison . 99

3.26 Floorplan used in the example . 100

3.27 Transient temperature estimation with thermal management policies applied.100

4.1 Example showing the difficulties of finding the worst-case execution time

of a program . 104

4.2 Over and under-approximation of program semantics 107

4.3 Example to illustrate computation of the WCET 110

4.4 Modified version to illustrate the importance of refinement 113

4.5 Implementation and testing of function min. 114

LIST OF FIGURES xxiii

4.6 Annotated Control-Flow-Graph of the function min_wrong 115

4.7 SMT description of functions min, min-wrong and min_specification . . . 119

4.8 Model-checking min and min_wrong against the specification 120

4.9 Static analysis approach . 124

4.10 Architecture of the combined approach . 125

4.11 Overflow detection . 127

4.12 Main concepts in timing analysis . 133

4.13 Simplified ARM920T architecture . 136

4.14 Pipeline of the ARM920T . 139

4.15 Timed Automata for F, D, E, M and W Stages (pipeline ARM920T). 140

4.16 Instruction Cache automaton FullCache . 141

4.17 The tool chain of WUppaal . 141

4.18 Simple program represented as an automaton in UPPAAL 144

4.19 A small cache model . 144

4.20 Trace Abstraction Refinement Algorithm for computing WCET 146

4.21 Envisioned verification flow . 148

4.22 Correlation of variables . 159

4.23 Needed run-times to verify the scalable example 160

4.24 An industrial example: turn indicator . 161

4.25 Faulty (and corrected) implementations of the running example. 163

4.26 Counterexample showing the error in List. 4.7.4 164

xxiv LIST OF FIGURES

List of Tables

2.1 Mälardalen reconstruction results . 33

3.1 Speed-Up and Error in the methods considered 51

3.2 Relevant parameters of destination platform 55

3.3 Simulation parameters for ‘small’ and ‘huge’ testcases. 71

3.4 Timing and ocupation results . 89

3.5 Processing time of our proposal compared with two recent implementations. 90

3.6 Thermal estimation accuracy . 98

3.7 Timing comparisons . 99

4.1 Execution of the trace (a,t,b,t,c,t,d) . 117

4.2 All feasible traces in graph 4.6 . 118

4.3 Results of each engine and the integrated solution 129

4.4 Experimental results . 142

4.5 States explored for computing the WCET. 145

xxv

xxvi LIST OF TABLES

1
Introduction

From the most mundane activities of our daily lives, such as listening to music or

cooking, to the most formidable endeavors of humankind, such as space exploration,

modern embedded systems play a fundamental role in almost all enterprises of our society.

Considering that simple calculators devoted to the narrow task of solving differential

equations were of the size of a house not so long ago, this is an impressive achievement,

to say the least. Still, we are nowadays surrounded by these devices and barely notice

or appreciate it. When we drive, they take great care that the powerful machinery that

we are operating works in a harmonic and controlled way; when we fly, they measure

hundreds of variables per second and orchestrate the complicated process of moving a

plane from one place to another; they monitor and in some cases control our heartbeats

when we are sick, and keep us in touch with our beloved families and friends when we are

away. When they do not fail, embedded systems just make us forget about their existence

so we can use our time for more important tasks.

1

“enforme de pogresos 1 marso 3”

– Daniel Keyes, Flowers for Algernon

2 INTRODUCTION

However, the process of designing those systems, as well as their operations, is far from

trivial. To correctly integrate the nearly four billion transistors that modern platforms

are composed of, the designers need to be proficient with different hardware platforms,

compilers, debuggers... as well as the so-called CAD tools to integrate them all together

and deal with the vast design space. This thesis aims to provide tools, methodologies,

and techniques to help in this labor. In particular, we will concentrate on the design of

real-time embedded systems with a special focus on their timing behavior.

Unlike other generic computing systems, real-time computing systems (sometimes

called “reactive systems”) interact with their environment and need to provide results at

a pace that is regulated by the environment that they have to control. Therefore, their

correctness depends not only on the fact that they can perform some computation but

also on the fact that they can deliver a result before a specified deadline. For example, the

anti-blocking system controller in modern cars has to analyze the environment in which it

operates (the vehicle speed, the terrain in which it is moving, the steering of the wheels,

etc.) and compute the frequency at which the brake is activated in a fraction of a second.

This short time frame is as important as (or even more important than) the result of the

computation per se, and if the computation exceeds this deadline, the system integrity is

at stake.

Therefore, the design of embedded systems usually faces particular problems very

different to the ones that arise when creating programs that compute a result, and then

terminate. On the one hand, the functionality itself challenges the design of embedded

systems when they execute complex algorithms. For example, the encoding of video

requires the computation of non-trivial digital signal processing tasks, such as filtering and

signal transformations. Non-functional requirements also constrain embedded systems.

Some of these constraints are the cost (determined by the selection of the microprocessor,

memory, and I/O devices), and (sometimes more importantly) time and energy. These

constraints vary between different application cases, but the effect of missing a temporal

deadline may range from a subtle annoyance to the loss of human lives.

Real-time requirements, however, are not always so dramatic to harm people. Even

when many presentations about verification start with pictures about rockets in flames or

3

catastrophes caused by software miss-operations, the number of those events that can

be directly associated with design mistakes are rather low (arguably, thanks to designers

that do those presentations). In many other cases, missing a deadline is not catastrophic,

and therefore, non-functional requirements are classified in hard and soft requirements.

Applications such as the anti-lock braking system or the air-bag are said to be under hard

real-time constraints because missing the deadline can cause enormous losses or even

loss of life. These systems are said to be safety-critical and usually interact directly with

the physical equipment that they control. On the other side of the spectrum, encoding

a video stream must be reasonably fast and power-efficient, but it is said to require

soft real-time constraints. Even though the system is required to operate at a certain

rate by the specification, missing the deadline results in a degradation of the quality of

the service but this quality loss is usually acceptable. Soft real-time applications often

require a probabilistic guarantee that the execution time is within certain bounds. As

a consequence, simulation is commonly used in the first stages of the design flow to

understand the behavior of the system under certain assumptions about the initial state,

and verification is used in the last stages to prove that the expected behavior is correct given

any initial state. There is, therefore, a subtle balance to keep to make the most of the tools

used during the different phases of the design of embedded real-time systems. In the early

stages of the design, fast tools are required that do not require many transformations or

annotations of the source code, in order to be able to simulate the different configurations,

and that can quickly disregard those that are unfeasible. In the last stages of the design,

the tools are required to be formal and accurate, in order to ensure certain properties

of the final product. It is also useful to be able to use some of the information collected

during the early phases of the design to accelerate the (otherwise costly) computations

that are required for the verification of the last stages of the design. In this dissertation,

Chapter 3 presents a simulation framework that is quick and requires minimal annotation

and manual transformations of the source code, Chapter 4 presents some verification

techniques that can re-use the verification results, from the early stages of the design flow,

in the later phases.

4 INTRODUCTION

In this complicated scenario, some of the questions that might arise during the devel-

opment of these systems, are as follows:

• Which platform to choose? Nowadays there are a large variety of platforms to

choose from, in order to implement functionality. In some of them, we can also

make a choice between different amounts of memory or different CPUs. The simple

option of choosing the most powerful platform is deemed ineffective if we have

to take into consideration the cost. Many platforms might meet our requirements,

but many are too expensive to consider. To be able to quickly test many hardware

configurations and choose the most cost-efficient solution, we require the possibility

of obtaining quick estimates about the performance of the code in different hardware

and configurations. Chapter 3 of this dissertation presents several techniques that

enable this rapid iteration over different configurations.

• How do the various parameters of the platform affect the execution time? If the

selected platform does not meet the requirements, it might seem obvious that a

solution can be to increase the CPU frequency. Unfortunately, reality is not that

simple; the CPU clock rate might have little effect on the execution time since the

program may be limited by the speed or size of the memory, a bottleneck in a bus,

congestion in the Network On Chip (NoC), a poor parallelization scheme or the input-

output rate. Even in the case that the computation is limited by the frequency of the

CPU, solely increasing it might increment the temperature of the chip, dramatically

boosting the power consumption and reducing the reliability of the system in the

long term. If the chip is equipped with dynamic voltage and frequency scaling

(DVFS) capabilities, the increased temperature might make the chip to switch to a

less performant mode. In this dissertation, Chapter 3 presents a holistic simulation

framework that can explore the interactions between the performance of the chip

and the temperature, which is useful for detecting this kind of problem.

• Will it work? In conclusion, will the complex system still work when operated in

an environment in which it may not have been tested before and during a period

that might span several orders of magnitude the testing time? Reliability is of

5

particular importance in safety-critical systems and especially when dealing with

non-functional validation. These errors may be so harmful that fixing them can

require restarting the design from the very beginning and, in some cases, even re-

considering the requirements. Traditional design cycles have focused on functional

correctness and relegated the non-functional analysis to the last phases of the design.

This methodology (comically called the “fix-it-later” approach by Connie U. Smith

[SW02]) is no longer valid for modern embedded systems. If we wait until the

system is running to analyze the non-functional properties, when we are able to do

so, it will be too late. The number of errors may be overwhelming and impossible to

fix. In this dissertation, Chapter 4 presents a tool that can detect functional errors

based on a specification given in UML/OCL language.

The computational complexity of obtaining safe bounds for the non-functional proper-

ties of a system is related with the certainty with which we provide our answer. Computing

the exact value of the worst-case execution time (for example) is an NP-Hard problem

that is unattainable even for the most simple cases and simply impossible for real-case

scenarios. The approach that this thesis will follow will be to bind these properties in

between two values; a lower bound will be provided by the simulation of feasible traces,

and an upper bound will be provided by eliminating infeasible traces in an abstract do-

main. Even when the idea of combining formal techniques with non-functional estimation

is not a novel one, the particular details of the implemented ideas and techniques dis-

cussed in this thesis are. In particular, this dissertation advances the theory and practice

of the analysis of non-functional properties with an emphasis on the combination of

native simulation, symbolic execution, and static analysis. The particular combination

of these techniques provides a methodology with the following advantages over other

state-of-the-art methods.

• The first part of this thesis (Chapter 3) describes several advances in a native simu-

lation technique that enables to obtain estimates about non-functional requirements

in the early stages of the design flow. These estimates only require a rough model

of the platform under development and, unlike other state-of-the-art techniques, do

6 INTRODUCTION

not need a precise modeling of the instruction set, memory mapping, or functional

models of the peripherals. This particular focus on the early stages of the design

flow is motivated by the need to choose a valid platform when the application has

not been optimized yet for any particular target. We also describe a technique

and implementation details about how to obtain performance estimations in de-

signs where only a rough partitioning between hardware and software elements is

available. Being able to quickly estimate the effect of accelerating some sections of

the code in a hardware accelerator before the tedious work of implementing such

parallelization is a significant time-saver and a key element in the effective design

flow for heterogeneous embedded devices.

• The second part of this dissertation (Chapter 4) addresses a well-known problem of

simulation when applied to ensuring certain properties in the design of embedded

systems. As the input of the program and the hardware is unknown, even when

a simulation is certainly useful to analyze and understand some properties of the

system, the observed behavior offers just a limited view of all the possible evolutions.

This partial view is limited to the executions observed in the test-benches. To be

able to extend the set of observed behaviors automatically, we describe a symbolic

execution framework for LLVM programs that generates traces that can be used as

candidates to find falsification conditions for properties of programs. We avoid

exploring useless traces combining the symbolic execution technique with static

analysis. We also extend these techniques developed for the verification of functional

properties to the domain of worst-case execution time. In contrast to other state-of-

the-art techniques, the described method provides safe and tight bounds, is entirely

automated, and does not require a manual mapping between the source code and

the final executable.

• In the conclusion part, we wrap up with observations about the techniques and

considerations described in previous chapters concerning the benefits that their

combination brings to the analysis and design of embedded real-time systems. The

requirements of the design toolset change considerably during the different phases

7

that are involved in the creation of an embedded system. Therefore, it is important

to analyze how our design tools can adapt to these changing requirements, how we

can integrate the results from the early phases of the design into following steps,

and how we can join the analysis produced at different abstraction levels to draw

conclusions about the non-functional characteristics of the final result.

8 INTRODUCTION

2
Instrumentation

Most of the techniques described in this thesis can be classified as “Native Simulation”.

In this approach, the source code is compiled and run in the developer host computer,

but during its run, some extra functionality enables to obtain performance measurements

about how the code would behave when running on the target platform. To implement

these techniques, the code needs to be “instrumented” with extra functionality (function

calls in our case) to perform the estimation. These functions run jointly with the executable,

usually without modifying the original behavior, but computing some extra information

that may be useful for the developer or the designer. This information is called “metadata”

by Nicholas Nethercote in his dissertation [Net04]. Nicholas describes in his thesis how

this metadata is crucial for dynamic analysis and establishes some terminology that we

will borrow in this chapter.

In our approach the code is statically instrumented; we add the instrumentation

before running the program, in a phase that transforms the intermediate representation

9

Architectural Exploration

HW/SW Partitioning

Interface definition

Source-Code

modification

Compilation

Instrumentation

Source-Code

modification

Optimizations

Area/Time

Considerations

Testbench

Creation

Simulation

Verification

Functional

Verification

Non-Functional

Verification

10 INSTRUMENTATION

generated by the compiler before producing the final executable. This instrumentation

includes (but is not limited to) function calls. An example of this kind of instrumentation

is adding a function call to ADD_OPERATION("r1", "r2", "r3") after the addition of

two registers. These ‘hooks’ are added automatically by an optimization pass. During

the compilation process, the executable is linked with libraries that implement the newly

added operations. Libraries perform different analysis that we will describe in subsequent

chapters of this dissertation; in general, they update a mapping between variables and

their metadata. We say that every real operation performed by the code is “shadowed” by

an equivalent operation provided by the analysis framework. In Chapter 3, this metadata

is related to the parameters that affect the power consumption and the execution time in

single, many-core and hardware accelerated systems, such as cache hits/misses, bus and

NoC transactions or the temperature in various elements of the hardware. In Chapter 4,

we associate the metadata with a logical formula that we use to express some properties

that hold during the execution of the program.

The different techniques described in this dissertation are different instances of “shad-

owing” functions. As all of them require some common functionality; that functionality

will be described in this chapter and referred later when needed.

2.1 Instrumentation

The first step is to instrument the code using “instrumentation functions”. This instrumen-

tation could be performed by hand, but the process would be arduous for medium or big

sized programs, so we will automate this step by providing optimization passes that will

do the instrumentation for us.

[Net04] describes two types of instrumentation depending on the type of code that is

instrumented:

• In “source code” instrumentation, the program is instrumented at the level of source

code. This category includes analysis performed over the textual representation

of a program. Those analyses, therefore, have high-level information about the

code at their disposal such as the hierarchical decomposition of datatypes or the

2.1 INSTRUMENTATION 11

control-flow-graph. In Chapter 3, we present a simulation tool that can be used to

simulate the execution time of a program when running on a platform by inspecting

the source code at a high level of abstraction (C source code).

• In “binary analysis”, the program is analyzed at the level of machine instructions.

As the counterpoint of “source code” analysis, those categories lack information

about the high-level description of the source code, but have detailed information

about the final form that it takes when running on the platform. Compilers usu-

ally perform many optimization steps between the initial textual representation

and the final binary form. Examples of those transformations include converting

recursive functions into iterative ones, combining loops or inlining functions. As

the consequence of these transformations, the final representation of the code can

be substantially different in its original and binary forms (an example of this can be

seen in Figure 2.1). Therefore, estimation tools based on “binary analysis” tend to be

more accurate in their analysis of the program, but the lack of high-level information

complicates the implementation and limits the availability of those tools in the early

stages of the design. In Chapter 2, we present a tool that can reconstruct high-level

information (the control-flow-graph) from the binary representation of a program,

easing the implementation of various analysis such as the derivation of bounds of

the worst-case execution time, as we show in Chapter 4.

In addition to the two representations described before, this dissertation emphasizes

the importance of considering intermediate levels of abstraction in the analysis of programs.

In [GADSSE10] we perform tests about the accuracy and speed of different techniques

situated at various points of the spectrum. The results obtained in this analysis motivated

the implementation of an instrumentation and analysis framework that lies between the

two “levels” mentioned before: In “Intermediate Representation” analysis, we perform

the instrumentation over a representation of the program that is an intermediate step

between the source code and the binary executable. These intermediate representations

have proved to be valuable in the development of compilers allowing much more code

reuse than its monolithic counterparts. In Section 2.1.1, we present an instrumentation

12 INSTRUMENTATION

1 int main(int argc , const char *argv []) {

2 int a = 5;

3 int i, ret1=0, ret2=0;

4

5 for (i = 0; i < argc; i++) {

6 ret1 += a;

7 }

8

9 for (i = 0; i < argc; i++) {

10 ret2 += a;

11 }

12

13 return ret1+ret2;

14 }

1 main:

2 cmp r0, #0

3 movle r0, #0

4 addgt r0, r0, r0, lsl #2

5 mov r0, r0, asl #1

6 bx lr

FIGURE 2.1: Example of an optimization in which the compiler removes various loops. As we
can see, in the presence of optimizations, it can be very difficult to relate the high and the low-level
representations of the code.

strategy that operates over the intermediate representation of the program generated by

the LLVM compiler.

2.1.1 LLVM Instrumentation

For the techniques described in the following chapters of this dissertation, we have used

LLVM-IR as the intermediate language to implement our instrumentation functions.

The following sub-sections will describe which elements of the intermediate represen-

tation are instrumented and how. For the ease of understanding, some of the run-time

functionality that goes along with the instrumentation will be described as well, especially

when it is common to various run-time libraries described in the following chapters. We

will refer to this section when needed.

Simple example Figure 2.2 (left) presents a C-Code and the equivalent LLVM represen-

tation with some operations we want to instrument. The purpose of the instrumentation

presented in the present section is to add the instrumentation function calls that appear

in Figure 2.2 (right) in an automated way. The semantics (the action that each function

2.1 INSTRUMENTATION 13

1 int main() {

2 int a,b;

3 return a+b;

4 }

1 define i32 @main() {

2 entry:

3 %ret = alloca i32

4 %r = alloca i32

5 %a = alloca i32

6 %b = alloca i32

7 %r1 = load i32* %a

8 %r2 = load i32* %b

9 %r3 = add nsw i32 %r1 ,%r2

10 store i32 %r3 ,i32* %r

11 %r4 = load i32* %r

12 store i32 %r4 ,i32* %ret

13 br label %return

14

15 return:

16 %ret1 = load i32* %ret

17 ret i32 %ret1

18 }

1 define i32 @main() nounwind {

2 entry:

3 call void beginSim ()

4 call void beginFn ("main")

5 call void beginBb ("entry")

6 ...

7 %a = alloca i32

8 call void allocaInstr ("a","i32")

9 %b = alloca i32

10 call void allocaInstr ("b","i32")

11 %r1 = load i32* %a

12 call void loadInstr ("r1","a")

13 ...

14 %r3 = add nsw i32 %r1 ,%r2

15 call void binaryOp ("r3","r1","r2","+")

16 ...

17 call void endBb("entry")

18 br label %return

19

20 return:

21 call void beginBb (" return ")

22 %ret1 = load i32* %ret

23 call void loadInstr ("ret1","ret")

24 call void returnInstr ("ret1")

25 call void endBb("entry")

26 call void endSim ()

27 ret i32 %ret1

28 }

FIGURE 2.2: Example of instrumentation. Note that some simplifications have been introduced
in the annotated code for the lack of space (text between quotes in the instrumented code needs
to be declared as a global variable and needs to be passed to the instrumentation functions as a
pointer).

performs when called) depend on the analysis that is performed and will be explained in

later chapters of this dissertation. Note that we might not need all the instrumentation

for every analysis, so we might be interested in enabling or disabling the instrumentation

of certain elements selectively.

To systematically annotate the variety of instructions from the LLVM intermediate

representation, we analyze the instrumentation of the following elements:

14 INSTRUMENTATION

• Operations: Instrumentation added to the program when two or more registers are

operated to produce a result.

• Control-Flow: Instrumentation added to the instructions of the LLVM-IR responsible

for controlling the execution flow of the program (branches and function calls).

• Structural instrumentation: Instrumentation added to handle specific events in the

execution of the program that are not associated with any particular instruction

(such as starting the simulation or entering and exiting a function)

• Memory handling: Instrumentation added to obtain information about the memory

utilization, such as pointer arithmetic, load/store instructions or operations with

the stack and/or heap.

Operations: The most simple unit of computation is the update of a register with the

value of computing an operation between two other registers. Operations are instrumented

in the framework with a function call that receives the name of the three registers and

the name of the operation. Some of the comparisons that are involved in dealing with

the control flow of a program can also be seen as binary operations, such as comparing

two registers previous to a jump instruction and storing the value of the comparison (as a

boolean value) in a third register. The supported operations are ≤, <, ≥, < (signed and

unsigned), 6=, =, % (signed and unsigned), left and right shift, and, or, xor, +, −, ∗ and /.

During runtime, the particular analysis that we implement on top of the framework is

responsible for updating the metadata associated with the destination register considering

the input registers as the input to the computation. An example of this instrumentation

can be seen in Figure 2.2.

Control-Flow: Basic blocks in LLVM end with a branch instruction (either conditional or

non-conditional) that transfer the execution to another basic block, possibly conditioned to

a branch condition. Some of the analyses described in the following chapters require from

the run-time library not just to be passively observing the program behavior but to be able

to control the execution flow. Branch instructions are elements where this behavior can

2.1 INSTRUMENTATION 15

happen. If the analysis requires it, the branch instruction can ask to the run-time library

for a successor and branch to that one instead of the one that the execution would dictate.

As we will see, this is particularly useful for verification. Besides this case, however,

the analysis libraries described in this dissertation mostly “observe” the execution, and

only in verification they can interact with the execution flow. We present an example of

instrumenting a conditional branch instruction in Figure 2.3.

Structural instrumentation: While not related to particular instructions, the instru-

mentation also introduces instructions at the beginning and end of functions, basic blocks,

and programs. Some of the analysis presented later on can use these functions to initialize

their internal structures or to cache different information at different abstraction levels

(i.e. information about the execution of a function can be cached at the end_function

instrumentation and reused in the begin_function if the function is called again). Instru-

mentation functions at the beginning and end of a program are also used to initialize

global variables. We present an example of this instrumentation in Figure 2.2.

Memory handling: Related to memory handling, we instrument the instructions in the

LLVM-IR that are responsible for allocating space (alloca), accessing it (getElementPointer,

load and store instructions), and the operating-system functions to implement the heap

(malloc, free, realloc...).

The instrumentation of these instructions is responsible for creating the equivalent

variables that will hold the metadata associated with each register in the original program.

For that, they need the name and the type of the variable. Regarding the name of the

newly created variable, it is important to be able to link the variable back to the original

one present in the code. This link can be complicated not only by the fact that there may

be different variables with the same name in the program (in various statically defined

scopes), but also that the same variable can be treated as different separated entities

during the execution. In the example presented in Figure 2.4 it is important to understand

during execution that the “b” variable in the first example may be overwritten several

times with new information and there is no need to use a newly allocated variable to hold

16 INSTRUMENTATION

1 int main() {

2 char a;

3 if(a)

4 return 1;

5 else

6 return 0;

7 }

1 define i32 @main() {

2 entry:

3 ...

4 %r1 = load i8* %a

5 %r2 = icmp ne i8 %r1, 0

6 br i1 %r2 , label %bb,

label %bb1

7

8 bb:

9 store i32 1, i32* %r

10 br label %bb2

11

12 bb1:

13 store i32 0, i32* %r

14 br label %bb2

15

16 bb2:

17 ...

18 br label %return

19

20 return:

21 %retval3 = load i32* %

retval

22 ret i32 %retval3

23 }

1 define i32 @main () nounwind {

2 entry:

3 ...

4 %r2 = icmp ne i8 %r1, 0

5 call void cmpInstr ("r2","r1","0", "ne")

6 %0 = call i1 brInstrCond ("r2")

7 br i1 %0, label %bb, label %bb1

8

9 bb:

10 ...

11 call void brInstrIncond ()

12 br label %bb2

13

14 bb1:

15 ...

16 call void brInstrIncond ()

17 br label %bb2

18

19 bb2:

20 ...

21 call void brInstrIncond ()

22 br label %return

23

24 return:

25 call void returnInstr (" retval3 ")

26 ret i32 %retval3

27 }

FIGURE 2.3: Instrumentation of a conditional branch instruction. Note that by changing the
value returned by the function “brInstrCond”, the run-time library can decide which branch of the
if statement is followed.

the associated data because only the last one is relevant. However, in the second example,

a new variable needs to be created every time that the execution calls function fib (Figure

2.4), even when the lexical scope of the variables is the same.

2.1 INSTRUMENTATION 17

1 int sum(n){

2 ...

3 for(a=0; a < n-1; a++)

4 b = b + a

5 return b;

6 }

1 int fib(n){

2 ...

3 a = fib(n-1)

4 b = fib(n-2)

5 return a+b

6 }

FIGURE 2.4: Example showing the importance of maintaining the dynamic scope when creating
new annotated variables

1 int fib(int n){

2 ...

3 if(n == 1 || n == 2){

4 n = 1;

5 return n;

6 } else {

7 a = fib(n-1);

8 b = fib(n-2);

9 return a+b;

10 }

11 }

1 fib (3)

2 n = 3

3 a = fib(2)

4 n = 2

5 n = 1

6 ret 1

7 b = fib(n - 2)

8 = fib(1 - 2)

9 = fib(-1)

FIGURE 2.5: Example of an (erroneous) recursive computation due to an invalid naming of
instrumented variables

To account for the different instantiations of variables, the run-time library keeps an

update of the dynamic scope that the program is executing and uses this as a binding

to name new variables. We implement the dynamic scope as a stack of function names

that is updated in every call and return. To see the importance of this disambiguation

of variables, suppose an instrumentation library that just propagates the concrete value

of every variable (the metadata mimics the actual value associated with every register).

Figure 2.5 shows an example of a recursive function, and the (erroneous) computation

tree that would result if the instrumentation does not consider different “names” for the

various instances of the variable “n”.

Once the memory has been allocated, a pointer is used to access to it, and the pointer

operations dictate which particular memory position will be accessed. The getElement-

Pointer operation in LLVM is responsible for handling pointer arithmetic in the intermediate

18 INSTRUMENTATION

representation language. Many high-level constructions such as classes, arrays, struc-

tures, global variables, references, iterators, function pointers, class inheritance and

polymorphism use or directly map to the getElementPointer instruction, and its correct

implementation is particularly important in code that requires a detailed representation

of the memory instead of an abstraction based on mathematical arrays.

The first argument of the getElementPointer instruction is an aggregated datatype;

considered as the base element from which the offset is computed. The second argument

is a vector of pointers. The remaining arguments are the indexes that are used to access

the successive elements of the array. The amount that each index “advances” the offset

relative to the first argument is dependant of the datatype it is associated with.

The annotation pass will, therefore, introduce a function call in the program with

enough information to compute the value of the output register depending on the datatypes

that are used in the getElementPointer instruction (information available statically) as

well as the indexes used in the offsets (information available during run-time).

Because getElementPointer is used to access irregular data structures, we can not

compute the final address as a linear combination of indexes in the general case. Instead,

the annotator introduces a tree in the instrumented code that can be used to retrieve the

offset from the base element based on the indexes values. This tree can be obtained by

recursively analyzing the composite datatypes until we reach the primitive datatypes. We

present an example of this tree in Figure 2.6.

During runtime, the same tree is traversed based on the values of the indexes to

compute the final offset. This offset is later passed to a Load or Store instruction to alter

the memory.

Models for the memory: Despite having an instruction called ‘alloca’, LLVM does not

implement dynamic memory management. All the allocated registers are stored on the

stack, and therefore, its size must be known at compile time. If a developer allocates or

deallocates memory in a dynamic way during execution, the standard library functions

‘malloc’ and ‘free’ will be called instead. These functions also need to be intercepted to

explicitly model the behavior of the heap and be able to provide the counterpart variables

2.1 INSTRUMENTATION 19

1 struct RT {

2 char A;

3 int B[2][2];

4 char C;

5 };

6 struct ST {

7 int X;

8 double Y;

9 struct RT Z;

10 };

11

12 struct ST s[2];

13 s[1].Z.B[1][1];

1 struct.RT = type { i8, [2 x [2 x i32]], i8 }

2 struct.ST = type { i32 , double , %struct.RT }

3 ...

4 r1 = getelementptr [2 x %struct.ST]* %s, i64 0, i64 1

5 r2 = getelementptr %struct.ST* %r1, i32 0, i32 2

6 r3 = getelementptr %struct.RT* %r2, i32 0, i32 1

7 r4 = getelementptr [2 x [2 x i32]]* %r3 , i64 0, i64 1

8 r5 = getelementptr [2 x i32]* %r4, i64 0, i64 1

9 ...

1 call void getElementPtrInst ("r1","s" ,(0,1),tree1)

2 call void getElementPtrInst ("r2","r1",(0,2),tree2)

3 call void getElementPtrInst ("r3","r2",(0,1),tree3)

4 call void getElementPtrInst ("r4","r3",(0,1),tree4)

5 call void getElementPtrInst ("r5","r4",(0,1),tree5)

tree1 60

1

0,4 4,8 1

12,1 16

8

13,4 17,4

8

21,4 25,4

29,1

1

30,4 34,8 1

42,1 16

8

43,4 47,4

8

51,4 55,4

59,1

FIGURE 2.6: Instrumentation for array access

with the metadata information. We will delegate the task of updating the variables mapped

to the heap to the run-time library. To this end, the run-time library contains code that is

common to all analysis passes, which is responsible for handling the heap. A pool of free

variables is created at the beginning of the execution and is kept updated during the run

of the program. ‘malloc’ and ‘free’ are implemented as operations over these variables,

with different levels of detail depending on the analysis that we are performing, as will

20 INSTRUMENTATION

be described in following sections.

2.1.2 Implementation

We have implemented the instrumentation strategy presented as an LLVM optimization

pass. Like other optimization passes, the input of the pass is an LLVM-IR module, that

is then traversed and instrumented according to the specification described in this sec-

tion. The output is an instrumented code also represented in the LLVM-IR intermediate

representation. The source code of the instrumentation pass is part of the different

tools presented in this dissertation, and the most recent version can be downloaded at

https://github.com/pablo-aledo/forest

2.2 Binary Analysis

Even when the usage of higher levels of abstraction in the analysis of programs might

be beneficial as it represents a trade-off between accuracy and speed, certain analysis

can only be performed on binary code. As we will see in Chapter 4, this is the case for

example in the computation of worst-case execution time, where even over-estimated

semantics of intermediate representation instructions might not be enough if we require

a sound analysis of the whole system. For those cases in which the binary form is the only

representation of the program that contains all the necessary information, we provide the

necessary elements to analyze ARM instruction set as well. This instruction set differs

considerably to the LLVM intermediate representation that we have been using until this

point, so the remaining of this chapter is meant to provide a summary of the differences

to explain what we need to be able to analyze binary code.

2.2.1 Scope

Whereas the ARM Reference Manual includes many extensions of the instruction set

and many different architectural decisions, in this work we will focus on a subset of

the instructions that are most relevant for timing analysis of embedded system code.

https://github.com/pablo-aledo/forest

2.2 BINARY ANALYSIS 21

For example, ARM defines the Jazelle extensions that enable native execution of Java

bytecode or the Debug extension that allows engineers to analyze the contents of memory

or registers using special hardware attached to the chip. We will not consider those

extensions in this dissertation.

ARM also uses the concept of coprocessors to support additional instructions such

as floating point operations and NEON instructions. Each coprocessor can define new

opcodes and registers. As the semantics of these opcodes and registers are delegated to

the coprocessor designer, we do not consider them in this dissertation either.

2.2.2 Difficulties in the analysis of binary code

Arguably, the differences between LLVM intermediate representation code and ARM

assembly language can be classified into two groups:

• Supporting the ARM instruction set requires supporting the semantics of the new

instructions, which are substantially different from the LLVM counterparts. LLVM

intermediate representation has been designed with the idea that every instruction

is responsible for doing ‘one single thing’. This is no longer true in the case of ARM

assembly language, in which –for performance reasons–, instructions can include

conditional execution, barrel-shifting, pre/post increment/decrement of registers

involved in the instruction or usage and modification of implicit registers (register

that are not explicitly mentioned in the instruction but that are modified as an

effect of the execution). For example, the ARM assembly instruction POP {R1, R2}

is equivalent to the following LLVM instructions: STORE R1, SP; ADD SP, SP,

4; STORE R2, SP; ADD SP, SP, 4; ADD PC, PC, 4.

• Implementation of control-flow and data-flow computation: In LLVM IR the control-

flow is independent of data computation. This means that registers are operated

with each other via arithmetic operations, and in the cases in which the control-

flow of the program depends on the result of some previous computations, the

dependencies are clearly identified in previous or next instructions via comparison

22 INSTRUMENTATION

and branch instructions. While we can directly map LLVM code to an equivalent

Control-Flow-Graph, this is no longer true in the case of the ARM assembly.

This last difference is commonly referred in the literature as binary bytecode being

“unstructured code”. This term expresses the lack of several attributes of the binary

representation of a program:

• The order in which functions are called is kept when callee functions return to

the caller. For example, if function fn1 calls fn2 and fn2 calls fn3, the order of

calling/returning functions is call fn1, call fn2, call fn3, return to

fn2, return to fn1. In unstructured code, however, the order might be (for

example) call fn1, call fn2, call fn3, return to fn1 .

• The arguments of function calls are clearly identifiable in the function call.

• Code is structured in basic-blocks; sets of instructions that always executes together.

The successor or successors of a basic block are easily identifiable and do not depend

on the content of program variables. This property is violated when advanced

features such as function pointers are used, but these features are not prevalent in

high-level languages.

When the high-level language is transformed into machine code via a compiler, for

performance reasons, these constraints are relaxed. These transformations hinder the

application of software analysis techniques over the binary source code. In particular

• Functions adhere to a calling convention, but neither the order in which we call

functions nor the parameters that we pass to the function are clearly identifiable.

• Indirect jumps are prevalent in binary code, and the destination addresses cannot

always be obtained directly by static analysis. Even though function pointers are

rather scarce in high-level languages, indirect jumps to addresses that are defined

by registers are ubiquitous in binary code. The information about the destination

address of an instruction can not be resolved by statically analyzing the code, using

local reasoning or pattern-matching.

2.2 BINARY ANALYSIS 23

The differences in the semantics of instructions are expected, and in the following

analysis we assume there is a local transformation between instructions in ARM assembly

language and our internal representation for analysis. For example, we can associate the

instruction PUSH r1 with the instructions store r1, sp, sp = sp - 4 and pc = pc

+ 4. We refer to this transformation as local because it only depends on the particular

instruction that we are analyzing, and does not depend on the context that the program is

when we execute the instruction.

However, some of the analysis techniques will require the control-flow-graph of a

program as an input. For example, one of the first steps in the estimation of the worst-case

execution time (as in Chapter 4) is being able to reconstruct the control-flow-graph from a

binary program. This step is of fundamental importance since it is only in the final binary

form where the precise information about the instructions executed by the microcontroller

resides. While LLVM provides this information by design, because ARM assembly language

is unstructured, the reconstruction of the control-flow-graph in binary programs requires

further analysis that we will present in this section.

2.2.3 Control-Flow-Graph reconstruction from binary code

This section introduces a technique that can reconstruct the control-flow-graph from a

binary executable. This CFG will constitute a model of the program regarding WCET com-

putation. In later chapters (Chapter 4), we will derive how this model can be integrated

with a model of the hardware and be used to obtain safe estimations of the worst-case

execution time.

2.2.4 Algorithm for reconstructing the Control-Flow-Graph

In this section, we introduce an example that shows the difficulties of control-flow-graph

reconstruction in binary code. We will deduce what is needed to solve this example and

generalize our approach afterward.

Figure 2.7 (left) shows the program of which we want to compute the CFG. It comprises

two function calls and a non-bounded loop. Figure 2.7 (right) shows the generated

24 INSTRUMENTATION

assembly language by the arm-linux-gnueabi-gcc compiler and Figure 2.8 shows the

final CFG.
1 int fun2(){

2 return 3;

3 }

4 int fun(int n){

5 int a,b;

6 for(a = 0; a < n; a++){

7 b++;

8 }

9 return fun2();

10 }

11 int c_entry (){

12 int n;

13 fun2();

14 return fun(n);

15 }

16

1 00010014 <fun2 >:

2 10014: mov r3, #3

3 10018: mov r0, r3

4 1001c: bx lr

5 00010020 <fun >:

6 10020: push {lr}

7 10024: sub sp, sp, #20

8 10028: str r0, [sp, #4]

9 1002c: mov r3, #0

10 10030: str r3, [sp, #12]

11 10034: b 10050 <fun+0x30 >

12 10038: ldr r3, [sp, #8]

13 1003c: add r3, r3, #1

14 10040: str r3, [sp, #8]

15 10044: ldr r3, [sp, #12]

16 10048: add r3, r3, #1

17 1004c: str r3, [sp, #12]

18 10050: ldr r2, [sp, #12]

19 10054: ldr r3, [sp, #4]

20 10058: cmp r2, r3

21 1005c: blt 10038 <fun+0x18 >

22 10060: bl 10014 <fun2 >

23 10064: mov r3, r0

24 10068: mov r0, r3

25 1006c: add sp, sp, #20

26 10070: pop {pc}

27 00010074 <c_entry >:

28 10074: push {lr}

29 10078: sub sp, sp, #12

30 1007c: bl 10014 <fun2 >

31 10080: ldr r0, [sp, #4]

32 10084: bl 10020 <fun >

33 10088: mov r3, r0

34 1008c: mov r0, r3

35 10090: add sp, sp, #12

36 10094: pop {pc}

37

FIGURE 2.7: Illustrating example

2.2 BINARY ANALYSIS 25

10074 push {lr}

10078 sub sp, sp, #12

1007c bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10080 ldr r0, [sp, #4]

10084 bl 10020

10020 push {lr}

10024 sub sp, sp, #20

10028 str r0, [sp, #4]

1002c mov r3, #0

10030 str r3, [sp, #12]

10034 b 10050

10050 ldr r2, [sp, #12]

10054 ldr r3, [sp, #4]

10058 cmp r2, r3

1005c blt 10038

10038 ldr r3, [sp, #8]

1003c add r3, r3, #1

10040 str r3, [sp, #8]

10044 ldr r3, [sp, #12]

10048 add r3, r3, #1

1004c str r3, [sp, #12]

10060 bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10064 mov r3, r0

10068 mov r0, r3

1006c add sp, sp, #20

10070 pop {pc}

10088 mov r3, r0

1008c mov r0, r3

10090 add sp, sp, #12

10094 pop {pc}

FIGURE 2.8: CFG of program in Figure 2.7

The proposed example can be used to illustrate some of the difficulties in the recon-

struction of the control-flow-graph from the assembly language:

• Usage of branch instructions to register values is prevalent in the ARM assembly

language, so in lines 4, 26 or 36 (in the assembly code), it is not immediate what is

the successor node in the control-flow-graph.

• Several instructions have different branching values depending on the context; line

4 (for example) can have as the return address the value 10080 or 10064 depending

on the caller function that calls fn2().

• The presence of (irregular) loops complicates the reconstruction of the control-flow-

graph from execution traces. In this example, the loop in lines 6-8 can be executed

an indefinite number of times (the number of times that this loop is iterated depends

26 INSTRUMENTATION

on the uninitialized variable ‘n’ –line 12 of the C source code), so the execution of

the program might take a long time to reach line 9. In the presence of infinite loops

we might be unable to observe all the executions of the program. That complicates

the reconstruction of the CFG by execution of various traces.

Based in the example presented, we can see what information we need to extract the

control-flow-Graph from the binary code:

• Although some of the instructions in the CFG have an immediate successor, some

others require executing the code to obtain the successor.

• We need to disambiguate nodes based not only on their addresses but also depending

on the context in which the instruction is executed.

To implement the CFG reconstruction from the binary code, we present an algorithm that

alternates between three phases (CFG unfold, analysis and simulation). The algorithm

starts by adding the entry point of the program as the initial node in the control-flow-graph.

Then, the graph is iteratively unfolded until a successor cannot be computed statically just

by inspecting the binary code and some run-time information is required. An example of

this situation is that we find a bx lr instruction –bx lr continues the execution flow in

the instruction pointed by the value of lr, that is unknown at compile time–. Then, we

analyze the partial control-flow-graph that we have obtained until that point to obtain

the set of instructions that are relevant for computing the value of the successor (analysis

phase). Following the previous example, we compute which instructions may affect the

value of lr in the instruction bx lr. The last phase executes those instructions and

computes the successor node(s) for the given instruction. Applying the three phases until

there are not nodes left to expand, we can reconstruct the full CFG.

To exemplify the execution of the algorithm we start with the program of Figure 2.7.

We start by adding the singleton address and instruction 10074 push {lr} and initiate

the unfold phase. Instructions 10078, 1007c, 10014, 10018 all have an immediate

successor that can be computed statically (without the need of executing the code).

