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Abstract: This article presents the results of a study that examines the loss of biomass and energy,
per hectare, caused by Teratosphaeria leaf disease (TLD) in Eucalyptus globulus short rotation forestry.
The 95 Eucalyptus globulus taxa analyzed are from seeds of open pollinated families of both Spanish
and Australian origin. Tree height and diameter were measured and the crown damage index (CDI)
assessed at 27 months of age. Taxa that have a certain tolerance to the disease have been identified.
The taxon identified as code 283 is the one that shows lower CDI (42%) and with an average volume
that exceeded 0.017 m3 at 27 months of age. Biomass losses were determined for each fraction of dry
biomass of the tree (leaves, branches, twigs and bark) based on CDI. These losses were translated
into terms of energy lost per hectare, depending on the CDI. A comparison was then carried out
between the productivity of Eucalyptus globulus exhibiting various levels of TLD severity and poplar
and willow clones used for bioenergy in Europe. In our region, the results show that despite the
losses of biomass associated with TLD, Eucalyptus globulus remains competitive as long as CDI values
are lower than 56%.

Keywords: biomass losses; short rotation forestry; Eucalyptus globulus; Mycosphaerella leaf disease;
energy density

1. Introduction

The replacement of fossil fuels by bio-based energy sources contributes to a more sustainable
world [1]. Spain is a country with huge foreign energy dependence, however, it has a great deal of
potential energy that could be derived from renewable resources. For the particular case of Cantabria
in northern Spain, forest based biomass has a promising future since adequate soil and climatic
characteristics are present. The region has an extensive non-exploited forest area which may be used
for new plantings with energy purposes.

Biomass is the third largest source of energy in the world [2]. In addition to abundance,
biomass offers great versatility when being used as primary energy for the generation of electricity,
heat or fuel for transportation [3]. One way to generate biomass is through short rotation forestry
(SRF). These are characterized by fast growing species used in planting densities ranging from 1000 to
20,000 stools ha−1 in poor soils and reduced short tree shifts. Some examples are species belonging to
the genera Populus, Eucalyptus, Pinus, Acacia and Salix [4–13]. Most research today involves the genera
Populus and Salix, commonly known as poplar and willow. In fact, clones of these genera have been
specifically selected for biomass generation in short rotations [14–19]. Research has focussed on these
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genera due to interest of countries of northern Europe and America where the amount of water that
these species require during the vegetative stage occurs naturally.

The genus Eucalyptus performs exceedingly well as an energy crop in temperate forests, such as
those of northern Spain, where water availability is a limiting factor for the growth of poplar and
willow during the spring and summer [10,11,20]. The appropriateness of this genus is justified from the
production and the energy point of view, since it combines high density biomass [21] and good calorific
values [22,23]. At present, the superiority of the genus Eucalypus to generate biomass in SRF is limited
by the appearance of a biotic agent that produces the disease known as Theratosphaeria Leaf Disease
(TLD), especially in the Eucalyptus globulus. The genus Eucalyptus can suffer from a large number
of fungal leaf diseases, however TLD is seen as the most serious [24–27]. A single Theratosphaeria
species, Theratosphaeria nubilosa, is responsible for the bulk of the damage to Eucalyptus trees in Spain.
Infection of leaves occurs when acospores germinating on the leaf surface produce germtubes which
enter the leaf via stomata [28]. The most intense attack occurs during the months of late summer and
early autumn, while a recovery of the tree normally occurs in springtime. There are many studies in the
scientific literature that examine the impact and control of diseases on forest trees that generate energy
in short cycles [29–33]. These studies, mainly based on the genera poplar and willow, examine ways to
manage diseases by the use of chemicals or by selection of genotypes tolerant to pests and diseases.

Harvest age ranges from two to four years. Eucalyptus species are characterized by two
types of foliage over their lifetime: juvenile and adult foliage. TLD affects juvenile foliage causing
extensive defoliations and a marked growth reduction, which, in combination with frost, can kill the
tree [28,34–39]. It is worth highlighting that the juvenile stage of the species is of greatest interest for
energy crops, because of short tree shifts. This article is the result of a research project that began in 2006
with the establishment of a trial with genetic material from Eucalyptus globulus stands of Australian
and northern Spanish origin. Each family is identified by a code. The goal was to compare the losses
of biomass and energy, per hectare, versus the degree of importance of the disease. This will allow the
productivity of this genus to be evaluated respect to other species used in SRF. The experimental results
enabled us to identify those codes showing some tolerance to TLD. At 27 months of age, for each
code, the heights and diameters of the trees have been measured, obtaining the corresponding volume.
At this time, the crown damage index was defined and evaluated and also assessed. The biomass
loss as a function of CDI was then determined for each fraction that forms the tree (leaves, branches,
twigs and bark), and the total loss of biomass per hectare. Productivity (t ha−1) and energy losses
(Megajoules ha−1) have been calculated based on the CDI. This allows the calculation of CDI levels
below which the cultivation of Eucalyptus globulus can be viable and/or comparable with clones of
poplar and willow used in short rotation coppice. This can be a first step in obtaining tolerant genetic
material that can be used to generate biomass in areas with prevalence of TLD.

2. Materials and Methods

In March and April 2006, a E. globulus short rotation stand was established in Cantabria
(northern Spain), latitude 43◦28′ N, longitude 3◦48′ W at 120 meters above sea level. This period is
very suitable for the development of this species and TLD appears to be the single most limiting biotic
agent. The site is characterised by a climate with moderate temperature variation and regular rainfall.
Long-term values for mean air temperature and annual rainfall are 13.8 ◦C and 598 mm respectively.
The stand consists of 2375 trees belonging to taxa from two sources: Australian (50 taxa), supplied by
CSIRO Forestry, and Spanish (45 taxa), obtained from seeds of trees from forests in northern Spain.
Both sources are from open-pollinated families. The trial contained 25 replicates with 95 individuals
per replicate. Each replicate contained one individual (code) arranged at random. The stand frame
used was 2.5 × 2.5 m which corresponds to 1600 plants per ha.

At the time of planting, the soil was fertilized with 20–30 g per plant of a controlled release
fertilizer 11-22-9 (NPK) + 6 MgO. At the age of one year, the soil was again fertilized with 300 g per
plant of complex fertilizer 15-15-15 (NPK).
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At 27 months of age, for each tree, one branch was taken randomly at breast height. Once each
branch was cut, they were then transported to the laboratory in a sealed polyethylene bag.
Simultaneously, the degree of defoliation (D, %) due to the disease was evaluated in the field using
the diagrams given by [39,40] for this purpose. Once in the laboratory, the samples were evaluated
for severity (S, %), defined as the percentage of leaf area affected [39,40]. Taking into account the
severity and the defoliation, the overall rate of damage Crown Damage Index, (CDI, %) is defined by
the expression (1) encompassing both variables [41]. Obviously, the severity affects only the leaves
that have not yet fallen.

CDI = D +
S(100− D)

100
(1)

Height (H, m) and diameter (D, m) was measured using a laser hypsometer Vertex and
a mechanical calliper respectively. In order to calculate the volume (V, m3) with bark, the formula
given by [42] based on the total height and diameter at breast height over bark (DBHOB), was followed.
From the volumes, the amount of biomass lost as a function of CDI due to TLD was determined.
For this, the weight of dry biomass of each fraction “i” (Wi, kg) was first calculated for each code,
using the expression (2) [43] and the parameters in Table 1. The amount of biomass lost was obtained
by means of the difference between the CDI zero (obtained by regression) and the CDI evaluated for
each code.

Wi = exp(α+β ln D+γ ln H) (2)

Table 1. Regression coefficients for Eucalyptus globulus stands [43].

Fraction α β γ

Total biomass −2.8982 0.1984 1.7425
Leaves 0.7897 0.2921 0.8769

Wood + bark −6.8579 0.2474 2.2294
Rest −2.5669 0.3346 1.3349

From the amount of biomass calculated, the loss has been estimated for each CDI.
In order to determine the amount of energy loss, the gross and the net calorific values

(GCV and NCV) of Eucalyptus globulus in the juvenile stage have been obtained using the method
proposed by [44] in a calorimeter. The characteristics of the apparatus and the methodology used are
described in [23].

The average NCV of the fractions (dry biomass) that make up the biomass of Eucalyptus globulus at
juvenile age, and that were studied in the laboratory [23]. For the calculation of the weighted average
value of NCV, the weight percentage of each fraction of the tree, given by [45], has been taken into
account. These percentages are related to Cantabria since they were determined in juvenile stands
of north western Spain. Studies carried out elsewhere [46] show that the weight percentages of tree
fractions vary with age and diameter, however, this effect is neglectable in SRF.