Therefore, the algorithm adds them to the CFG creating the (partial) graph that we

2.2 BINARY ANALYSIS 27

10074 push {lr}

10078 sub sp, sp, #12

1007c bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

FIGURE 2.9: First iteration of the expand phase of the CFG reconstruction.

present in Figure 2.9. Note that during the addition of nodes, we take into consideration

function calls and returns and add nodes to the graph with information about which

dynamic scope the program is in when we execute the instruction. We represent this

information in the figure using different colors.

When the algorithm reaches instruction 1001c bx lr, because the value of lr is

unknown at compile time, we need to execute the partial CFG and retrieve its value

to know what is the successor of the instruction. If we execute more instructions that

what are essentially required to obtain the value of lr, however, the execution may

follow a different path and do not reach the instruction 1001c. It is important, therefore,

to analyze the program and execute only those instructions that can affect the value

of lr. To compute this set of instructions we use a slicing technique based on Weiser

algorithm [Wei84]. Weiser’s algorithm propagates the dependencies of each instruction

in the CFG based on the uses and defs of its instructions. These are attributes of each

instruction defining what registers are used and modified by each instruction. To have

into consideration the fact that some instructions affect the memory as well, we extend

the attributes use and def as explained later.

In the case of instruction 1001c bx lr, the required instructions to compute its

successor are marked in Figure 2.9 with an arrow. The execution phase then executes

those instructions and retrieves the value of lr at the end of the execution. The next

node in the CFG can be computed, and the algorithm can iterate again.

We can iterate the same procedure until we reach node 10070 pop {pc} – this

instruction gets the value of the memory pointed by sp and continues the execution from

28 INSTRUMENTATION

10074 push {lr}

10078 sub sp, sp, #12

1007c bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10080 ldr r0, [sp, #4]

10084 bl 10020

10020 push {lr}

10024 sub sp, sp, #20

10028 str r0, [sp, #4]

1002c mov r3, #0

10030 str r3, [sp, #12]

10034 b 10050

10050 ldr r2, [sp, #12]

10054 ldr r3, [sp, #4]

10058 cmp r2, r3

1005c blt 10038

10038 ldr r3, [sp, #8]

1003c add r3, r3, #1

10040 str r3, [sp, #8]

10044 ldr r3, [sp, #12]

10048 add r3, r3, #1

1004c str r3, [sp, #12]

10060 bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10064 mov r3, r0

10068 mov r0, r3

1006c add sp, sp, #20

10070 pop {pc}

10098

11088

11088

11070

11070

11070

11070

11070

11070

11070

11070

11084

FIGURE 2.10: First phase of the analysis. Coarse slicing and sp computation.

there–. Again, the successor of this node can not be computed statically. Also, in this case,

we have the additional problem that the value that we require is stored in the stack, and

therefore, the analysis needs to be more precise to get the particular value that we are

interested in. To have into consideration the effect of the stack, we split the slicing phase

of the algorithm into two parts: First, we compute the slice considering the stack as a

single entity, and propagating it through the use and def of instructions as if it were a

register. This first iteration of this slicing is presented in Figure 2.10.

For the instructions that either use or modify the stack and are contained in this first

iteration of the slice (marked in red in Figure 2.10), we compute the value of the register

sp when the execution flow reaches those instructions (represented in Figure 2.10 at the

right of each instruction). Again, this implies slicing and executing, but in this case, we do

not need to treat the stack in a special way. The output of this second phase of slicing is a

decorated CFG in which some nodes have an attribute with the value of sp in them. We

2.2 BINARY ANALYSIS 29

10074 push {lr}

10078 sub sp, sp, #12

1007c bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10080 ldr r0, [sp, #4]

10084 bl 10020

10020 push {lr}

10024 sub sp, sp, #20

10028 str r0, [sp, #4]

1002c mov r3, #0

10030 str r3, [sp, #12]

10034 b 10050

10050 ldr r2, [sp, #12]

10054 ldr r3, [sp, #4]

10058 cmp r2, r3

1005c blt 10038

10038 ldr r3, [sp, #8]

1003c add r3, r3, #1

10040 str r3, [sp, #8]

10044 ldr r3, [sp, #12]

10048 add r3, r3, #1

1004c str r3, [sp, #12]

10060 bl 10014

10014 mov r3, #3

10018 mov r0, r3

1001c bx lr

10064 mov r3, r0

10068 mov r0, r3

1006c add sp, sp, #20

10070 pop {pc}

FIGURE 2.11: Second phase of the analysis. Accurate final slice.

can use this information to compute a more precise computation of use and def in which

(instead of considering the stack as a single entity), we can decompose it in its internal

memory positions and propagate this more detailed information about the dependencies.

This step enables us to compute a more tight slice that is presented in Figure 2.11. Finally,

applying the execute phase again, we can obtain the successor and the algorithm can

continue until the full CFG is reconstructed (Figure 2.8).

Algorithm 1 summarizes the previously described steps and presents a technique that

can obtain the control-flow-graph of a program from its binary representation.

The following functions parameterize the algorithm:

slice: given an instruction i and the set of registers that are required to compute the

successor (req(i)), slices the program and returns an over-approximation of the set

30 INSTRUMENTATION

Algorithm 1 Algorithm for CFG reconstruction from binary code
while CanExpand(G) do

G← G ∪ unfold(analyze(G,frontier))

end while

procedure ANALYZE(G, f) . returns a successor for every node in the frontier f

∀ n ∈ f

i← instructionAt(n)

s← slice(annotate_sp(G,i), i, req(i))

〈 c, v 〉 ← execute(P, s, c, i)

end procedure

of instructions that can affect the value of req(i) in the program. We have developed

a Scala library implementing the propagation of dataflow computations and Weiser’s

algorithm to compute slices in binary code.

execute: given a program P, a set of instructions s, the current scope of the program c

and the current instruction i, executes the program until the instruction i is reached

in the scope c. It returns the new scope and the value of the registers that are

required to compute the branching address of the instruction i.

2.2.5 Implementation

We have implemented a proof of concept of the ideas explained before that can be

downloaded at https://github.com/pablo-aledo/binanalyzer. We present the

general architecture of the developed prototype in Figure 2.12. Objdump is used to

perform an initial disassembly of the executable. We have implemented a grammar for

the generated assembly language with the parser generator sbt-rats [SCB16] and the

language library Kiama [SKV13]. The implementation uses Scala as the main implemen-

tation language. The implementation of the execute function have been performed by

integrating the Scala framework with GDB and the qemu emulator.

https://github.com/pablo-aledo/binanalyzer

2.2 BINARY ANALYSIS 31

Partial CFG Parsing

objdump assembly

Can expand?

Expand
Node

Successor

CFG

Slicing
gdb

wrapper
Simulation

Stack Computation
gdb

wrapper
Simulation

Scala qemuexpect

FIGURE 2.12: Architecture of the implemented prototype, languages and interfaces

2.2.6 Results

We have applied the presented algorithm to a set of test-cases from the Mälardalen

benchmark suite [GBEL10]; a set of binary programs specifically targeted to benchmark

worst-case execution time tools (see Chapter 4). A short explanation of the computation

performed in each program is provided in the following list.

• insertsort : Performs the insertion sort algorithm in a linear array.

• fdct : Forward Discrete Cosine Transform.

• matmult : Multiplies matrices to tests a compiler speed in handling multidimensional

arrays and simple arithmetic.

• janne_complex : Test interdependencies between two nested loops.

• bs : Performs binary search in a linear array.

• cover : Tests the coverage of if statements.

• fibcall : Computes the Fibonacci series.

• crc : Tests a CRC (Cyclic Redundancy Check) operation.

32 INSTRUMENTATION

• jfdctint : JPEG integer implementation of the forward Discrete Cosine Transform.

• duff : Forces the compiler to emit unstructured loops, which is usually problematic

for WCET tools to handle.

• lcdnum : Demonstrate effect of flow facts for straight loops.

• ns : Test interdependencies between nested loops.

Table 2.1 shows some statistics about the computed CFGs of the mentioned programs.

As we can see, the algorithm is capable of computing the control-flow-graph in a large

subset of the mentioned benchmarks even with different optimization levels.

Figures 2.13 and 2.14 show some of the medium-sized graphs. Note that even for

relatively small examples, the resulting control-flow-graph can be notably intricate. The

generation and verification of correctness of this extraction is notably complicated to be

performed by hand, and also due to the huge amount of transformations that the code

suffers from the high-level representation to the assembly one – LLVM/Clang compilers,

for example, are composed of around 2.5 millions lines-of-code – the automated matching

of high and low level constructs is impossible to be performed automatically.

This is why, as we will see in future chapters, the reconstruction of the control-flow-

graph is of key importance to obtain tight and safe bounds for the worst-case execution

time. There are tools in the state of the art that rely on the debug information to translate

formal results from the C source code to the binary analysis (such as loop bounds). Due

to the vast amount of transformations that the compiler can introduce between these

two representations of the code, the mapping can be difficult to automate or –even

worse– incorrect, so the underlying binary analysis can produce incorrect results for the

worst-case-execution-time of the program.

2.2 BINARY ANALYSIS 33

TABLE 2.1: Mälardalen reconstruction results
Optimization level -O0 Optimization level -O2

name #instr. asm size #nodes #edges #instr. asm size #nodes #edges

insertsort 84 2636 81 82 47 2620 44 46

fdct 680 6408 665 666 281 7116 268 269

matmult 175 4376 230 236 142 5488 86 93

janne_complex 67 522 65 69 50 2872 28 32

bs 63 3000 60 62 44 3556 17 18

cover 1047 8584 95 97 469 6480 58 63

fibcall 48 2520 46 47 27 2840 5 4

crc 286 4908 510 527 120 5612 181 198

jfdctint 549 5592 534 536 244 6900 229 232

duff 145 3424 63 63 95 4168 27 28

lcdnum 100 3032 48 49 36 2980 23 24

ns 126 8088 122 126 50 8040 4 3

34 INSTRUMENTATION

10064: ldr r2, [pc,#140]

10068: ldr r3, [sp,#8]

100e0: cmpr2, r3

100e4: ble10050< binary_search+ 0x24>

10000: nop

10004: ldr sp, [pc,#4]

10020: nop

10024: movr0, r3

100d8: ldr r2, [sp,#12]

100dc: ldr r3, [sp,#16]

10040: str r3, [sp,#16]

10044: mvnr3, #0

10088: ldr r2, [pc,#104]

1008c: ldr r3, [sp,#8]

10090: lsl r3, r3, #3

10094: add r3, r2, r3

10008: bl10014< c_entry>

100e8: ldr r3, [sp,#20]

100ec: movr0, r3

10028: pop{r4,pc}

100cc: ldr r3, [sp,#8]

100d0: add r3, r3, #1

1006c: ldr r2, [r2,r3,lsl#3]

10070: ldr r3, [sp,#4]

100a0: b100d8< binary_search+ 0xac> 100d4: str r3, [sp,#12]

1005c: asr r3, r3, #1

10060: str r3, [sp,#8]

10014: push{r4,lr}

10018: movr0, #8

10048: str r3, [sp,#20]

1001c: bl1002c< binary_search>1007c: ldr r3, [sp,#12]

10080: sub r3, r3, #1

10098: ldr r3, [r3,#4]

100bc: ldr r3, [sp,#8]

100c0: sub r3, r3, #1

1004c: b100d8< binary_search+ 0xac>

100ac: ldr r2, [r2,r3,lsl#3]

100b0: ldr r3, [sp,#4]

10050: ldr r2, [sp,#12]

10054: ldr r3, [sp,#16]

100c8: b100d8< binary_search+ 0xac>

10058: add r3, r2, r3

100c4: str r3, [sp,#16]

10038: str r3, [sp,#12]

1003c: movr3, #14

10034: movr3, #0

100b4: cmpr2, r3

100b8: ble100cc< binary_search+ 0xa0>

10030: str r0, [sp,#4]

1002c: sub sp, sp, #24

10074: cmpr2, r3

100f4: bxlr

100a8: ldr r3, [sp,#8]

100a4: ldr r2, [pc,#76]

1009c: str r3, [sp,#20]

10084: str r3, [sp,#16]

10078: bne100a4< binary_search+ 0x78>

100f0: add sp, sp, #24

bs.cfg

10050: str r3, [sp]

10054: ldr r3, [sp]

10044: b10054< complex+ 0x40>

10024: ldr r3, [sp]

10028: cmpr3, #5

100f8: str r0, [sp,#4]

100fc: ldr r3, [sp,#4]

10018: str r0, [sp,#4]

1001c: str r1, [sp]

10014: sub sp, sp, #8

100e4: movr3, #0

100e8: str r3, [sp,#4]

100b8: ble10088< complex+ 0x74>

10088: ldr r2, [sp]

100bc: movr3, #1

10104: add sp, sp, #20

10108: pop{pc}

10098: ldr r3, [sp,#4]

1009c: add r3, r3, #2

10084: str r3, [sp,#4]

10048: ldr r3, [sp]

1004c: add r3, r3, #2

1002c: ble10048< complex+ 0x34>

10030: ldr r2, [sp]

10068: bgt1007c< complex+ 0x68>

1007c: ldr r3, [sp,#4]1006c: ldr r3, [sp,#4]

100b4: cmpr3, #29

100c0: movr0, r3

100c4: add sp, sp, #8

10100: movr0, r3

100d4: movr3, #1

100d8: str r3, [sp,#12]

100d0: sub sp, sp, #20

10040: str r3, [sp]

1008c: ldr r3, [sp,#4]

100a8: sub r3, r3, #10

100ac: str r3, [sp]

1005c: ble1007c< complex+ 0x68>

10060: ldr r3, [sp]

10090: cmpr2, r3

10094: blt10024< complex+ 0x10>

100c8: bxlr

100a0: str r3, [sp,#4]

100a4: ldr r3, [sp]

100dc: movr3, #1

100e0: str r3, [sp,#8]

10078: b10088< complex+ 0x74>

10020: b100b0< complex+ 0x9c>

10004: ldr sp, [pc,#4]

10008: bl100cc< c_entry>

10080: add r3, r3, #1

10064: cmpr3, #12

100f4: bl10014< complex>

10058: cmpr3, #9

100ec: ldr r1, [sp,#8]

100f0: ldr r0, [sp,#12]

100cc: push{lr}

10038: lsl r3, r3, #1

1003c: add r3, r3, r2

10000: nop

100b0: ldr r3, [sp,#4]

10070: add r3, r3, #10

10074: str r3, [sp,#4]

10034: movr3, r2

janne_complex.cfg

10140: ldr br3, [sp,#7]

10144: movr0, r3

10120: ldr br3, [r3]

10124: str br3, [sp,#7]

10100: push{lr}

10104: sub sp, sp, #20

10008: bl10100< c_entry>

10024: cmpr3, #15

10028: ldr lspc, [pc,r3,lsl#2]

10128: ldr r3, [sp,#12]

1012c: cmpr3, #4

10014: sub sp, sp, #8

10018: movr3, r0

10130: bgt1015c< c_entry+ 0x5c>

1001c: str br3, [sp,#7]

10020: ldr br3, [sp,#7]

10134: ldr br3, [sp,#7]

10138: and r3, r3, #15

10110: movr3, #0

10114: str r3, [sp,#12]

10154: ldr r3, [pc,#48]

10158: str br2, [r3]

10118: b10168< c_entry+ 0x68>

10174: blt1011c< c_entry+ 0x1c>

1011c: ldr r3, [pc,#100] 10178: movr3, #0

100f4: movr0, r3

100f8: add sp, sp, #8

1014c: movr3, r0

10150: movr2, r3

1002c: b100f0< num_to_lcd+ 0xdc>

100f0: movr3, #0

100fc: bxlr

1017c: movr0, r3

10180: add sp, sp, #20

1015c: ldr r3, [sp,#12]

10004: ldr sp, [pc,#4]

1013c: str br3, [sp,#7]

10000: nop

10170: cmpr2, r3

10168: ldr r2, [sp,#12]

10184: pop{pc}

10148: bl10014< num_to_lcd>

1016c: ldr r3, [sp,#8]

10160: add r3, r3, #1

10164: str r3, [sp,#12]

10108: movr3, #10

1010c: str r3, [sp,#8]

lcdnum.cfg

100ac: cmpr2, r3

100b0: bne1016c< foo+ 0x158>

100b4: ldr ip, [pc,#292]

100b8: ldr r3, [sp,#12]

10144: lsl r3, r3, #2

10148: add r3, r3, r0

10190: ldr r3, [sp,#12]

10194: cmpr3, #4

10000: nop

10004: ldr sp, [pc,#4]

10154: add r2, r2, r3

10158: ldr r3, [sp,#8]

1015c: add r3, r2, r3

10134: lsl r3, r3, #2

10138: add r3, r3, r1

100c8: lsl r2, r2, #2

100cc: add r2, r2, r3

1006c: movr3, r1

10070: lsl r3, r3, #5

10198: ble10044< foo+ 0x30>

1019c: ldr r3, [sp,#16] 10044: movr3, #0

1005c: ldr r1, [sp,#20]

10060: movr2, r3

101d4: add sp, sp, #28

101d8: pop{pc}

1016c: ldr r3, [sp,#8]

100c0: ldr r1, [sp,#20]

100c4: movr2, r3

1001c: str r0, [sp,#4]

10020: movr3, #0

100a8: ldr r3, [sp,#4]

10084: movr3, r0

10088: lsl r3, r3, #2

10008: bl101e4< c_entry>

101e4: push{r4,lr}

10188: add r3, r3, #1

1018c: str r3, [sp,#12]

100e8: movr3, r0

100ec: lsl r3, r3, #2

1003c: str r3, [sp,#12]

10040: b10190< foo+ 0x17c>

10038: movr3, #0

10180: ble10050< foo+ 0x3c>

10050: ldr ip, [pc,#388] 10184: ldr r3, [sp,#12]

10074: rsb r3, r1, r3

10078: lsl r3, r3, #2

10130: rsb r3, r1, r3

100a4: ldr r2, [ip,r3,lsl#2]

100e0: add r3, r3, r1

100e4: add r2, r2, r3

10160: ldr r3, [lr,r3,lsl#2]

10164: add r3, ip, r3

101a0: add r3, r3, #1

10090: lsl r1, r3, #2

10094: add r3, r3, r1

10168: b101d0< foo+ 0x1bc>

10128: movr3, r1

1012c: lsl r3, r3, #5

10098: add r2, r2, r3

1009c: ldr r3, [sp,#8]

10048: str r3, [sp,#8]

1004c: b10178< foo+ 0x164>

101ac: cmpr3, #4

101b0: ble10038< foo+ 0x24> 100f8: add r3, r3, r1

100fc: add r2, r2, r3

1007c: add r3, r3, r1

10080: add r2, r2, r3

100bc: ldr r0, [sp,#16]

101cc: mvnr3, #0

101d0: movr0, r3

100dc: lsl r3, r3, #2

100f4: lsl r1, r3, #2

100f0: add r3, r3, r0

1014c: lsl r1, r3, #2

10150: add r3, r3, r1

101c8: ble1002c< foo+ 0x18>

1002c: movr3, #0

1008c: add r3, r3, r0

101f0: nop

10068: add r2, r2, r3

1013c: add r2, r2, r3

101b4: ldr r3, [sp,#20]

101b8: add r3, r3, #1

1017c: cmpr3, #4

10140: movr3, r0

10114: ldr r0, [sp,#16]

10118: ldr r1, [sp,#20]

10100: ldr r3, [sp,#8]

101f4: pop{r4,pc}

100a0: add r3, r2, r3

10110: ldr r3, [sp,#12]

101ec: bl10014< foo>

10014: push{lr}

10034: b101a8< foo+ 0x194>

101a8: ldr r3, [sp,#16]

10054: ldr r3, [sp,#12]

10058: ldr r0, [sp,#16]

100d0: movr3, r1

100d4: lsl r3, r3, #5

101bc: str r3, [sp,#20]

101c0: ldr r3, [sp,#20]

10174: str r3, [sp,#8]

10178: ldr r3, [sp,#8]

10018: sub sp, sp, #28

101c4: cmpr3, #4

10064: lsl r2, r2, #2

10170: add r3, r3, #1

10028: b101c0< foo+ 0x1ac>

101a4: str r3, [sp,#16]

1011c: movr2, r3

10120: lsl r2, r2, #2

100d8: rsb r3, r1, r3

10030: str r3, [sp,#16]

10104: add r3, r2, r3

10108: ldr ip, [ip,r3,lsl#2]

1010c: ldr lr, [pc,#200]

10024: str r3, [sp,#20]

10124: add r2, r2, r3

101e8: movr0, #400

ns.cfg

FIGURE 2.13: CFG of some medium-sized implementations.

2.2 BINARY ANALYSIS 35

10204: movr2, r3

10208: ldr r3, [sp,#4]

10160: lsl r3, r3, #6

10164: rsb r3, r2, r3

10180: str r2, [r3]

10184: ldr r3, [pc,#8]

1012c: ldr r2, [r3]

10130: movr3, r2

101f4: movr3, r2

101f8: lsl r3, r3, #2

100e0: movr2, r0

100e4: ldr r3, [sp,#8]

10000: nop

10004: ldr sp, [pc,#4]

101b4: b102a4< Multiply+ 0x108>

102a4: cmpr5, #19

102b0: add sp, sp, #20

102b4: pop{r4,r5,r6}

10158: rsb r2, r3, r2

1015c: movr3, r2

10284: str r3, [r2,r4,lsl#2]

10288: add r6, r6, #1

10144: add r1, r3, #81

10148: ldr r3, [pc,#72]

1024c: ldr r3, [sp,#12]

10250: add r3, r3, r0

100d4: ldr r3, [sp,#4]

100d8: add r4, r3, r2

10220: lsl r3, r3, #4

10224: movr1, r3

10248: movr0, r3

10200: lsl r3, r3, #4

102a8: ble101b8< Multiply+ 0x1c>

1020c: add r2, r3, r2

10210: movr1, r5

10058: push{lr}

1005c: sub sp, sp, #20

10074: ldr r0, [sp,#8]

10078: bl10098< Initialize>

101cc: add r3, r3, r2

101d0: lsl r3, r3, #4

100c0: movr3, r2

100c4: lsl r3, r3, #2

10254: ldr r0, [r3,r6,lsl#2]

10258: movip, r6

100b4: str r3, [sp,#8]

100b8: b100f8< Initialize+ 0x60>

10030: pop{r4,pc}

101d8: ldr r3, [sp,#4]

101dc: add r3, r3, r2

10134: lsl r3, r3, #5

10138: add r3, r3, r2

10170: lsl r3, r3, #5

10174: rsb r3, r2, r3

10060: str r0, [sp,#12]

10064: str r1, [sp,#8]

10140: add r3, r3, r2

10144: add r1, r3, #81

100b4: str r3, [sp,#8]

100b8: b100f8< Initialize+ 0x60>

100fc: cmpr3, #19

10100: ble100bc< Initialize+ 0x24>

10048: str r2, [r3]

1004c: nop

1014c: smull r2, r3, r1, r3

101e0: movr2, #0

101e4: str r2, [r3,r4,lsl#2]

10008: bl10014< c_entry>

1013c: lsl r3, r3, #2

10140: add r3, r3, r2

100e8: str r2, [r4,r3,lsl#2]

100ec: ldr r3, [sp,#8]

100ac: b10110< Initialize+ 0x78>

10110: ldr r3, [sp,#12]

1002c: nop

1016c: add r3, r3, r2

1009c: sub sp, sp, #16

100a0: str r0, [sp,#4]

10168: lsl r3, r3, #2

1016c: add r3, r3, r2

10128: ldr r3, [pc,#100]

1012c: ldr r2, [r3]

100a8: str r3, [sp,#12]

100ac: b10110< Initialize+ 0x78>

10160: lsl r3, r3, #6

10164: rsb r3, r2, r3

101a4: str r0, [sp,#12]

101a8: str r1, [sp,#8]

1011c: nop

10120: add sp, sp, #16

1029c: ble101c0< Multiply+ 0x24>

102a0: add r5, r5, #1101c0: movr2, r5

10120: add sp, sp, #16

10124: pop{r4,pc}

1022c: add r3, r3, r1

10230: ldr r1, [r3,r4,lsl#2]

100e8: str r2, [r4,r3,lsl#2]

10138: add r3, r3, r2

1013c: lsl r3, r3, #2

10154: asr r3, r1, #31

10158: rsb r2, r3, r2

1015c: movr3, r2

100fc: cmpr3, #19

10100: ble100bc< Initialize+ 0x24>

1021c: add r3, r3, r1

10228: ldr r3, [sp,#4]

100f4: str r3, [sp,#8]

100f8: ldr r3, [sp,#8]

1010c: str r3, [sp,#12]

10108: add r3, r3, #1

1010c: str r3, [sp,#12]

100bc: ldr r2, [sp,#12] 10104: ldr r3, [sp,#12]

10118: ble100b0< Initialize+ 0x18>

1011c: nop 100b0: movr3, #0

100f0: add r3, r3, #1

100f4: str r3, [sp,#8]

10148: ldr r3, [pc,#72]

10238: movr3, r0

1023c: lsl r3, r3, #2

10298: cmpr4, #19

10130: movr3, r2

100dc: bl10128< RandomInteger>

10240: add r3, r3, r0

100ec: ldr r3, [sp,#8]

10098: push{r4,lr}

10080: ldr r1, [sp,#8]

10084: ldr r0, [sp,#12]

100cc: lsl r3, r3, #4

100d0: movr2, r3

100d0: movr2, r3

10218: lsl r3, r3, #2

10094: pop{pc}

1014c: smull r2, r3, r1, r3

10150: asr r2, r3, #9

10128: ldr r3, [pc,#100]

10264: add r3, r3, ip

10268: lsl r3, r3, #4

1026c: movip, r3

101ac: str r2, [sp,#4]

10028: bl10058< Test>

10134: lsl r3, r3, #5

10270: ldr r3, [sp,#8]

10274: add r3, r3, ip

10178: rsb r2, r3, r1

1017c: ldr r3, [pc,#16]

101bc: b10298< Multiply+ 0xfc>

10168: lsl r3, r3, #2

10104: ldr r3, [sp,#12]

10108: add r3, r3, #1

102b8: bxlr

1008c: nop

10234: movr0, r5

10068: str r2, [sp,#4]100b0: movr3, #0

10180: str r2, [r3]

100f8: ldr r3, [sp,#8]

1025c: movr3, ip

10260: lsl r3, r3, #2

101b0: movr5, #0

10024: ldr r0, [pc,#16]

10294: add r4, r4, #1

10150: asr r2, r3, #9

100c0: movr3, r2

100c4: lsl r3, r3, #2

10050: bxlr

101ec: b1028c< Multiply+ 0xf0>

1028c: cmpr6, #19

10170: lsl r3, r3, #5

1027c: mul r3, r0, r3

10280: add r3, r1, r3

10088: bl1019c< Multiply>

100d4: ldr r3, [sp,#4]

1006c: ldr r0, [sp,#12]

10018: bl10040< InitSeed>

10040: ldr r3, [pc,#12]

10290: ble101f0< Multiply+ 0x54>

1019c: push{r4,r5,r6}

10070: bl10098< Initialize>

100c8: add r3, r3, r2

100a4: movr3, #0

100a8: str r3, [sp,#12]

1018c: movr0, r3

10190: bxlr

10154: asr r3, r1, #31

10020: ldr r1, [pc,#16]

10098: push{r4,lr}

102ac: nop101b8: movr4, #0

101a0: sub sp, sp, #20

10090: add sp, sp, #20

10044: movr2, #0

101f0: movr2, r5

100e0: movr2, r0

100e4: ldr r3, [sp,#8]

10014: push{r4,lr}

100c8: add r3, r3, r2

10114: cmpr3, #19

10118: ble100b0< Initialize+ 0x18>

10178: rsb r2, r3, r1

1017c: ldr r3, [pc,#16]

100f0: add r3, r3, #1

100bc: ldr r2, [sp,#12]

10188: ldr r3, [r3]

1018c: movr0, r3

10214: movr3, r1

1001c: ldr r2, [pc,#16]

10188: ldr r3, [r3]

100d8: add r4, r3, r2

100dc: bl10128< RandomInteger>

10110: ldr r3, [sp,#12]

1009c: sub sp, sp, #16

100a0: str r0, [sp,#4]

1007c: ldr r2, [sp,#4]

101d4: movr2, r3

10244: lsl r3, r3, #4

10124: pop{r4,pc}

10190: bxlr

100cc: lsl r3, r3, #4

10174: rsb r3, r2, r3

10184: ldr r3, [pc,#8]

101c4: movr3, r2

10278: ldr r3, [r3,r4,lsl#2]

101c8: lsl r3, r3, #2

10114: cmpr3, #19

101e8: movr6, #0

101fc: add r3, r3, r2

100a4: movr3, #0

matmult.cfg

FIGURE 2.14: CFG of some medium-sized implementations.

36 INSTRUMENTATION

3
Simulation

3.1 Introduction and state-of-the-art

In this chapter, we will describe techniques to estimate the non-functional properties of a

program by running it in a simulated environment.

The main purpose of simulation is to provide insightful estimations of non-functional

properties of a program when it executes on a platform, such as the number of cache

misses, the energy consumed by the embedded system or the thermal behavior. A simu-

lator needs to be quick and reasonably accurate to be useful, and it should require the

minimal intervention of the user when modifying both the program (as a consequence of

multiple optimization iterations) and the hardware platform (as a result of unfulfilled

requirements).

Both modern programming languages and hardware architectures are complex to

37

Architectural Exploration

HW/SW Partitioning

Interface definition

Source-Code

modification

Compilation

Instrumentation

Source-Code

modification

Optimizations

Area/Time

Considerations

Testbench

Creation

Simulation

Verification

Functional

Verification

Non-Functional

Verification

38 SIMULATION

simulate, and a detailed description of all the elements that compose them would over-

whelm the developer and burden the simulation. Those difficulties have motivated the

development of a simulation environment that we describe in this chapter.

To make the analysis of the program unobtrusive for the developer we rely on the

automatic annotation techniques that we have described in Chapter 2 1. To make the

analysis of the hardware architecture quick and accurate enough, we provide reusable

high-level models that can be adapted to a variety of platforms.

In this chapter, we start by introducing several techniques (not only simulation) to

understand the interactions between hardware parameters and non-functional properties

better. We then discuss what the main limitations of those techniques are and our approach

for reducing those limitations. Our technique divides the simulation domain in “simulation

of single CPU’s”, “simulation of many-core” and “simulation of hardware accelerators”.

For each one of these sub-domains, we introduce the state-of-the-art and present what

parameters of the domain are most critical to be simulated, to keep the simulation quick

and reasonably accurate. Then we introduce our models, results when applying the

techniques to small examples and results when applying the techniques to optimize real-

life industrial or research projects. These examples are meant to showcase the usability

of the presented techniques when applied to big codebases and how the understanding

of the interactions between the previously selected parameters and the non-functional

properties can lead to significant improvements in the non-functional properties of the

program (mostly concerning execution-time). These case studies are presented as practical

examples of the utilization of the developed tools but are not essential for understanding

the techniques described in the dissertation.

There exist several techniques to study the non-functional properties of programs that

execute over a platform. We classify them as:

1Note that even when we present the annotation of simple examples to illustrate the concepts during

the exposition of this thesis, all the annotation steps performed during the evaluation in each section are

performed completely automated by using the tools and techniques described in Chapter 2.

3.1 INTRODUCTION AND STATE-OF-THE-ART 39

Virtual Platforms

They consist of building a software model of the platform and use it to run the program

under analysis. The main benefit of these techniques is that they can be used before

building the real platform. At this point in the design, the design space is still very big, and

therefore the main objective of these tools is to be able to reduce it. A common technique

used in these cases is to combine a design-space exploration tool with a model for the

non-functional requirements. For this approach to be feasible, it is important that the

simulation can be performed quickly (several orders of magnitude faster than an accurate

simulation), and the relative effect of the change of different parameters in the properties

of the system is more important than the absolute one.

We can classify “virtual platform techniques” into sub-categories; in “Register-Transfer-

Level” we describe the platform at the level of individual hardware registers, in “Transaction-

Level-Modeling” we split the platform into modules, and we only focus on the interactions

between those modules. In “Instruction-Set-Simulation”, we only concentrate on the

individual instructions of the Instruction-Set-Architecture of the microprocessor, and we

associate a cost (regarding energy, time or power) to each instruction.

Estimation based on hardware counters

Today, some microprocessors have embedded programmable event counters to measure

performance. Several techniques have been developed to estimate non-functional proper-

ties of a program (such as execution time, cache misses or bus performance) of a program

based on the value of those counters when we execute the program on a platform where

they are available.

These techniques are usually of very high accuracy [LJ03], and the fact that the

counters are hardware-based makes them very unobtrusive. The explanatory power of

these techniques is also high because the purpose of every counter is clearly defined and

targeted to detect specific bottlenecks in the architecture.

The main disadvantage of the techniques is that, in many specific microprocessors,

these counters are not available, are limited or are not standard. Moreover, in many cases,

40 SIMULATION

the platform is not yet constructed, so these techniques are not available in the early

stages of the design flow. Therefore, these techniques are more focused on improving and

optimizing software for an already established platform rather than selecting the best

combination of hardware and software parameters for a particular application. Some

examples of these techniques are described in [LSP08][LJ03].

Black-Box macro-modeling

These methods aim to partition the system into several sub-components (either hard-

ware or software), manually characterize and model the different sub-components, and

formalize the framework to combine the estimations of these components to derive the

overall properties. An example of black-box macro-modeling technique can be to ob-

serve that the execution time of a program that writes to a Unix file descriptor can be

approximated by 10× size(GB) sec. High-level system description [NM01][DDSL08] is

an instance of black-box macro model where the entire platform is considered as a single

black-box. For this technique, a set of hardware and software parameters are defined,

and the whole platform is characterized based on them. These parameters are chosen

based on experience, although some techniques to automate characterization have been

analyzed [TR01][MRR07]. This technique provides very low execution time but also low

accuracy. The approach is strictly constrained to particular applications, and it is not

easily generalizable (some systems are accurately modeled with this method while others

are not, without an apriori way of knowing to which group our system belongs). [TR01]

[MRR07] [BBF16] describe some examples of these techniques.

3.2 Limitations of the state-of-the-art techniques

As recalled in the introduction, embedded systems require simulators that can simulate

entire platforms, including memories, buses, peripherals, HW accelerators... Additionally,

to meet the requirements of embedded system design, multi-cores and many-cores are

now mainstream. System modeling using simulation and virtual platforms has become

an effective way of handling the demands of complexity, reliability and development time

3.2 LIMITATIONS OF THE STATE-OF-THE-ART TECHNIQUES 41

of these systems, so we will focus on these techniques and try to extend its applicability

rather than the other ones presented in the state-of-the-art.

In the previously mentioned techniques, we can see a gap in the early phases of the

design process regarding the non-functional properties of the system; currently, there

is a lack of tools that can be used effectively in the initial phases of the design to guide

the design space exploration efficiently. Among other problems, we think the following

aspects are of fundamental importance, and we will focus on these elements in this chapter

of the thesis:

Limitations in speed The state-of-the-art techniques are very accurate but slow. Some

of the examples presented in this thesis and independent studies show that the RTL models

of a platform are at least 20 times slower than more abstracted models such as TML or ISS

simulations [CSC+09]. To put these numbers into perspective, that means (for example),

that simulating a video codec with an RTL virtual platform would imply 2 hours per frame

at RTL level, compared to 6 min at TLM or close to real-time (33 ms) in native-simulation.

Limitations in usability The available techniques require several transformations in

the design and some work in the tools that implement those techniques until the input

fits the tool at hand. Sometimes this work requires already some decisions about the

platform; the same decisions that the framework is meant to solve. For example, ISS

simulators require a binary version of the executable, already compiled for a particular

platform. Developing the ISS simulator, porting the operating system, implementing the

drivers, deciding and implementing the hardware elements of the design and optimizing

and porting the application for the particular selected platform are some of the steps that

need to be performed before a single result about the availability of the platform for the

task at hand can be obtained. All the effort of developing those components can be futile

if the obtained results are negative.

In the case of many and multi-core platforms, development is difficult because of

conflicting requirements: (1) to reduce the cost of development and design, higher level

programming constructs such as OpenMP and MPI are required. (2) Improving the

42 SIMULATION

Algorithm design

Algorithm description

DFG Transformations

HW/SW Partition

Scheduling

Mapping

RTL Optimization

Final Product characteristics

Description Detail

FIGURE 3.1: How design decisions affect the final characteristics of a system

performance of the application over a many-core platform often requires a fine match

between the hardware parameters (number of processors, memory sizes, bus speed or

Network-On-Chip routers) and software variables. We can only explore this match by

low-level programming.

3.3 Overview of our approach

As Figure 3.1 shows, the possibility of improving a system is bigger in the early stages of

the design because of the higher number of factors that can be considered and modified.

The main aim of the estimation tool that we will present in this chapter is then to provide

performance results as early as possible in the design process. The techniques described

in the next sections have been developed after the following observations:

The execution time and power consumption of a CPU are highly correlated with the

number of instructions executed [LJ03][LSP08]. This is true to a certain extent even

in modern architectures with branch prediction, out-of-order execution, and complex

pipelines. However, the assumption breaks in the presence of the following elements

• Caches [PDV11]: The size, speed, and associativity of both data and instruction

caches greatly affect the rate at which the program can process data and execute,

3.3 OVERVIEW OF OUR APPROACH 43

so more level of detail is needed to keep a reasonable accuracy in the simulation.

• Parallelism: Both at a per-core level and at hardware-level, the presence of paral-

lelism in the program or the platform drastically affect the non-functional properties

of the system. Because of that, new techniques to deal with parallelism at the

operating system level (how to handle threads in multi and many-core platform

simulations) and at a hardware level (how to integrate the CPU with hardware

accelerators) have to be implemented to keep accurate results in the simulation.

• Dynamic Frequency and Voltage Scaling [SLD+03],[PPB07]: Attributes that have

been previously considered to be very detailed to simulate with a coarse-level of

abstraction can indeed be considered at that level with acceptable results. An

example of that is the modeling of the thermal behavior of modern chips (that have

been traditionally considered at RTL level). As we will demonstrate in Section 3.7,

the main element that prevented the usage of a higher level of abstraction was the

presence of DVFS adaptive elements in some platforms. A high-level model of these

elements and its interface with the software through the operating system libraries

enable the modeling of the thermal behavior of modern SOC platforms and provide

enough explanatory power to be useful in the first stages of the design flow.

To tackle those difficulties, the main state-of-the-art approach is to lower down the

description level of the whole system to more accurate levels of detail. However, that

solution burdens the simulation and forces the majority of the system to be simulated at a

level of abstraction that is very accurate for the purpose that it serves. If we can model

those components in a more detailed way but still consider the CPU at a higher level of

abstractions, a fast and accurate virtual platform can be created.

44 SIMULATION

3.4 Simulating the CPU part of the system

3.4.1 Introduction

In this section, we will focus on simulating systems with a single CPU and a memory

divided into several levels of caching. Even a simple architecture like this can be analyzed

at different levels of detail, and choosing the most appropriate representation of the

system can lead to noticeable differences in terms of simulation speed and accuracy.

This section starts by presenting several techniques to simulate this kind of platforms.

Then we present our approach. Our technique supports different abstraction levels, and

we compare them regarding accuracy and execution time.

The main contributions are:

• We compare a technique based on C-source-level time estimation with two tech-

niques based on assembly language regarding accuracy and execution time.

• We present a technique to cluster assembly instructions and speed up the simulation

that presents some advantages over the state-of-the-art alternatives.

• We characterize these clusters of assembly instructions at different abstraction levels

and compare the results obtained in terms of time estimation accuracy.

3.4.2 State of the art

In the following, we provide an introduction to the state-of-the-art techniques to implement

virtual platforms. We classify them into the following groups:

• Register-Transfer Level (RTL) modeling [GS02][BTM00]: Every hardware register

in the platform has a model in the simulation, and the behavior is described as

the propagation of data through these registers. This method is very accurate but

also very slow. Microprocessor, memories, buses, peripherals and any hardware

component of the platform can be modeled without losing any generality

3.4 SIMULATING THE CPU PART OF THE SYSTEM 45

• Transaction-Level Modeling (TLM): TLM simulators abstract the hardware behav-

ior into several components and focuses on timed events on the communications

between them. Focusing only on the communication part of the transactions and

abstracting away the internal timing details of each model it is possible to increase

the simulation speed with the added benefit of reducing the development time.

• Instruction-level Modeling [FAM08][LLSV99]: This level of abstraction suppresses

the hardware-specific details of the platform and only focuses on microprocessor

instructions. Instruction Set Simulators (ISSs) characterize the time spent on each

instruction, so a description of the entire instruction set is needed. [KHH03] pro-

poses to characterize pairs of instructions to consider the effects of the internal

pipeline but the execution time of this solution is prohibitive for simulation in early

design phases.

• Native simulation [GGP08][BGF+10][PDV11]: These approaches execute the appli-

cation source-code in the host computer (the PC that the developer uses to develop

the implementation). Some additional code is included in the application to ex-

tract information during execution. This information is used to estimate several

parameters such as target execution time and power consumption. This approach

has several advantages: as the speed of the host computer is high, these methods

are quick. They are also convenient because the developer can use them from the

first steps of the design process, and in the same environment used to develop the

application.

3.4.3 Our approach

We consider four different techniques to perform software execution estimations in this

section. They are based on source-code analysis, instruction-level modeling and black-box

macro-modeling. Our method describes the hardware parameters in SystemC (a C++

library and specification language to describe heterogeneous hardware-software systems),

so we can simulate the hardware peripherals of the platform such as Ethernet MAC

controllers, memories, and buses. Our approach can be used with a general compiler

46 SIMULATION

(gcc), so a fast exploration of architectures can be performed without the need to modify

a compiler for each type of target architecture.

Next, we will introduce the four techniques we compare in this section. We refer to

them as “ISS reference”, “Native-Specific”, “Native-Average” and “C-Level”.

• “ISS reference” is based on a state-of-the-art Instruction Set Simulator with cycle

accuracy and is only used as a baseline for reference. Skyeye [KWC+04] is an ISS

simulator based on an assembly approach. Each assembly instruction entails an

execution time that is dependent on the instruction opcode, the pipeline state and

the value of the registers. Skyeye considers Data and Instruction caches. We use

this approach only as a gold model and compare other approaches against it.

• “Native-Specific” is based on native simulation. To optimize the simulation time

we base our analysis in basic blocks (sets of instructions that are always executed

together) instead of individual instructions. We characterize every basic block

at assembly level and annotate the code with an execution time per basic-block.

This cost depends on instruction opcodes, but we do not consider the value of the

operands nor the internal state of the MPSoC (as in “ISS Reference”).

• “Native-Average” is similar to “ISS reference” but we define an average execution

time per assembly instruction, assigning the same value for all the instructions.

In this case, the execution time of a basic-block is proportional to the number of

assembly instructions.

• “C-Level” is a technique based on C-Source Code analysis. In this case, we char-

acterize source code at C-level, using the operator technique explained in Section

3.4.3 [CPVM07][GADSSE10]. The considered code is a high-level view of the func-

tionality of the code and does not take into consideration optimizations performed

by the compiler. Also, we do not have details for internal pipeline status, the exact

number of instructions per element in the code, cache sizes and policies, or register

values.

3.4 SIMULATING THE CPU PART OF THE SYSTEM 47

Source Code

Parser

XML Code

Instrumentation 1

C-Code Generation

Target Compilation

BB Analysis

BB Cost Database

Instrumentation 2

C-Code Generation

Host Compilation

Estimation

Library

Native Simulation

Performance Estimation

C
ha

ra
ct

er
iz

at
io

n

Es
ti

m
at

io
n

FIGURE 3.2: Time-Estimation methodology. All the steps of this methodology have been auto-
mated as described in Chapter 2 and [GADSSE10].

Basic-Block methodologies (“Native-Specific” and “Native-Average”)

This section focuses on techniques that operate over the assembly language. First, we

present a general overview of the method, a process to extract basic blocks that operates

directly on the C-Source code and a way to characterize them that is simple and accurate

enough for early design exploration. Figure 3.2 shows the main steps of the process.

48 SIMULATION

1 if(a[0] == 0){

2 a[0] = 1

3 }

1 asm("b uc_mark_2__am3")

2 if(a[0] == 0){

3 asm("b uc_mark_3__rm")

4 a[0] = 1

5 asm("b uc_mark_4__")

6 }

7 asm("b uc_mark_5__ai1")

FIGURE 3.3: Example of code instrumentation

The application C/C++ source code is analyzed by a parser to obtain a language-

independent representation that contains the distinctive elements of the high-level pro-

gram. In contrast to other basic-block-based approaches for performance and time estima-

tion [TR01], our instrumentation is done directly in the C-source code. The instrumenta-

tion process has two steps [CPVM07]:

During the first step (annotation), we insert some assembly directives in the code

(Figure 3.3). The goal is to identify the basic blocks even with compiler optimizations.

We use the GNU/gcc facilities to mix assembly instructions with source code with the

‘asm’ directive 2. The C annotated code is then compiled with a target compiler, and the

resultant code is analyzed to detect the introduced marks. The output of this process is

a database that characterizes each basic block, storing a list with its instructions on the

target platform (the one in which the code will be finally executed).

During the second step (native simulation, right-side of Figure 3.2), the application

code is annotated with a function per basic block that provides performance estimation.

These functions use two additional parameters that are generated during the execution.

These parameters compute the number of cache misses in a basic block:

• ICmiss : number of instruction cache misses

• DCmiss: number of data cache misses

The description of the techniques that generate cache information is out of the scope

2To prevent the compiler optimizations from removing these marks they must be declared “volatile”

3.4 SIMULATING THE CPU PART OF THE SYSTEM 49

of this dissertation and the interested reader is referred to [CPVM10]. With this in-

strumentation and these parameters, the execution time of a block can be estimated

as:

TB = CB + TImisses · ICmiss+ TDmisses ·DCmiss

The cost associated with each basic block regarding its instructions (CB) differentiates

the methods “Native-Specific” and “Native-Average”. The former uses a cost that is

dependent on the mnemonic of the ASM instructions of the basic blocks (CB =
∑

Ci). The

latter uses an average cost that is the same for all the instructions (CB = N × C), and

therefore the cost of each basic block is proportional to the number of instructions that it

contains.

It is important to notice that the execution time of each instruction is also affected

by other inter-instruction effects that can occur in real programs. Examples of these

alterations are prefetch buffer and write buffer stalls, other pipeline stalls and cache

misses. Base cost per instruction does not take into consideration the impact of these

effects. Also, extra cost depends on the input data sets of the system and this information

is not available at compilation time. Therefore, assigning an average cost in this step

implies a loss of accuracy.

Operator-based modeling (“C-Level”)

This method performs the estimation based on a high-level language (C in our example).

The input is a software code and a rough characterization of the platform concerning

hardware and software. Here we use a characterization based on elements of the C/C++

code, assigning a constant cost per element of the code. Time estimation is performed

assigning a cost to each C++ operator, and overloading the application software operators

to keep track of the total time. We consider N the number of C statements corresponding

to some functionality and T the time needed to execute that functionality on the target

processor. We can express T as:

50 SIMULATION

T =
N
∑

n=1

Tn

Where Tn is the time spent executing the functionality of the nth statement of the

source code.

We can decompose the functionality of each statement of the high-level C language in

a set of machine-level instructions and rewrite Tn as the sum of all them.

Tn =
Mn
∑

m=0

Tmn ⇒
N
∑

n=1

Mn
∑

m=0

Tmn

Where Tmn is the time that is spent executing machine-level instruction “m” when

it is associated with C-statement “n”. This time, Tmn, depends on of the base costs and

extra costs as explained before. To model the basic block at a high level of abstraction

we consider only the base cost, that we call here “mean time per instruction” T . We can

rewrite the execution time as:

T =
N
∑

n=1

In · T

In which we have obtained the approximate execution time of a task composed of

N elements of the C-code, each of them being decomposed by the compiler in assembly

instructions. The number of instructions that implement these high-level elements of the

code is obtained by characterizing small programs that contain these elements in isolation.

Once the elements of the code have been characterized, they can be directly reused for all

designs developed on the same HW platform.

3.4.4 Results

To compare the estimation methodologies, we have executed several test benches on an

ARM920T-based platform. The average execution time per instruction has been obtained

from reference [SOF00]. Average time per cache-miss has been measured on a real

hardware platform. We use four test benches: a bubble-sort, a recursive implementation

of the Hanoi game, a recursive factorial and a solution to the queens problem. Table 3.1,

3.4 SIMULATING THE CPU PART OF THE SYSTEM 51

TABLE 3.1: Speed-Up and Error in the methods considered
ISS Reference “Native-Specific” “Native-Average” “C-Level”

Simulation

Time (ms)

Estimated

Time (ns)

Simulation

Time (ms)

Estimated

Time (ns)

Simulation

Time (ms)

Estimated

Time (ns)

Simulation

Time (ms)

Estimated

Time (ns)

Bubble 938 4163 6 4152 7 4122 5 3945

Factorial 206 1961 6 1954 6 1993 3 1558

Queens 489 16909 3 16787 3 16505 1 16479

Hanoi 209 3517 6 3491 6 3305 3 3535

ISS Reference “Native-Specific” “Native-Average” “C-Level”

Speed-up Error Speed-up Error Speed-up Error Speed-up Error

Bubble 1 0 156 0.26 134 0.98 187 5.24

Factorial 1 0 34 0.36 34 1.63 68 20.55

Queens 1 0 163 0.72 163 2.39 489 2.54

Hanoi 1 0 34 0.74 34 6.03 69 0.51

and Graphs 3.4 present the results. Table 3.1 shows an estimation of the execution times

in the target platform (estimated time). The table also shows the simulation time on the

host platform (2.61 GHz Dual-core PC). We consider “ISS-Reference” (a cycle-accurate ISS

Simulator) as the baseline to compare the performance and accuracy. “Native-Specific”,

“Native-Average” and “C-Level” are the native simulation techniques that we present in this

section. The first conclusion that can be extracted from the data is that native simulation

is 2-3 orders of magnitude faster than ISS approaches, even when the error is less than

1%. This information is included in Table 3.1 in which speed-up and accuracy errors

are presented. Comparing the results of different approaches, we observe that “Native-

Specific” method provides a speed-up of 2-3 orders of magnitude with an accuracy error

less than 1%. “C-Level” provides a speed-up of two times compared to “Native-Specific”

but with an accuracy penalty of at most 20%.

“Native-Specific” and “Native-Average” have similar speed-ups but the accuracy error

of “Native-Average” (2.39%) is higher than “Native-Specific” (0.74%). The speed-up is

the same for these methods as the characterization of the basic blocks is performed in

the same way in both cases. The reason to use an average value per instruction (method

“Native-Average”) instead of a full characterization of all the opcodes (“Native-Specific”)

52 SIMULATION

156
134

187

34 34
68

163 163

489

34 34
69

0

100

200

300

400

500

600

2 3 4

Method

sp
ee

d
u
p

0,26 0,98

5,24

0,36

13,67

20,55

0,72
2,39 2,54

0,74

6,03

0,51

0

5

10

15

20

25

2 3 4

Method

E
rr

o
r

FIGURE 3.4: Speed-up and error of the different methods considered

–even considering that it produces worse results with the same speed-up– is that the

average time per instruction is usually given in the processor datasheet, while an entire

ISA characterization is difficult to obtain. Operator cost (“C-Level”) gives significant

speed-ups, but with more error, especially in the case of the factorial test case where the

recursive implementations of the factorial function cause errors due to instructions that

handle the stack in the function prolog and epilog. This technique can be used for the

first steps of platform design, where precise values are not required but fast simulation is

a must. We base the operator methodology on the idea that the compiler converts each

element of the C-code into a template which is then filled with specific details. However,

real compilers (especially in the presence of optimizations), perform some operations at

assembly level after this template-filling to increase performance. This explains the errors

of this method.

3.4.5 Optimization example

Introduction

In this section, we present an example in which we apply the instrumentation previously

described to a real-life program to detect optimization opportunities and reduce the

execution time. The example demonstrates that having a precise understanding of the

interactions between the source code, the microprocessor, and the memory hierarchy, we

can halve the execution time of the application under test. The solution presented in this

section won the 3rd place in the 11th Memocode Software design contest [MSSS14].

3.4 SIMULATING THE CPU PART OF THE SYSTEM 53

The contest consisted on optimizing the execution time of a software emulator for the

8080 architecture when running over a RaspberryPi platform. The RaspberryPi platform is

a modern Single Board Computer (SBC) designed with embedded system constraints, but

also generic enough to run multi-purpose tasks. It has attracted much attention because

of its adaptability, size, and price.

At the time of writing this work, there existed no simulator based in RTL, ISS or TLM

that was able to consider the interactions between CPU, memory and source code in the

RaspberryPi platform. In this section, we present a practical example of how our profiling

techniques can be used to obtain valuable information of the program running on the

RaspberryPi platform, and how this information can be used to derive useful optimizations.

The contributions of this work can be summarized as follows:

• It shows a practical example of how we optimize a program to run on an embedded

platform beyond the optimizations that a compiler can perform.

• It considers both the caches (instructions and data) and assembly instructions in

the profiling.

• It identifies the main causes of performance loss in programs executed in embedded

systems, and how to improve program performance through manual optimizations.

The section is organized as follows: the original architecture of the application to

optimize is presented in section “Initial code architecture”. The high-level parameters

of our models targeting the RaspberryPi architecture are described in section “Hard-

ware Platform”. The optimizations that we apply to the code are presented in section

“Optimizations”. The relative effect of each optimization is presented in “Results”.

Initial code architecture

The emulator starts at function main. This function is responsible for the setup of the

SDL interface that will show the screen and the initialization of the emulator. For each

instruction in the ROM file, function “Emulate8080Op” is called (Figure 3.5). This function

simulates an instruction and returns the number of cycles the instruction needs to execute.

54 SIMULATION

Emulate8080Op

WriteMem

FlagsZSP

UnimplementedInstruction

ArithFlagsA

ReadFromHL

WriteToHL

LogicFlagsA

Pop

Push

parity

parity

WriteMem

parity

WriteMem

printf

Disassemble8080Op

exit

FIGURE 3.5: Function call graph of Emulate8080Op

This function is no more than a big switch statement over the different opcodes in the

8080 Instruction Set Architecture. Depending on the current opcode, the state of the

emulator is updated, and in certain cases, the memory is written.

Hardware platform

The RaspberryPi platform is powered by an ARM1176 processor [arm]. This processor

implements the ARM v6 architecture and provides a performance of 700MHz in low-cost

designs. The architecture is schematized in Figure 3.6. There are two levels of caching;

L1 and L2. According to ARM1176JZF-S Datasheet [arm], caches can be configured in

the range of 4 to 64 KB and are 4-way associative. For the particular case of Raspberry Pi,

L1 is split into 32KB of data and 32KB of instructions. Caches can provide two words per

cycle for requesting sources, and line-length is eight words. This data is shown in Table

3.2, and is the main input of our tool for performance analysis.

3.4 SIMULATING THE CPU PART OF THE SYSTEM 55

FIGURE 3.6: RaspberryPi System-On-Chip architecture, obtained from ARM1176JZF-S technical
reference manual [arm]

TABLE 3.2: Relevant parameters of destination platform

Parameter Value

Frequency 700 MHz

L1 sizes 32KB Instructions + 32KB Data

L2 size 128 KB

Cache associativity 4

Cache line size 8 words

Optimizations

We have classified optimizations performed in the code in two sections: optimizations

targeted to reduce the number of executed instructions and optimizations to improve

cache utilization.

Next, we explain the optimizations performed in the code and how they affect perfor-

mance.

Memory optimizations Dead code elimination has a substantial effect on performance.

It reduces code size, and therefore instructions cache hit rate increases. This makes

56 SIMULATION

accessing high levels of memory in the hierarchy much less frequent and therefore,

reduces the time needed to feed the processor with instructions. In the emulator code,

dead code can be reduced by removing unused functions and switch cases. Some of

these eliminations cannot be automatically performed by the compiler, as they depend on

user-specific knowledge.

The same effect can be observed in data caches. Removing unused variables or unused

fields in structures increases data cache efficiency.

Clustering together all the transformations applied to a variable decreases the chance

of this variable being replaced in low levels of cache, just to be loaded again later. In the

code under test, this is clearly the case for variable “cycles”, which is used before and after

calling Emulate 8080Op. As this is a large function, “cycles” has certainly been replaced

in L1 memory when it is accessed the second time. Clustering together the update of

cycles with prior computations over this variable has a substantial effect on performance.

Inlining In some occasions, inlining can be beneficial for performance because it removes

the overhead of function calling. However, if the function is called from multiple places,

it can increase code size and therefore perform worse on instruction cache. Although

compilers do a good job on detecting best candidates for function inlining, the lack of

runtime information prevents the compiler to inline specific functions. We used the

instrumentation technique presented in Section 3.4 to simulate this information and

decide the best candidates for inlining.

Pointer arithmetic and structure flattening Accessing arrays and structure fields are

sources of covert operations, as they both involve calculation of target address before

pointer dereference. The instrumentation of the code with the technique presented in

this section reveals many of such dereferences. Flattening the fields of this structure has a

noticeable effect on performance.

Register keyword To match the architecture better, variables that are frequently used

can be preceded by the C keyword register, which makes them use registers in the

target architecture and not move them to memory whenever possible. We used the

3.4 SIMULATING THE CPU PART OF THE SYSTEM 57

Inlining
functions

Remove
unused function
calls

Using global
variables instead
of function parameters

Cluster operations
affecting the same
data

Flattening data structures

Removing dead code

Variables
made "register"

FIGURE 3.7: Relative effect of the techniques discussed in 3.4.5.

instrumentation presented in this section to detect the variables that would benefit the

most from this optimization.

Results

Figure 3.7 captures the relative effect of different optimizations conducted in the code.

Seeing Figure 3.7, we can sort optimization in order of importance as “inlining”, “clustering

of operations over same data”, “removed unused calls and functions”, “make parameters

of functions as global variables”, “removing dead code”, “making most frequently used

variables as registers”, “flattening structures” and “removing dead code”. The fact that

second, third and fifth most important optimization do not affect the number of executed

instructions shows the importance of data and instruction caches in overall execution

time, and therefore the importance of profilers that considers them to obtain valuable

information for optimizations.

58 SIMULATION

3.4.6 Conclusions

This section presents three techniques for software execution time estimation that work at

C-Source Code level and assembly level. These techniques are based on native simulation;

a set of timing annotations are introduced in the code to provide performance estimations

during simulation. We compare these techniques with a cycle-accurate ISS regarding

execution time and estimation error.

We show that software execution time can be characterized by associating a constant

time cost to each element of the high-level description code. These costs are derived

from the number of machine instructions that are needed to execute the corresponding

statement. Once the costs have been obtained, they can be reused for all designs developed

for the same hardware platform. This technique is useful in early design steps where fast

simulation is more important than accurate results.

To achieve more accuracy, we present a methodology that extracts basic blocks from

C-Source code, and we describe two ways to characterize these basic blocks. The former

needs a complete characterization of the platform regarding a base cost of each opcode

in the ISA. The latter considers an average value for every instruction. The results show

that considering just the number of assembly instructions and number of cache misses in

a block provides enough accuracy and speed-up. Comparing these results with the ISS

approach we see that very accurate results (error less than 1%) can be obtained, with a

speed-up of 2-3 orders of magnitude.

We have also demonstrated the usage of the techniques to instrument and optimize

the source code of an emulator when executed over an embedded platform (RaspberryPi).

This application proves that the selected parameters of the architecture are relevant for

obtaining insightful results for performance optimization and at the same time easy to be

adapted to new hardware architectures. As we have seen, caches may be a bottleneck

for applications running on embedded platforms, so profiling and optimizations have to

consider them in order to obtain insightful results for optimizing both the source code

and the hardware platform.

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 59

3.5 Simulation of the many-core part of the design

3.5.1 Introduction

In this section, we extend our simulation framework to be able to simulate shared-memory

many-core architectures. This extension is particularly challenging because in many-core

architectures it is important to simulate not only each microprocessor in isolation but

also the concurrent accesses to the shared memory. This requires consideration in the

software analysis (a parallelization API has to be analyzed to detect the creation and

destruction of threads) and in the hardware modeling (we require new models to support

commonly used communication infrastructures of many-core platforms). In our solution

we extend the annotation introduced in Chapter 2 to support OpenMP (a common API for

parallelization of C/C++/Fortran code) and develop hardware models for the commonly

used communication infrastructures of many-core platforms (Buses and Networks On

Chip (NoCs)). As in previous sections, we will put particular emphasis on being able to

simulate the platform in the early stages of the design process.

The section is organized as follows: in “Estimation technique” we introduce the

extensions performed to our virtual platform to simulate many-core architectures. In

“Optimization example” we present several optimization techniques motivated by the

parameters of our simulation framework and demonstrate their effectiveness by presenting

how we used them to improve the execution time of a biological simulation by a factor

of 320 times, and win a first prize in the “Intel Modern Code Developer Challenge”

competition. We finish the section by presenting our conclusions.

3.5.2 Our approach

Simulation challenges

There are two main architectures to communicate processing elements in a multi-core

System-on-Chip (MPSoC): Bus-Based communication and Network-On-Chip communi-

cation). Architectures with “cluster-level granularity” [PP11][YZA+09] use the two: a

Network-On-Chip for inter-cluster communications because of its better scalability and

60 SIMULATION

BUS BUS

NoC

FIGURE 3.8: Double Hierarchy of communications in a modern many-core architecture

power consumption and a bus for intra-cluster communication because of its smaller size

and better performance with less communicating elements (see Figure 3.8).

This “double” hierarchy of communications introduces new challenges in the design

of many-core systems because performance largely depends on communication patterns

between cores and memory hierarchy. Architectures with strong coherence between each

local memory and the global memory (ccNuma architectures) are no longer efficient when

many cores are communicating. Therefore, caches are usually substituted by scratchpad

memories, and the responsibility for keeping them in sync is delegated to the programmer

instead of being ensured by the hardware. The modifications that the programmer needs

to perform in the code to optimize performance in these platforms require a profound

knowledge of both the architecture (latency, bandwidth, the number of memory banks,

etc.) and the application (relevant variables and memory access patterns) which are

not usually manageable for a single person. In agreement with Moore’s law, the density

of integration grows 60% each year, while memory bandwidth only grows 10%. The

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 61

C Code C Code

LibGOMP Library LibGOMP Library

Pthreads API Win32 Native Threads Annotated Pthreads API

Model of the platform +

Functionality

Performance

gcc front-end OMPi front-end

FIGURE 3.9: APIs involved in OpenMP parallelization and estimation

difference between those exponential curves is also exponential, so a new factor in system

performance analysis is becoming prevalent. This effect is called “Memory Wall” [BDVS15],

[CWLW15], [VB14]; a degradation of performance caused by memory limitations that

is very dependent on the mapping between tasks and processing elements as well as

the utilization of memory hierarchies. Besides the memory-wall problem, the increased

number of cores that are present in current platforms exponentially increases the design-

space exploration. Therefore, early performance estimation techniques are necessary to

adapt the design process to these platforms. The main trend in the field is the use of

instruction set simulators (ISS) [GUA11][GGD+02], but the problem of this approach is

the high simulation time that severely increases the design time.

Parallelization language and concurrency modeling

To create parallel tasks and spread them over the different cores available in the platform,

we rely on the OpenMP parallelization API. As summarized in Figure 3.9, the parallelization

of OpenMP annotated code lies over three different APIs. GCC’s front-end converts the

OpenMP ”pragma” directives into a set of calls to functions defined by the “LibGOMP”

library. This library provides a thin layer of abstraction that enables OpenMP to be portable

over different native thread libraries (i.e. Windows or POSIX APIs).

To model the effect of thread parallelism with the run-time library, we modified the

LibGOMP API to instrument the creation and destruction of threads and the mutexes

operation. Thus, when the program calls a “LibGOMP” library function, there is another

62 SIMULATION

call to the same function of our run-time library. These functions keep track of the

execution time needed for each task enabling to obtain execution time estimations. Note

that even when the functions mapped to each thread model the execution time of tasks

when executed on the target platform, the code can be still run on the host computer, and

the native simulation can use the host operating system scheduler for synchronization.

The code can then be parallelized using OpenMP directives. Using the OMPi compiler

[DLT03] we can convert OpenMP directives to POSIX calls and map the tasks generated

in this process to particular processors in the platform.

As mentioned previously, one of the most important aspects to consider when creating

applications for many-core platforms is the efficient use of the hierarchical memory levels.

Since this is an important aspect to consider, some virtual platforms provide models of

memories to be embedded in the platform. However, there is not yet a standardized

API to manage DMA transfers, or to assign specific data localization for variables so our

technique relies on “shared” and “private” pragmas of OpenMP to assign a location in

the hierarchical memory for every variable so this access time can be estimated. This

mapping provides a generic and practical way to simulate the code in different platforms

and facilitates the native-simulation approach, as these pragmas do not interfere with the

normal functionality of the programs. This idea of using “shared” and “private” functions

for variable localization in memory and estimation is shown in Figure 3.10. To accomplish

this, a parser has been created to extract information about the OpenMP pragma directives.

Also, the underlying memory model has been modified to consider different costs for

different memory transactions. The technique has been evaluated and tested with models

for the P2012 many-core platform [PP11] and the results are further discussed in the

publications [GGBSEC13][GGBS12][GGS12].

Hardware models

To model a generic many-core platform, our simulator requires particular details of its

internal architecture. In the current version of the tool, it is possible to model the following

elements of a many-core architecture:

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 63

1 int main(int argc , const char* argv []){

2 char message [] = "Hello world from thread %d\n"

3 #pragma omp parallel for shared message private(i)

4 for(unsigned i = 0; i < 10; i++){

5 printf(message , omp_get_thread_num ());

6 }

7 return 0;

8 }

PE PE PE PE

L1 L1 L1 L1

Interconnect

L2

PE Processing Element

L1 Level 1 Memory

L2 Level 2 Memory

FIGURE 3.10: Localization of variables based on OpenMP pragmas

• Processor: We characterize the particular model of a processor by defining the

number of cycles that each instruction of the ISA needs to execute. The estimation

described in 3.4 (method “Native-Average”) is used to simulate each of the individual

cores in the system.

• Bus interconnection: Cores are associated in “clusters”, that share a bus to commu-

nicate them with the local L2 memory and with the network interface. This bus

is modeled using a TLM generic bus model, with a transfer rate that can be easily

modified in the configuration files.

• Memories: Currently, the memory model hierarchy parameterizes memory response

delay and memory size. The default access latencies are 1 cycle for in-processor

memory, 10 cycles for L1 memory and 100 cycles for L2 memory, but these numbers

can be easily modified to fit other platforms. A translation buffer (TLB) model

provides physical addresses for memory positions in each core and also logs the

requests to a trace file so that memory access patterns can be analyzed. The

techniques to model instructions and data caches are described in [PDV11].

• Network-On-Chip (NoC): We provide models of the NoC with two simulation ap-

proaches; a high-level TLM model where the transactions are modeled as blocks of

data that flow from one node to another through a dedicated collision-free path and

a low-level cycle-accurate simulation in which all the micro-architectural details

of the router crossbar and switches are considered. A unique network interface is

64 SIMULATION

provided for the two approaches so a designer can use the former (if fast simulations

are the main goal) or the latter (if simulation accuracy is the main goal).

• Communication patterns: each transfer to memory is annotated in a trace in the

form

t ime, thread_id, Read/W rite, memor y_star t, size

This trace is post-processed when the simulation finishes so communication patterns

can be obtained from it. To accomplish this, the trace is read in a time-wise order,

and a virtual map of the memory is created. This map presents a picture of the mem-

ory content at a time t. When a thread threadw writes in a memory position a data

of size sizew , memory positions from memory_startw and memory_startw+sizew are

assigned to this thread. If another thread reads any of these positions in a time t ′ > t,

a communication of n bytes is inferred from thread threadw to thread threadr of size

[memory_startw,memory_endw]∩[memory_startr ,memory_endr]. This amount of

data is then added to the communication matrix for cell (thread_idr , thread_idw),

and can be used later to group together threads that have intense intercommunica-

tion.

3.5.3 Optimization example

Introduction

Current research in the field of computational biology often involves simulations using

high-performance computer clusters. It is crucial for the code of such simulations to be

efficient and correctly reflect the model specifications. In this section, we present an

optimization strategy for simulations of biological dynamics demonstrated by our winning

entry of the “Intel Modern Code Developer Challenge” competition.

The competition highlights some of the important aspects to tackle when optimizing

code for many-core architectures that we have covered in the introduction. Although

various programming interfaces such as OpenMP ease the transition from sequential to

multi-threaded parallel code, fully-automated parallelization is difficult to archive, and

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 65

there is still a huge variation in performance due to different programming styles and

functionally equivalent versions of the same code. Just understanding this variation is

challenging because (both in the competition and also in real-life scenarios), we usually

only have access to the net effect of the changes in the execution time. We will see how the

understanding of the intermediate variables that indirectly affect execution time (cache

misses, memory transferences or load balancing) can effectively guide the optimizations

and how this information (combined with a fast simulator of the architecture) can lead to

significant optimizations in execution time. Quick and unintrusive profiling is particularly

important for applications such as the one presented as example in which the sequential

implementation is performed by a different person (or team) than the optimization and

the computational platform. Understanding how the three pieces interact together is of

paramount importance to obtain the maximum benefit of their combination.

This section presents the subset of the optimizations that are related to the parameters

selected in Section 3.5.2. The full description of the original software architecture and

explanation of the performed optimizations is being reviewed for publication.

Initial software architecture

The original code to be optimized allows the simulation of millions of neural progenitor

cells that interact with each other biochemically in 3D space. In particular, it involves

some fundamental processes during the formation of the brain; cell proliferation, secretion

and detection of diffusible substances as well as their concentration gradients, and cell

migration. Understanding how these mechanisms of brain tissue development play out, by

taking into account genetic factors in a spatially and temporally dependent way, is crucial

for the identification of the causes and potential treatments for neurodevelopmental

diseases, such as epilepsy, autism, and schizophrenia [Ins10][Hag13][HCW14]. Overall,

the performance and correctness of such optimized code are paramount for the explanatory

power and scientific practicality of computer simulations of biological dynamics.

The original architecture of the code is shown in Figure 3.11. The code can be divided

into two phases. Initially, a single precursor cell is placed in the middle of a 3D space.

66 SIMULATION

Initialization

cellMovementAndDuplication

getEnergy getCriterion

produceSubstances

runDiffusionStep

runDecayStep

produceSubstances

runDiffusionStep

runDecayStep

runDiffussionClusterStep

pa
th

Tr
av

el
ed

nu
m

be
rD

iv
is

io
ns

po
sA

ll

ty
pe

sA
ll

C
on

c

Conc

Conc

Conc

po
sA

ll

ty
pe

sA
ll

Conc

Conc

Conc

FIGURE 3.11: Data flow of the initial implementation.

In the first phase of the simulation, the cells move randomly and divide until the final

number of cells is reached. After each cell division, the daughter cells are assigned to

one of two possible cell types, hence giving rise to cell differentiation. This simulation is

performed with the functions produceSubstances and cellMovementAndDuplication. In the

function produceSubstances, one of the two substances is produced depending on the cell

type. In the functions runDiffussionStep and runDecayStep, the diffusion and decay of the

cellularly secreted substances are simulated.

In the second phase, the program simulates the self-organized formation of cell clusters,

based on the movement of cells along gradients of extracellular substances, which is a

well-known ability of eukaryotic cells [Jin13]. This phase simulates the movement and

the secretion of substances by cells. Cells are attracted by and move along gradients of

the substance secreted by cells of the same type, but move away from gradients of the

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 67

opposite substance type, which finally leads to cluster formation.

At the end of the simulation, measurements for the overall energy and a criterion

indicating if the clustering has taken place or not are computed. This is done using the

functions getEnergy and getCriterion.

Hardware architecture

The performance of the application was measured on an Intel Xeon Phi 7120P coprocessor.

This device, based on the Many Integrated Core (MIC) architecture, comprises 61 cores

clocked at 1.238 GHz. Cores have symmetric access to a total of 16 GB of shared memory.

This memory is cached with 512 KiB of Level 2 cache and 32 KiB of L1 data cache per

core. More details about the Intel Xeon Phi platform can be obtained in [VK].

The code was compiled with Intel C++ compiler version 16.0.0.109. The software

stack for Intel Xeon Phi coprocessors was MPSS 3.5.2. The operating system on the host

system, CentOS 6.2, used the Linux kernel version 2.6.32-220. The parallelization API

was OpenMP.

Code Optimization

In the following sections, we explain the optimizations conducted to increase code perfor-

mance over the described platform.

Optimizations are grouped based on the main goal to achieve; in “sequential opti-

mization” we focus on single cores and try to reduce the associated computational load.

In “parallel optimizations”, the main goal is to increase the parallelism of the code (i.e.

the number of operations that cores can execute at the same time). Finally, in “memory

optimizations” cache locality is exploited to provide high bandwidth and low latency

access to the data.

Sequential optimization

In this section, we describe general optimization techniques that do not rely on parallel

architectures or memory layouts.

68 SIMULATION

Loop transformations The benefit of loop transformations is twofold; on the one hand,

due to limitations in inter-procedural and dependency analysis, compilers do not usually

do a good job at detecting parallelization opportunities when multiple loops are involved.

On the other hand, loop transformations increase temporal and spatial memory locality.

Some examples of loop transformations are:

• Loop coalescing: The transformation consists in identifying loops that operate over

the same input domain but produces results in different output variables. That

enables joining them, and expose more code to parallel computation.

• Loop splitting: On the other hand, if we can identify loops that operate over different

variables that do not share any dependency, it is useful to split them and include

pragma directives to enable task-level parallelism.

Function inlining To implement function calling, compilers introduce prolog and epi-

log instructions at the beginning and end of each function. These instructions can be

detrimental to performance in functions that are called very frequently and whose body

is relatively small, and it can be more beneficial to inline those functions. On the other

hand, this makes the code larger, and more cache misses will occur in the instruction

cache. Therefore, measurements of the effect of those optimizations both in the number

of instructions and in the instructions cache need to be measured to select which functions

to inline.

Optimizations targeted to reduce the number of executed operations This set of

optimizations aims to decrease the number of instructions executed. Common examples

are factorizing common sub-terms that the program uses several times. The compiler is

usually unable to detect these optimization opportunities due to inter-procedural analysis.

A good example of such limitations can be found in the pair of functions getCriterion and

getEnergy, whose computations are very similar, but since the commonalities are among

two different functions, the code cannot be reused. Extracting the common code out of

the two functions and reusing it reduces the number of executed instructions and increase

the performance of the instructions cache.

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 69

Optimizations to remove expensive operations Due to complex datapaths and the

internals of modern architectures, different operations can take a different number of

cycles to finish, so a good optimization technique is to transform expensive operations by

mathematically equivalent ones that are much cheaper to compute, especially if those

operations take place in loops so that they are executed multiple times. Common examples

of this transformation are focused on multiplications and divisions since those are usually

the most expensive ones in modern pipelines. In our simulator, we output metrics about

the number of instructions executed of each type that are useful for detecting these

optimization opportunities.

Parallel optimizations

In this section we describe optimizations focused on exploiting the high degree of paral-

lelism available in the platform.

High-level task parallelism Tasks dependencies of the computation described in the

introduction can be seen in Figure 3.11. As shown, several computations can already be

performed in parallel in the initial implementation of the source. High-level parallelism has

been implemented for the functions that do not have dependencies among them. However,

the optimizations archived by a simple parallelization like this are sub-optimal. To increase

the parallelism in the whole program, we need some architectural transformations.

Double buffering has been used in the array Conc. Double buffering is a common

optimization technique when implementing stencils, and more details can be seen in

references [MRR12][ZZWY16]. Using double buffering reduces the number of instructions

executed by the processing elements but impacts negatively in the memory performance,

so it does not always lead to improvements in the execution time. Simulation techniques

that can analyze trade-offs between the number of executed instructions and memory

utilization help in detecting optimization opportunities like these.

Vectorization Besides ‘task-level parallelism’, using vector instructions inside functions

can increase the performance of the code substantially. In our optimizations, we use Intel

70 SIMULATION

intrinsics to introduce vector instructions in the code.

Parallel reduction Several loops in the original code are used sequentially in conjunction

with a global scalar available to all iterations of the loop to compute sums of different

terms or to count the number of times an event happens. The way in which the loops

are implemented introduces data dependencies caused by reads and writes to the global

object, and therefore a parallelization is impossible. To remove these dependencies, we

introduce an array or a matrix that stores the result of each iteration individually. This

enables executing most of the work in parallel since each thread writes to its private

variable and therefore there are no collisions. A final sequential step is then applied to

compute the serial part, in which no parallelization is possible. This technique called

“parallel reduction” has been used in the functions cellMovementAndDuplication to count

the number of divisions of each cell, and in getEnergy and getCriterion.

Memory optimizations

As recalled in the introduction, the memory layout usually constrains algorithms more

than the computational speed. Even when we have optimized the volume and cost of

operations in parallel and the work given to each core, memory bandwidth can also limit

the performance of code in many-core platforms.

Memory allocation with first-touch For allocating data in many-core architectures,

Intel compiler provides libraries that implement the function mm_malloc. This function

implements a lazy initialization policy that defers the allocation of the memory until a core

tries to use it, giving the system a “hint” to which memory the array should be allocated

on and producing the beneficial effect of locating the memory close to the core that uses

the data most frequently.

Optimizations to improve temporal and spatial data locality To maximize the uti-

lization of cores and avoid hitting the “memory wall”, it is important to maximize cache

utilization. To this end, two techniques have been used in the implementation of the

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 71

TABLE 3.3: Simulation parameters for ‘small’ and ‘huge’ testcases.
Small testcase Huge testcase

speed = 0.01 speed = 0.01

T = 500 T = 500

L = 80 L = 820

D = 0.3 D = 0.3

mu = 0.1 mu = 0.1

divThreshold = 16 divThreshold = 25

pathThreshold = 2.0 pathThreshold = 2.0

spatialScale = 5.0 spatialScale = 5.0

most demanding functions: loop tiling and cache-oblivious algorithms. In the former

technique, the input data is partitioned in “tiles”, and we transform loops that operate

over that data in such a way that they scan the input first with a stride that is equal to the

tile size, and then a second loop operates “inside” the tile. This transformation increases

locality and keeps more accesses in the low levels of the memory hierarchy. However, the

improvement of this technique is highly dependent on the matching between the cache

sizes, the size of the “tiles”, and the sizes of the array, so several simulations are needed

to select the optimal parameters.

Results

In Figure 3.12, the optimizations performed in the code are classified regarding the “opti-

mization target”, as explained before. We present the relative effect of each optimization

in this graph.

In this figure, two examples are shown. We call the former “small test case” and

the latter “huge test case”. These names summarize different simulation parameters as

presented in Table 3.3. The purpose of the small set of parameters is to be able to quickly

test the effect of optimizations in a manageable test case, while the purpose of the “huge”

one is to perform the actual high-performance simulation.

Seeing Figure 3.12, we can sort the most important optimizations as “Double-Buffering”,

“Parallelization”, and “Tiled and cache-oblivious” implementation. In the case of the huge

test case, some of these transformations could not be measured, since the execution at

72 SIMULATION

Small Testcase
Huge testcase

Tiled_Cache_
Oblivious

Task
Parallelization

Parallel
Reduction

Inlining

Aliasing

Memory

Double
Buffering

Approximation

Vectorization

Loop
Transformation

Parallelization

Serial
Optimizations

Speedup

FIGURE 3.12: Effect of different parallelization techniques in the small and huge testcases. Note
that first versions of the ‘huge’ testcase cannot be simulated due to excessive execution time and
lack of resources. For each technique, the average improvement is shown, measured as the average
of the pairwise division of execution times before and after each step. The error bars also show
the maximum and minimum value of that division over the multiple times in which the technique
is used. Small and Huge parameters are presented in Table 3.3.

the initial stages was too time-consuming. Because of that, only the first implementation

of the sequential code have been measured with the “huge” test case – the complete

simulation took 45 hours in the Xeon E5. The optimized version only requires 8 minutes

under the platform described in 3.5.3. It is interesting to see that on average, the effect of

some techniques is less than 1 (i.e. increments the execution time) in the small test case,

but beneficial it in the huge one. This emphasizes the importance of understanding the

relationships between the input data, the program, and the hardware architecture.

In the relative order of the optimizations, we can see the importance of modeling

the congestion of the communication infrastructure of many-core chips when estimating

the performance of embedded code in high-performance computers. Compilers can not

neglect the importance of optimizing memory access patterns either. Although compilers

do nowadays a great job in implementing automatically such optimizations, we have

seen that in the majority of cases, because of the lack of context, they are not able to

automatically infer the conditions that make these optimizations possible, and human

3.5 SIMULATION OF THE MANY-CORE PART OF THE DESIGN 73

assistance is usually needed. Finally, we emphasize that some optimizations require

“losing” performance temporarily to be able to improve later on. Having an accurate

intuition on how hardware and software interact will prevent us from “giving up” too soon

in the optimization process and improve quickly later on. This is the case for example in

loop transformations that are required to expose more code to parallel execution. The

usage of a simulation framework that gives the developer information about the internal

parameters of the platform can help in these manual tasks.

3.5.4 Conclusions

This section presents a virtual platform that enables a reliable design-space exploration of

shared memory many-core platforms. We consider two major elements in the proposed

tool to facilitate the design process. One is the use of OpenMP as a programming paradigm

since it is oriented to a shared memory environment. The other is the use of parameterized

hardware models for the communication elements of the architecture, that can be used

to simulate the platform before a real hardware prototype is available (or when the

platform is available, but the inspection of the internal parameters is not). In summary,

this section proposes a tool based on native simulation for measuring OpenMP partitioned

applications on embedded systems targeting many-core platforms and considering memory

and Network-On-Chip contention in the simulation.

We demonstrate the advantages of our simulation framework with an example of

simulation of biological dynamics, that is optimized to increase performance when running

with many-core parallel processors and provide insights about what are the most important

elements to analyze when simulating the effect of code changes in many-core platforms.

Although this demonstration is in the context of biological systems, the principles apply

to a wide range of scenarios. Our code simulates varying numbers of agents in 3D space,

which interact and behave in many different ways; namely by proliferation, migration,

secretion of diffusible substances, internal dynamics, and detection of external chemical

gradients. Because of this huge diversity of interactions, the techniques presented can be

extrapolated to many different contexts.

74 SIMULATION

3.6 Simulation of hardware accelerators

3.6.1 Introduction

In this section, we introduce our approach to simulate the hardware elements of the

platform under test. This section is structured as follows; in “Design process” we present

a typical codesign process for heterogeneous platforms (platforms that contain hardware

and software components) as well as the main limitations that are present in current

state-of-the-art techniques for implementing such a design process. In “our approach”, we

extend the native execution technique developed in previous sections to the analysis of

hardware accelerators. In “results” we evaluate our technique with several test cases from

the CHStone benchmarks (a set of programs to assess the effectiveness of synthesis tools).

In “Optimization example” we use our technique and simulator to improve the execution

time of a computer-vision application in which we reconstruct the volumetric Convex-Hull

of a figure based on the images of several cameras. The usage of the presented technique

helps in detecting optimization opportunities that lead to a result that is three times

faster than other state-of-the-art techniques for the same quality conditions. Finally, in

“Conclusions” we close the section with a summary of the presented improvements.

Design Process

Embedded systems are nowadays composed of the hardware part of the system and the

software part. Generally speaking, software is easier to develop and update, so most

modern systems tend to integrate a microprocessor that executes most of the functionality

with several hardware modules (generally called accelerators) that are targeted to the

most critical functionality (performance and energy-wise). Given the restrictions and

the algorithm to implement, the process of deciding what part of the functionality is

implemented in software and which one is synthesized as hardware is called “partitioning”,

and the correct execution of this process is essential for the proper development of the

system. Figure 3.13 shows a common codesign process that we divided into the following

steps:

3.6 SIMULATION OF HARDWARE ACCELERATORS 75

Algorithm

HW/SW Partition

Interface definition

Compilation

Source-Code modification

Static Optimizations

Area/Time Considerations

Behavioral Synthesis

Testbench Creation

Simulation

Constraints

END

FIGURE 3.13: Typical codesign process. Green boxes represent steps that are generally well-
automated. Red boxes represent steps that require manual intervention. Solid lines represent
dependencies, dashed lines represent codesign loops with current methodologies () and our
aim ().

• Development of the algorithm: The first step in the creation of a heterogeneous

embedded system is the development of a software model that implements the

desired functionality. This implementation is sometimes called “Executable Specifi-

cation”, because its purpose is to specify how the system behaves even though some

functionality may be later implemented as a hardware module. In those cases, the

developers of the “executable specification” can be a different team separated from

the implements of the final heterogeneous system.

• Partitioning: Once the algorithm has been tested and verified, developers need to

specify which elements of the system are implemented in hardware and which are

implemented in software. These decisions require deep knowledge of the algorithm,

the functionality and the main parameters describing the platform.

• Compiling the software part of the system: Once the hardware and software elements

76 SIMULATION

have been selected, the software part of the system is compiled for the target

processor. To communicate the software and the hardware parts of the system

software developers need to implement several layers of “Hardware-Dependent-

Software”.

• Implementation of the hardware part: The part of the executable specification that

will be implemented in hardware needs to be profoundly transformed (from C, C++

or SystemC to VHDL or Verilog). This transformation is a complex process that is

driven by the need of obtaining a heavily parallel implementation to reduce the

execution time but also constrained by the area it uses in the chip. The development

of this hardware part of the system has usually been performed by hand. Given the

key importance of this transformation and the difficulties it entails, new tools that

can automate such transformation have appeared in the last years.

• Verification: The verification of the resulting system is divided into two parts; on the

one hand, designers must verify that the transformations performed in the algorithm

did not affect its functionality. On the other hand, designers must ensure that the

system meets the non-functional requirements.

As emphasized for single and multi-core designs, redesigns in the case of unmet non-

functional requirements are a serious concern in the development of embedded systems.

Regarding heterogeneous systems, if the redesign implies reconsidering the partition

between the hardware and the software parts of the system, the consequences are even

worse because reimplementing the hardware part of the design requires a substantial

effort of code transformation and rewriting. In fact, a failure in the definition of such a

partition can imply more than 90% of the costs of the product [HR05]. Therefore, it is

important to be able to obtain performance estimates in the early steps of the codesign

process. To do it, there exist two main approaches:

Synthesis-then-simulation Given an algorithm described in C/C++, there exist tools,

both academic [GDGN03] and under industrial usage [cat], that can convert the sequential

implementation into functionally equivalent hardware. An approach to solve the problem

3.6 SIMULATION OF HARDWARE ACCELERATORS 77

then might be to obtain a hardware implementation with such tools and simulate the

obtained description with an RTL simulator that enables to obtain estimations of latency

and/or power consumption. Even when it looks counter-intuitive to implement a full

RTL description of the system to estimate if such implementation is worth the effort to

implement, the automated nature of this approach makes it very attractive, especially

because of the accuracy of the RTL simulation. Using High-Level-Synthesis tools, the user

can generate various implementations and chose the most appropriate one. The main

disadvantages of this approach can be summarized as:

• The target platform must be precisely described and characterized before the start

of the process. Behavioral synthesizers and co-simulation environments need a very

detailed description of the target platform, which is not available in the first stages

of the design process.

• Synthesis tools do not support the full grammar of high-level languages. This is

the main limitation of the Synthesis + Simulation approach and arises from the

fact that the high-level description of the algorithm has been designed to be run

on software, in which infinite resources are assumed. Thus, dynamically assigned

memory, recursion, pointers, unbounded or irregular loops, etc. are not supported,

and the designer has to adapt the algorithm to cope with these limitations manually.

Therefore, High-Level Synthesis tools require the original code to be profoundly

adapted. Other limitations of the current tools using these methodologies include

specific data types, synthesis directives or coding styles.

• The results are obtained by a laborious process that includes HW/SW partition

definition, interface creation, behavioral synthesis and simulation, testbench creation

and checking. The result is a final implementation that might be totally ineffective

because it does not fulfill the constraints.

Static Source analysis In these approaches, a specific parser analyzes the high-level

implementation of the algorithm and generates an intermediate format that describes

the same functionality in a language-agnostic way. Some examples of intermediate

78 SIMULATION

representations in the state of the art are Trimaran IR [CGWm04], VHDL AST, LLVM

[LA04] or GIMPLE [Mer03]. From this intermediate representation, a control and data

flow graphs are derived. These graphs represent all the operations performed between

variables as well as their dependencies, and by analyzing them along with a model of

the target platform, performance bounds can be obtained. These approaches analyze the

model without introducing any vector to the system, so they do not provide results about

a concrete implementation, but several bounds instead; either a lower bound [NR00], an

upper bound [GDWL12] or both [AH08].

The main disadvantages of this approach are:

• In algorithms where the complexity is high, the execution time of the estimation

algorithm could make it impossible to use.

• Runtime dependencies might not be taken into account (for example, array element

dependencies).

• The number of possible execution paths could be very high. This leads to abstractions

in the analysis, such as supposing that loops execute until the maximum number of

iterations that the variables that control the loops enable. Those abstractions are

justified by the fact that static analysis always give ‘sound’ results, and therefore

no assumptions about particular executions can be made. However, they are more

often than not too pessimistic, what leads to inaccurate estimations that are not

useful if a designer is interested in knowing what would be the minimum execution

time rather than the maximum.

• Some language features (such as “while” or “for” loops) are not totally supported.

3.6.2 Our approach

To solve the limitations of the state-of-the-art techniques presented in the previous section,

we propose a profiling technique based on dynamic scheduling. In our approach, the

embedded software is compiled with the toolchain of the host system but instrumented to

reflect its execution in the specific target platform. This technique has several advantages

3.6 SIMULATION OF HARDWARE ACCELERATORS 79

over the analyzed state-of-the-art in the sense that the process is easier than the synthesis

+ simulation one. However, several difficulties arise when it is used to perform hardware

component estimations. Two problems remain unsolved at this point of the discussion:

• The program is run on a sequential platform, while hardware is parallel by nature.

We will need to add a hardware planning system that assigns a time to each hardware

operation based on its dependencies and not based on the order in which it is

executed sequentially.

• The program is run in a system that is different to the final platform. Therefore, we

need to model the target architecture of the destination platform instead of relying

on the parameters of the platform where the code is being run. An example of this

problem is that we cannot use the memory accesses of the program when running

on the host platform for memory profiling as the target platform will usually have

different memory sizes.

Model of the target architecture

The standard architecture of the platform that we want to simulate is shown in Figure

3.14. The architecture is composed of

• A CPU performs the coarse functionality. To simulate the CPU part of the system we

use the techniques described in Section 3.4.

• External memory resources (i.e. DRAM main memory) are used to transfer data

from the CPU to the custom hardware.

• The specific logic of the ASIC performs the critical operations and has its own

memory to accelerate the access to critical data.

The model of the platform is intended to be as minimal as possible, so a new technology

can be easily fitted into the tool even if its internal architecture details are not completely

defined. The main high-level parameters of this platform are the speed of the buses and

80 SIMULATION

Registers

User Code

CPU

Registers

Synthesized Hardware

Hardware Partition

B
U

S

B
U

S

L1 Memory

L2 Memory

Ln−1 Memory

Ln Memory

FIGURE 3.14: Architecture of the HW/SW Platform

the memory, the number of operational elements in the FPGA, the time required to execute

each operation and the structure of the memory hierarchy.

Overall Performance Estimation Methodology

In our approach, the performance computation is done on-line, as the program runs on

the developer computer, so data dependencies are calculated at run time. This approach

enables us to know –at any point of the code– the exact path that the algorithm has

followed to reach that point and all the links that constrain each instruction with the ones

on which it depends. This is possible even if this relationship is not static (i.e. when the

code uses a pointer to a variable). With this information, we can schedule every operation

to be executed in the soonest time that is allowed by its dependencies. If a register

results from a binary operation between other two register (such as in r1 = r2 + r3 for

example), we can associate a time for the register r1 to be the latest time associated to

the register r2 and r3 plus the time required to perform the binary operation. When this

propagation of times is performed for every variable computed during the execution of

the code, the time associated with the last modified variable in the execution corresponds

3.6 SIMULATION OF HARDWARE ACCELERATORS 81

+ - - +

×

M

+

+

a b c d

e

g
f

%a = add %1, %2

%b = sub %3, %4

%c = sub %5, %6

%d = getelementptr(d,5)

%e = mul %b, %c

%f = add %a, %e

%g = load %d

%r = add %f, %g

FIGURE 3.15: ASAP scheduling for eight simple operations, assuming that additions/substrac-
tions take 1 cycle, multiplications take 2 cycles and memory accesses take 3 cycles.

to the execution time of the algorithm in a platform in which several individual operations

can be performed in parallel. The result of this scheduling of operations is called ASAP

(As Soon As Possible) scheduling. We present an example of ASAP scheduling for eight

simple operations in Figure 3.15.

When we apply the ASAP scheduling to a set of operations, the time associated with the

last operation (or the height of the corresponding graph) is the minimum time required

to execute the computation if the platform had unlimited resources. This is, however, an

under-estimation of the optimum execution time in a real platform because in most cases

the assumption of unlimited resources does not hold. In the example presented in Figure

3.15, it can be the case that the platform can not compute the four additions/subtractions

in the first row at the same time because the platform might not have sufficient computing

elements to perform those operations simultaneously. The presented technique considers

the resource limitations as well as the memory delays according to the following con-

straints, which are based on known methodologies commonly used by synthesis tools to

reduce execution time:

• There are no limits between basic blocks in the code. This assumes an operation

enclosed in a particular basic block can be moved out of it and execute in the same

82 SIMULATION

time-slot as operations of another basic block.

• Pre-fetching is allowed: We assume we can predict which operations will be executed

in the future and ask for their operands before executing the operation.

• Constant propagation. When a variable is assigned a constant value, the time

assigned to this transaction is zero, as the value does not need to be taken from

registers. If, after that, and without any change, another variable takes the value

from this newly created variable, we can assume that the second variable takes its

value from the constant too, so we can also consider zero time for this transaction.

This assignment of the constants is of particular importance in the platform, as

it performs automatic loop-unrolling in for-loops where the indexes start and are

incremented with constant values.

• Speculative execution. With this rule, we assume that, whenever we perform a

conditional operation, we can always predict the correct way the algorithm will

continue, so all the data needed in this branch can be pre-loaded.

• Last Recently Used (LRU) policy for memories. When an element has to be removed

from a hierarchical level in the memory to provide room for newer data, LRU policy

expels the element that will be used last.

The algorithms to update the time associated with each variable in the presence of

these constraints are part of the Masters Thesis of the same author. The interested reader

is referred to [dAMGBE11][dA11].

3.6.3 Results

We have tested the presented technique with a subset of the CHStone [HTHT09] bench-

marks. These benchmarks include a set of C programs to evaluate the effectiveness of

different synthesis tools. The goal of a synthesis tool is to transform this C source code

into a functionally equivalent representation of the same functionality in a Hardware-

Description-Language (HDL).

3.6 SIMULATION OF HARDWARE ACCELERATORS 83

C source code

Dynamic Scheduling Simulated time

Platform model

Behavioural Synthesis RTL Simulation Simulated time

Best-Case-

Execution-Time

Catapult C NCSim

our technique

HDL

comparison

FIGURE 3.16: Experimental setup

In our analysis, we will compare the results of our simulation methodology and two

commercial tools. For the behavioral synthesis and static performance estimation, we use

CatapultC [cat]. For the RTL simulation, we use NCSim [ncs]. It is worth mentioning that

these two tools are among the most advanced commercially available tools in their fields.

We present a diagram of the performed experiments in Figure 3.16.

A precise evaluation of our approach with these tools is complicated for the following

reasons:

• The benchmarks are meant to pose complicated problems for synthesis tools and

therefore, even the most advanced tools at the time of this writing are unable to

synthesize all the test benches.

• Even when the tool generates a valid hardware representation, the limitations of

the synthesis tool can make the generated solution non-optimal.

• The estimation results of the Static Analysis Approach regarding the execution

time is indeed a bound of the best-case execution time and not the result of a

concrete simulation. Therefore the difference between this bound and a concrete

execution can not be considered an “estimation error” but a measurement of how

much over- or under- estimated this bound is with respect to a feasible execution.

84 SIMULATION

Example Synthesis + Simulation Static Analysis Dynamic Analysis
Speed-Up

Over S+S

Speed-Up

Over S.A.

aes 13002(0%, 9min 25sec) 5529(8min 10sec) 8990(30%, 0.004sec) 141250 122500

dfdiv 3806(0%, 3min 2sec) 2004(1min 47sec) 2352(38%, 0.003sec) 60666 35666

dfmul 1302(0%, 3min 38sec) 642(1min 48sec) 1601(22%, 0.001sec) 218000 108000

gsm 17178(0%, 12min 58sec) 9114(11min 54sec) 10538(38%, 0.006sec) 129667 119000

mips 5722(0%,3min 11sec) 107(2min 16sec) 4777(16%, 0.002sec) 95500 68000

FIGURE 3.17: Comparative results of the different techniques presented in this section

We want to emphasize that we do not consider these techniques as antagonists but

complementary. The differences will become more clear in Chapter 4.

CHStone benchmarks include 12 test cases. We compare the results of five examples

because the rest of them are not directly synthesizable by the state-of-the-art tool that we

are using for comparison, either for the lack of computational resources or because the

programs contain elements that are not supported. This can be seen as a representative

example of the limitations of synthesis tools. The compared test-benches, including a

brief description of the functionality, are:

• aes: Encrypting and decrypting functions.

• dfdiv: Division of two elements represented in floating point arithmetic with double

precision.

• dfmul: Multiplication of two elements represented in floating point arithmetic with

double precision.

• gsm: Linear predicting encoder for voice transmission in GSM network.

• mips: Simplified MIPS microprocessor.

We present the results of the comparison in Figure 3.17. In each cell, we show the

Simulated time (the time that the techniques produce regarding how long it would take

to execute the example in the hardware architecture), the error (the variation of this

3.6 SIMULATION OF HARDWARE ACCELERATORS 85

value with respect to the Synthesis + Simulation approach, that is considered to be the

most accurate one and therefore is considered as the reference) and the time needed to

obtain this result. Note that in the Static Analysis case, the difference with respect to the

Synthesis+Simulation approach is not considered an error because Static Analysis provides

a lower bound of all the possible execution times. The experiments have been performed

over an Intel(R) Core(TM) i7-2600 CPU at 3.40GHz, with 16 GB of RAM. The last two

columns show the speed-up of our technique with respect to the Synthesis+Simulation

approach and the Static-Analysis approach.

3.6.4 Optimization example

Introduction

This section presents an example of the application of the technique described previously

to the interactive reconstruction of 3D volumetric information in real time. The aim

of the algorithm is to generate the Convex-Hull of a set of silhouette images. [Lau94]

defines the Convex-Hull as the maximal silhouette-equivalent of an object on a set of

viewing regions. From an implementation perspective, the most restrictive operations

of the state-of-the-art algorithms are processing speed and memory. In this section, the

methodology presented in the previous chapter is used to analyze a standard “visual-

hull” reconstruction algorithm and propose improvements aimed to reduce the resource

consumption. These improvements outperform the reconstruction time of the latest

publications (our implementation is three times faster than other techniques present in

the state of the art [LB08] for the same implementation conditions), allowing real-time

and high-definition implementations.

The section is structured as follows; in “classical algorithm” we present the standard

“visual-hull” reconstruction algorithm and present the main limitations of a naive imple-

mentation for real-time computation. In “projection matrix transformation” we summarize

our techniques to transform the initial projection matrix computation so that the number

of operations and their cost is reduced. In “recursive computation” we summarize further

improvements to exchange expensive computations by simpler ones while maintaining the

86 SIMULATION

FIGURE 3.18: (a) Reconstruction scan seen from three different points of view. (b) The visual
Hull of a teapot computed from three points of view (left) and the object (right).

functional equivalence between the two implementations. In “memory optimizations” we

present an optimization to exploit dual port memories present in modern FPGA platforms

to reduce the execution time further. Finally, in “FPGA implementation and results” we

show the results of our implementation and compare it against previous state-of-the-art

techniques. This section summarizes our paper [PAS12]. We refer to the interested reader

to that paper for the detail description of our contribution.

Classical algorithm

This section introduces the classic algorithm for voxel-based Visual Hull [Lau94].

First, several cameras capture the scene and extract silhouettes of the objects of

interest with Foreground Segmentation algorithms [HCZD04][MBRG00][MBM01]. These

algorithms replace the image by a binary mask (silhouette) that indicates which pixels are

part of the object image and which ones are part of the foreground. Then, voxel-based

Shape-from-Silhouette techniques (SfS) projects each voxel onto all cameras to test if the

silhouette contains the projection.

The core of the Visual-Hull algorithm lies in the mapping from the 3D voxel space to

the camera space, where each voxel is checked to be inside or outside the silhouette of the

object projected into this camera. Projective transform is the projection of the voxel space

coordinates (X voxel , Yvoxel , Zvoxel) to the sensor camera coordinates (X camera, Ycamera). This

projection can be obtained with a simple ray-tracing process as in Figure 3.19, and can be

3.6 SIMULATION OF HARDWARE ACCELERATORS 87

FIGURE 3.19: Classic ray-tracing equations for voxel projection. Camera transformations.

expressed as a linear transformation as shown in equation 3.1.

xcamera

ycamera

w

= In ·

X voxel

Yvoxel

Zvoxel

=

fx 0 cx

0 f y cy

0 0 1

X voxel

Yvoxel

Zvoxel

(3.1)

Taking into consideration the position and orientation of each camera, in [PAS12] we

express the projection as:

xpix =
P0 · xcam_sys + P1 · ycam_sys · P2 · zcam_sys + P3

P8 · xcam_sys + P9 · ycam_sys + P10 · zcam_sys + P11
(3.2)

ypix =
P4 · xcam_sys + P5 · ycam_sys · P6 · zcam_sys + P7

P8 · xcam_sys + P9 · ycam_sys + P10 · zcam_sys + P11
(3.3)

These calculations (3.2 and 3.3) require a significant number of operations per pixel:

10 additions, 14 multiplications and 2 divisions for each voxel. For example, the algorithm

requires 1 billion additions, 1.4 billion multiplications, and 201 million divisions to

regenerate a 2563 voxel volume for six cameras. This large number of operations and

their complexity (i.e. n-bit multiplications) are two critical limitations for real-time

implementations. They also limit efficient hardware implementations (e.g. FPGAs). In

this work, we will present methods to reduce such a large number of operations.

Projection matrix transformation

Using the constant propagation techniques presented in the previous section, we detect

several terms of the projection that can be pre-computed before the algorithm starts. Note

88 SIMULATION

that these optimization opportunities are hidden behind several matrix multiplications

and involve various functions. Moreover, the mixture of pointer dereferences for multi-

dimensional arrays makes the constant propagation analysis out-of-reach for typical static

compiler optimizations. However, running the program enables to detect such optimization

opportunities even in cases where the constant propagation involves several elements of

an array or a matrix, which is especially true in digital signal processing systems where

multiple array elements are updated with similar computations. These optimizations are

explained in more detail in [PAS12], and consist in matrix transformations that transform

equations 3.2 and 3.3 into

xpix =
(P0 xvox + P1 yvox + P2zvox) + P ′3
(P8 xvox + P9 yvox + P10zvox) + P ′11

ypix =
(P4 xvox + P5 yvox + P6zvox) + P ′7
(P8 xvox + P9 yvox + P10zvox) + P ′11

(3.4)

These equations include constant parameters (so they can be pre-computed before

SfS algorithm starts) and operate with integer numbers instead of floating point numbers,

which simplifies the implementation of the algorithm in hardware platforms.

Recursive computation

The second proposed technique is to perform calculations in a recursive way. This im-

provement uses previous results of voxel projections to calculate next projections. This

improvement has a substantial impact on hardware implementations because the cost and

execution time of hardware multiplication is higher than hardware addition. For instance,

latency time (in an XC5VLX33O-1FF1760 FPGA) for a 64-bit adder is 4.41 ns and for a

64-bit multiplier is 13.674ns (3 times more). Additionally, this transformation reduces the

amount of memory used. The delay it takes to execute different operations with different

datatypes is usually a well-known parameter in hardware architectures focused on digital

signal processing and is a parameter of the simulation framework, so the effect of these

optimizations can be measured even before a VHDL implementation is performed, and

without costly RTL simulations.

3.6 SIMULATION OF HARDWARE ACCELERATORS 89

TABLE 3.4: Timing and ocupation results

cp (ns) Slice registers Slice LUTS Memory DSP 48

SFS (8 cameras) 7.978 63.647 (30%) 33.641 (16%) 76 (26%) 16 (8%)

SFS (18 cameras) 7.996 137.902 (65%) 71.487 (34%) 171 (59.4%) 30 (15%)

Memory Optimizations

Even when a minimum critical path is reached, the processing time is still proportional to

the resolution in every axis and happens to be limited by the memory accesses. To reduce

the total processing time we introduce another improvement oriented to FPGA-based

implementations. Exploiting the double port topology of the FPGA memories, we divide

the projection modules for each camera into two different modules. This approach is also

used in the projection test module. Each of these modules will calculate the projection

in either odd or even voxels along one axis. As these modules can access the memory

concurrently, the total processing time results in equation 3.5.

Next section shows the area and total processing time when using a commercial

FPGA-based (Virtex 5 VD(330)) platform.

FPGA Implementation and results

In this section, we present the synthesis results of the proposed SfS architecture in a

hardware platform with a single FPGA. The results presented in Table 3.4 were obtained

after Place and Route using Synopsys Synplify 9.2. The image resolution used was 640x480

pixels.

Several facts should be highlighted out. Firstly, the DSP482 consumption is very

low due to the application of the improvements presented in section 3.6.4. When no

algorithmic improvement was applied, the DSP48 consumption for eight cameras was as

high as 78.6%. Secondly, the area utilization is practically consumed by the projection

modules. The projection test module consists only of simple AND gates. As a conclusion,

the area increases proportionally to the number of cameras.

The execution time of the algorithm with the techniques mentioned above can be

90 SIMULATION

TABLE 3.5: Processing time of our proposal compared with two recent implementations.

Resolution Architecture Time to process a frame (ms)

300× 300× 200 [LBN08] 179.98

300× 300× 200 our proposal 72

128× 128× 128 [OKS+08] 33.33

128× 128× 128 our proposal 8.4

approximated as in equation 3.5. Since processing time has to be less than 34 milliseconds

to reach 30 frames per second (Real-time requirement), the maximum voxel resolution

we can reach is 256x256x128. The time of operations in the critical path (cp) has been

estimated with the techniques presented in Section 3.6 and validated with Synopsys

Synplify 9.2.

processing_time=
256 · 256 · 128 · 8 · 10−6

2
= 33.55ms. (3.5)

Because some papers focus on high resolution and others focus on real time, it is not

easy to compare. For the sake of the reader, we show the processing speed results of our

design in the same resolution conditions as [LB08] and [OKST08] (Table 3.5).

3.6.5 Conclusions

In this section we presented our technique for estimating the execution time of a syn-

thesized hardware accelerator directly from the C source code. The technique does only

require a rough partition of the HW/SW design, so it is amenable for being used in the

early stages of the design process. We evaluate the speedup and the accuracy of the

technique with standard test-benches and its usability with a computer-vision application.

3.7 SIMULATION OF THE THERMAL BEHAVIOR 91

3.7 Simulation of the thermal behavior

3.7.1 Introduction

In this section, we propose a complete framework based on native simulation for early

estimation of power consumption and thermal analysis in Multi-Processing Systems-on-

Chip. These analyses are becoming increasingly important for Multi-Processing Systems-

on-Chip design due to its impact on system reliability, power consumption, and cost.

Indeed, working above the operating temperature range of the chip may drastically reduce

its lifespan and the system reliability, which is crucial in most applications of embedded

systems. Moreover, sudden changes or large differences in the temperature of the system

can cause material stress, age the components and increase the chances of failure. This

aspect is of paramount relevance in current embedded Multi-Processor-System-on-Chips

(MPSoCs) where Dynamic Power Management (DPM) and Dynamic Voltage-Frequency

Scaling (DVFS) policies are applied, that selectively tune the power supply of processing

cores or peripheral components, resulting in both temporal and spatial temperature

differences. Temperature also has an impact on power; high temperatures cause a notable

increase in leakage currents, which constitutes up to 25% of the total energy consumption

in CMOS (Complementary Metal Oxide Semiconductor) technology. Thus, different

floorplans of the same SoC (System-on-Chip) can lead to designs with three times larger

leakage power due to the differences in component temperatures [KKAD06].

This section is structured as follows; in “State-of-the-art” we present other techniques

for thermal analysis and their limitations. In “MPSOC thermal estimation” we present our

technique, consisting in integrating the simulations described in Section 3.4 and 3.5 with

a thermal model of the System-on-Chip and iteratively compute the software behavior and

the thermal behavior. In “Experimental Results” we evaluate the proposed technique by

evaluating the accuracy and speedup of the proposed native-execution approach against

a more traditional ISS approach. In “Conclusion” we finalize the section emphasizing the

benefits of this approach for initial estimation of thermal behavior in MPSoC architectures.

The fundamental concepts of this section, as well as the details of the thermal model, are

taken from a paper that I co-authored with Daniel Calvo, Luís Díaz, Héctor Posadas, Pablo

92 SIMULATION

Sánchez, Eugenio Villar, Andrea Acquaviva and Enrico Macii [CGD+11].

3.7.2 State of the art and related work

Thermal and power-aware design has become an active research area due to the need of

reducing energy consumption and improving reliability in embedded low-power applica-

tions.

[KKAD06] proposes a leakage-aware exploration (LAX) framework for IP-based SoC

design. LAX explores the relationship between leakage power and different floorplans for

the system, allowing early identification of current leakage problems. [KKAD06] performs

the exploration at transistor level, so requires a high degree of detail to describe the

floorplan, not being appropriate for the first stages of the design process.

In [SSS04], a thermal/power model for super-scalar architectures called HotSpot is

presented. It predicts the temperature differences in the processor and also takes into

account the increased leakage power and reduced performance. The results prove the

importance of hot spots in high-performance systems.

MPARM is a multi-processor cycle-accurate architectural simulator. Its purpose is the

analysis of design tradeoffs in the usage of different processors, interconnects, memory

hierarchies and other devices. It works with several ISS processor models such as SWARM,

CoWare Cores, SimIt-ARM or PowerPC 750 and enables power consumption estimation

[BBB+05]. [PPB07] uses MPARM to obtain power consumption from the different compo-

nents of the system, providing information to a high-level thermal model. Although this

approach provides high accuracy, it is based on a cycle-accurate simulator, which makes it

too slow to perform efficient design exploration.

[BCTB10] presents a complete virtual platform for exploring power, thermal and relia-

bility management control strategies in high-performance multiprocessor architectures. It

can obtain power and thermal estimations of an entire platform. It integrates a framework

to perform co-simulation of multicore SoCs to try different control strategies. However,

the technique is based on Simics [MCE+02]; a commercial instruction set simulator. As

stated before, ISSs are accurate but not appropriate for efficient exploration of design

3.7 SIMULATION OF THE THERMAL BEHAVIOR 93

alternatives due to the long simulation times.

Analyzing the previous study, we conclude that ISS techniques dominate the state-

of-the-art for thermal simulation. As demonstrated before, despite being very accurate,

ISS simulators are not appropriate for practical exploration of many different design

alternatives due to the long simulation times. Indeed, it is possible to conclude that

fast, sufficiently accurate, power and thermal analysis based on native simulation can

provide a powerful technology for supporting architectural design space exploration and

optimization. Native simulation is particularly appropriate as it can support efficient

modeling of DVFS architectures. Nevertheless, as far as we know, native simulation has

never been applied for high-level thermal analysis.

3.7.3 MPSOC thermal estimation

To simulate the thermal behavior, we have integrated a high-level thermal model with the

native simulation framework described previously. Next section summarizes the details

about the thermal model to facilitate the understanding of the whole work. The thermal

model does not constitute a contribution of this dissertation and full details are described

in our publication [CGD+11].

High-Level MPSoC Thermal Model

The thermal model of our approach mimics the flow of heat from the bottom of the chip

die (where the heat is produced by the switching of internal gates) to the surface and

the surrounding environment (where it is dissipated by convection). As described in

[SLD+03], the thermal behavior of a die can be modeled as an electrical circuit, and

several analogies can be made between how the heat flows inside the chip and how

electricity would behave in an equivalent RC circuit. This analogy introduces the idea of

modeling the heat dissipation inside the chip as solving the currents and potentials of a

circuit composed of resistances and capacitors in an equivalent electric circuit.

To solve the differential equations that govern the electrical circuit response we use

classical iterative procedures. Those algorithms require discretizing the space inside the

94 SIMULATION

FIGURE 3.20: (a) Chip divided into cells. (b) Equivalent RC circuit.

die as well as the time. The die and heat spreader are divided into cubic cells of several

sizes (as seen in Figure 3.20). This enables to vary the level of detail of the simulation

by placing the smallest cells at the most important points of the simulation space and

inserting larger ones where the simulation does not need a great amount of detail.

High-Level MPSoC Floorplan

A high-level floorplan specifies the size and position of the cells. The only information

needed to make up the plan is the position of each component and its approximated size.

Thus, in the first stages of the design process, it is possible to explore the choices that may

lead to implementations with hot spot problems. The floorplan consists of two text files.

• Floorplan Architecture Model File: We model the chip layout as characters describing

the various components in the silicon layer. Each character shows the position of

an element on the floorplan. In our model, we assume a planar 2D layout (Figure

3.21). The components are categorized in the figure as Processor (p), Instruction

Cache (i), Data Cache (d), Main memory (m) and No component (x).

• Cell Characteristics Definition File: It is used to set the number of layers used for

the floorplan, different cell types and sizes, thickness and the number of layers.

We present an example of a high-level floorplan in Figure 3.26. We can create these

files representing the MPSoC Floorplan by hand or with a graphical-user-interface.

3.7 SIMULATION OF THE THERMAL BEHAVIOR 95

As Figure 3.22 shows, the thermal model is fed using the power consumptions that

are extracted from the component activities using the high-level models of Section 3.7.3.

At the same time, an XML file has been defined so that thermal parameters can be

configured easily.

Modeling dynamic voltage and frequency scaling

In our framework, we have modeled Dynamic Voltage and Frequency Scaling techniques

which are widely used in embedded systems. Although there are several types of DVFS

controllers on the market, in this work we have selected the ARM Intelligent Energy

Manager (IEM) Controller [iem]. This IEM is a good example of DVFS controller for

embedded systems. An important point in the ARM solution is the use of a pair of tables

to define the mapping between a performance index and the platform specific hardware

parameters: voltage and frequency. This interface is necessary because voltage scaling is

highly technology-specific (for example, the number of voltage steps that can be supported

is restricted) and the clock generator is system and technology dependent as here might

be only a limited number of divider ratios available. The tables define the possible values

of voltage and frequency as well as their relation. To emulate this behavior, we implement

the same API that is used in the ARM Intelligent Energy Manager (IEM) Controller that

modifies the cost of each instruction in terms of execution time and energy consumption

for each instruction as described in Section 3.4.3 during the run-time simulation.

1 iiiippppmmmmmm

2 iiiippppmmmmmm

3 iiiippppmmmmmm

4 iiiippppmmmmmm

5 ddddxxxxmmmmmm

6 ddddxxxxmmmmmm

7 ddddxxxxxxxxxx

8 ddddxxxxxxxxxx

FIGURE 3.21: Example of floorplan architecture model file.

96 SIMULATION

App

SW

Codes

HW

Drivers

HW Spe-

cific

Models

SystemC System Description

Floorplan Description

Component

Models

High-Level Power Models

Power Models

Thermal Model

Interface

FIGURE 3.22: Simulation environment to estimate MPSoC temperatures

Power Models-Thermal

model Interface

Interval

Time

Power

Sources

Thermal model

Temperatures

Initial

Temperatures

FIGURE 3.23: Thermal Simulation Flow

3.7.4 Experimental results

Accuracy and speed comparison

To verify the quality of our simulation framework and to demonstrate its advantage in

simulation time, we present a comparison with a cycle-accurate ISS approach. We use

both the ISS and the Native Simulation environments to create power consumption traces

of the different components and feed the same thermal model in both cases. To ensure the

accuracy of the thermal model, it has been calibrated with a 3D-finite element package

[PPB07].

3.7 SIMULATION OF THE THERMAL BEHAVIOR 97

icache dcache sram

ARM9

ARM9

dcache

icache

SRAM

SRAM

icache

dcache

ARM9

SRAM ARM9

icache

dcache

FIGURE 3.24: Floorplans used in accuracy comparison

The comparison experiments simulate a target platform with an ARM920T, including

16KB instruction and data caches and an 8-KB internal SDRAM. The dimensions of the

memories, caches, processors, the basic power consumption values and the parameters to

customize the thermal model have been provided by an industrial partner.Four different

floorplans (Figure 3.24) have been used, studying the error in the dynamic tempera-

ture estimation for the different components that are part of the system. The software

benchmarks are:

• Matrix Multiplication: This software application performs matrix multiplications. It

is an application that computes data intensively, consuming a significant amount of

energy and actively heating the system. This example has been used in other works

related to thermal estimation to study the estimation accuracy [PPB07].

• GSM Encoder: It consists on an Enhanced Full Rate GSM Speech Coder (GSM-EFR).

Working at 12.2kbit/s the EFR provides wire-like quality in any noise free and

background noise conditions.

In Table 3.6 the estimation error of our approach is presented, the obtained timing

98 SIMULATION

TABLE 3.6: Thermal estimation accuracy

Application

Software

Maximum

error (%)

Component

i-cache d-cache processor memory

GSM

Encoder

Floorplan 1 2.9651 % 2.7089 % 2.7219 % 2.4752 %

Floorplan 2 2.6468 % 2.4771 % 2.1581 % 2.5915 %

Floorplan 3 2.8746 % 2.6842 % 2.8039 % 2.5093 %

Floorplan 4 1.9097 % 1.6990 % 1.7376 % 1.4392 %

Matrix

Multiplication

Floorplan 1 2.0479 % 0.4141 % 0.4749 % 0.3435 %

Floorplan 2 2.3723 % 2.7182 % 2.2723 % 2.4096 %

Floorplan 3 1.8821 % 0.3692 % 1.1598 % 0.3493 %

Floorplan 4 1.6966 % 2.0540 % 1.6645 % 1.5232 %

results are shown in Table 3.7.

The results show that our simulation framework achieves to estimate the temperature

of the different components with a great accuracy (less than 3% error). Figure 3.25 shows

the estimated processor temperature obtained for the matrix multiplication benchmark

with the Floorplan 2. We can notice that our model tracks the thermal transient and

responds with the same dynamics with less than 3% error.

Example of Modeling Thermal Management Techniques

To illustrate the capabilities of the system to simulate Dynamic-Voltage-and-Frequency-

Scaling, we are going to use two different software applications: an H264 coder and a GSM

coder. The H264 or AVC (Advanced Video Coding) is a standard for video compression. It

is a block-oriented motion-compensation-based codec standard developed by the ITU-T

Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts

Group (MPEG). The GSM system is composed of the coder and the decoder. Each part

contains several tasks that execute concurrently.

The floorplan is presented in Figure 3.26. A thermal sensor monitors the first processor

3.7 SIMULATION OF THE THERMAL BEHAVIOR 99

TABLE 3.7: Timing comparisons
Application

Software

Simulation

time (sec)

ISS Simulation +

Thermal Model

Native Simulation +

Thermal Model

GSM

Encoder

Floorplan 1 1435.507 sec 0.819sec (1752 x)

Floorplan 2 1463.287 sec 0.931 sec (1571 x)

Floorplan 3 1440.026 sec 0.768 sec (1875 x)

Floorplan 4 1468.079 sec 1.147 sec (1279 x)

Matrix

Multiplication

Floorplan 1 1403.688 sec 0.346 sec (4056 x)

Floorplan 2 1432.865 sec 0.387 sec (3702 x)

Floorplan 3 1408.207 sec 0.360 sec (3911 x)

Floorplan 4 1434.206 sec 0.740 sec (2779 x)

FIGURE 3.25: Transient thermal estimation comparison

temperature and applies the thermal management policy when it reaches 325 K. In Figure

3.27, we show the results for different thermal management policies.

100 SIMULATION

ARM91

dcache1 icache1

dcache2 icache2

ARM92

SRAM

FIGURE 3.26: Floorplan used in the example

FIGURE 3.27: Transient temperature estimation with thermal management policies applied.

3.7.5 Conclusions

In this section, we have presented a complete MPSoC native simulation framework for

power and thermal-aware design that enables to take early decisions about whether these

design alternatives could lead to implementations with hot spot problems.

The presented results and examples demonstrate that our framework can be used to

3.7 SIMULATION OF THE THERMAL BEHAVIOR 101

estimate temperature accurately in an early co-simulation infrastructure. By using ISSs, it

is possible to perform a more detailed power and thermal analysis since the activity of

internal processor components can be monitored. It is important to emphasize that both

methodologies are complementary, in the sense that native simulation enables to estimate

the effect of design decisions in the early stages of the design. ISS approaches can lead to

more detailed results at later stages when higher accuracy is needed.

More importantly than introducing a trade-off between speed and accuracy, the pro-

posed framework enables the detection of power and thermal hot spots in the first stages

of the design process, allowing the exploration of different alternatives to address these

problems both in the hardware as well as in the software domains.

102 SIMULATION

4
Verification

4.1 Introduction

In previous chapters, we have described some techniques for analyzing the non-functional

properties of programs with simulation. In these techniques, we provide an initial state

of the hardware, a concrete input vector to the program, and estimate how would the

program behave when starting from those particular initial conditions.

One significant shortcoming of this approach is that the conclusions obtained through

the observation of such a program during a concrete execution do not generalize to other

‘unseen’ scenarios. When studying the non-functional properties of a system, we are

usually interested in analyzing extreme cases (those in which the execution time, the stack

size or the power consumption is large, for example). Due to the large set of possible

behaviors of a program, these cases are not always covered by the test vectors that we

103

Architectural Exploration

HW/SW Partitioning

Interface definition

Source-Code

modification

Compilation

Instrumentation

Source-Code

modification

Optimizations

Area/Time

Considerations

Testbench

Creation

Simulation

Verification

Functional

Verification

Non-Functional

Verification

104 VERIFICATION

1 int gcd(int a, int b){

2 if(a > 100 || b > 100) return -1;

3 if(a < 0 || b < 0) return -1;

4 if (a==0) return b;

5 return gcd (b%a, a);

6 }

1 int main(){

2 gcd(1,2);

3 gcd(1,4);

4 gcd(3,8);

5 gcd(1,3);

6 }

FIGURE 4.1: Example showing the difficulties of finding the worst-case execution time of a
program

simulate.

A simple example is presented in Figure 4.1. This program computes the greatest

common denominator of two numbers that are smaller than 100. In Figure 4.1(left),

the C code is presented and in Figure 4.1(right), the function is tested with five inputs.

We can use the techniques and tools presented in previous sections to estimate what

would be the execution time of this function for the given inputs. In this particular case,

none of them corresponds to the longest execution time (the longest trace corresponds to

gcd(89,55)).

Obtaining these extreme cases is complicated for at least two reasons:

• The program can exhibit many different behaviors and simulating it for all the

possible input values is an unmanageable task, due to time constraints. In Chapter

3, we have presented techniques to accelerate the simulation of the program for a

concrete execution, but we have not deal with the fact that there can be a large set

of possible input values to the program. For the simple example of Figure 4.1, we

would need to test the program for all the possible inputs (from the set of 10.000

different inputs in our program, the longest trace is only exhibited for the case

(89,55)).

• The hardware can also exhibit many different behaviors, due to initial conditions of

the hardware elements. This is particularly the case for data and instruction caches.

Depending on the fact that some of the instructions of the program may or may not

be in the cache when we start executing the program, execution can take more or

4.1 INTRODUCTION 105

less time to finish. For any of the different inputs that we have previously tested, we

would need to simulate it from all the possible initial configurations of the cache

to withdraw conclusions about all the possible behaviors. This circumstance also

highlights the fact that the longest execution regarding execution time does not

always correspond to the longest trace.

In this chapter, we will focus on these problems in two stages. First, we concentrate

on the “software” aspect of the explained difficulties. In this part of the chapter, we

discuss techniques to group several executions into equivalent classes, so we can reason

about properties that the program exhibit for a group of possible executions rather than a

single concrete execution. These techniques are based on Symbolic-Execution and Static-

Analysis. Because of our exclusive focus on the software in this part (not considering

the hardware), we demonstrate the techniques with functional properties. We refer to a

functional property as a requirement of the system related to the expected output of the

program, assuming that it eventually terminates and disregarding execution time, power

consumption... Informally, a functional property can be “on all possible executions of a

program, not any pointer can be dereferenced if it points to the memory location 0x0”.

When a program violates a functional property, we informally refer to this circumstance

as a “bug” in the program. In the first part of the chapter, we will focus on techniques to

search for bugs (i.e. violations in the functional specification) and proving correctness

(i.e. prove that there does not exist any violation of the specification). We then introduce

models of the hardware and apply the techniques used for functional verification to non-

functional verification. We restrict our scope to the problem of “worst-case-execution-time”

(i.e. finding the longest execution time of a program given any initial condition both in

the program and in the hardware state).

This chapter is structured as follows; in “state of the art”, we present different tech-

niques to analyze programs and reason about their behavior. In “symbolic state” we will

use the annotation described in Chapter 2 to construct a dynamic analysis tool to find bugs

in a program. In “combination with static analysis”, we will combine our tool with a “static

analysis” approach to improve both the capabilities of the “static analyzer” to find bugs

and also the capabilities of the “symbolic execution” approach to prove the correctness

106 VERIFICATION

of the implementation. In “the worst-case execution time problem” we introduce the

problem of finding upper bounds of the execution time and how the techniques previously

deployed for functional verification can be extended to non-functional verification by

providing a –timed– model of the hardware platform. In “hardware models” we present

formal models of a hardware platform and combine them with software models to derive

the worst-case-execution-time of a program when executed over the modeled platform.

Finally, in “Combination with UML/OCL”, we extend our framework to cope with speci-

fications described in the graphical representation given by UML and the specification

language OCL.

4.2 State of the art

In this section, we summarize several solutions proposed in the state-of-the-art both for

the verification of functional and non-functional properties and classify them as based on

static or dynamic analysis. While in dynamic analysis approaches the code is executed

(either on the real platform or in a simulated environment), static analysis approaches

“observe” the code and construct a model of its behavior without executing it. The different

nature of these two approaches implies different design decisions:

• In Dynamic Analysis, it is assumed that not all the behaviors can be simulated, so

these techniques try to find good generalizations to cover different behaviors with

only a limited number of executions.

• In Static Analysis, the code is not executed, so the analysis needs to abstract the

behavior of the program and assume information that could therefore only be

obtained during run-time.

Static and dynamic analysis can be seen as two different approximation methods

to cover the program semantics as shown in Figure 4.2. While (sound) static analysis

over-approximates the program behavior and as such allows false positives, dynamic

analysis under-approximates program behavior and can result in false negatives.

4.2 STATE OF THE ART 107

FIGURE 4.2: Top Row: static analysis coverage; bottom row: symbolic execution coverage.

4.2.1 Dynamic analysis

Regarding functional checking, software testing is extensively used to evaluate functional

properties of a system against requirements to ensure coverage of both the requirements

and the actual code. When testing, the code is executed with concrete input values, and

the observations of the behavior of the program are limited to the inputs with which the

program is tested. Multiple techniques try to alleviate this limitation. We will focus on

some representative techniques for programs written in C/C++ or SystemC.

In Bounded-Model-Checking (BMC) the different behaviors of a program are explored

up to a depth k (we explore feasible executions that include less than k instructions, branch

decisions, basic-blocks or any distance metric of an execution trace). In this approach,

the analysis can miss “bugs” that need more than k steps in the code to manifest. CBMC

[CKL04b] is a well-known Bounded Model Checker for C and C++ programs that can check

a variety of common functional properties in code such as buffer overflows, exceptions,

assertions, pointer safety... Klee [CDE08a] is another bounded model checker focused on

LLVM intermediate representation.

108 VERIFICATION

In those approaches, it is well understood that only a fraction of the actual semantic

behavior can be realistically tested (bottom row of Figure 4.2). As shown in industry case

studies [QR11][CGK11], BMC techniques are prone to scalability limitations and current

tools are not well suited yet for deep embedded applications. As such their adoption in

safety-critical industries has so far been limited.

In terms of non-functional properties, SWEdish Execution Time Analysis tool (SWEET)

[Lis14] is an academic tool focused on the analysis of best and worst-case execution times

using a variety of different methods that include static and dynamic analysis. For the

analysis of the source code, the tool is integrated with a specific research compiler. The

compiler is engineered in such a way that the relevant optimizations for computing the

worst-case execution time are applied before producing the code that is analyzed. This

close interaction with the compiler simplifies following steps, since high-level and low-

level information can be conveniently mixed, but limits the applicability of the approach

to platforms where the specific compiler is available. To deal with the high number of

possible software behaviors, the approach uses a combination of symbolic execution and

abstract interpretation that enables to compute loop bounds and infeasible paths. On the

other hand, for dealing with the high number of possible hardware behaviors, a points-to

analysis (an analysis performed over pointers to analyze what regions in memory they

can access) is performed for the instructions that may access the memory in order to

compute relevant information about the cache accesses. To analyze the pipeline effects,

the tool relies on simulation models for individual traces. These models are derived from

cycle-accurate simulators and (as any method based on simulation), cannot formally

prove assertions about the execution time.

A research prototype developed in Chalmers University [Lun02] focuses on obtaining

upper bounds for binary code of high-performance microprocessors such as PowerPC,

featuring multilevel caches and deep pipelines. The source code is analyzed at machine

level with a combination of symbolic execution and simulation. Being based on simulation,

however, the approach has limitations to deal with big state spaces. Although authors

prove that very accurate estimations of the execution time can be computed given an

initial state space and sufficiently accurate models of the hardware architecture, the

4.2 STATE OF THE ART 109

worst-case initial state is the key element to compute the WCET. To prove properties for

any possible input, the approach uses a technique based on Bounded Model Checking.

Therefore, several paths in the simulation might not be explored, what either complicates

the production of a proof that ensures the safety of the bound, or delegates some of the

responsibility of obtaining this proof to the programmer, who has to provide some facts

about the code in the form of annotations. The exponentially large number of paths also

makes the analysis very computationally intensive.

4.2.2 Static analysis

Static Analysis is widely used in safety-critical industries to verify the correctness of

the implementation of some functionality according to a specification. Static analysis

approximates the behavior of source code and detects common coding violations such as

the ones defined by MISRA 1, but also possible software bugs that lead to runtime errors

such as null pointer dereferences, memory leaks, and buffer overruns. Many commercial

tools are based on earlier academic work and are routinely used in industry [BBC+10],

[Gra], [Huu15], [YLB+08]. However, while static analysis is scalable to large code bases,

it approximates program behavior and as such is prone to false positives (false alarms)

and/or false negatives (missed bugs).

This is because static analyzers do not execute the code, so they require assumptions

about the content of variables that would otherwise only be available during execution.

An example of this is the analysis of infeasible traces (execution paths that are contained

in the control-flow-graph of the program but can not be executed due to incompatible

constraints when the full semantics of the instructions are considered). Several techniques

have appeared recently to mitigate these limitations. Abstract Interpretation [CC77] builds

an abstraction of the domain of the program and defines how instructions operate over

this abstracted domain, instead of considering only concrete inputs. Counter-Example-

Guided-Abstract-Refinement (CEGAR) [CGJ+00] also operates over an abstract domain to

prove or disprove functional properties of programs. In this approach, the analyzer tries to

1MISRA C is a set of recommendations for the development of embedded software mainly focused on

the C language for automotive, aerospatial, telecommunication and medical systems.

110 VERIFICATION

1 int main(argc , argv *[]){

2 if(argc > 10)

3 return 10* argc + 2

4 else

5 return 0

6 }

FIGURE 4.3: Example to illustrate computation of the WCET

find a trace that exhibits a “bug”. If a trace is found and is feasible, the analysis concludes

providing a concrete witness leading to the undesired behavior. If the trace is not feasible,

the abstract domain is “refined”, so a more concrete execution can be simulated in the

next iteration. Trace-Abstraction-Refinement [HHP09a] is a practical instance of CEGAR

algorithm that has been applied to the verification of functional properties over the LLVM

intermediate language [CSR+17].

Regarding the usage of static analysis for reasoning over non-functional properties,

Shaw. et. Al [Sha89] proposed a way to obtain bounds for the WCET from the high-level

language constructs by analysing the C source code in its primary form (before having

been transformed by the compiler), and constructing new bounds for the execution time in

a compositional manner, by iteratively abstracting the elements of the tree representation

of the program (AST). For example, considering the program of Figure 4.3, the analysis

would start by estimating bounds of atomic operators such as + or *. Then, new bounds of

more complex constructs such as the if statement are created by composing the execution

time of their components. Similar approaches are used in Heptane [CP00][CP01].

The problem of computing the worst-case-execution-time has also been analyzed by

correspondence with finding the longest path in a graph. The input program can be

considered to be abstracted by its control-flow-graph; the nodes representing instructions

and the edges representing time bounds that are exhibited by following those edges.

Following this analogy, the computation of the CFG can be expressed as finding the

maximally long path in the CFG, which can be solved by integer linear programming

[Chv83]. ILP has been successfully used to model very simple processors [LM95][LMW95],

4.2 STATE OF THE ART 111

but the complexity of new architectures disallow its use due to its poor scalability [FHW04].

aiT [FH04] is a commercial tool by AbsInt focused on safety-critical software and

therefore aiming to obtain upper bounds for the execution time by static analysis. Its input

is the executable binary code of the program, but the high-level C/C++ language may

contain annotations to remove infeasible traces and improve the accuracy of the estimates.

Internally, the tool uses Value Analysis and Integer Linear Programming to determine safe

bounds for the WCET. This Value Analysis processing step is later reused in the analysis of

pointer dereferences to feed a model of a cache. To highlight the differences between the

aiT approach and our approach, the former uses “abstract interpretation” to implement

value analysis, and a bottom-up analysis to reconstruct the CFG. These techniques have

limitations that require manual annotation of the source code, and its absence produces

highly over-estimated bounds for the WCET.

BoundT [bou] is another commercial tool based on static analysis that can estimate

upper bounds for execution time and stack utilization. For the elimination of infeasible

traces, the tool relies on user annotations. For the computation of stack and time bounds,

“abstract interpretation” is also used. Several ad-hoc heuristics are used to analyze counter-

based loops. In this approach, for standard regular loops variables inside the loop body

are classified as invariant or variant, keeping loop-invariant variables untouched and

assigning unknown values to loop-variant variables. Several other common structures

that are known to be generated by standard compilers are identified by pattern-matching.

The benefit of this approach is that can be computed in a single pass over the program,

without the need of expensive computations, but requires manual annotations to deal

with non-rectangular or more complicated loops. Besides pattern-matching, there is no

systematic way to identify those constructions, and therefore either non-safe or greatly

over-estimated results (obtained for example by assuming rectangular loops in all cases)

are produced as a result. These annotations include the structure (nesting) of loops,

function calls and some annotations of variable assignments and reads. Regarding the

limitations of the hardware model, caches are not modeled and the methodology is limited

to processors without timing anomalies.

112 VERIFICATION

4.3 Limitations of the state-of-the-art techniques

Having analyzed the main techniques for verifying functional and non-functional proper-

ties, we can see that there are several reasons why the previously described methods are

of limited use nowadays:

Addressing the effect of the compiler Some of the proposed methods work with the

AST representation of the program, or a representation in between the AST and the

final executable [Gus00], [EESG03], [GE05], [HSR98], [HAM99]. This is commonly

accepted when analyzing functional properties because the compiler is supposed to

keep the functionality of the code unaltered. However, compilers may perform several

transformations in the code that drastically change the non-functional properties. This

complicates these analyses when applied to verifying non-functional properties; if the

analysis tool does not take into consideration the effect of the compiler, the results of the

analysis (i.e. the worst-case execution time) will be greatly oversimplified or incorrect.

On the other hand, the usage of advanced techniques by modern compilers makes the

matching of high and low-level constructs difficult or impossible.

Addressing tightness The proposed techniques provide a very coarse over-approximation

of the non-functional properties. The main cause of this over-approximation is the lack of

analysis of ‘infeasible traces’. To exemplify this, Figure 4.4 presents a slightly modified

version of the previous example to introduce a more challenging program: In the example

of Figure 4.4, a compositional approach of obtaining the worst-case execution time would

consider that the number of iterations of the loop at line 4 is at most 200, but would

overlook the fact that any trace that exhibits this behaviour is not feasible because it

would have taken the other branch of the ‘if’ statement in line 3.

Considering the hardware elements In the same way than a trace must have a way

to collect information about the context in which every operation executes that help us to

decide if such a trace is feasible or not in the program, the context also plays a role in the

4.4 SYMBOLIC REPRESENTATION OF THE PROGRAM STATE 113

1 int main(argc , argv *[]){

2 int a = 0;

3 if(argc < 100)

4 for(n = 0; n < 200 && n < argc; n++)

5 a++

6 else

7 return 0

8 }

FIGURE 4.4: Modified version to illustrate the importance of refinement

hardware model of the system. The execution time of an instruction may be different for

different inputs, and more importantly, at different contexts of the internal elements of

the processor. Multiplications, for example, are known to last for between 3 and 5 cycles

in an ARM architecture depending on what are we multiplying. More important than that,

fetching the instruction may take between 3 and 300 clock cycles depending on which

level of the memory hierarchy the instruction is in the caches.

4.4 Symbolic representation of the program state

In this section, we focus on constructing an under-approximation of the behaviors of a

program that is useful for reasoning about properties of the original code for a group of

inputs rather than individual ones. The purpose of this representation is the same one as

testing; try to find bugs in the implementation. As an example, we present the code of

Figure 4.5 (top left). In this code, the program returns the minimum of two integers. Let’s

assume that our specification of the function states that the minimum of two numbers

has to be smaller than or equal to the first and smaller than or equal to the second. We

can test the correctness of the functionality by providing concrete input vectors to the

function as in Figure 4.5 (down). The “testing” approach to ensure that the functionality

is free of bugs, however, is not sound in this case because the function min_wrong does

also pass the tests but is, however, incorrect regarding the specification. To prove that the

program behaves according to the specification, we can use a model-checking approach

114 VERIFICATION

1 int min(int x, int y){

2 if(x < y) return x;

3 else return y;

4 }

1 int min_wrong(int x, int y){

2 if(x == 0 && y != 0) return x;

3 if(x != 0 || (x == 0 && y == 0)){

4 if(x < y) return x;

5 else return y;

6 }

7 }

1 int main(){

2 assert(min(1,2) <= 1 and min(1,2) <= 2);

3 assert(min(5,2) <= 5 and min(5,2) <= 2);

4 assert(min_wrong (1,2) <= 1 and min_wrong (1,2) <= 2);

5 assert(min_wrong (5,2) <= 5 and min_wrong (5,2) <= 2);

6 }

FIGURE 4.5: Implementation and testing of function min.

in which we build a model of the program, and we check some properties of it. In a first

instance, the model can be a (partial) formula of the program behavior derived from

concrete executions. This formula of the two implementations can be the following:

min(x , y) =

1 if x = 1∧ y = 2

4 if x = 5∧ y = 4
min_wrong(x , y) =

1 if x = 1∧ y = 2

4 if x = 5∧ y = 4

0 if x = 0∧ y = −2

This formula is said to be an under-approximation of the semantics of the functions

because it defines the output for fewer cases than the program. We can still use the

formula to find bugs in our code, and in this case, it is sufficient to prove that at least one

of the functions does not behave according to the specification.

min(x , y) =

x if x < y

y if y < x
(4.1)

In equation 4.1 we present another under-approximation of the semantics of the

min function. We can intuitively see that this representation captures more behaviors of

the code, and it is more likely to catch errors in the implementation. This is because it

4.4 SYMBOLIC REPRESENTATION OF THE PROGRAM STATE 115

%x_addr = alloca i32

alloca("x_addr", "i32")

%y_addr = alloca i32

alloca("y_addr", "i32")

%retval = alloca i32

alloca("retval", "i32")

%r1 = load i32* %x_addr

load("r1", "x_addr")

%r2 = icmp eq i32 %r1, 0

binary_instr("r2","r1,"0","eq")

branch_instr("r2")

br i1 %r2, label %b, label %c

%r3 = load i32* %y_addr

%r4 = icmp eq i32 %r3, 0

br i1 %r4, label %c, label %d

%r5 = load i32* %x_addr

%r6 = load i32* %y_addr

%r7 = icmp slt i32 %r5, %r6

br i1 %r7, label %d, label %e

%r8 = load i32* %x_addr

store i32 %r8, i32* %retval

br label %return

%r9 = load i32* %y_addr

store i32 %r9, i32* %retval

br label %return

%r10 = load i32* %retval

ret %r10

a

b c

d e

return

FIGURE 4.6: Annotated Control-Flow-Graph of the function min_wrong. Note that we only
show the instrumentation of the first basic block for readability reasons.

groups different executions that behave in a similar way. We will focus now on describing

how we can use the annotation introduced in Chapter 2 to create a tool that can extract

under-approximation formulas similar to 4.1 from C code. In section 4.5 we combine

this under-approximation of the program with an over-approximation. As we will see,

while under-approximations of a program are useful for searching for bugs in the code,

over-approximations are useful for proving the absence of them.

In the following, we consider a C function as its Control-Flow-Graph. An example of

an (instrumented) LLVM control-flow-graph for the min_wrong function is presented in

Figure 4.6. In this graph, we call a trace (or a walk) of length k an alternating sequence

of nodes and edges v0, e0, v1, e1...vk−1, ek−1 representing an execution of the program. As

116 VERIFICATION

we have distinct labels in all the edges that depart each node, we will express traces as

alternating sequences of nodes and labels in the following. We will cluster different inputs

to the function based on the trace the program follows when executed with that input; as

in similar approaches such as [KT14], [GKS05], [SMA05]. Here, the semantic coverage

criteria are increased by iteratively expanding a set of feasible traces. We generate feasible

traces by unfolding the Control-Flow-Graph up to a certain depth. Note that –as we are

interested in generating an under-approximation of the function– we want to consider

only feasible traces (i.e. we do not want to include the trace (a, t, b, t, c, f , e, t) because

that trace can never occur in the code as it would imply that x = 0, y = 0 and x < y). We

call a trace feasible if there exists an input that causes the program to follow that trace.

To include only feasible traces, we need to provide a way to detect if a trace is feasible

or not. We do this using the instrumentation that we describe in Chapter 2 to construct

a logical formula that encodes the feasibility of a trace. In this case, the metadata is a

map that links every variable with a Satisfiability-Modulo-Theory (SMT) formula that

represents the relation between the inputs of the program/function and that variable.

SMT is a standardized language to encode mathematical and logical formulas; using this

format we can interact with a so-called SMT-Solver, that will help us later to decide the

feasibility of the trace. The semantics of every instruction describes how to propagate

this information when executing a trace. Obtaining feasible traces of this graph can be

implemented with standard graph traversal algorithms in which we iteratively select a

trace in the frontier, execute it and expand it if the expansion is feasible. We exemplify

this expansion with the trace (a,t,b,t). This trace can (in principle) be expanded by the

traces (a,t,b,t,c,t) and (a,t,b,t,c,f). Before expanding the traces, however, we need to

check if the expanded traces would be feasible. We analyze trace (a,t,b,t,c,t) first. This

trace will be feasible if there exists an input that makes true all the decisions that result in

a “true” edge and false all the ones that result in a “false” edge. In the case of LLVM, the

decisions are taken based on the content of a register. To obtain the logical statements

that make those decisions true or false in relation to the inputs of the program we execute

the trace and update two structures that will be used afterward to derive a formulation of

the under-approximated formula:

4.4 SYMBOLIC REPRESENTATION OF THE PROGRAM STATE 117

TABLE 4.1: Execution of the trace (a,t,b,t,c,t,d)
Executed instrumentation metadata

alloca("x_addr", "i32")

alloca("y_addr", "i32")

alloca("retval", "i32")

load("r1", "x_addr") σ := {r1 7→ x}

binary_instr("r2","r1","0","eq") σ := {r1 7→ x , r2 7→ (x == 0)}

branch_instr("r2")
σ := {r1 7→ x , r2 7→ (x == 0)}

φ := (x == 0)

load_instr("r3","y_addr")
σ := {r1 7→ x , r2 7→ (x == 0), r3 7→ y}

φ := (x == 0)

binary_instr("r4","r3","0","eq")
σ := {r1 7→ x , r2 7→ (x == 0), r3 7→ y, r4 7→ (y == 0)}

φ := (x == 0)

branch_instr("r4")
σ := {r1 7→ x , r2 7→ (x == 0), r3 7→ y, r4 7→ (y == 0)}

φ := (x == 0)∧ (y == 0)

load_instr("r5","x_addr")
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), r3 7→ y, r4 7→ (y == 0)}

φ := (x == 0)∧ (y == 0)

load_instr("r6","y_addr")
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), {r3, r6} 7→ y, r4 7→ (y == 0)}

φ := (x == 0)∧ (y == 0)

binary_instr("r7","r5","r6","slt")
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), {r3, r6} 7→ y, r4 7→ (y == 0), r7 7→ (x < y)}

φ := (x == 0)∧ (y == 0)

branch_instr("r7")
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), {r3, r6} 7→ y, r4 7→ (y == 0), r7 7→ (x < y)}

φ := (x == 0)∧ (y == 0)∧ (x < y)

• φ: A stack that stores the conditions that need to met in the trace to follow that

particular path.

• σ: A mapping from registers to SMT expressions that stores the symbolic expression

of every variable in the trace in relation to the inputs of the program.

We present in Table 4.1 the propagation of the two expressions for the different

individual instrumentation function called during the execution of the trace. When we

reach the end, we can use our encoding of the trace to decide if the trace is feasible or

not by checking the satisfiability of the equation stored in φ.

118 VERIFICATION

TABLE 4.2: All feasible traces in graph 4.6

(a,t,b,f,d,t)
σ := {{r1, r8, r10} 7→ x , r2 7→ (x == 0), r3 7→ y, r4 7→ (y == 0)}

φ := x == 0∧ y 6= 0

(a,t,b,t,c,f,e,t)
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), {r3, r6, r9, r10} 7→ y, r4 7→ y == 0, r7 7→ (x < y)}

φ := x == 0∧ y == 0∧ x ≥ y

(a,f,c,t,d,t)
σ := {{r1, r5, r8, r10} 7→ x , r2 7→ (x == 0), r6 7→ y, r7 7→ (x < y)}

φ := x 6= 0∧ x < y

(a,f,c,f,e,t)
σ := {{r1, r5} 7→ x , r2 7→ (x == 0), {r6, r9, r10} 7→ y, r7 7→ (x < y)}

φ := x 6= 0∧ y ≥ y

(a, t, b, t, c, t, d) is feasible ⇐⇒ (x == 0)∧ (y == 0)∧ (x < y) is SAT

A state-of-the-art SMT-Solver can easily find that this expression is not satisfiable

(there does not exist any input that makes the formula true), while there is one for the

trace (a,t,b,t,c,f).

Iterating this process, we exhaust all the feasible traces ending up with the set of traces

presented in Table 4.2.

Once this set is computed, we can construct the formula we are interested in by

combining the information from several traces as presented in the SMT file shown in

Figure 4.7.

Note that even when we do not demonstrate them in this example, our implementation

supports more features of the C/C++ language, that we implement by providing semantics

that describe how to update φ and σ when the instrumentation functions are called.

The semantics of LLVM instructions are described in http://llvm.org/docs/LangRef.

html. In particular, we support function calls, loops, recursion, pointer operations, structs,

memory stack and heap operations, function pointers, ternary operator ... Also note that

even when the formula of Figure 4.7 has been constructed manually for this example, the

process is automated as described in Section 4.7 and [GdAPW+16].

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

4.4 SYMBOLIC REPRESENTATION OF THE PROGRAM STATE 119

1 (set -option :produce -models true)

2 (set -logic AUFNIRA)

3 (declare -fun x () Int)

4 (declare -fun y () Int)

5 (declare -fun r10 () Int)

6

7 (define -fun min_wrong () Bool

8 (or

9 (and (= r10 x) (= x 0) (not (= y 0)))

10 (and (= r10 y) (= x 0) (= y 0) (>= x y))

11 (and (= r10 x) (not (= x 0)) (< x y))

12 (and (= r10 y) (not (= x 0)) (>= x y))

13)

14)

15

16 (define -fun min () Bool

17 (or

18 (and (= r10 x) (< x y))

19 (and (= r10 y) (not (< x y)))

20)

21)

22

23 (define -fun min_spec () Bool

24 (and (<= r10 x) (<= r10 y))

25)

26

27 (assert (and min (not min_spec)))

28 (check -sat)

29

30 (assert (and min_wrong (not min_spec)))

31 (check -sat)

32

33 (get -value (x y r10))

FIGURE 4.7: SMT description of functions min, min-wrong and min_specification

Verification of the specification

Once we have created a formula such as in Figure 4.7, we can check for properties of the

code. In Figure 4.8, we use the formula derived from min to prove that the implementation

of the function complies with the specification while min_wrong does not. Note that

120 VERIFICATION

1 > z3 min.smt2

2 unsat

3 # min is correct according to the specification

4 sat

5 x = 0

6 y = -1

7 # min_wrong is incorrect according to the specification

FIGURE 4.8: Model-checking min and min_wrong against the specification

when we detect a bug in the specification, we also provide a model; a witness input vector

that (when given to the function), makes the program to exhibit the bug. This witness is

useful for debugging. This symbolic representation of a function will be used in section

4.7 to check that the implementation of a system described in C/C++/SystemC behaves

as expected by combining it with a representation of the specification in UML/OCL.

Even though in our example we have used Dynamic-Symbolic-Execution to construct

a formula that we can use later on to check that an implementation behaves according

to a specification, we can also check certain properties on-line while the code is being

symbolically executed. This is useful for properties that are expressed as conditions over

variables while the code is being run rather than relations between the input-output

variables of a function. For those properties we use the instrumentation described in

Chapter 2 to include “monitors” or “observers” in the code. Those are represented as

Finite State Machines (FSM) that synchronize with the code in certain locations, and a

violation of the specification is defined as an execution trace that makes the observer FSM

to reach an error location [BCF+12b].

In Figure 4.9 (right), we present a monitor that checks that a pointer is not used

after the memory that it points to is freed. The generation of monitors can be automated

avoiding manual code annotations [BCF+12b].

This on-line checking for reachability properties will be used in combination with a

Static-Analysis approach in next section to search for “bugs” during run-time in several

examples taken from the SV-Comp benchmark suite [Bey15] as well as the test suite from

4.5 COMBINATION WITH STATIC ANALYSIS 121

the commercial tool Goanna.

Optimizations Note that there exist several optimizations to the naive process described

before. In the following we describe some of these optimizations:

• A trace can be encoded with different levels of detail when checking for satisfia-

bility. For detecting certain bugs, a representation as intervals can be appropriate.

Some other representations we support are linear equations, where we represent

each variable as a linear formula dependent on input variables, and polynomials,

where we represent variables as a polynomial equation. Note that for encoding a

strict under-approximation of the functionality we want to account for overflows

and precisely capture sign-extension or bitwise operations, so we use a bit-level

representation for every variable.

• When a condition depends on constants (or variables whose value directly depends

on constants, there is no need to call an SMT solver to decide if both branches of

the condition can be explored because only one of them can.

• We use parallelization to explore different traces. This means for every decision

point, (i.e., every branching) we spawn separate processes for the true and false

branches so we can parallelize the SMT solver computation as well as to follow

different search strategies for separate paths independently.

4.5 Combination with Static Analysis

4.5.1 Introduction

Even when the concrete state of the program has been abstracted by a mathematical

formula (enabling reasoning about different paths instead of actual values), the number of

paths in a real-world program is still too big to be used in practical terms. Therefore, the

program is still under-approximated, since not all the paths can necessarily be explored,

122 VERIFICATION

neither in theory nor in practice. This is caused by (non-regular) loops and recursion in

programs.

The problem of finding bugs or proving correctness in a program is therefore typically

subjected to both dynamic testing as well as static program analysis. However, while

testing is expensive to scale, static analysis is prone to false positives and/or false negatives.

This means, there are spurious warnings not relating to actual defects and instances of

software bugs that are part of checked defect classes but missed. Both false positives, as

well as false negatives, are a serious concern.

To maximize the set of explored states in the under-approximation, different heuristics

have been added to these frameworks [BS08][WMMR05]. These heuristics do not solve,

however, the fundamental problem of a potentially exponentially growing number of

execution paths. Hence, our goal in this section is to use static analysis for defining more

constrained bug candidates and provide a guidance of the symbolic execution framework

in the search strategy.

In this section, we present a combination of static program analysis and symbolic

dynamic execution to minimize false positives and false negatives, while at the same time

maintaining scalability. The core idea is to use static program analysis to broadly zoom in

on a potential software defect and treat that as a bug candidate. Next, we make this bug

candidate a precise target for symbolic analysis. This has a number of advantages:

1. Scalability is maintained by a broad static analysis pass that zooms in on bug

candidates.

2. Fine grained symbolic execution has a concrete target as opposed to an unguided

crawl, which allows for additional symbolic execution heuristics.

3. Performance can be tuned, by relaxing static analysis constraints and removing false

negatives at the expenses of potential false positives, which in turn can potentially

be ruled out by symbolic execution. Conversely, only true positives can be reported

where symbolic execution provides a concrete witness execution.

4.5 COMBINATION WITH STATIC ANALYSIS 123

4.5.2 Static Analysis as implemented in Goanna

Static Analysis comprises a number of techniques including data flow analysis, abstract

interpretation, and software model checking [NNH99][DKW08]. The approach we use in

this work is based on model checking and trace refinement as originated in the Goanna tool

[FHS10]. The core ideas are based on the observation that data flow analysis problems

can be expressed in modal µ-calculus [FHS10]. This has been developed further by

Fehnker et al. in [FHJ07] and later expanded in [JHFK12]. The main idea is to abstractly

represent a program (or a single function) by its control flow graph (CFG) annotated with

labels representing propositions of interest. Example propositions are whether memory is

allocated or freed in a particular location, whether a pointer variable is assigned null or

whether it is dereferenced. In this way, the possibly infinite state space of a program is

reduced to the finite set of locations and their propositions. The annotated CFG consisting

of the transition system and the (atomic) propositions can then be transformed into the

input language of a model checker. To illustrate the approach, we use a contrived function

example shown in Figure 4.9. It works as follows: First, a pointer variable p is initialized,

and we allocate memory accordingly. Then, in a loop, a second pointer variable q is

assigned the address saved in p. After hundred-thousand assignments, p is freed, and the

loop is left. To automatically check for a use-after-free, i.e., whether the memory allocated

for p is still accessed after it is freed, we define atomic propositions for allocating memory

(define p), freeing memory (free p) and accessing memory (assign p), and we label the

CFG accordingly.

Trace Refinement Loop Model checking the above property for the model depicted in

Figure 4.9 will find a violation and return a counter example. The following path denoted

by the sequence of locations is such a counter example: l0, l1, l2, l3, l4, l5, l6, l7, l3, l4, l5.

However, if we match up the counter-example in the abstraction with the concrete

program, we see that this path cannot possibly be executed, as the condition i == 0

cannot be true in the first loop iteration and, therefore, l5 to l6 cannot be taken. This

means, the counter example is spurious and should be discarded. We might get a different

124 VERIFICATION

1 void example () {

2 l0 : int i, *q;

3 l1 : int* p = malloc(sizeof(int));

4 for(l2 : i = 100000; l3 : i >= 0; l7 : i--) {

5 l4 : q = p;

6 l5 : if(i == 0)

7 l6 : free(p);

8 }

9 }

l0

l1 de f inep

l2

l3

l4 assign
p

l5

l6f reep
l7

l8

l1

l2

l3

?

define p

free p

assign p

FIGURE 4.9: Original program, automatically annotated CFG and automaton that checks for
“use-after-free” errors.

counterexample in the last loop iteration ..., l5, l6, l7, l3, l4, l5 . But again, such a counter-

example would be spurious, because once the condition i == 0 holds, the loop condition

prevents any further iteration. To detect the validity of a counter-example we subjected the

path to a fine-grained simulation using an SMT solver. In essence, we perform a backward

simulation of the path computing the weakest precondition. If the precondition for the

initial state of the path is unsatisfiable, the path is infeasible and the counter example

spurious. We use an efficient SMT encoding and a refinement loop by creating observer

automata to eliminate sets of infeasible traces successively. For the example in Figure 4.9

the approach is able to create two observer automata from minimal unsatisfiable cores of

a single path leading to the elimination of all paths of the same nature, i.e., avoiding an

unrolling of the loop. This approach is similar to interpolation-based solutions, and more

details can be found in Junker et al. [JHFK12].

4.5 COMBINATION WITH STATIC ANALYSIS 125

Static

Analysis

Bug

Symbolic

execution
Confirmed

Investigate

/ Refine

Program

OK (1)

OK (2) BUG (3)

no

yes

FIGURE 4.10: Architecture of the combined approach

False Positives and Tuning Even in this formal verification based framework of static

program analysis, there are possibilities for false positives (wrongly warned bugs) and

false negatives (missed bugs). This is caused by the abstraction and encoding into the

model checker, which is necessarily sound. For instance, certain semantic constructs

such as function pointers are typically not modeled, and their behavior is pessimistically

assumed. Also, the false positive elimination itself might time-out, and a judgment call

whether to report a potential bug or not is made. Industrial static analysis tools regularly

carry out the aforementioned trade-offs. In this work, we scale back the potential false

negatives and counter the increasing false positives with symbolic execution.

4.5.3 Our approach to combine Static Analysis and Dynamic Execu-

tion

We illustrate our approach in Figure 4.10: We start off with Static Analysis. If there is

no vulnerability found the process stops. Otherwise, we submit the bug candidate to the

symbolic execution engine. If the symbolic execution engine can confirm the issue, it

generates a concrete trace and an input vector. Otherwise, the bug candidate is neither

confirmed nor ruled out automatically and needs to be subjected to a manual investigation.

We have implemented the approach mentioned above making use of two approaches:

1) Static analysis based on model checking and SMT-based trace refinement as used

in Goanna [BCF+12a], and 2) symbolic execution based on multi-theory SMT solving

126 VERIFICATION

described in Section 4.1 2.

At the current stage of development the integrated approach first runs a static analysis

pass to determine bug candidates and for each potential bug, creates location information

as well as a possible counter-example trace that is then passed on to the dynamic execution

phase. The combination of the two approaches requires the following modifications to the

static analyzer as well as the introduction of heuristics to guide the search in the symbolic

program representation:

• The static analyzer needs to provide a trace indicating what constraints are violated

that reach an error location.

• Once a candidate location to reach with Symbolic Execution has been found, we

slice the program relative to that location to reduce the search space.

• The Symbolic execution needs to be augmented with heuristics to calculate a distance

measure from the last visited node in the program to the reachability target. This

distance is computed statically over the control flow graph. The symbolic execution

engine can then use that distance to sort the set of candidate paths during the

guided search. To do so, we use the standard A* graph traversal algorithm.

• Finally, we use time-outs on each branch of the symbolic execution if we are unable

to reach a particular target.

4.5.4 Experiments

We firstly demonstrate our idea by some examples from our internal test suite. The first

example program is shown in Figure 4.11 (left). An array of 10 elements ranging from 0

to 9 is initialized in a loop. However, in the last loop iteration, the counter is increased to

one beyond the array size and the subsequent access to that array would result in an out

of bounds violation. This error can be detected by the static analysis engine alone as the

following command shows:

2We use Z3 as the underlying SMT solver.

4.5 COMBINATION WITH STATIC ANALYSIS 127

1 int main(...) {

2 int a[10];

3 int i;

4 for(i=0; i<10; i++)

5 a[i] = 10;

6 a[i] = 0;

7 return 0;

8 }

1 void main (...) {

2 char password buffer [10] ;

3 int access = 0;

4 strcpy(passwordbuffer , argv [1]) ;

5 if(!strcmp(passwordbuffer , "passwd"))

6 access = 1;

7 printf("Access %d" , access);

8 }

FIGURE 4.11: Two examples of buffer overflow. First case can be detected with Static-Analysis
and Symbolic-Execution. Second case can be detected with Symbolic Execution.

goanna overflow.c

GOANNA - analyzing file overflow.c

line 5: warning: Array 'a' subscript 10 is out of bounds [0,9].

For that example, the static analyzer can determine the array bounds as well as the

number of loop iterations that are executed and, therefore, can derive the buffer overrun.

However, in certain scenarios when the complexity of reasoning is increased by (for

instance) copying memory around or reasoning about strings the analysis might lose

precision. The Static Analysis phase does not warn in the latter cases. An example is shown

in Figure 4.11(right). In the example, the buffer overflow introduces a real vulnerability,

as it can be used to write in the memory occupied by the variable access, and grant the

access to the application with an incorrect password. This occurs when the size of the

string passed as the first parameter to the program is larger than 10 characters. In that

case, the strcpy function writes in a space that was not allocated to store the variable

password_buffer, but for access. Once access is overwritten with a different value than the

initial 0, the access to the application is granted. To be able to detect these kinds of errors

we tune the static analysis engine of the combined approach to always emit an error when

it is not certain that a bug is absent. This means it will generate a vulnerability candidate

for the example in Figure 4.11(right). Moreover, using our symbolic execution engine on

the target location of the static analysis candidate we get a concrete confirmation of that

bug.

128 VERIFICATION

4.5.5 SV-COMP Benchmark Results.

For the evaluation of our integrated solution, we use the well-known SV-COMP benchmark

[Bey15], in particular, the loop category. SV-COMP is a set of competition benchmarks

used in the automated verification community to highlight complex verification problems

and to test the strength of individual tools. The loop category comprises of 117 files. We

show the results of our integrated approach in Table 4.3. This table is broken down by

the different analysis phases as well as the final verdict, where SA denotes static analysis,

SE Symbolic Execution and C Combined. A tick means proven to be correct, a cross that

a bug has been confirmed, and a warning triangle means for static analysis that it flags

a potential issue and for symbolic execution that it times out. The files names shaded

in gray are those containing a bug. We have broken the table in five groups, which are

separated by double horizontal lines.

1. In the first set of examples, the static analysis engine can conclude that the program

is correct. This is because our static analysis phase over-approximates the possible

behavior and the program does not contain any approximation breaking constructs

such as function pointers.

2. In the second group, the static analysis engine produces some potential bug candi-

dates that are passed to the symbolic analysis pass. However, the symbolic analysis

engine was able to cover all the possible branches in the program faithfully and

conclude that all of them are bug-free.

3. In the third group, the full potential of the combined approach is shown. In these

cases, Static Analysis concludes that there is a potential bug in the code and provides

a set of candidate locations that exhibit the undesired behavior. This set of locations

is used as target locations for the symbolic execution heuristics. In each case, we

were able to find the bug and provide a witness that demonstrates this behavior.

4. In the next two groups, the relaxation of the rules in the static analysis tool makes

the static analysis to produce error candidates in programs that however are correct

4.5 COMBINATION WITH STATIC ANALYSIS 129

TABLE 4.3: Results of each engine and the integrated solution.
SA = static analysis, SE = symbolic execution, C = combined, gray = bug

Filename SA SE C Filename SA SE C Filename SA SE C

nested6_true-u... X ! X simple_false-u... ! × × functions_true... ! ! !

nested9_true-u... X ! X terminator_01_... ! × × simple_true-un... ! ! !

heapsort_true-... X ! X underapprox_fa... ! × × simple_true-un... ! ! !

apache-escape-... X ! X sum01_bug02_su... ! × × simple_true-un... ! ! !

apache-get-tag... X ! X while_infinite... ! × × SpamAssassin-l... ! ! !

count_by_k_tru... X ! X for_bounded_lo... ! × × sum03_true-unr... ! ! !

diamond_true-u... X ! X count_up_down_... ! × × trex03_true-un... ! ! !

gj2007_true-un... X ! X sum01_bug02_fa... ! × × count_up_down_... ! ! !

gr2006_true-un... X ! X sum01_false-un... ! × × ddlm2013_true-... ! ! !

seq_true-unrea... X ! X sum04_false-un... ! × × jm2006_true-un... ! ! !

down_true-unre... X ! X terminator_02_... ! × × jm2006_variant... ! ! !

phases_true-un... X ! X trex02_false-u... ! × × overflow_true-... ! ! !

up_true-unreac... X ! X sum03_false-un... ! × × half_true-unre... ! ! !

bhmr2007_true-... X ! X trex03_false-u... ! × × nest-if3_true-... ! ! !

hhk2008_true-u... X ! X terminator_03_... ! × × MADWiFi-encode... ! ! !

half_2_true-un... X ! X trex01_false-u... ! × × trex04_true-un... ! ! !

string_concat-... X ! X simple_false-u... ! × × trex01_true-un... ! ! !

eureka_01_true... X X X functions_fals... ! × × sum01_true-unr... ! ! !

n.c40_true-unr... X X X simple_false-u... ! × × string_true-un... ! ! !

lu.cmp_true-un... ! X X overflow_false... ! × × vogal_true-unr... ! ! !

veris.c_sendma... ! X X phases_false-u... ! × × afnp2014_true-... ! ! !

eureka_05_true... ! X X eureka_01_fals... ! × × array_true-unr... ! ! !

cggmp2005_true... ! X X id_trans_false... ! × × array_true-unr... ! ! !

diamond_true-u... ! X X string_false-u... ! × × array_true-unr... ! ! !

underapprox_tr... ! X X vogal_false-un... ! × × array_true-unr... ! ! !

large_const_tr... ! X X NetBSD_loop_tr... ! ! ! cggmp2005b_tru... ! ! !

nec40_true-unr... ! X X sendmail-close... ! ! ! const_true-unr... ! ! !

sum04_true-unr... ! X X simple_true-un... ! ! ! count_by_1_tru... ! ! !

terminator_02_... ! X X terminator_03_... ! ! ! count_by_1_var... ! ! !

array_false-un... ! × × trex02_true-un... ! ! ! count_by_2_tru... ! ! !

array_false-un... ! × × css2003_true-u... ! ! ! count_by_nonde... ! ! !

const_false-un... ! × × n.c11_true-unr... ! ! ! gauss_sum_true... ! ! !

diamond_false-... ! × × while_infinite... ! ! ! gj2007b_true-u... ! ! !

diamond_false-... ! × × while_infinite... ! ! ! gsv2008_true-u... ! ! !

ludcmp_false-u... ! × × while_infinite... ! ! ! id_build_true-... ! ! !

multivar_false... ! × × cggmp2005_vari... ! ! ! multivar_true-... ! ! !

nec11_false-un... ! × × for_infinite_l... ! ! ! nested_true-un... ! ! !

phases_false-u... ! × × for_infinite_l... ! ! ! nec20_false-un... ! ! !

simple_false-u... ! × × fragtest_simpl... ! ! ! verisec_NetBSD... ! ! !

130 VERIFICATION

under the fully-accurate semantics of the operations of the program. The set of

feasible paths, however, is too big to be fully exercised by symbolic execution,

so under the requirements of a sound analysis, the algorithm has to output an

inconclusive output. We observe, however, that the fact of having a concrete goal to

reach helps a lot in the symbolic execution framework so most of these cases (41

over 43) are actually correct. Considering the two remaining cases as correct would

break the soundness of the approach but would leave us with an error rate of only

2/117.

In summary, the combined approach has a detection rate (number of detected errors

over files with an error) of 98%. The true negative rate of the combined approach (number

of files “proven” as correct when they are correct) is 35%, which is approximately 50%

above the rate obtained by only using a static analysis approach.

4.5.6 Conclusions

In this section we have first introduced a symbolic representation of the program state

based the annotations introduced in Chapter 2. The proposed symbolic representa-

tion of the program captures the semantics of the software operations very accurately

and therefore do not introduce false-positives that would appear if the program was

over-approximated. The precision in the analysis, however imposes several limitations,

especially in terms of scalability. To counter this problems, the symbolic representation

have first been combined with an over-approximation of the program based in the tech-

niques described by the tool Goanna [JHFK12]. Also, in cases in which a formal model of

the system is available in the form of an UML/OCL specification, we have presented a

combined technique that divides the verification approach in two steps, and also helps in

reducing the complexity of the analysis.

Regarding the integration of Symbolic Execution and Static Analysis, it is worth noting

some observations: Firstly, our solution is quite capable of detecting bugs. From a set

of complicated bugs taken from the standard SVComp testbench, all bugs have been

identified by our approach and all apart from two have been confirmed with symbolic

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 131

execution inputs and traces. Secondly, the combined approach gives a slightly better

coverage to demonstrate the absence of bugs compared to single static analysis approach.

In our case, if we declared a program bug free when both phases cannot come to a

combined negative conclusion, we would correctly identify all benchmark cases apart from

two, keeping the overall error rate at around 1%. This is better than the rate exhibited by

more mature state-of-the-art tools in this set of programs.

4.6 Verification of non-functional properties

4.6.1 Introduction

In this section, we describe the problem of obtaining worst-case execution time of a

program when it runs over a hardware platform. We emphasize that i) we are interested

in obtaining an over-approximation of the worst-case execution time, and therefore we

can not base our solution in a simulation approach and ii) as well as a model of the

software, we need a formal model of the hardware.

4.6.2 The WCET problem

Given a binary program P, some input data d and the hardware H, the execution time of

P for the input d on H, denoted Xtime(P, d, H), is measured as the number of processor

cycles between the beginning and end of P ’s computation for d (we assume P always

terminates.)

The worst-case execution time (WCET) of program P on hardware H, denotedWCET(P, H),

is the supremum of the Xtime(P, d, H) for d ranging over the input data domain D:

WCET(P, H) = sup
d∈D

Xtime(P, d, H). (4.2)

The WCET problem asks the following:

“Given P and H, compute WCET(P, H)”.

132 VERIFICATION

Previous chapters should serve as an introduction of the difficulty of computing this

value with a certifiable proof. During last years there has been a tremendous progress

in architectural changes to improve the platform performance. Even though this has

improved the average execution times, it has also complicated the formal analysis of

those architectures, making the problem of computing the WCET an undecidable problem.

Because of this complexity, the WCET problem is usually re-stated as:

“Given P and H, compute a tight upper bound of WCET(P, H)”.

Tightness can be measured (see [CB13a]) by comparing actual WCET to the ones

computed using a particular method. In the sequel, we use WCET(P, H) to denote an

upper bound of the WCET for a given program.

The main concepts that are important when analyzing the time distribution of programs

over an arbitrary input are depicted in Figure 4.12. In the previous chapter, we have

focused on simulation. Simulation enables us to obtain feasible executions of a program

automatically and therefore, can be used to derive “wcet_under”. Heuristics can guide

the Symbolic Execution to select long traces and therefore approximate the exact value

of the WCET as “wcet_under”. In this section, we focus on obtaining an upper bound of

the WCET (denoted “wcet_over” in Figure 4.12). Note that the estimation of the WCET

is expected to be tight (precise), or the implementation of the system would incur in

costs derived from a very pessimistic approximation. The combination of software loops

with over-approximate models of the hardware can lead to very pessimistic results. A

clear example of this is produced in instruction caches. It is common in a processor with

caches that the first iteration of each loop to be around 100 times slower than subsequent

ones due to the filling of the cache with the instructions of the body. A naive approach

that does not consider the interactions between hardware and software and assumes

all the iterations to take the same amount of time would lead to wcet estimations to be

100× number_of_iterations bigger than the real value, which can be disastrous for large

loops.

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 133

time

fr
eq

ue
nc

y

B
C

ET

W
C

ET

Possible execution times

under- approximation of possible execution times

B
C

ET
_o

ve
r

W
C

ET
_u

nd
er

B
C

ET
_u

nd
er

W
C

ET
_o

ve
r

over-approximation of possible execution times

FIGURE 4.12: Main concepts in timing analysis

4.6.3 Proposed solution

We observe that (i) most of the over-approximation of the worst-case execution time

comes from the fact that infeasible traces are not refined and (ii) the analysis of hardware

models is complicated because hardware platforms are composed of components that

execute concurrently and synchronize on timing constraints. Therefore, we propose two

contributions in this section to tackle the problems of WCET:

• The use of formal models like timed automata and state-of-the-art real-time model-

checkers like Uppaal [LPY97] to model the hardware elements of the platform.

• The use of trace refinement both in the software and hardware domain to remove

traces that are infeasible because of infeasible program conditions or because of

infeasible conditions in the hardware model.

We have implemented a prototype of these ideas that we describe in this section.

In this prototype we use the techniques described in Chapter 2 to extract the control-

flow-graph of a binary program and embed it in a model of the hardware platform. The

control-flow-graph of the program represents an over-approximation of all the feasible

134 VERIFICATION

execution traces of the software (a trace in the CFG leading to the end location may

be infeasible). We represent it as an (untimed) automata and synchronize it with a

model of the hardware, that is described as a network of timed automata. Computing the

WCET is then reduced to computing the longest path (time-wise) in a network of timed

automata (a set of automata that synchronize on common labels). This prototype has

been used to experiment about trace refinement in the hardware domain and is starting

to be used to refine the control-flow-graph representation of the software. This technique

has demonstrated the following advantages compared to the previous methods described

in the state of the art:

Addressing the effect of the compiler The approach does not attempt to match loops

or other elements of the high-level language with constructs of the final executable.

The input of the technique is the raw binary code, and it does not require annotations

in the program to indicate loops bounds or loops invariants like other state-of-the-art

techniques [Lun02][FH04][bou]. Also, because the approach operates directly with the

binary program, the proposed method works for a variety of programming languages.

Addressing the complexity of the hardware platform Network of Timed Automata

have precise semantics described in [AD94], [BLL+96], [LPY97]. Therefore our models

are formal behavioral models for the hardware. Despite being formal, the models of the

hardware are described as the composition (synchronization) of very simple components

that can be validated separately.

This generality in the hardware models enables us to model features that cannot

be modeled with other approaches based on abstract interpretation and Integer Linear

Programming (ILP) such as intervals in the execution time of instructions or changes of

the speed of the CPU during program execution.

The hardware models do not pre-suppose an initial state. As we have seen, making the

assumption of a concrete initial state is not sound when providing an upper bound on the

execution time. Our methodology is resilient to timing anomalies [LS99],[RWT06],[CHO12].

This is a challenging problem faced by other methods based on abstract interpretation.

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 135

Compact representation of the program state space The approach automatically

abstracts all the computations that are not relevant to the execution time. Only the

values that have an influence in the execution time are considered. For example, for the

computation of a bit-wise operation between two registers, the fact that this instruction is

in one or another level in the memory hierarchy might make a difference in the execution

time, but not the precise value that the instruction computes (unless it is used later as the

upper limit in a loop, for example). This compact representation of the program state

space leads to less memory utilization in the computation of the WCET (computation of

the WCET is often limited by memory constraints).

4.6.4 Hardware model

Introduction

This section describes our models for the hardware and software elements of the model.

The formal definition of the hardware model has been summarized from references

[Cas11],[CB13b],[BC11] and a paper I co-authored with Franck Cassez [CdAM15].

The hardware is composed of an instruction cache and the main memory to store the

program, and a four-stage pipeline (CPU) to execute the instructions.

The main memory component is a table of words of a given width (32-bit or 64-bit

words). M is the (finite) set of main memory cells and we denote D the memory domain

(e.g. 32-bit or 64-bit words). A memory state is thus a map fromM to D.

This model is derived from a generic Von Neumann architecture; it considers an

arithmetic-logic unit to perform operations between registers; a control unit containing the

program counter and processor registers; a memory to store the data and the instructions

of the program and input-output mechanisms. Most modern computing platforms are

based in this architecture; from which they mostly diverge in the addition of caches to

accelerate memory access. Therefore, the consideration of a different architecture than

the one presented in this section implies rethinking each hardware model in isolation,

but the overall methodology and results are still applicable. A careful consideration of

caches can significantly speed-up the verification, so we devote Section 4.6.7 to explain

136 VERIFICATION

such considerations.

A state of the hardware is fully determined by the contents of the registers, the content

of the memory and the content of the pipelines and caches. The hardware has a designated

register, the program counter that points to the next instruction to process. An example of

such an architecture, the AMR920T, is given in Figure 4.13. The orange blocks are the

blocks we need to model to compute the execution time of program runs.

ARM9TDMI
Core

Data
Cache

Inst.
Cache

Data
MMU

Inst.
MMU

Write
Buffer

AMBA bus interface

FIGURE 4.13: Simplified ARM920T architecture

Given a program P, we let LH(P) be the set of valid executions of P on H. To define

this set we need to take into account the semantics of each instruction, and the values of

the registers of H and the memory state.

A program run (or execution) is completely defined by a finite sequence of (positive)

integers given by the successive values of the program counter (there is no input data).

The execution time of a run is defined by the time it takes for the hardware to execute

the sequence of instructions in the run. To execute a run, the code of instructions has

to be fed to the CPU (pipeline) to be executed. To execute the instruction at PC = i the

following steps occur:

1. the CPU requests the code of the instruction i.

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 137

2. If the code of i is in the cache, this is a cache Hit, and the code of i is transferred

from the cache to the CPU, otherwise, a cache Miss occurs. The code of i is fetched

from main memory, stored in the cache and then transferred to the CPU.

3. the CPU executes the code of i and is ready to process the next instruction.

Execution time of a run. The execution time of a run depends on the following factors:

• the time it takes for the instructions to flow into the pipeline stages. This is usually

non-trivial because the stages run in parallel and because of pipeline stalls.

• the time it takes to fetch instructions and data from the caches and main memory.

These memory transactions are usually performed in different pipeline stages and

can be concurrent (e.g., an instruction in the fetch stage can be fetched from the

instruction cache while another instruction in the memory stage performs some

transactions with the data cache.)

In order to determine how long it takes for a run ρ to execute on the hardware H, it

is sufficient to know:

• the processing time of each instruction in the different pipeline stages,

• the registers read from/written to by each instruction (to determine pipeline stalls),

• the status of the memory transactions for the instructions in ρ: cache hits and

misses.

Given a run ρ, we can build an annotated run ρ̃ that contains the information required

to fully determine the execution time of ρ on H. This extended run may capture the

processing time of the instruction in each pipeline stage, the registers read from/written

and the cache hits and misses.

As a sequence contains enough information to compute the execution time of a program

run ρ ∈ LH(P) we can define an abstract model of the hardware as a timed automaton

transducer, Aut(H), that maps each ρ̃ to a positive natural number Aut(H)(ρ), which is

the execution time of ρ on H.

138 VERIFICATION

Hence the WCET of a program P on the hardware H is defined by:

WCET(P, H) = max
ρ∈L a

H (P)
Aut(H)(ρ). (4.3)

We can over-approximate the set of runs of a program by assuming that each time we make

a choice, the outcome is either true or false and both cases should be taken into account

to compute the WCET. As the set of runs constructed this way over-approximates the set

of program runs, we ensure that the value of the WCET we compute (equation (4.3))

is an upper bound of the actual WCET (this assumes that the hardware model Aut(H)

correctly models the timing behavior of the hardware).

Pipeline model

The ARM920T uses a 5-stage execution pipeline (Figure 4.14), the purpose of which is to

execute concurrently the different stages (Fetch, Decode, Execute, Memory, Writeback)

needed to perform an instruction. An instruction is fetched in F, decoding and operand

register accesses occur in D, execution in E and load/store instructions do their memory

accesses in M. The results are written back to registers in W. The (normal) flow of

instructions in the pipeline is shown in Figure 4.14. This optimal flow may be slowed

down when pipeline stalls occur (e.g., due to register dependencies).

A formal model of the pipeline of the ARM920T can be specified by a network of 5

timed automata (see Figure 4.15) each of them modeling a single stage of the execution

pipeline.

Each stage automaton has a unique identifier me (an integer). The values of this

identifier for the templates (F, D, E, M, W) are respectively (0,1,2,3,4). This encodes the

fact that the stages F, D, E, M, W are ordered. For instance, the F-Stage template automaton

is idle until the Program pushes a node via the pushTo[0]? transition. It updates the

local state of this stage 0 (locState[0]=node) where node is a (meta) variable used to

retrieve the value sent by the Program Automaton that issues the pushTo[0]! command.

The F stage template automaton then synchronises with the instruction cache (see Figure

4.15) to simulate th time it takes to fetch the instruction from the instruction cache.

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 139

F D E M W

F D E M W

F D E M Winst. i

inst. i+1

inst. i+2

cyclej j+2 j+3j+1 j+4 j+5 j+6

FIGURE 4.14: Pipeline of the ARM920T: Instruction is fetched in F. Instruction decode and
operand register accesses are done in D. Execution is done in E. Load/store instructions do their
memory accesses in M. Results are written back to registers in W.

Cache model

The model for the instruction cache is given by the timed automaton FullCache (Figure

4.16). When a cache read request is received, (ICacheReadStart ?) location Check is

reached. Depending on whether the set of the instruction (cacheLine) is in the cache

(which is when find(cacheLine) returns a positive value) two different behaviors can

be observed: a Hit occurs, and the delay is set to HitTime (e.g., 2 cycles). Otherwise, a

Miss occurs and the delay is set to MissTime (e.g., 20 cycles). In both cases, the cache

is updated access(cacheLine). The UPPAAL specification of the functions find() and

access() are given in [CdAM15].

4.6.5 Tool chain

We have implemented a prototype of the integration of UPPAAL, the control-flow-graph of

a program as described in Chapter 2 and the formal models of the hardware as described

in 4.6.4 (WUppaal).

The toolchain, visualized in Figure 4.17, is composed of five components:

• a pre-analysis module for constructing an annotated program that can be used

to generate the program traces with the techniques described in Chapter 2,

• qemu [Bel05] to emulate the chosen hardware,

• gdb [SPS+02] for inspecting qemu,

• libgdb2uppaal to implement the execution of traces in uppaal,

140 VERIFICATION

F Stage

D stage

E Stage

M Stage W Stage

FIGURE 4.15: Timed Automata for F, D, E, M and W Stages (pipeline ARM920T).

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 141

FIGURE 4.16: Instruction Cache automaton FullCache

HW.xml bin.annotated pre-analysis bin.elf

uppaal libgdb2uppaal gdb qemu

FIGURE 4.17: The tool chain of WUppaal. Orange blocks are the modules we implemented.
Other blocks are existing modules.

• a Timed Automaton model of the hardware HW.xml for the pipelines, main memory

and instruction cache.

• UPPAAL for computing the worst-case execution time given a sequence of nodes.

Computing the WCET for a given binary program bin.elf using our framework is a

two-stage process. In the first stage, we compute an annotated program (e.g., a CFG and

the set of variables needed to generate the annotated language) by using pre-analysis

as described in Chapter 2). In the second stage we use UPPAAL to drive a search through

the state space, interfacing (by proxy of gdb and libgdb2uppaal) with the emulator of

the hardware.

142 VERIFICATION

TABLE 4.4: The experimental results, time is given in seconds and includes startup overhead
from initializing gdb and qemu. The loc measure is the number of lines of assembly, |Treea

H(P)|
measures the size of the representation of possible runs of the program.

Program Loc |Treea
H(P)| Time WCET

duff 145 1750 4.51 61215

fibcall 48 553 2.91 19320

insertsort 84 7 2.09 210

janne_complex 67 360 3.21 12565

lcdnum 100 250 2.52 8715

4.6.6 Results

We have experimented our technique using some of the standard benchmarks [GBEL10]

from Mälardalen University, for computing WCET 3.As we can see in Table 4.4, we

are achieving a reasonable computation time (less than 5 seconds for all experiments),

demonstrating the feasibility of our approach.

4.6.7 Hardware refinement

Model-checking is very sensitive to the number of states, and this can hinder the analysis

of large systems. This is even more important when model-checking timed automata: the

state space is composed of a discrete part and clock constraints, so it is even more important

to try and reduce the state space of the model while preserving enough details to represent

the property to be checked faithfully. To avoid the state-explosion problem resulting from

a naive synchronization between the program states and the hardware states, this section

proposes the usage of trace refinement in the hardware state. Experimental results show

that the most demanding elements regarding state space are the models of the cache.

3Note that, even when the programs from the Mälardalen benchmark may seem small, they are specifically

designed to highlight and test the complexity of binary-program verification. In this sense, the source

code is usually modified to force the compiler to introduce non-standard constructions. This is why the

complexity of providing a verified bound for the WCET in these programs is not directly dependent on the

number of lines-of-code

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 143

Using an accurate state model for the caches forces to store an explicit representation to

obtain the hits and misses. Next section presents a technique based on trace refinement

to reduce the space needed to represent instruction caches.

Reducing the state space, minimal cache models.

As described previously, the execution time of a sequence of instructions depends on

the sequence of cache hits or misses, and the time it takes for the CPU to execute each

instruction. Assume that the time to execute each instruction is 0 and only the cache hits

and misses impact the execution time. With a model that explicitly represents the cache,

we can precisely track the hits and misses. For instance for the sequence σ1 = 1,2,3,1

and a cache of size 3, the successive states of the cache are ,1,1.2,1.2.3 and we obtain

the following sequence of pairs (instruction, Hit/Miss) : (1, M).(2, M).(3.M).(1, H).

This sequence fully determines the execution time. It turns out that the sequence of

instructions 1,4,5,1 would produce the same execution time (if 4 and 5 have the same

execution time as 2 and 3). But if we generate the sequences of pairs using the full state

of the cache, the same sequence will be analyzed twice.

An example.

Consider the program of Figure 4.18. We fix the maximum number of iterations to M = 5.

We can compute the WCET of the program with an explicit cache of size 2 and with an

ideal model of the cache which is given by Figure 4.19. With a cache of size 2 all the runs

in the program generates sequences of Hit and Miss of the form (M .H.M .M). Hence

the automaton of Figure 4.19 is a good cache model for this program for any number of

switches N . Table 4.5 gives the number of states explored to compute the WCET with

the explicit cache and the small cache of Figure 4.19. As can be seen, many states of

the cache are equivalent and this is captured by the small model whereas the explicit

model generates all the configurations. The explicit state cache model can be used with

any program to analyze but may inflate the state space to be explored for computing the

WCET. In the next section we describe how to compute small cache models for a given

144 VERIFICATION

FIGURE 4.18: Simple program represented as an automaton in UPPAAL

FIGURE 4.19: A small cache model

4.6 VERIFICATION OF NON-FUNCTIONAL PROPERTIES 145

TABLE 4.5: States explored for computing the WCET.

N States Explored WCET
Explicit Model Small Model

1 549 147 396
2 1055 196 396
3 1626 245 396
4 2267 294 396
5 2953 343 396
6 3699 392 396
7 4505 441 396
8 5371 490 396
9 6297 539 396
10 7283 588 396

program.

Computing abstract cache models

As demonstrated in the previous section, using an explicit cache model can be detrimental

to the model-checking approach as many equivalent (time-wise) cache states may be

explored. The objective of this section is to indicate how we can compute small cache

models that are suitable abstractions for a given program. To do this, we use an abstraction

refinement technique introduced in [HHP09b][HHP13]. The trace abstraction refinement

technique was originally developed to analyze imperative programs. We adapt here it to

compute the WCET of a program. Our method works as follows:

1. start with the most abstract model of the cache: every cache access can be either a

hit or a miss;

2. compute the WCET T with the current model of the cache.

3. get a witness trace t i.e., a sequence of pairs (instructions, Hit/Miss) that yields this

execution time T.

4. check that t is feasible in a concrete model of the cache. t contains the sequence

of instructions and using the specification of the cache we can compute the corre-

sponding sequence of hit and miss. This reference sequence is compared against

146 VERIFICATION

Compute the WCET T
in Aut(P)×Aut(C)

t feasible?
WCET is T

t is a witness

Aut(C) =HitOrMiss
Compute ref nement O(t)
Aut(C) :=Aut(C) \ O(t)

Get a witness trace t
of duration T

Yes

No

FIGURE 4.20: Trace Abstraction Refinement Algorithm for computing WCET

the sequence of hit and miss in t.

5. if the reference sequence and t match, t is feasible, the WCET is T and t is a witness

trace.

6. otherwise t is infeasible in a concrete model of the cache, we refine the abstract

cache. The refined abstract cache model should not allow t. We iterate this process

and re-start at step 2.

Step 6 above is the central point of the trace abstraction refinement method: from one

infeasible trace, we can compute a set of traces that are infeasible for the same reason.

From t we can obtain a regular language of traces that are infeasible and represent it by a

finite automaton O(t). This crucial step is based on the computation of interpolants. We

have defined a logic for caches and the corresponding notion of interpolants that enables

us to compute O(t) for each infeasible trace t.

An algorithm to compute the WCET of a program P using a trace abstraction refinement

loop is given in Figure 4.20. The initial model for the cache is the timed automaton

HitOrMiss which allows the cache to generate a Hit or a Miss for each memory access.

When an infeasible trace is discovered, we refine the cache model by removing a set of

infeasible traces given by O(t).

It is important to notice that the sequence of worst-case execution times obtained by

this refinement is monotonic, so the process can be stopped at any time and still produce

a safe bound of the worst-case execution time.

4.7 COMBINATION WITH UML/OCL SPECIFICATION 147

4.6.8 Conclusions

In this section, we have presented a method to compute the WCET of binary programs

based on timed automata and real-time model-checking with Uppaal. The method we

designed is generic and can accommodate arbitrary hardware. The proposed tool chain

allows us to achieve a modular approach to WCET-computation, reducing the overhead

needed to support new binaries and new architectures.

Our technique does not rely on the computation of loop bounds or the assumption that

the hardware is free of timing anomalies: this is one the strengths of the model-checking

method. Another strength is that it generates a witness program trace that produces the

WCET. Other attractive features of this approach include its generality: we do not need to

assume that the initial state of the caches is known.

Our technique is also general enough to be paired with program refinement and

hardware refinement techniques. This enables us to define an iterative method to compute

better and better over-approximations of the WCET and ensure that one witness trace

exists.

We experiment the idea of hardware refinement and provide an iterative algorithm

to approximate the WCET monotonically; we can start with a very simple model of the

caches where every transaction is either a Hit or a Miss. Once we compute a WCET

with Uppaal, we can check whether the witness trace is feasible in the program and the

caches. If the cache behavior that is in the witness is spurious (infeasible), we can refine

it as well. This enables us to get some control on the accuracy of the computation via

model-checking.

4.7 Combination with UML/OCL Specification

4.7.1 Introduction

The use of formal models to describe early versions of the structure and the behavior of

a system has become common practice in the industry. UML and OCL are the de-facto

specification languages for these tasks. They allow for capturing system properties and

148 VERIFICATION

ImplementationUML model

A
op1() B

op2()
C

op3()

Verification

Debug behavior

of the system
fail

Verification of system behavior

Implementation

op1();

op2();

op3();

Verification

Debug implementation

of an operation
fail

pass

ok

Verification of individual components

pass

FIGURE 4.21: Envisioned verification flow

module behavior in an abstract but still formal fashion. At the same time, this enables

designers to detect errors or inconsistencies in the initial phases of the design process-

even if the implementation has not already started. Corresponding tools for verification

of formal models got established in the recent past. However, verification results are

usually not re-used in later design steps anymore. In fact, similar verification tasks are

applied again, e. g. after the implementation has been completed. This is a waste of

computational and human effort. In this section, we address this problem by proposing

a method which checks a given implementation of a system against its corresponding

formal method. This allows for transferring verification results already obtained from

the formal model to the implementation and, eventually, motivates a new design process

which addresses verification across abstraction levels. To this end, we propose a design

and verification flow as depicted in Figure 4.21 in which the following two stages are

conducted.

In the first stage, the formal specification (provided by a stakeholder or designer in

abstract modeling languages such as UML, SysML, MARTE, etc.) is verified by a UML/OCL

verifier (“modelchecker”) [SWD11b] . This includes consistency checks such as checking

4.7 COMBINATION WITH UML/OCL SPECIFICATION 149

whether it is possible to instantiate the desired system considering all constraints and

requirements, but also first behavioral checks such as checking whether it is feasible to

reach a prohibited state. For this purpose, a variety of (automatic) verification approaches

is already available, e. g. [CCR08] or [SWK+10] for consistency checking or [SWD11c],

[CCR09] for the verification of behavior. These methods allow for the detection of design

flaws already in very early design steps - even in the absence of a precise implementation.

That is, if the verification of a formal specification fails, design bugs can be determined and

fixed without considering implementation details. Moreover, also the interaction of various

components of a complex design can be verified by these approaches. Consequently, further

checks can often focus on the implementation of sole components only. We conduct this

step in the second stage. More precisely, this stage does not consider the entire system and

the interactions of their components anymore but checks whether the implementations of

its individual components are functionally correct with respect to the formal specification.

For this purpose, the implementation of the respectively considered component (e. g. for

operation op1() in the sketch of Figure 4.21; provided in C, C++, SystemC, or other means)

is compared against its corresponding formal specification (i. e. the formal constraints for

class A and operation op1() provided in UML, SysML, MARTE, or other means).

Following such a flow yields the following advantages:

• An “as early as possible” verification scheme is employed, i. e. errors are detected as

soon as possible. The more errors detected in the UML/OCL level, the fewer errors

that are propagated to lower levels.

• Debugging loops are kept small. In fact, if an error has been detected, identifying

its source remains in one abstraction level (either the formal specification or the

implementation is debugged). Loops over several abstraction levels may only occur

due to design exploration or unsatisfied non-functional requirements.

• The efficiency is significantly increased due to the clear separation of concerns.

The interaction of the respective components is mainly verified in Step 1 using

the abstract descriptions at the formal specification level. In contrast, the (much

more precise) implementations are solely considered in Step 2. This is a clear

150 VERIFICATION

improvement compared to existing approaches such as [BUZC11a], [CDE08a],

[CKL04a], [dAE15a], [GLD10], [LGHD13] where the implementation as a whole

has to be considered, which frequently leads to complexity problems.

However, the realization of such a design and verification flow requires further CAD

solutions. While for the first stage, a variety of (automatic) verification approaches is

already available, no formal solution for the second step exists yet.

This section is structured as follows; in “UML/OCL model-checking in modelchecker”,

the formal definitions of the UML and OCL elements that are used in this section will

be introduced as they are used by the tool [SWD11b]. In “Our combined approach” we

present our combination of the symbolic representation of the formal specification with

the symbolic representation of the implementation. This integration starts by defining a

combined encoding of both the OCL/UML specification as well as the implementation of

each action. The satisfiability of that formula implies that the design is not implemented

according to the specification. This encoding of the design includes constraints derived

from the UML/OCL domain as well as the implementation domain. In “Symbolic Rep-

resentation of the Specification”, we summarize the former. Our approach constraints

an abstract symbolic state of the specification by adding several restrictions related to

UML/OCL elements. In “Combination with Symbolic Execution”, we discuss how to inte-

grate this restricted symbolic state with the encoding of an implementation as described

in Section 4.4. In “Case Studies” we present several examples that prove the validity and

usability of our approach. We end the section with “Conclusions”.

This section is a summary of the paper I co-authored with Nils Przigoda, Robert Wille,

Rolf Drechsler, and Pablo Sanchez [GdAPW+16], from which I have taken the definitions

of the sections 4.7.2 and 4.7.2.

4.7.2 UML/OCL in “modelchecker”

This introduction covers the basics of UML models and textual constraints provided by

OCL. At the same time, we are introducing the notation as applied in the remainder of the

section. This section represents a summary of the more extensive formulation described

4.7 COMBINATION WITH UML/OCL SPECIFICATION 151

in [GdAPW+16]. The interested reader is referred to that publication for more details

and examples.

UML Modeling

UML was introduced as a language for specifying systems in a unified way and has quickly

become the de-facto standard for describing the behavior of complex systems. In the

following, the resulting models as well as their instances are considered as follows:

Definition 1 A model m = (C ,R) is a tuple of classes C and relations R (also known

as associations). A class c ∈ C with c = (A , O,I) is a 3-tuple composed of attributesA ,

operations O, and invariants I .An operation o ∈ O is a 5-tuple o = (P, r,Ã,Â,F) composed

of a (possibly empty) set of parameters P, a return value r, preconditionsÃ, postconditionsÂ,

and frame conditions F .4

All invariants i ∈ I for all classes c ∈ C as well as pre-and postconditions Ã, Â of all

operation are OCL constraint expressions [Obj14]. The frame conditions F are a list of

those model elements (with a specific navigation scope), which are allowed to change their

value by executing the corresponding operation.

A relation r = (c1, c2, (l1, u1), (l2, u2)) ∈ R consists of two classes c1 and c2 in C as

well as two tuples representing the multiplicities between the classes. The tuples (li, ui) with

i ∈ {1,2} represent the lower and the upper bound, i. e. each instance of c1 (c2) shall be

connected with at least l1 (l2) and at most u1 (u2) instances of c2 (c1). Such pairs of bounds

are called UML constraints in the following. The lower bound is an arbitrary natural number,

while the upper bound is either a positive natural number or infinity. These bounds are used

in a first step in our procedure to refine the set of feasible states.

Object Constraint Language

The Object Constraint Language (OCL, [Obj14]) is a declarative language which allows

for the formulation of constraint expressions. Constraint expressions are used together

4 In order to specify which elements of the state are not allowed to change when an operation is called,

additional framing constraints are assumed in verification [NHGW15a],[NHGW15b].

152 VERIFICATION

with the model in order to add further restrictions that cannot be expressed by the given

model notation itself. The OCL mainly consists of

• navigation expressions to access elements in the model,

• logic expressions (i.e., , con-/disjunction, negation, etc.),

• arithmetic expressions (i.e., , addition, subtraction, multiplication, division, etc.),

and

• collection expressions (i.e., , intersection, union, element containment, etc.).

A comprehensive overview on all OCL expressions as well as keywords is given

in [Obj14]. Precise semantic definitions can also be obtained from [Obj14]. For a model m,

a system state σ, and an arbitrary OCL expression e, we say that σ is valid, if all invariants

(as well as UML constraints) i ∈ I holds in σ.

In order to execute a valid operation call, the preconditions must be satisfied in the

calling system state, while the postcondition restricts the resulting successor state σ′.

4.7.3 Our combined approach

In this section, we discuss in more detail the existing gap which prevents the application of

a design and verification flow as depicted above by means of Figure 4.21. Afterward, we

propose the general idea of a solution which closes this gap. Based on that, the remainder

of this work provides a detailed description of the implementation and application of the

suggested solution.

As already mentioned in Section 4.7, many approaches for the verification of the code

of embedded systems have been proposed in the past [BUZC11b], [CDE08b], [CKL04b],

[dAE15a], [GLD10], [LGHD13]. They are helpful in identifying the existence of flaws in

late stages of the design process and may prevent the commercialization of a system based

on a flawed implementation. They, however, have the drawback that a verification of the

entire system behavior is attempted and this usually leads to overly under-approximated

analysis of the entire system. In particular, for detailed implementations, verifying the

4.7 COMBINATION WITH UML/OCL SPECIFICATION 153

entire system behavior is a computationally complex task. Moreover, it is also a redundant

task, since, e. g., the interaction of the system’s components could have already been veri-

fied by means of the UML/OCL model. But existing methods do not allow for transferring

such verification results from the formal specification level to the implementation level –

a clear disadvantage.

In this section, we are proposing such a solution for this. More precisely, for a given

formal model m (provided in UML/OCL and composed of several operations O) and an

implementation impl of m (provided in C, C++ or SystemC), an approach is presented

which automatically checks whether the implementation implo of an operation o ∈ O has

been realized as specified in m. Using this solution, the design and verification flow as

shown in Figure 4.21 becomes applicable.

In order to address the problem above, the following check needs to be conducted:

For all possible system states σ that lead to the succeeding state σ′ when executing the

implementation implo of o, eventually a succeeding state σ′ must result which satisfy the

invariants I , satisfy the postconditions Âo, and satisfy the frame conditions Fo between

itself and the calling state σ.

More formally, an implementation implo of an operation o ∈ O has been realized as

specified in m if

∀σ,σ′ ∈ Σ :

��

∧

i∈I
¹iºσ

�

∧
�

¹Ãoº
σ
�

∧
�

σ′ = implo(σ)
�

�

⇒
�

¹Âoº
σ,σ′ ∧

∧

i∈I
¹iºσ

′
∧Fo(σ,σ′)

�

(4.4)

holds, whereby

• implo is a function which takes the calling state σ and maps it to the successor state

by applying all atomic instructions of the implementation in the given order. The

derivation of this formula from the source-code has been described in Section 4.1.

• Fo is a function which evaluates to false iff the frame conditions of operation o are

violated between the states σ and σ′.

154 VERIFICATION

Since SMT solvers are highly optimized for determining a (satisfying) assignment for

a given formula or to prove that no such assignments exist, the negation of equation (4.4)

is applied instead, namely:

∃σ,σ′ ∈ Σ :

��

∧

i∈I
¹iºσ

�

∧
�

¹Ãoº
σ
�

∧
�

σ′ = implo(σ)
�

�

∧
�

¬¹Âoº
σ,σ′ ∨

∨

i∈I
¬¹iºσ

′
∨¬Fo(σ,σ′)

�

(4.5)

Equation (4.5) eventually states a classical satisfiability problem which represents

the considered problem. What remains open is how to precisely create an instance

representing equation (4.5) for an (arbitrarily) given model m.

Our approach for creating such a formula is divided into two steps;

• First, a symbolic pair of states σ, σ′ is created by applying constraints to refine

the UML/OCL specification iteratively. In a first instance, we consider a symbolic

formulation that contains all the states of the system, we then apply constraints to

restrict the symbolic states to those in which the specification is consistent regard-

ing the links that connect classes in the UML specification. For those (symbolic)

states that comply with the restrictions as specified by their link relations, we add

corresponding bit vector constraints from the OCL specification enforcing that only

valid assignments are employed, i. e. assignments satisfying all invariants as well as

the pre- and postconditions associated with the respectively considered operations.

• Once the pair of states are obtained, the implementation as derived in Section 4.4

is added to further constraint the state space.

• If equation (4.5) is then satisfiable, an assignment (i. e. two system states) exists

which violate the constraint stated in equation (4.4). These system states are coun-

terexamples showing that, although a valid operation call has been conducted in σ

(all invariants and preconditions are satisfied), the implementation implo yielded

a succeeding system state σ′ which violated at least one invariant, postcondition,

or frame condition. This shows that the implementation has not been realized

4.7 COMBINATION WITH UML/OCL SPECIFICATION 155

as specified in m. Vice versa, if the SMT solver can prove that no such assign-

ment exists, it can be concluded that no such counterexample exists and, hence,

the implementation has been realized as specified in m (equation (4.4) has been

proven).

Symbolic representation of the formal specification

This section summarizes the first step (i. e. the refinement of the symbolic state from the

UML/OCL specification). For further details refer to [GdAPW+16].

• In a first instance, we use the link associations to restrict states in which UML

constraints hold. To this end, we use the bounds of the relations and introduce

symbolic bit-vector variables representing arbitrary instantiations and assignments

of links. We then propose an encoding in which we consider instances to be linked

if the corresponding bits of the variables are set to 1. This is necessary because

we do not know anything about a satisfying assignment of Equation 4.5 and, thus,

have to ensure that combinations of links can be represented with the variables.

Note that the bit vector constraints derived from the link associations must also

satisfy the corresponding OCL constraints, as well as bounds of the relation. Further

constraints to include those relations are also added.

• Additionally, all invariants must hold for a system state. For this, all invariants are

translated to a corresponding bit vector constraint. Fortunately, most of the OCL

operations can be translated directly, e. g. logic expressions such as conjunction,

disjunction, and negation have counterparts called and, or, and not. Arithmetic

expressions can be directly represented with bit vector constraints such as bvuadd

for an unsigned addition and bvadd for a signed addition. A detailed list of how to

map OCL constraints to bit vector constraints is provided in [SWD11a].

• Similar to the representation of invariants, similar bit vector constraints are addi-

tionally created for the preconditions of o (employed in the representation of σ)

and for the postconditions of o (employed in the representation of σ′). Passing

156 VERIFICATION

the resulting formulation to an SMT solver, only system states which satisfy the

respective constraints would be derived.

Based on these concepts, a symbolic representation for two system states, namely σ

and σ′ is created.

In order to create a precise instance representing Equation 4.5 for a given model m,

we propose a formulation which, first, symbolically represents all possible system states.

To this end, a symbolic representation based on SMT and its theory of Quantifier-free

Bit Vectors (QF_BV) is applied in which assignments, e. g., for attributes or links are

represented in terms of bit vector variables. Afterwards, we add corresponding bit vector

constraints to these variables which enforce that only valid assignments are employed, i. e.,

assignments satisfying all invariants as well as the pre- and post-conditions associated to

the respectively considered operation o. Using such a formulation, a solving engine, i. e.,

an SMT solver, is able to determine the existence of corresponding assignments and, hence,

the existence of corresponding system states σ, σ′ satisfying the OCL constraints stated

in Equation 4.5. However, before such a symbolic formulation can be created, several

bounds have to be defined. In fact, UML/OCL models inherently allow, e. g., for an infinite

number of object instantiations. Also data-types of the attributes are usually not bounded,

i. e., an integer is usually not restricted in its bit width. Such assumptions obviously would

make a consideration of Equation 4.5 undecidable (since, in the worst case, an infinite

number of cases has to be checked in order to prove the non-existence of the system states

σ, σ′). Consequently, we need to assume bounds for both object instantiations as well as

data-types. This is not a serious restriction of the proposed approach, since such bounds

also must have been defined when creating the implementation of the model. In fact,

correspondingly applied bounds can directly be derived from the implementation or the

platform in many cases.

Using these bounds, bit vector variables representing arbitrary instantiations and

assignments of links and attributes, respectively, can be created. To this end, formulations

as already proposed in the past can be utilized: For an instance υ ∈ Υ of a class c ∈ C ,

an attribute a ∈A (of the corresponding class c) is represented by a variable
σ
~αa
υ
∈ Bk,

where σ is the corresponding system state of Υ . By this,
σ
~αa
υ

can represent 2k different

4.7 COMBINATION WITH UML/OCL SPECIFICATION 157

values. Thus, for Boolean attributes k is set to 1 and for integers to 8. For a relation r =

(c1, c2,∗,∗), variables
σ
~λr
υ
∈ Bk are introduced for all υ ∈ Υ (c1) ∪ Υ (c2). For links, the

value of k depends not only on the classes of the relation but also on the problem bounds,

but it does not depend on bounds of the relation. As an instance of c1 can be linked to

every instance of c2, we set k = |Υ (c2)| for all variables corresponding to υ ∈ Υ (c1); and

vice versa. Then, a link between two instances is represented by a so-called hot encoding,

i. e., instances are linked if the corresponding bits of the variables are set to 1. This is

necessary because we do not know anything about a satisfying assignment of Equation 4.5

and, thus, have to ensure that combinations of links can be represented with the variables.

Passing this formulation, e. g., to an SMT solver, arbitrary assignments to all bit vector

variables would be obtained. They, in turn, would represent arbitrary system states.

However, we are not interested in arbitrary system states, but states which satisfy the

invariants, pre-, and postconditions. Hence, in another step, bit vector constraints are

added which restrict the possible assignments of the bit vector variables to those which

satisfy the corresponding OCL constraints.

Again, formulations from previous work can be utilized for this purpose. Consider,

e. g., the formulation of links. If two instances are linked in a system state, the bits of their

respective
σ
~λr
υ
-variables must both be set to 1. If they are not connected, both bits must

be set to 0. Furthermore, the bounds of an association must be represented by constraints:

For a relation r = (c1, c2, (l1, u1), (l2, u2)) all instances of c1 must be connected to at least l1

and at most u1 instances of c2. This can be done adding the following inequality:

l1 ≤
|Υ (c2)|−1
∑

i=0

λ[i]≤ u1,

where λ[i] is the ith bit of a variable λ which stands here as representative for the

σ
~λr
υ
-variables.

Additionally, all invariants must hold for a system state. For this, all invariants are

translated to a corresponding bit vector constraint. Fortunately, most of the OCL operations

can be translated directly, e. g., logic expressions such as conjunction, disjunction, and

negation have counterparts called and, or, and not. Arithmetic expressions can directly

be represented with bit vector constraints such as bvuadd for an unsigned addition and

158 VERIFICATION

bvadd for a signed addition. A detailed list of how to map OCL constraints to bit vector

constraints is provided in [SWD11a].

Based on these concepts, a symbolic representation for two system states, namely σ

and σ′ is created. Similar to the representation of invariants, corresponding bit vector

constraints are additionally created for the preconditions of o (employed in the representa-

tion of σ) and for the postconditions of o (employed in the representation of σ′). Passing

the resulting formulation to an SMT solver, only system states which satisfy the respective

constraints would be derived – a significant part of the formulation of Equation 4.5 is

covered.

Combination with Symbolic Execution

The symbolic representation of the implementation as described in Section 4.4 is the last

piece missing in equation 4.5. This symbolic formulation represents all possible executions

of the given implementation. As a final step, this formulation has to be integrated into

equation 4.5. To this end, all bit vectors representing variables of the implementation have

to be mapped to the bit vectors representing the corresponding attributes of the model.

While this can, in principle, easily be conducted by mapping the respective identifiers, the

different states a variable may assume in the implementation has to be considered. An

example illustrates the issue.

Example 1 Consider an operation specified in terms of UML/OCL as shown in Figure 4.22

(left) and its implementation as shown in Figure 4.22 (right). In UML/OCL, attributes only

argue over two consecutive system states σ and σ′, which, e. g., for the attribute a, is clearly

distinguished by a and a@pre for σ′ and σ, respectively.

However, the variable a may assume more states in the implementation (in fact, after

each assignment, a new value may be assumed). Moreover, these stages are not explicitly

denoted but have to be derived from the order of statements in the implementation.

To solve this problem, we add two pseudo functions prestate(a, �a�) and poststate(a,

�a�) at the beginning and the end of the implementation of the operation, respectively.

These functions have no effect on the implementation, however, they can be identified

4.7 COMBINATION WITH UML/OCL SPECIFICATION 159

FIGURE 4.22: Correlation of variables

when processing the LLVM syntax tree. The first parameter helps to identify the corre-

sponding LLVM variable and the second parameter assigns the respective identifier to the

variable.

4.7.4 Case Studies

The proposed methodology has been implemented using existing frameworks from

[SWD11b] as well as the tool FOREST proposed in [dAE15a]. More precisely, the transla-

tions of the formal specification as well as the implementation as described in Section 4.7.3

and Section 4.1, respectively, are realized utilizing previously proposed solutions for

UML/OCL verification and C validation. Afterward, the applicability of the resulting

verification flow has been evaluated by means the following two examples:

• In the first example, we study the scalability of the proposed approach. For that,

we apply the proposed methodology to a case study in which the complexity of the

verification can be easily modified. This allows for the evaluation of the verification

time with a conventional approach.

• Secondly, the approach is evaluated considering an industrial example; i. e. a UML

description of a turn indicator used in Mercedes Benz cars (taken from [PLL+]).

In the following, we summarize the results of these evaluations.

160 VERIFICATION

0 2 4 6 8 10

102

103

Number of operations

R
un

Ti
m

e
in

s

Conventional Solution
Proposed Methodology

FIGURE 4.23: Needed run-times to verify the scalable example

Scalable Example

First, an example is considered which allows for a scalable evaluation of the proposed

methodology (and, hence, also a comparison to currently applied approaches). More

precisely, implementations are considered which sorts an array of size 10 according to

different sort criteria (ascending, descending, odds-first, evens-first, alphabetical, capital-

letters-first, and their combinations). Since each of these sort functions have a rather

homogeneous design space, this allows for a consideration of different systems which can

be scaled with respect to a different number of operations.

Figure 4.23 summarizes the resulting run times in CPU seconds (y-axis) needed to

verify corresponding systems with a different number of sorting operations (x-axis). The

blue values denote the time required using a conventional approach (i. e. techniques

described in section 4.1), while the red values denote the time needed by the proposed

methodology. The numbers clearly show the multiplicative effect that an increasing

number of operations (and, hence, possible interactions) has on conventional verification

methods (see blue values). In contrast, if the proposed methodology is applied, the overall

system can be considered significantly faster on the UML/OCL level and, afterward,

the detailed implementations can be verified in isolation. This leads to a significant

improvement in the verification time (see red values).

4.7 COMBINATION WITH UML/OCL SPECIFICATION 161

OutputCtrl
ctr: Integer

lOld: Boolean

rOld: Boolean

left: Boolean

right: Boolean

carlightL: Boolean

carlightR: Boolean

�ashOn()

�ashO�()

FlashCtrl
tilLevel: Integer

tilOld: Integer

warnSwitch: Boolean
setTil(l: Integer)

switchEmerMode()

manageFlashing()

manageEmerMode()

flash

1

output

1

inv i1: tilLevel >= 0 and tilLevel <= 2

inv i2: tilOld >= 0 and tilOld <= 2

context FlashCtrl::setTil(l: Integer):

post: tilLevel = l

context FlashCtrl::switchEmerMode():

post: emerSwitch <> emerSwitch@pre

context OutputCtrl::flashOn():

pre: left = true

or right = true

or (ctr >= 1 and ctr < 3)

pre: carlighL = false

and carlighR = false

post: (left@pre = true or lOld@pre = true)

implies carlighL = true

post: (right@pre = true or rOld@pre = true)

implies carlighR = true

post: (ctr@pre < 3) implies (ctr = ctr@pre + 1)

post: (ctr@pre >= 3) implies (ctr = ctr@pre)

...

context FlashCtrl::manageEmerMode():

pre: emerSwitch = true

post: output.ctr = 3

post: (tilOld@pre = 1

and (tilLevel@pre = 2

or tilLevel@pre = 0)

and tilLevel = 2

) implies (output.right = true)

post: (tilLevel = 1)

implies (output.left = false

and output.right = false)

post: tilOld = 1

...

FIGURE 4.24: An industrial example: turn indicator

Industrial Example

Finally, the proposed methodology has been applied to verify a system from an industrial

context; more precisely a turn indicator as used in Mercedes Benz cars and specified

in [PLL+]. The turn indicator offers functionality for controlling the flash signal of the car

by a lever (indicating left or right) and a switch for the warning lights. Once the driver

moves the lever up or down, the corresponding light is turned on and off at least three

times. The light keeps flashing for as long as the lever is left in the respective position.

Pushing the switch turns on both lights simultaneously. As an additional function, the

warning lights can always get interrupted by the regular flash signal, i. e. when the

162 VERIFICATION

warning lights are active and the lever is pulled, the respective flash signal is turned on

instead.

This specification leads to a UML/OCL description of the desired functionality as

shown in Figure 4.24. More precisely, two classes (OutputCtrl and FlashCtrl) represent

the structure of the system. The integer attributes tilLevel and tilOld represent the

current and previous status of the lever, respectively, i. e. whether the level is/was on the

left position (0), the neutral position (1), or the right position (2). The invariants i1 and

i2 ensure that only valid values are assigned.

The Boolean attribute warnSwitch represents the value of the switch for the warning

lights. If its value is true (false) the warning lights are switched on (off).

The attributes of the class OutputCtrl represent the respective “output signals” of the

turn indicator. More precisely, the integer attribute ctr counts the number of flashes of

the indicator (this is needed to keep track on whether the lights turned on and off at least

three times). The attributes left and right represent internal signals to control the car

lights. Besides this, the two attributes lOld and rOld store the indication of the direction

in case it got interrupted by the warning lights. The car lights itself are represented by

the Boolean attributes carlightL and carlightR.

The behavior of the turn indicator is specified by the operations as well as their

corresponding pre- and postconditions. More precisely, setTil and switchEmerMode

specify the actions of the driver, i. e. the activation of either the turn indication or the

warning lights. The remaining two operations of class FlashCtrl, manageFlashing and

manageEmerMode, enforce that the correct signals are activated in the output controller

(represented by class OutputCtrl). Here, the car lights are switched on/off by executing

the operations flashOn and flashOff.

Based on the model, we have implemented the operation(s)/method(s) and, now, want

to check whether the implementation represents a valid instantiation of the functionality

described in the model. We have implemented all operations in the presented model

and validated the resulting implementation against it. To evaluate the capabilities of the

proposed methodology, we have also introduced some flaws. In the following, we consider

how the proposed methodology assists designers in detecting (and fixing) these flaws.

4.7 COMBINATION WITH UML/OCL SPECIFICATION 163

1 char ctr;

2

3 void FlashOn (){

4 if(lOld||left) carlightleft = 1;

5 if(rOld|| right)carlightright = 1;

6 if(ctr < 3) ctr++;

7 }

1 char ctr;

2

3 void FlashOn (){

4 if(lOld||left) carlightleft = 1;

5 if(rOld|| right)carlightright = 1;

6 if((unsigned char) ctr < 3) ctr++;

7 }

FIGURE 4.25: Faulty (and corrected) implementations of the running example.

One of the most concise bugs detected is related with method flashOn. This function

implements the activation of the output controller. The pre- and postconditions of this

operation can be seen in Figure 4.24, and can be read like this:

• If the left/right signal is true in the previous state, or in the actual one, then the

corresponding output has to activate.

• The counter has to increase if it is smaller than three.

• If the counter is three (or bigger) it should not change its value.

• The preconditions state that the operation can only be called, iff the signal left or

right in the previous state is assigned true or the value of the counter is between 1

and 3.

A first implementation of this function in C can be seen in Figure 4.7.4 (left). At first

glance, the implementation looks like a trivial translation from postconditions to C, but

an error has been introduced in it. As a result, the framework produces a counterexample

(provided in Figure 4.26), in which the preconditions hold, but applying the input to the

implementation, the postconditions do not.

The counterexample shows the set of violated postconditions and can be used to debug

the implementation. For example, if the input is 0x83 (which is in principle greater

than 3), the counter should not change its value but the counterexample shows that it is

increased. This flaw comes from the fact that 0x83 is expressed as the following bit string:

164 VERIFICATION

1 -- values in the pre state --

2 ctr = #0x83

3 lOld = 0 rOld = 1

4 left = 0 right = 1

5

6 -- values in the post state --

7 ctr = #0x84

8 lOld = 0 rOld = 1

9 left = 0 right = 1

FIGURE 4.26: Counterexample showing the error in List. 4.7.4

100000112. This is only greater than 3 if we consider signed comparison semantics, but

the symbolic formulas for the postconditions are expressed in terms of unsigned values.

More precisely, the u in the prefix bvu states that unsigned bit vector operations are used.

The details of this bug motivate the fix shown in Figure 4.7.4 (right). Checking this new

version using the proposed methodology proves the correctness of the implementation.

In a similar fashion, all remaining implementations have been verified.

4.7.5 Conclusions

In this section, we propose a two-level methodology for the verification of complex

systems. In the first level, established approaches are used to guarantee that the model is

specified as desired before the implementation phase. In a second level, we check the

implementation of each operation against its contracts, i. e. the pre- and postconditions

of the corresponding operation in the model.

We show how this staged verification methodology can help in the verification of

complex integrated designs. We exploit the fact that the OCL pre- and postconditions

succinctly capture the behavior intended by the developer and conduct a first verification

of the integration of components using only those pre- and postconditions. If this does

not warn about potential bugs, the second phase imposes further constraints that are

derived from the implementation. Here, only local reasoning is needed, since the first

phase already considered global reasoning. As shown in the examples, this can lead to

significant reduction in the overall computational verification time.

4.7 COMBINATION WITH UML/OCL SPECIFICATION 165

On top of that, if a bug is detected in the second phase, the symbolic formulation

of the implementation enables a solver to construct a test vector that demonstrates the

feasibility of the path that leads to the bug. By this, the methodology offers a proof that

a bug is in the code. This reasoning is performed locally on each function, which also

greatly simplifies the human effort devoted to debugging and maintenance.

166 VERIFICATION

5
Conclusions

The results obtained during this Ph.D. have been disseminated by the publication of twelve

conference papers, four journal manuscripts, and two workshop contributions.

This dissertation focuses on the analysis of non-functional properties of embedded

real-time systems (ERTSs) and has advanced the state-of-the-art development by providing

new techniques, tools, and ideas to analyze ERTSs.

The thesis proposes a combination of the techniques of “native simulation”, “sym-

bolic execution”, and “trace refinement” and shows that this combination offers several

advantages in the analysis and verification of non-functional properties of embedded

systems:

• It provides a framework that can be used at different stages of the design process,

balancing the requirements of the early and the late stages of the design.

167

168 CONCLUSIONS

• Thanks to automated instrumentation, the simulation, combination with static

analysis, dynamic execution, and computation of worst-case execution time only

require minimal user intervention.

• The bounds for the worst-case execution time are tight and mathematically proven,

so they can be used to verify properties of safety-critical systems.

The thesis comprises three parts:

Part 1 (Chapter 2) Program instrumentation and analysis

The first part of the thesis describes the software instrumentation and analysis to imple-

ment the techniques detailed in this thesis. This dissertation emphasizes the importance

of considering intermediate representations that lie between high-level languages and

machine code. We also acknowledge the need for other representations of the program

when the intermediate representation does not provide enough data for the analysis, such

as the derivation of the worst-case execution time. This thesis provides, for those cases, a

technique and a tool to reconstruct the control-flow-graph from the binary program. The

primary outcomes of this part are:

• A tool that instruments LLVM Intermediate Representation adding function calls

that are useful for implementing simulation and verification techniques. This tool

has been developed by me and includes around 10,000 lines of C++ code.

• A tool to extract control-flow-graphs directly from binary code. This tool has been

developed by me during my stay at Macquarie University (iMQRes Ph.D. grant) in

collaboration with the co-author of publication [W2] and includes around 5,000

lines of Scala code.

Different analyses described in this dissertation have been successfully applied on

top of the described instrumentation, demonstrating that the tools are appropriate for

implementing analyzers of non-functional properties for Embedded Systems.

169

Part 2 (Chapter 3) Simulation of non-functional properties

This chapter describes several advances in native simulation that obtain estimates about

non-functional requirements in the early stages of the design of ERTS. This particular

focus on the initial stages of the design is motivated by the need for choosing a valid

platform when the application has not been optimized yet for any particular target. In

this part, we describe our approach about how to split the simulation domain into three

sub-domains (single-core, many-core platforms with a NOC, and hardware accelerators

implemented in an FPGA) and combine them to obtain fast and accurate results. This

work has been developed in collaboration with the authors of papers [C1], [J1], [J2],

[J3], [C2], [C3], [C4], [C5], [C6] and [C7]. I emphasize the following conclusions of this

chapter.

• The combination of these techniques provides a good balance between the require-

ments of a framework in the early stages of the design (when tools are required to

be fast, loosely accurate, and abstract) and the late stages of the design (when the

tools require to be exact, formal, and precise).

• Experimental measurements demonstrate that the presented techniques outper-

form other state-of-the-art tools and techniques by orders of magnitude regarding

simulation time with a small penalty in accuracy.

• The tools and techniques have been tested with industrial and research designs.

The case studies are interesting in their own right and illustrate some of the real

problems that are faced when designing embedded real-time systems and high-

performance systems as well as the benefits that these techniques can bring to the

design.

• In the case of single-core simulation, the techniques described in this chapter were

used to win the third prize in the 11th Memocode design Competition [MSSS14].

• In the case of many-core simulation, the techniques described in this chapter were

used to win a first prize in the Intel Modern Code Challenge, organized by Intel,

CERN, and Newcastle University.

170 CONCLUSIONS

• In the case of FPGA simulation, the techniques described in this chapter were used

to optimize a computer-vision application obtaining results that are three times

faster than other state-of-the-art implementations for the same conditions [PAS12].

• These optimization techniques highlight the importance of the selected trade-offs

in simulation tools and demonstrate that the presented techniques and selected

parameters of the architecture are useful for analyzing the non-functional properties

of embedded systems.

• The chapter concludes with the application of the selected tools and techniques to

the analysis of the thermal behavior of Systems-On-Chip [CGD+11].

The results of this chapter have been published in the following journals and confer-

ences:

[C1] Pablo Gonzalez de Aledo Marugan, Alvaro Diaz Suarez, Luis Diaz Suarez and

Pablo Sanchez. “Profiling and optimizations for Embedded Systems.” Twelfth

ACM/IEEE International Conference on Formal Methods and Models for Codesign

(MEMOCODE), 2014. pp 194–197 Lausanne 2014. ISBN: 978-1-4799-5338-7

[J1] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon, Pable Sanchez Espeso

and Juan Casal. “OpenMP performance analysis for many-core platforms with

non-uniform memory access” International Journal of Computer Science Issues vol

10 Issue 2 pp 463–470 2013. ISSN: 1694-0784

[J2] Jesus Perez, Pablo Gonzalez de Aledo Marugan and Pablo Sanchez “Real-time

voxel-based visual hull reconstruction” Microprocessors and Microsystems vol 5 pp

439–447 Elsevier Science Publishers, 2012. Amsterdam ISSN: 0141-9331

[J3] Daniel Calvo, Pablo Gonzalez de Aledo Marugan, Luis Diaz, Hector Posadas, Pablo

Sanchez, Eugenio Villar, Andrea Acquaviva and Enrico Macii. “A Multi-Processing

System-On-Chip Native Simulation Framework for Power and Thermal-Aware De-

sign” ASP Journal on Low-Power Electronics JOLPE vol 4 - Special Issue on Low

171

Power Design and Verification Techniques. pp 2–16 American Scientific Publishers,

2011. ISSN: 1546-1998

[C2] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon and Pablo Sanchez,

10th International Symposium on Parallel and Distributed Processing with Applica-

tions (ISPA), 2012 IEEE “An approach for algorithm parallelization oriented to a

many-core implementation” pp 841–842 2012. ISBN: 978-1-4673-1631-6

[C3] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez-Bayon and Pablo Sanchez.

Digital System Design (DSD) “A virtual platform for performance estimation of

many-core implementations” vol 15 pp 541–544 Izmir, 2012. ISBN: 978-1-4673-

2498-4

[C4] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon and Pablo Sanchez “A

virtual Platform for performance estimation of OpenMP Programs” Proceedings of

the XXX Conference on Design of Circuits and Integrated Systems 2012.

[C5] Pablo Gonzalez de Aledo Marugan, Javier Bayon Gonzalez and Pablo Sanchez

Espeso. Specification and Design Languages (FDL), 2011 Forum on Hardware

“Performance estimation by Dynamic Scheduling” pp 1–6 Oldenburg, 2011. ISBN:

978-1-4577-0763-6

[C6] Pablo Gonzalez de Aledo Marugan and Pablo Sanchez Espeso “Hardware perfor-

mance estimation by Dynamic Scheduling” XXV Conference on Design of Circuits

and Integrated Systems pp 453–458 Albufeira, 2011. ISBN: 978-9729918131

[C7] Pablo Gonzalez de Aledo Marugan, Pablo Sanchez Espeso and Luis Diaz. “Em-

bedded software execution time estimation at different abstraction levels” XXV

Conference on Design of Circuits and Integrated Systems, DCIS-10 pp 532–537

Lanzarote, 2010. ISBN: 978-84-693-7393-4

The optimization results of the Intel Modern Code Challenge also led to a (submitted)

publication that I co-authored with the authors of reference [J4] as a collaboration between

CERN, Intel, and Newcastle University.

172 CONCLUSIONS

[J4] Pablo Gonzalez de Aledo Marugan, Pablo Sanchez, Marco Manca, Jerry Baugh,

Andrey Vladimirov, Ryo Asai, Marcus Kaiser and Roman Bauer. “An optimization

approach for the computational modeling of biological development” Advances in

Engineering Software. (Under Review)

Part 3 (Chapter 4) Verification of non-functional proper-

ties

In this chapter, we focus on the problem of verification of non-functional properties (i.e.

how to prove properties of the non-functional behavior of a system for all possible inputs

and initial hardware states). The problem is challenging because both the program and

the hardware are complex systems that interact in a parallel manner. In this chapter, we

propose tools and techniques to address these difficulties.

The main outcomes of this part of the thesis are:

• A tool (FOREST) that, given a C source, can construct an under-approximated model

of the behavior of the program that is useful for finding bugs. This tool has been

created by me inside the project DREAMs (TEC2011-28666-C04-02) and includes

around 30,000 lines of C++ code.

• The tool has competed in the International Software Verification Competition and

obtained the best score in the loops sub-category in 2015 [dAE15b][Bey15]1.

• The tool has been integrated with a commercial static analyzer (Goanna) to improve

both the capabilities of the static analyzer to detect bugs as well as the capabilities

of FOREST to prove that a program does not have bugs. This integration was

implemented during my Endeavour Fellowship [GdASH15] in collaboration with

the authors of publication [W1].

• The same techniques that were used to prove functional properties in the software

were extended to derive bounds for the worst-case execution time. This extension
1https://sv-comp.sosy-lab.org/2015/results/Loops.table.html

173

was implemented on top of the tool UPPAAL by the authors of publication [C8]

during our stay at Macquarie University.

• In collaboration with the authors of publication [J5], FOREST was also integrated

with a model checker that checks the consistency of a UML/OCL specification during

my visit to Bremen University.

The results of this part of the thesis have been published in:

[C8] Franck Cassez, Pablo Gonzalez de Aledo Marugan and Peter Jensen. “WUPPAAL:

Computation of Worst-Case-Execution-Time for Binary Programs with UPPAAL”

(Under Review)

[J5] Pablo Gonzalez de Aledo Marugan, Nils Przigoda, Robert Wille, Rolf Drechsler

and Pablo Sanchez. “Towards a Verification Flow Across Abstraction Levels: Veri-

fying Implementations Against Their Formal Specification” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (2016). DOI: 10.1109/T-

CAD.2016.2611494

[W1] Pablo Gonzalez de Aledo Margugan, Pablo Sanchez Espeso and Ralf Huuck, “An

Approach to Static-Dynamic Software Analysis” Proceedings of the 4th International

Workshop on Formal Techniques for Safety-Critical Systems (FTSCS), 2015. Paris,

France, November 6-7, 2015. pp 225–240. DOI: 10.1007/978-3-319-29510-7_13

[W2] Franck Cassez and Pablo Gonzalez de Aledo Marugan, “Timed Automata for

Modelling Caches and Pipelines”, Proceedings Workshop on Models for Formal

Analysis of Real Systems (MARS) 2015 Suva, Fiji, November 23, 2015. pp 37–45.

DOI: 10.4204/EPTCS.196.4

[C9] Pablo Gonzalez de Aledo Marugan, Alvaro Diaz Suarez, Pablo Sanchez and Ralf

Huuck. “Discovering and Validating Concurrency Specification from Test Execu-

tions”, Proceedings of the 23rd IEEE International Conference on Software Analysis,

Evolution, and Reengineering. 2016.

174 CONCLUSIONS

[C10] Pablo Gonzalez de Aledo Marugan and Pablo Sanchez. “Framework For Embedded

System Verification”, Proceedings of the 21st Conference on Tools and Algorithms

for the Construction and Analysis of Systems. vol 9035 pp 429–431 Springer-Verlag

Berlin Heidelberg, 2015. ISBN: 978-3-662-46681-0

[C11] “Virtual platform for power and security analysis of wireless sensor networks”, A.

Diaz, J. Gonzalez-Bayon, Pablo Gonzalez de Aledo Marugan, P. Sanchez Proceed-

ings of SPIE Vol 8764, 2013. pp 87640I–1

[C12] Franck Cassez, Anthony Sloane, Matthew Roberts, Matt Pigram, Pongsak Suvanpong

and Pablo Gonzalez de Aledo Marugan “Skink: Static Analysis of Programs in

LLVM Intermediate Representation (Competition contribution)”, Proceedings of

the 23rd International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS 2017 Uppsala, Sweden, April 22-29, 2017. LNCS.

Springer

5.1 Application example

At risk of oversimplifying the design and implementation of an industrial design method-

ology, the following example illustrates how the techniques developed in this thesis could

help in such scenario, and at the same time summarizes the main contributions of this

work over a cohesive example. The implementation of such example is left for future

work.

Suppose an industrial assembly chain in which one of the steps in the chain consists on

classifying different pieces of a mechanical design based on their shape. Due to the variety

in shapes, the identification of pieces needs to be done in 3D because a planar projection

is usually not enough to reliably identify different pieces. At the same time, the high

throughput of the assembly chain imposes several timing constraints in the recognition;

for real-time applications these constraints vary, but are considered to be between 30 and

60 frames-per-second. To supervise the correct operation of the assembly chain, a camera

is also installed to transmit a video stream to an operator via a wireless link.

5.1 APPLICATION EXAMPLE 175

Even in such a simplified example, there are different non-functional constraints.

Some of the elements of the design, such as the 3D projection and identification require

strong real-time constraints because missing the deadline can make the assembly chain

to malfunction and lock the whole process. On the other hand, the streaming of video

in this case is used as a control measure, and the design decisions are probably more

influenced by the latency of the video encoding, transmission and decoding as well as

their subjective quality. On top of this, without going to the extreme case of environments

that are hazardous or inaccessible to humans, the installation of electronic equipment

in these scenarios is usually not easily accessible (therefore difficult to repair in case of

fault), while being at the same time under thermal stress and vibrations.

We have already seen in Section 3.6.4 an example of 3D volume reconstruction based

on images provided by several cameras that reconstruct an approximation of the convex

hull silhouette of a 3d object. As we have seen, design decisions both in the software

and in the hardware domain can lead to differences of several orders of magnitude in

the execution time of the reconstruction, which can mean the difference between being

able to process 60 frames per second, or requiring several seconds to process one frame.

As we have seen, analysing some of these design decisions for one single algorithm and

one single platform is already a challenging task. However, one might imagine that in

the mentioned example we might be interested on analyzing several possible algorithms

under several target platforms, some of them which might even not have been created

yet, or are designed ad-hoc for our example. A flexible way of evaluating the impact of

these design decisions without much manual effort in implementing all the details of

each solution might help in this evaluation. Indeed, some benchmarks for evaluating

SLAM algorithms [NBZ+15] take the idea one step further and automate the search of

the best configuration of parameters through a design-space-exploration (DSE) process

that uses machine learning to find the pareto-optimal solution in the domain of algorithm,

compiler and hardware. These approaches, however are limited by the enormous amount

of time that is required to evaluate one single solution (in the order of days), or the

need of having a physical platform in which we can evaluate each configuration. We

could imagine therefore using instead the lightweight Instrumentation and simulation

176 CONCLUSIONS

techniques described in this thesis to prune the infeasible designs to ease the DSE in the

early stages of the design flow.

At the end of the day, however, we need to prove that the results of the simulation are

valid for any possible input of the program (the results of a simulation do not prove the

correctness of the design). For that we need to integrate a formal model of the computing

platform with a model of the software as obtained from the binary code. We have shown

that the 3D reconstruction of the convex hull can be performed by matrix multiplications,

whose binary control-flow-graph we can reconstruct as demonstrated in Section 2.2. Also,

in Section 4.6.6 we explain how (knowing a model of the platform that we have previously

chosen) we can employ the combination of the software and hardware models to verify

such temporal constraints. This would enable us to formally prove the correctness of the

design; something that we were not able to do before.

In the case of the video streaming we might face similar challenges; a video codec is

generally parameterized by several dozens of parameters, whose modification alters the

quality of transmission, the latency and the throughput. As we see in Section 3.7, the

simulation platform described in the first part of this thesis enables a holistic simulation

of designs like this having in mind not only the architectural parameters but also physical

ones such as the thermal behavior, which would maximize the useful life of the design

under thermal and mechanical stress. Again, having a flexible way of evaluating several

designs can help in finding good trade offs; such as implementing redundant encoders in

a multi-core platform or an FPGA such that the system can recover from a malfunction, or

using instead a more robust sequential implementation over a single CPU.

Future Work

Based on the results reported in this dissertation, the following directions are relevant to

improve the efficiency and applicability of our techniques:

• Modeling hardware elements. As a result of further progress in the design of

embedded systems such as branch prediction and speculative and out-of-order

execution, new architectural elements in modern Systems-On-Chip continue to

5.1 APPLICATION EXAMPLE 177

complicate the analysis and simulation. A future line of research is developing

models to simulate those elements. This would enable the described techniques to

be used in more platforms, as well as reduce the simulation error.

• Leveraging many-core developer platforms. Regarding the native-simulation of

many-core platforms, as the main bottleneck is the simulation of concurrency, an

interesting field of research is how to leverage the multiple cores of the host platform

to simulate the multi-core architecture of the target platform. Several state-of-the-

art techniques are starting to apply this idea to improve the simulation time of those

systems [DGVS15].

• Instrumentation for newer parallelization APIs. In the simulation of heteroge-

neous designs, new languages and APIs have appeared in recent years that aim to

model the massively concurrent parallelism of hardware using a high-level API from

C/C++. One of these APIs that is gaining adoption is OpenACC. Supporting this

API in a similar way as we did for OpenMP will provide more capabilities to the tool

and would simplify the estimation of non-functional properties in the early phases

of the design of heterogeneous CPU/GPU systems.

• Formalizing parallel platforms. Formalizing these models as we did for a single-

core processor will enable us not only to simulate non-functional properties but

also to verify them. The formalism of timed automata is especially well suited for

the verification of timed concurrent systems and, as we have demonstrated, can be

used for verifying timing properties of multi-processor systems.

• High and low-level verification for schedulability. In the same way that OCL

enables designers to describe functional specifications, several extensions have

been added to the UML language (Profile for Schedulability, Performance and

Time) [Dou03] to specify real-time constraints. Several tools allow the analysis of

schedulability of systems based on the worst-case execution time of the individual

tasks [HGGM01]. In a similar way that our techniques have been integrated to

bridge the gap between the high and low-level verification of functional properties,

178 CONCLUSIONS

they can be combined to decide the schedulability of a system with tasks described

at a low level.

6
Conclusiones

Los resultados obtenidos en esta tesis han sido diseminados mediante 12 publicaciones

en conferencia, cuatro publicaciones en revista y dos contribuciones en workshops.

Esta tesis se centra en el análisis de las propiedades no funcionales de sistemas

embebidos de tiempo real (ERTSs) y ha avanzado el estado del arte proporcionando

nuevas técnicas, herramientas y metodologías para analizar dichas propiedades.

Para ello, se propone una combinación de las técnicas de “simulación nativa”, “ejecu-

ción simbólica” y “refinamiento de trazas” y se muestra que esta combinación ofrece las

siguientes ventajas en el análisis de las propiedades no-funcionales de sistemas embebidos:

• Proporciona un entorno que puede ser usado en diferentes etapas del flujo de diseño,

balanceando los requerimientos de las primeras y las últimas fases.

• Gracias a la instrumentación automática, la simulación, la combinación con el

179

180 CONCLUSIONES

análisis estático, la ejecución simbólica y la computación del tiempo de ejecución

de peor caso sólo requieren una mínima intervención del usuario.

• La combinación de estas técnicas proporciona estimaciones del tiempo de ejecución

de peor caso (WCET) que son ajustadas y probadas matemáticamente, por lo que

pueden ser usadas para verificar propiedades de sistemas críticos sin incurrir en

costes desmesurados en la elección de la plataforma final.

La tesis está compuesta de tres partes:

Parte 1 (Capítulo 2) Instrumentación y análisis

La primera parte de la tesis describe la instrumentación y análisis del código fuente que

se emplearán posteriormente para implementar las técnicas detalladas en los siguientes

capítulos. Esta tesis subraya la importancia de considerar representaciones intermedias

entre lenguajes de alto nivel y código máquina a la hora de instrumentalizar el código

fuente. También se reconoce la necesidad de emplear otras representaciones del programa

cuando la representación intermedia no proporciona suficientes datos para el análisis,

como la derivación del tiempo de ejecución del peor caso. Esta tesis proporciona, para

estos casos, una técnica y una herramienta para reconstruir el grafo de control de flujo

(CFG) desde el programa binario. Los principales resultados de esta parte son:

• Una herramienta que instrumenta la representación intermedia de LLVM añadiendo

llamadas a función que son útiles para implementar técnicas de simulación y verifi-

cación. Esta herramienta ha sido desarrollada por mí e incluye alrededor de 10.000

líneas de código C++.

• Una herramienta para extraer el grafo de control de flujo directamente del código

binario. Esta herramienta ha sido desarrollada por mí durante mi estancia en Mac-

quarie University (Beca iMQRes) en colaboración con el coautor de la publicación

[W2] e incluye alrededor de 5.000 líneas de código Scala.

181

Los diferentes análisis descritos en esta tesis han sido aplicados sobre la instru-

mentación descrita, demostrando que las herramientas son apropiados para implementar

analizadores de propiedades no funcionales para sistemas embebidos.

Parte 2 (Capítulo 3) Simulación de propiedades no fun-

cionales

Este capítulo describe varios avances en la técnica de simulación nativa para proporcionar

estimaciones sobre los requisitos no funcionales en las primeras etapas del diseño de ERTSs.

Este particular énfasis en las primeras etapas del diseño está motivado por la necesidad

de elegir una plataforma válida cuando la aplicación aún no ha sido optimizada para

una plataforma objetivo en particular. En esta parte, describimos nuestro enfoque sobre

cómo dividir el dominio de simulación en tres sub-dominios (single-core, plataformas

multi-núcleo con una red en chip, y aceleradores hardware implementados sobre FPGA) y

combinarlos para obtener resultados rápidos y precisos. Este trabajo ha sido desarrollado

en colaboración con los autores de los trabajos [C1], [J1], [J2], [J3], [C2], [C3], [C4],

[C5], [C6] y [C7].

Las conclusiones más destacables de esta parte son:

• La combinación de estas técnicas proporciona un buen equilibrio entre los requisitos

de las primeras etapas del diseño (cuando se requieren herramientas rápidas y

abstractas) y las ultimas etapas del diseño (cuando se requieren herramientas

exactas, formales, y precisas).

• Mediciones experimentales demuestran que las técnicas presentadas superan a otras

herramientas y técnicas en varios órdenes de magnitud con respecto al tiempo de

simulación con una pequeña penalidad en la precisión.

• Las herramientas y técnicas han sido probadas con diseños industriales y de investi-

gación. Los casos de uso son interesantes por derecho propio e ilustran algunos de

182 CONCLUSIONES

los problemas reales que se enfrentan al diseñar sistemas de tiempo real y de alto

rendimiento, así como los beneficios que estas técnicas pueden aportar al diseño.

• En el caso de la simulación de un solo núcleo, las técnicas descritas en este capí-

tulo fueron utilizados para ganar el tercer premio en la undécima edición de la

competición de diseño Memocode [MSSS14].

• En el caso de la simulación multi-núcleo, las técnicas descritas en este capítulo

fueron utilizados para ganar un primer premio en el “Intel Modern Code Challenge”,

organizado por Intel, CERN y la Universidad de Newcastle.

• En el caso de la simulación FPGA, las técnicas descritas en este capítulo se utilizaron

para optimizar una aplicación de visión por computador obteniendo resultados tres

veces más rápido que otras implementaciones del estado del arte para las mismas

condiciones de diseño [PAS12].

• Estas técnicas de optimización ponen de relieve la importancia de las herramientas

de simulación desarrolladas y demuestran que los resultados presentados son útiles

para el análisis de las propiedades no funcionales de sistemas embebidos.

• El capítulo concluye con la aplicación de las herramientas seleccionadas al análisis

del comportamiento térmico de Sistemas-en-Chip [CGD+11].

Los resultados de este capítulo han sido publicados en las siguientes revistas y confer-

encias:

[C1] Pablo Gonzalez de Aledo Marugan, Alvaro Diaz Suarez, Luis Diaz Suarez and

Pablo Sanchez. “Profiling and optimizations for Embedded Systems.” Twelfth

ACM/IEEE International Conference on Formal Methods and Models for Codesign

(MEMOCODE), 2014. pp 194–197 Lausanne 2014. ISBN: 978-1-4799-5338-7

[J1] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon, Pable Sanchez Espeso

and Juan Casal. “OpenMP performance analysis for many-core platforms with

non-uniform memory access” International Journal of Computer Science Issues vol

10 Issue 2 pp 463–470 2013. ISSN: 1694-0784

183

[J2] Jesus Perez, Pablo Gonzalez de Aledo Marugan and Pablo Sanchez “Real-time

voxel-based visual hull reconstruction” Microprocessors and Microsystems vol 5 pp

439–447 Elsevier Science Publishers, 2012. Amsterdam ISSN: 0141-9331

[J3] Daniel Calvo, Pablo Gonzalez de Aledo Marugan, Luis Diaz, Hector Posadas, Pablo

Sanchez, Eugenio Villar, Andrea Acquaviva and Enrico Macii. “A Multi-Processing

System-On-Chip Native Simulation Framework for Power and Thermal-Aware De-

sign” ASP Journal on Low-Power Electronics JOLPE vol 4 - Special Issue on Low

Power Design and Verification Techniques. pp 2–16 American Scientific Publishers,

2011. ISSN: 1546-1998

[C2] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon and Pablo Sanchez,

10th International Symposium on Parallel and Distributed Processing with Applica-

tions (ISPA), 2012 IEEE “An approach for algorithm parallelization oriented to a

many-core implementation” pp 841–842 2012. ISBN: 978-1-4673-1631-6

[C3] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez-Bayon and Pablo Sanchez.

Digital System Design (DSD) “A virtual platform for performance estimation of

many-core implementations” vol 15 pp 541–544 Izmir, 2012. ISBN: 978-1-4673-

2498-4

[C4] Pablo Gonzalez de Aledo Marugan, Javier Gonzalez Bayon and Pablo Sanchez “A

virtual Platform for performance estimation of OpenMP Programs” Proceedings of

the XXX Conference on Design of Circuits and Integrated Systems 2012.

[C5] Pablo Gonzalez de Aledo Marugan, Javier Bayon Gonzalez and Pablo Sanchez

Espeso. Specification and Design Languages (FDL), 2011 Forum on Hardware

“Performance estimation by Dynamic Scheduling” pp 1–6 Oldenburg, 2011. ISBN:

978-1-4577-0763-6

[C6] Pablo Gonzalez de Aledo Marugan and Pablo Sanchez Espeso “Hardware perfor-

mance estimation by Dynamic Scheduling” XXV Conference on Design of Circuits

and Integrated Systems pp 453–458 Albufeira, 2011. ISBN: 978-9729918131

184 CONCLUSIONES

[C7] Pablo Gonzalez de Aledo Marugan, Pablo Sanchez Espeso and Luis Diaz. “Em-

bedded software execution time estimation at different abstraction levels” XXV

Conference on Design of Circuits and Integrated Systems, DCIS-10 pp 532–537

Lanzarote, 2010. ISBN: 978-84-693-7393-4

Los resultados de optimización del Intel Modern Code Challenge han dado lugar a

una publicación (presentada) en co-autoría con los autores de la referencia [J4] como

una colaboración entre el CERN, Intel y la Universidad de Newcastle.

[J4] Pablo Gonzalez de Aledo Marugan, Pablo Sanchez, Marco Manca, Jerry Baugh,

Andrey Vladimirov, Ryo Asai, Marcus Kaiser and Roman Bauer. “An optimization

approach for the computational modeling of biological development” Advances in

Engineering Software. (Under Review)

Parte 3 (Capítulo 4) Verificación de las propiedades no fun-

cionales

En este capítulo, nos centramos en el problema de la verificación de propiedades no

funcionales (es decir, cómo probar ciertas proposiciones sobre las propiedades no fun-

cionales de un sistema para todas las entradas posibles y estados de hardware iniciales).

El problema es complejo puesto que tanto el programa como el hardware son complejos

sistemas que interactúan de manera paralela. En este capítulo, proponemos herramientas

y técnicas para abordar estas dificultades.

Los principales resultados de esta parte de la tesis son:

• Una herramienta (FOREST) que, dado un programa en C, puede construir un

modelo aproximado del comportamiento del programa que es útil para encontrar

bugs (discordancias entre la especificación del sistema y su implementación). Esta

herramienta ha sido creada por mí dentro del proyecto DREAMs (TEC2011-28666-

C04-02) e incluye alrededor de 30.000 líneas de código C++.

185

• La herramienta ha competido en la “International Software Verification Competición”

y obtuvo la mejor puntuación en la subcategoría de bucles en 2015 [dAE15b][Bey15]1.

• La herramienta se ha integrado con un analizador comercial estático (Goanna)

para mejorar tanto las capacidades del analizador estático para detectar errores así

como las capacidades de FOREST para demostrar que un programa no tiene fallos.

Esta integración se implementó durante mi Endeavor Fellowship [GdASH15] en

colaboración con los autores de la publicación [W1].

• Las mismas técnicas que se utilizaron para probar propiedades funcionales en el

software se han extendido para derivar límites para el tiempo de ejecución de peor

caso (WCET). Esta extensión se implementó mediante la integración con el model-

checker UPPAAL por los autores de la publicación [C8] durante nuestra estancia en

la Universidad Macquarie.

• En colaboración con los autores de la publicación [J5], FOREST también ha sido

integrado con un model-checker que comprueba la coherencia modelos UML/OCL

durante mi visita a la Universidad de Bremen. Dicha integración permite el reutilizar

los resultados de la verificación en las primeras fases del flujo de diseño durante

la verificación en las fases más tardías, proporcionando una importante mejora en

términos de velocidad de verificación así como facilidad de uso.

Los resultados de esta parte de la tesis se han publicado en:

[C8] Franck Cassez, Pablo Gonzalez de Aledo Marugan and Peter Jensen. “WUPPAAL:

Computation of Worst-Case-Execution-Time for Binary Programs with UPPAAL”

(Under Review)

[J5] Pablo Gonzalez de Aledo Marugan, Nils Przigoda, Robert Wille, Rolf Drechsler

and Pablo Sanchez. “Towards a Verification Flow Across Abstraction Levels: Veri-

fying Implementations Against Their Formal Specification” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (2016). DOI: 10.1109/T-

CAD.2016.2611494
1https://sv-comp.sosy-lab.org/2015/results/Loops.table.html

186 CONCLUSIONES

[W1] Pablo Gonzalez de Aledo Margugan, Pablo Sanchez Espeso and Ralf Huuck, “An

Approach to Static-Dynamic Software Analysis” Proceedings of the 4th International

Workshop on Formal Techniques for Safety-Critical Systems (FTSCS), 2015. Paris,

France, November 6-7, 2015. pp 225–240. DOI: 10.1007/978-3-319-29510-7_13

[W2] Franck Cassez and Pablo Gonzalez de Aledo Marugan, “Timed Automata for

Modelling Caches and Pipelines”, Proceedings Workshop on Models for Formal

Analysis of Real Systems (MARS) 2015 Suva, Fiji, November 23, 2015. pp 37–45.

DOI: 10.4204/EPTCS.196.4

[C9] Pablo Gonzalez de Aledo Marugan, Alvaro Diaz Suarez, Pablo Sanchez and Ralf

Huuck. “Discovering and Validating Concurrency Specification from Test Execu-

tions”, Proceedings of the 23rd IEEE International Conference on Software Analysis,

Evolution, and Reengineering. 2016.

[C10] Pablo Gonzalez de Aledo Marugan and Pablo Sanchez. “Framework For Embedded

System Verification”, Proceedings of the 21st Conference on Tools and Algorithms

for the Construction and Analysis of Systems. vol 9035 pp 429–431 Springer-Verlag

Berlin Heidelberg, 2015. ISBN: 978-3-662-46681-0

[C11] “Virtual platform for power and security analysis of wireless sensor networks”, A.

Diaz, J. Gonzalez-Bayon, Pablo Gonzalez de Aledo Marugan, P. Sanchez Proceed-

ings of SPIE Vol 8764, 2013. pp 87640I–1

[C12] Franck Cassez, Anthony Sloane, Matthew Roberts, Matt Pigram, Pongsak Suvanpong

and Pablo Gonzalez de Aledo Marugan “Skink: Static Analysis of Programs in

LLVM Intermediate Representation (Competition contribution)”, Proceedings of

the 23rd International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS 2017 Uppsala, Sweden, April 22-29, 2017. LNCS.

Springer

187

Trabajo Futuro

Con base en los resultados reportados en este trabajo, las siguientes direcciones son

relevantes para mejorar la eficiencia y aplicabilidad de las técnicas descritas en esta tesis:

• Elementos de modelado hardware. Como resultado de nuevos avances en el

diseño de sistemas embebidos como la predicción de saltos, la ejecución especula-

tiva o la ejecución fuera de orden; la simulación y el análisis de las propiedades

no-funcionales en dichas plataformas continúa siendo un desafío. Una línea de

investigación futura es el desarrollar modelos para simular dichos elementos. Esto

permitiría que las técnicas descritas puedan ser utilizadas en más plataformas, así

como reducir el error de simulación.

• Aprovechamiento de las plataformas de desarrollo con múltiples núcleos. Puesto

que el principal cuello de botella en la simulación nativa es la simulación de la

concurrencia, un interesante campo de investigación plantea cómo aprovechar los

múltiples núcleos de la plataforma host para simular la arquitectura multi-core de

la plataforma de destino. Varias técnicas en el estado del arte están empezando a

aplicar esta idea para mejorar el tiempo de simulación de esos sistemas [DGVS15].

• Instrumentación para APIs de paralelización más recientes. En la simulación

de diseños heterogéneos, nuevos lenguajes y APIs han aparecido en los últimos

años que pretenden modelar el paralelismo de hardware utilizando una API de alto

nivel de C/C++. Una de estas interfaces que está ganando adopción es OpenACC.

El admitir esta API de manera similar la integración con OpenMP simplificaría

la estimación de propiedades no funcionales en las primeras fases del diseño de

sistemas CPU/GPU heterogéneos.

• Formalización de plataformas paralelas. Formalizando estos modelos como se

ha hecho para un procesador de un solo núcleo nos permitirá no sólo simular

propiedades no funcionales, sino también verificarlas. El formalismo de los autó-

matas temporales es especialmente útil para la verificación de sistemas concurrentes

188 CONCLUSIONES

y, como hemos demostrado, puede utilizarse para verificar las propiedades no

funcionales de sistemas multiprocesador.

• Verificación de alto y bajo nivel para la planificación. Del mismo modo que OCL

permite a los diseñadores describir especificaciones funcionales, varias extensiones

al lenguaje UML (Profile for Schedulability, Performance and Time) se han aña-

dido recientemente [Dou03] para especificar restricciones de tiempo real. Varias

herramientas permiten el análisis de la planificabilidad de sistemas basados en el

tiempo de ejecución de peor caso de las tareas individuales [HGGM01]. De forma

similar al modo en que las técnicas descritas han sido integradas para salvar la

brecha entre la verificación de alto y bajo nivel de las propiedades funcionales, una

linea de investigación puede ser el emplear técnicas similares para las propiedades

no funcionales, en concreto, la panificabilidad de una serie de tareas de un programa

binario.

References

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical

computer science, 126(2):183–235, 1994. 134

[AH08] M. B. Abdelhalim and S. E D Habib. Fast FPGA-based area and latency

estimation for a novel hardware/software partitioning scheme. Canadian

Conference on Electrical and Computer Engineering, pages 775–780, 2008.

78

[arm] Arm1176jzf-s technical reference manual. http://infocenter.

arm.com/help/topic/com.arm.doc.ddi0301h/ddi0301h_

arm1176jzfs_r0p7_trm.pdf. Accessed: 2017-02-21. 54, 55

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli,

and Mauro Olivieri. Mparm: Exploring the multi-processor soc design

space with systemc. The Journal of VLSI Signal Processing, 41(2):169–182,

2005. 92

[BBC+10] A Bessey, K Block, B Chelf, A Chou, and B Fulton. A few billion lines of code

later: using static analysis to find bugs in the real world. Communications

of the, 2010. 109

[BBF16] Nicola Bombieri, Federico Busato, and Franco Fummi. A fine-grained

performance model for gpu architectures. In Design, Automation & Test

189

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/ddi0301h_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/ddi0301h_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/ddi0301h_arm1176jzfs_r0p7_trm.pdf

190 REFERENCES

in Europe Conference & Exhibition (DATE), 2016, pages 1267–1272. IEEE,

2016. 40

[BC11] Jean-Luc Béchennec and Franck Cassez. Computation of WCET using

program slicing and real-time model-checking. CoRR, abs/1105.1633,

2011. 135

[BCF+12a] Mark Bradley, Franck Cassez, Ansgar Fehnker, Thomas Given-Wilson, and

Ralf Huuck. High Performance Static Analysis for Industry. ENTCS,

289(0):3–14, 2012. 125

[BCF+12b] Mark Bradley, Franck Cassez, Ansgar Fehnker, Thomas Given-Wilson, Ralf

Huuck, and Maximilian Junker. Goannasmt–a static analyzer with smt-

based refinement. Tools for Automatic Program AnalysiS (TAPAS 2012),

2012. 120

[BCTB10] A Bartolini, M Cacciari, A Tilli, and L Benini. A virtual platform environment

for exploring power, thermal and reliability management control strategies

in high-performance multicores. Proceedings of the 20th, 2010. 92

[BDVS15] E Borin, PRB Devloo, GS Vieira, and N Shauer. Accelerating engineering

software on modern multi-core processors. Advances in Engineering, 2015.

61

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference, ATEC

’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association. 139

[Bey15] Dirk Beyer. Software Verification and Verifiable Witnesses. In Christel Baier

and Cesare Tinelli, editors, Tools and Algorithms for the Construction and

Analysis of Systems, volume 9035 of LNCS, pages 401–416. 2015. 120, 128,

172, 185

[BGF+10] Markus Becker, Giuseppe Di Guglielmo, Franco Fummi, Wolfgang Mueller,

Graziano Pravadelli, and Tao Xie. RTOS-Aware Refinement for TLM2 .

REFERENCES 191

0-based HW / SW Designs. Proceeding of Design Automation and Test in

Europe (DATE2010), pages 1053 – 1058, 2010. 45

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang

Yi. Uppaal–a tool suite for automatic verification of real-time systems. In

Hybrid Systems III, pages 232–243. Springer, 1996. 134

[bou] Bound-t. http://www.tidorum.fi, http://www.bound-t.com. 111,

134

[BS08] J Burnim and K Sen. Heuristics for Scalable Dynamic Test Generation.

In Proceedings of the 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering, ASE ’08, pages 443–446, Washington, DC,

USA, 2008. IEEE Computer Society. 122

[BTM00] D Brooks, V Tiwari, and M Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. 2000. 44

[BUZC11a] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel

symbolic execution for automated real-world software testing. Proceedings

of the sixth conference on Computer systems - EuroSys ’11, page 183, 2011.

150

[BUZC11b] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel

symbolic execution for automated real-world software testing. In European

Conference on Computer Systems, pages 183–198, 2011. 152

[Cas11] Franck Cassez. Timed games for computing WCET for pipelined processors

with caches. In 11th International Conference on Application of Concurrency

to System Design, ACSD 2011, Newcastle Upon Tyne, UK, 20-24 June, 2011,

pages 195–204. IEEE, 2011. 135

[cat] Catapult c synthesis, mentor graphics. http://www.mentor.com/

products/c-based_design. 76, 83

http://www.tidorum.fi
http://www.bound-t.com
http://www.mentor.com/products/c-based_design
http://www.mentor.com/products/c-based_design

192 REFERENCES

[CB13a] F Cassez and JL Béchennec. Timing analysis of binary programs with

UPPAAL. Application of Concurrency to, 2013. 132

[CB13b] Franck Cassez and Jean-Luc Béchennec. Timing analysis of binary programs

with UPPAAL. In 13th International Conference on Application of Concurrency

to System Design, ACSD 2013, pages 41–50. IEEE Computer Society, July

2013. 135

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages, pages 238–252. ACM, 1977. 109

[CCR08] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of {UML/OCL}

Class Diagrams using Constraint Programming. In Int’l Conf. on Software

Testing Verification and Validation, pages 73–80, 2008. 149

[CCR09] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verifying UML/OCL Opera-

tion Contracts. In Integrated Formal Methods, pages 40–55, 2009. 149

[CdAM15] Franck Cassez and Pablo González de Aledo Marugán. Timed automata

for modelling caches and pipelines. In Rob J. van Glabbeek, Jan Friso

Groote, and Peter Höfner, editors, Proceedings Workshop on Models for

Formal Analysis of Real Systems, MARS 2015, Suva, Fiji, November 23,

2015., volume 196 of EPTCS, pages 37–45, 2015. 135, 139

[CDE08a] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems

Programs. Proceedings of the 8th USENIX conference on Operating systems

design and implementation, pages 209–224, 2008. 107, 150

[CDE08b] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems

Programs. pages 209–224, 2008. 152

REFERENCES 193

[CGD+11] Daniel Calvo, Pablo González, Luís Díaz, Héctor Posadas, Pablo Sánchez,

Eugenio Villar, Andrea Acquaviva, and Enrico Macii. A multi-processing

systems-on-chip native simulation framework for power and thermal-aware

design. Journal of Low Power Electronics, 7(1):2–16, 2011. 92, 93, 170,

182

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In International Conference

on Computer Aided Verification, pages 154–169. Springer, 2000. 109

[CGK11] C Cadar, P Godefroid, and S Khurshid. Symbolic execution for software

testing in practice: preliminary assessment. Proceedings of the 33rd, 2011.

108

[CGWm04] LN Chakrapani, J Gyllenhaal, and WH Wen-mei. Trimaran: An infrastruc-

ture for research in instruction-level parallelism. on Languages and . . . ,

2004. 78

[CHO12] F Cassez, RR Hansen, and MC Olesen. What is a Timing Anomaly? OASIcs-

OpenAccess Series, 2012. 134

[Chv83] Vašek Chvátal. Linear programming. a series of books in the mathematical

sciences, 1983. 110

[CKL04a] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking

ANSI-C Programs. Tools and Algorithms for the Construction and Analysis of

Systems, 2988:168–176, 2004. 150

[CKL04b] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking

ANSI-C Programs. pages 168–176, 2004. 107, 152

[CP00] A Colin and I Puaut. Worst case execution time analysis for a processor

with branch prediction. Real-Time Systems, 2000. 110

194 REFERENCES

[CP01] A Colin and I Puaut. A modular and retargetable framework for tree-based

WCET analysis. Time Systems, 13th Euromicro Conference on . . . , 2001. 110

[CPVM07] Juan Castillo, Héctor Posadas, Eugenio Villar, and Marcos Martínez. Energy

consumption estimation technique in embedded processors with stable

power consumption based on source-code operator energy figures. In XXII

Conference on Design of Circuits and Integrated Systems, 2007. 46, 48

[CPVM10] J Castillo, H Posadas, E Villar, and M Martinez. Fast instruction cache

modeling for approximate timed HW/SW co-simulation. Proceedings of the

20th, 2010. 49

[CSC+09] Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova,

Rainer Leupers, Gerd Ascheid, and Heinrich Meyr. A high-level virtual

platform for early MPSoC software development. Proceedings of the 7th

IEEE/ACM international conference on Hardware/software codesign and

system synthesis - CODES+ISSS ’09, page 11, 2009. 41

[CSR+17] Franck Cassez, Anthony M. Sloane, Matthew Roberts, Matthew Pigram,

Pongsak Suvanpong, and Pablo González de Aledo Marugán. Skink: Static

analysis of programs in llvm intermediate representation (competition

contribution). In Tools and Algorithms for the Construction and Analysis of

Systems - 23rd International Conference, TACAS 2017, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017. Proceedings, 2017. forthcoming. 110

[CWLW15] Y Cai, G Wang, G Li, and H Wang. A high performance crashworthiness

simulation system based on GPU. Advances in Engineering Software, 2015.

61

[dA11] Pablo González de Aledo. Simulación nativa para la estimación de

rendimiento en entornos de codiseño Hardware/Software. Master’s thesis,

University of Cantabria, 2011. 82

REFERENCES 195

[dAE15a] Pablo González de Aledo and Pablo Sánchez Espeso. FramewORk for

Embedded System verification - (Competition Contribution). In Tools and

Algorithms for Construction and Analysis of Systems, pages 429–431, 2015.

150, 152, 159

[dAE15b] Pablo González de Aledo and Pablo Sánchez Espeso. FramewORk for

Embedded System verification - (Competition Contribution). In Tools and

Algorithms for Construction and Analysis of Systems, pages 429–431, 2015.

172, 185

[dAMGBE11] Pablo González de Aledo Marugán, Javier González-Bayón, and

Pablo Sánchez Espeso. Hardware performance estimation by dynamic

scheduling. In Specification and Design Languages (FDL), 2011 Forum on,

pages 1–6. IEEE, 2011. 82

[DDSL08] S Dhouib, JP Diguet, E Senn, and J Laurent. Energy models of real time

operating systems on FPGA. OSPERT 2008, 2008. 40

[DGVS15] Luis Diaz, Eduardo González, Eugenio Villar, and Pablo Sanchez. VIPPE:

Parallel simulation and performance analysis of complex embedded systems.

In HiPPES4CogApp: High Performance, Predictable Embedded Systems for

Cognitive Application., 2015. 177, 187

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of

Automated Techniques for Formal Software Verification. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

27(7):1165–1178, jul 2008. 123

[DLT03] Vassilios V Dimakopoulos, Elias Leontiadis, and George Tzoumas. A portable

c compiler for openmp v. 2.0. In Proc. EWOMP, pages 5–11, 2003. 62

[Dou03] Bruce Powel Douglass. Real time uml. In Formal Techniques in Real-Time

and Fault-Tolerant Systems: 7th International Symposium, FTRTFT 2002,

196 REFERENCES

Co-sponsored by IFIP WG 2.2, Oldenburg, Germany, September 9-12, 2002.

Proceedings, volume 2469, page 53. Springer, 2003. 177, 188

[EESG03] J Engblom, A Ermedahl, M Sjödin, and J Gustafsson. Worst-case execution-

time analysis for embedded real-time systems. International Journal on,

2003. 112

[FAM08] S Johann Filho, A Aguiar, and CAM Marcon. High-level estimation of

execution time and energy consumption for fast homogeneous mpsocs

prototyping. , 2008. RSP’08. The . . . , 2008. 45

[FH04] Christian Ferdinand and Reinhold Heckmann. ait: Worst-case execution

time prediction by static program analysis. In Building the Information

Society, pages 377–383. Springer, 2004. 111, 134

[FHJ07] A Fehnker, R Huuck, and P Jayet. Model checking software at compile time.

Aspects of Software . . . , 2007. 123

[FHS10] A Fehnker, R Huuck, and S Seefried. Counterexample guided path reduction

for static program analysis. Concurrency, Compositionality, and, 2010. 123

[FHW04] C Ferdinand, R Heckmann, and R Wilhelm. Analyzing the worst-case

execution time by abstract interpretation of executable code. Automotive

Software Workshop, 2004. 111

[GADSSE10] Pablo Gonzalez-Aledo, Luis Diaz Suarez, and Pablo Sanchez Espeso. Embed-

ded software execution time at different abstraction levels. In Proceedings

of the 25th Conference on Design of Circuits and Integrated Systems, pages

532–537, 2010. 11, 46, 47

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The

mälardalen wcet benchmarks: Past, present and future. In OASIcs-

OpenAccess Series in Informatics, volume 15. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2010. 31, 142

REFERENCES 197

[GdAPW+16] Pablo Gonzalez-de Aledo, Nils Przigoda, Robert Wille, Rolf Drechsler, and

Pablo Sanchez. Towards a verification flow across abstraction levels: Veri-

fying implementations against their formal specification. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 2016. 118,

150, 151, 155

[GdASH15] Pablo Gonzalez-de Aledo, Pablo Sanchez, and Ralf Huuck. An approach

to static-dynamic software analysis. In International Workshop on Formal

Techniques for Safety-Critical Systems, pages 225–240. Springer, 2015. 172,

185

[GDGN03] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau. Spark: A

high-level synthesis framework for applying parallelizing compiler transfor-

mations. In VLSI Design, 2003. Proceedings. 16th International Conference

on, pages 461–466. IEEE, 2003. 76

[GDWL12] DD Gajski, ND Dutt, ACH Wu, and SYL Lin. High—Level Synthesis: Intro-

duction to Chip and System Design. 2012. 78

[GE05] J Gustafsson and A Ermedahl. Towards a flow analysis for embedded

system C programs. , 2005. WORDS 2005. 10th . . . , 2005. 112

[GGBS12] Pablo González, Javier González-Bayon, and Pablo Sánchez. An approach

for algorithm parallelization oriented to a many-core implementation. In

10th IEEE International Symposium on Parallel and Distributed Processing

with Applications (ISPA), pages 841–842, 2012. 62

[GGBSEC13] Pablo González, Javier González-Bayon, Pablo Sanchez Espeso, and Juan

Casal. OpenMP performance analysis for many-core platforms with non-

uniform memory access. International Journal of Computer Science Issues,

10:5–11, 2013. 62

198 REFERENCES

[GGD+02] AB Abril Garcia, J Gobert, T Dombek, H Mehrez, and F Petrot. Cycle-

accurate energy estimation in system level descriptions of embedded sys-

tems. In Electronics, Circuits and Systems, 2002. 9th International Conference

on, volume 2, pages 549–552. IEEE, 2002. 61

[GGP08] Patrice Gerin, Xavier Guérin, and Frédéric Pétrot. Efficient implementation

of native software simulation for MPSoC. Proceedings -Design, Automation

and Test in Europe, DATE, pages 676–681, 2008. 45

[GGS12] Pablo González, Javier González, and Pablo Sánchez. A virtual platform

for performance estimation of many-core implementations. In Proceedings

of Digital System Design (DSD), volume 15, pages 541–544, 2012. 62

[GKS05] P Godefroid, N Klarlund, and K Sen. DART: directed automated random

testing. ACM Sigplan Notices, 2005. 116

[GLD10] Daniel Große, Hoang M Le, and Rolf Drechsler. Proving transaction and

system-level properties of untimed SystemC {TLM} designs. In Int’l Conf.

on Formal Methods and Models for Codesign, pages 113–122, 2010. 150,

152

[Gra] GrammaTech. {C}ode{S}urfer. http://www.grammatech.com/. 109

[GS02] S Gurumurthi and A Sivasubramaniam. Using complete machine simulation

for software power estimation: The softwatt approach. High-Performance,

2002. 44

[GUA11] E Gebrewahid and Z Ul-Abdin. Mapping Occam-pi programs to a Manycore

Architecture. MCC-2011, Fourth, 2011. 61

[Gus00] J Gustafsson. Analyzing execution-time of object-oriented programs using

abstract interpretation. 2000. 112

[Hag13] RJ Hagerman. Epilepsy drives autism in neurodevelopmental disorders.

Developmental Medicine & Child Neurology, 2013. 65

http://www.grammatech.com/

REFERENCES 199

[HAM99] CA Healy, RD Arnold, and F Mueller. Bounding pipeline and instruction

cache performance. IEEE Transactions, 1999. 112

[HCW14] WF Hu, MH Chahrour, and CA Walsh. The diverse genetic landscape of

neurodevelopmental disorders. Annual review of genomics, 2014. 65

[HCZD04] B Han, D Comaniciu, Y Zhu, and L Davis. Incremental density approxi-

mation and kernel-based bayesian filtering for object tracking. CVPR (1),

2004. 86

[HGGM01] M González Harbour, JJ Gutiérrez García, JC Palencia Gutiérrez, and

JM Drake Moyano. Mast: Modeling and analysis suite for real time appli-

cations. In Real-Time Systems, 13th Euromicro Conference on, 2001., pages

125–134. IEEE, 2001. 177, 188

[HHP09a] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement

of trace abstraction. In International Static Analysis Symposium, pages

69–85. Springer, 2009. 110

[HHP09b] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement

of trace abstraction. In Static Analysis Symposium, number Sas in LNCS,

pages 69–85. Springer Berlin Heidelberg, 2009. 145

[HHP13] M Heizmann, J Hoenicke, and A Podelski. Software model checking for

people who love automata. International Conference on, 2013. 145

[HR05] M Holzer and M Rupp. Static estimation of execution times for hardware

accelerators in system-on-chips. System-on-Chip, 2005. Proceedings. 2005,

2005. 76

[HSR98] C Healy, M Sjodin, and V Rustagi. Bounding loop iterations for timing

analysis. Symposium, 1998. . . . , 1998. 112

[HTHT09] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. Pro-

posal and Quantitative Analysis of the CHStone Benchmark Program Suite

for Practical C-based High-level Synthesis. 17:242–254, 2009. 82

200 REFERENCES

[Huu15] Ralf Huuck. Technology transfer: Formal analysis, engineering, and busi-

ness value. Sci. Comput. Program., 103:3–12, 2015. 109

[iem] Intelligent energy management (iem). http://infocenter.arm.

com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegdcfdi.

html. 95

[Ins10] TR Insel. Rethinking schizophrenia. Nature, 2010. 65

[JHFK12] M Junker, R Huuck, A Fehnker, and A Knapp. SMT-based false positive

elimination in static program analysis. International Conference on, 2012.

123, 124, 130

[Jin13] T Jin. Gradient sensing during chemotaxis. Current opinion in cell biology,

2013. 66

[KHH03] Praveen Kalla, Jörg Henkel, and Xiaobo Sharon Hu. SEA. In Proceedings

of the 2003 conference on Asia South Pacific design automation - ASPDAC,

page 600, New York, New York, USA, 2003. ACM Press. 45

[KKAD06] K Khouri, F Kurdahi, M Abadir, and N Dutt. Floorplan driven leakage power

aware IP-based SoC design space exploration. Codesign and System . . . ,

2006. 91, 92

[KT14] Daniel Kroening and Michael Tautschnig. CBMC–C bounded model checker.

In Tools and Algorithms for the Construction and Analysis of Systems, pages

389–391. Springer, 2014. 116

[KWC+04] S Kang, H Wang, Y Chen, X Wang, and Y Dai. Skyeye: An instruction

simulator with energy awareness. International Conference on, 2004. 46

[LA04] C Lattner and V Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. Proceedings of the international symposium on

Code, 2004. 78

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegdcfdi.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegdcfdi.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0375a/Cegdcfdi.html

REFERENCES 201

[Lau94] A Laurentini. The visual hull concept for silhouette-based image under-

standing. IEEE Transactions on pattern analysis and, 1994. 85, 86

[LB08] A Ladikos and S Benhimane. Efficient visual hull computation for real-time

3D reconstruction using CUDA. Computer Vision and, 2008. 85, 90

[LBN08] Alexander Ladikos, Selim Benhimane, and Nassir Navab. Efficient visual

hull computation for real-time 3d reconstruction using cuda. In Computer

Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer

Society Conference on, pages 1–8. IEEE, 2008. 90

[LGHD13] Hoang M Le, Daniel Große, Vladimir Herdt, and Rolf Drechsler. Verifying

SystemC using an intermediate verification language and symbolic simula-

tion. In Design Automation Conference, pages 116:1—-116:6, 2013. 150,

152

[Lis14] Björn Lisper. SWEET – A Tool for WCET Flow Analysis (Extended Abstract),

pages 482–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. 108

[LJ03] T Li and LK John. Run-time modeling and estimation of operating system

power consumption. ACM SIGMETRICS Performance Evaluation Review,

2003. 39, 40, 42

[LLSV99] M. Lajolo, M. Lazarescu, and a. Sangiovanni-Vincentelli. A compilation-

based software estimation scheme for hardware/software co-simulation.

Proceedings of the Seventh International Workshop on Hardware/Software

Codesign (CODES’99) (IEEE Cat. No.99TH8450), pages 85–89, 1999. 45

[LM95] YTS Li and S Malik. Performance analysis of embedded software using

implicit path enumeration. ACM SIGPLAN Notices, 1995. 110

[LMW95] YTS Li, S Malik, and A Wolfe. Efficient microarchitecture modeling and

path analysis for real-time software. -Time Systems Symposium, 1995. . . . ,

1995. 110

202 REFERENCES

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Inter-

national journal on software tools for technology transfer, 1(1-2):134–152,

1997. 133, 134

[LS99] T Lundqvist and P Stenstrom. Timing anomalies in dynamically scheduled

microprocessors. Real-time systems symposium, 1999, 1999. 134

[LSP08] MP Lawitzky, DC Snowdon, and SM Petters. Integrating real time and

power management in a real system. Proc. OSPERT, 2008. 40, 42

[Lun02] T Lundqvist. A WCET analysis method for pipelined microprocessors with

cache memories. 2002. 108, 134

[MBM01] W Matusik, C Buehler, and L McMillan. Polyhedral visual hulls for real-time

rendering. Rendering Techniques 2001, 2001. 86

[MBRG00] W Matusik, C Buehler, R Raskar, and SJ Gortler. Image-based visual hulls.

Proceedings of the 27th, 2000. 86

[MCE+02] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. Simics: A full system simulation platform. Computer,

35(2):50–58, 2002. 92

[Mer03] J Merrill. Generic and gimple: A new tree representation for entire func-

tions. Proceedings of the 2003 GCC Developers’ Summit, 2003. 78

[MRR07] A Muttreja, A Raghunathan, and S Ravi. Automated energy/performance

macromodeling of embedded software. IEEE Transactions on, 2007. 40

[MRR12] MD McCool, AD Robison, and J Reinders. Structured parallel programming:

patterns for efficient computation. 2012. 69

[MSSS14] Pablo González Aledo Marugán, Luis Díaz Suárez, Álvaro Díaz Suárez,

and Pablo Sánchez. Profiling and optimizations for embedded systems.

In Formal Methods and Models for Codesign (MEMOCODE), 2014 Twelfth

REFERENCES 203

ACM/IEEE International Conference on, pages 194–197. IEEE, 2014. 52,

169, 182

[NBZ+15] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul HJ

Kelly, Andrew J Davison, Mikel Luján, Michael FP O’Boyle, Graham Riley,

et al. Introducing slambench, a performance and accuracy benchmarking

methodology for slam. In Robotics and Automation (ICRA), 2015 IEEE

International Conference on, pages 5783–5790. IEEE, 2015. 175

[ncs] Incisive enterprise simulator. https://www.cadence.

com/content/dam/cadence-www/global/en_US/

documents/tools/system-design-verification/

incisive-enterprise-simulator-ds.pdf. 83

[Net04] N Nethercote. Dynamic binary analysis and instrumentation. 2004. 9, 10

[NHGW15a] Philipp Niemann, Frank Hilken, Martin Gogolla, and Robert Wille. Assisted

Generation of Frame Conditions for Formal Models. In Design, Automation

and Test in Europe, pages 309–312, 2015. 151

[NHGW15b] Philipp Niemann, Frank Hilken, Martin Gogolla, and Robert Wille. Ex-

tracting frame conditions from operation contracts. In Int’l Conf. on Model

Driven Engineering Languages and Systems, pages 266–275, 2015. 151

[NM01] A Nandi and R Marculescu. System-level power/performance analysis for

embedded systems design. Proceedings of the 38th annual Design, 2001. 40

[NNH99] F Nielson, H Riis Nielson, and C L Hankin. Principles of Program Analysis.

Springer, 1999. 123

[NR00] M Narasimhan and J Ramanujam. On lower bounds for scheduling prob-

lems in high-level synthesis. Proceedings of the 37th Annual Design, 2000.

78

[Obj14] Object Management Group. Object Constraint Language, 2014. 151, 152

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/incisive-enterprise-simulator-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/incisive-enterprise-simulator-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/incisive-enterprise-simulator-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/incisive-enterprise-simulator-ds.pdf

204 REFERENCES

[OKS+08] Neal Orman, Hansung Kim, Ryuuki Sakamoto, Tomoji Toriyama, Kiyoshi

Kogure, and Robert Lindeman. Gpu-based optimization of a free-viewpoint

video system. In Proceedings of the 2008 symposium on Interactive 3D

graphics and games, page 15. ACM, 2008. 90

[OKST08] N Orman, H Kim, R Sakamoto, and T Toriyama. GPU-based optimization

of a free-viewpoint video system. Proceedings of the, 2008. 90

[PAS12] Jesús M Perez, Pablo G Aledo, and Pablo P Sanchez. Real-time voxel-based

visual hull reconstruction. Microprocessors and Microsystems, 36(5):439–

447, 2012. 86, 87, 88, 170, 182

[PDV11] H Posadas, L Díaz, and E Villar. Fast data-cache modeling for native co-

simulation. Proceedings of the 16th Asia and South, 2011. 42, 45, 63

[PLL+] Jan Peleska, Florian Lapschies, Helge Löding, Peer Smuda, Hermann

Schmid, Elena Vorobev, and Cornelia Zahlten. Turn Indicator Model

Overview. 159, 161

[PP11] Pierre Paulin and Pierre. Programming challenges & solutions for multi-

processor SoCs. In Proceedings of the 48th Design Automation Conference on

- DAC ’11, page 262, New York, New York, USA, 2011. ACM Press. 59, 62

[PPB07] G Paci, F Poletti, and L Benini. Exploring temperature-aware design in

low-power MPSoCs. International journal of, 2007. 43, 92, 96, 97

[QR11] X Qu and B Robinson. A case study of concolic testing tools and their

limitations. Empirical Software Engineering and, 2011. 108

[RWT06] J Reineke, B Wachter, and S Thesing. A definition and classification of

timing anomalies. OASIcs-, 2006. 134

[SCB16] AM Sloane, F Cassez, and S Buckley. The sbt-rats parser generator plugin

for Scala (tool paper). Proceedings of the 2016 7th ACM, 2016. 30

REFERENCES 205

[Sha89] Alan C. Shaw. Reasoning about time in higher-level language software.

IEEE Transactions on Software Engineering, 15(7):875–889, 1989. 110

[SKV13] Anthony M. Sloane, Lennart C L Kats, and Eelco Visser. A pure embedding

of attribute grammars. Science of Computer Programming, 78:1752–1769,

2013. 30

[SLD+03] H Su, F Liu, A Devgan, E Acar, and S Nassif. Full chip leakage estimation

considering power supply and temperature variations. Proceedings of the

2003, 2003. 43, 93

[SMA05] K Sen, D Marinov, and G Agha. CUTE: a concolic unit testing engine for C.

ACM SIGSOFT Software Engineering Notes, 2005. 116

[SOF00] E SOFlWARE. ARM System-on-Chip Architecture. 2000. 50

[SPS+02] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb.

Free Software Foundation, 51:02110–1301, 2002. 139

[SSS04] K Skadron, MR Stan, and K Sankaranarayanan. Temperature-aware mi-

croarchitecture: Modeling and implementation. ACM Transactions on, 2004.

92

[SW02] Connie U Smith and Lloyd G Williams. Introduction to software perfor-

mance engineering. In Int. CMG Conference, pages 7–14, 2002. 5

[SWD11a] Mathias Soeken, Robert Wille, and Rolf Drechsler. Encoding OCL Data

Types for SAT-Based Verification of UML/OCL Models. In Tests and Proof,

pages 152–170, 2011. 155, 158

[SWD11b] Mathias Soeken, Robert Wille, and Rolf Drechsler. Verifying Dynamic

Aspects of UML models. In Design, Automation and Test in Europe, pages

1077–1082, 2011. 148, 150, 159

206 REFERENCES

[SWD11c] Mathias Soeken, Robert Wille, and Rolf Drechsler. Verifying Dynamic

Aspects of UML Models. In Design, Automation and Test in Europe, pages

1077–1082, 2011. 149

[SWK+10] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf

Drechsler. Verifying UML/OCL models using Boolean satisfiability. In

Design, Automation and Test in Europe, pages 1341–1344, 2010. 149

[TR01] TK Tan and A Raghunathan. High-level software energy macro-modeling.

Design Automation, 2001. 40, 48

[VB14] AC Velivelli and KM Bryden. Domain decomposition based coupling be-

tween the lattice Boltzmann method and traditional CFD methods—part I:

formulation and application to the 2-D Burgers’. Advances in Engineering

Software, 2014. 61

[VK] Asai Vladimirov and Karpusenko. Parallel Programming and Optimization

with Intel Xeon Phi Coprocessors. 67

[Wei84] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,

1984. 27

[WMMR05] N Williams, B Marre, P Mouy, and M Roger. Pathcrawler: Automatic

generation of path tests by combining static and dynamic analysis. European

Dependable, 2005. 122

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,

Dino Distefano, and Peter O’Hearn. Scalable Shape Analysis for Systems

Code. In Proceedings of the 20th International Conference on Computer Aided

Verification, CAV ’08, pages 385–398, Berlin, Heidelberg, 2008. Springer-

Verlag. 109

[YZA+09] Yuang Zhang, Zhonghai Lu, Axel Jantsch, Li Li, and Minglun Gao. Towards

hierarchical cluster based cache coherence for large-scale network-on-chip.

REFERENCES 207

In 2009 4th International Conference on Design & Technology of Integrated

Systems in Nanoscal Era, pages 119–122. IEEE, apr 2009. 59

[ZZWY16] S Zhang, T Zhang, Y Wu, and Y Yi. Flow simulation and visualization in a

three-dimensional shipping information system. Advances in Engineering

Software, 2016. 69

	Portada
	Agradecimientos
	Resumen
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Instrumentation
	2.1 Instrumentation
	2.1.1 LLVM Instrumentation
	2.1.2 Implementation

	2.2 Binary Analysis
	2.2.1 Scope
	2.2.2 Difficulties in the analysis of binary code
	2.2.3 Control-Flow-Graph reconstruction from binary code
	2.2.4 Algorithm for reconstructing the Control-Flow-Graph
	2.2.5 Implementation
	2.2.6 Results

	3 Simulation
	3.1 Introduction and state-of-the-art
	3.2 Limitations of the state-of-the-art techniques
	3.3 Overview of our approach
	3.4 Simulating the CPU part of the system
	3.4.1 Introduction
	3.4.2 State of the art
	3.4.3 Our approach
	3.4.4 Results
	3.4.5 Optimization example
	3.4.6 Conclusions

	3.5 Simulation of the many-core part of the design
	3.5.1 Introduction
	3.5.2 Our approach
	3.5.3 Optimization example
	3.5.4 Conclusions

	3.6 Simulation of hardware accelerators
	3.6.1 Introduction
	3.6.2 Our approach
	3.6.3 Results
	3.6.4 Optimization example
	3.6.5 Conclusions

	3.7 Simulation of the thermal behavior
	3.7.1 Introduction
	3.7.2 State of the art and related work
	3.7.3 MPSOC thermal estimation
	3.7.4 Experimental results
	3.7.5 Conclusions

	4 Verification
	4.1 Introduction
	4.2 State of the art
	4.2.1 Dynamic analysis
	4.2.2 Static analysis

	4.3 Limitations of the state-of-the-art techniques
	4.4 Symbolic representation of the program state
	4.5 Combination with Static Analysis
	4.5.1 Introduction
	4.5.2 Static Analysis as implemented in Goanna
	4.5.3 Our approach to combine Static Analysis and Dynamic Execution
	4.5.4 Experiments
	4.5.5 SV-COMP Benchmark Results.
	4.5.6 Conclusions

	4.6 Verification of non-functional properties
	4.6.1 Introduction
	4.6.2 The WCET problem
	4.6.3 Proposed solution
	4.6.4 Hardware model
	4.6.5 Tool chain
	4.6.6 Results
	4.6.7 Hardware refinement
	4.6.8 Conclusions

	4.7 Combination with UML/OCL Specification
	4.7.1 Introduction
	4.7.2 UML/OCL in ``modelchecker''
	4.7.3 Our combined approach
	4.7.4 Case Studies
	4.7.5 Conclusions

	5 Conclusions
	5.1 Application example

	6 Conclusiones
	References