Data analyses were performed using the Statistical package SPSS (PASW) 18.0 (SPSS Inc., Chicago,
IL, USA), comparing CDI means and tree volume for the different codes analyzed.

The experimental results enabled us to identify those codes showing some tolerance to MLD.
At 27 months of age, for each code, the heights and diameters of the trees have been measured,
obtaining the corresponding volume. At this time, the Crown Damage Index (CDI) was defined,
evaluated and also assessed. The biomass loss as a function of CDI was then determined for each
fraction that forms the tree (leaves, branches, twigs and bark), and the total loss of biomass per hectare.
Productivity (t ha−1) and energy losses (MJ ha−1) have been calculated based on the CDI. This allows
the calculation of CDI levels below which the cultivation of Eucalyptus globulus can be viable and/or
comparable with clones of poplar and willow used in short rotation coppice. This can be a first step
in obtaining tolerant genetic material that can be used to generate biomass in areas with prevalence
of MLD.
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3. Results and Discussion

Table 2 shows the results of the measurements in the stands. Heights and diameters are related to
the CDI at the age of 27 months. The first column gives the origin identification code. ANOVA revealed
significative differences in the CDI mean values for the different codes (p-value = 0.05). The average
value of CDI is 60.64%, however, the codes 283, 105, 255, 102 and 341 present severities below the
average, with values of 42.67, 49.03, 51.09, 52.09, 52.40% respectively. This study shows that there
are some codes less sensitive to TLD than others. In the scientific literature, this variation in the
resistance to the disease is associated to genetic factors and not environmental ones [27,38,47,48];
this way, tolerant plants show this property everywhere.

There are significative differences between the average volumes achieved at 27 months by each
code (p-value = 0.001). The codes previously mentioned achieved an average volume of 17.13 × 10−3,
14.99 × 10−3, 10.96 × 10−3, 10.82 × 10−3 and 11.04 × 10−3 m3, respectively, which can be compared
with the average value of 9.20 × 10−3 m3. There is also a significative negative correlation (r = −0.638;
p < 0.0001) between the individual average volume at 27 months and the CDI. This means that
those codes showing lower sensitivity to TLD are the most suitable for the biomass generation.
In experimental stands with no damage from TLD established in previous years, average volumes of
only 9.7 × 10−3 m3 per tree were obtained at 49 months of age without fertilisation. The high volumes
we obtained in this study are due to the fertilization provided in conjunction with the soil quality in
the stands on which this study is based. These two factors enable a swift recovery from the attack
of TLD and permit the subsequent development of the tree during the second spring, allowing the
change from youth to adult leaf at a younger age. As a result, these data cannot be compared with
those of other stands with different bioclimatic features and fertilizations. However, one can compare
the effects of TLD among the various families included in this study and provide an estimate of the
biomass loss in terms of TLD damage.

Table 2. Mean, standard deviation (Std Dev) and standard error mean (Std Err Mean) of heights (H),
diameters (D), volumes (V × 10−3) and CDI for all codes of Eucalyptus globulus at 27 months of age.

Code H (m) Std Dev Std Err
Mean

D × 102

(m)
Std Dev Std Err

Mean
V × 103

(m3)
Std Dev Std Err

Mean CDI (%) Std Dev Std Err
Mean

32 4.22 1.06 0.249 3.34 1.07 0.252 6.32 2.69 0.635 67.05 7.42 1.749
65 5.19 1.14 0.238 4.33 1.31 0.272 9.65 4.44 0.926 56.26 15.46 3.225
68 4.93 1.31 0.272 3.97 1.36 0.284 8.60 3.96 0.826 64.88 8.66 1.806
86 4.64 1.34 0.292 3.76 1.48 0.323 7.97 4.50 0.981 59.72 14.30 3.121
89 4.61 1.04 0.216 3.74 1.06 0.220 7.47 2.92 0.609 62.91 6.65 1.387
90 5.07 1.25 0.272 4.10 1.26 0.274 8.94 3.81 0.831 66.30 8.18 1.785
92 4.88 1.08 0.221 3.88 1.02 0.207 8.03 2.95 0.602 63.77 8.30 1.694
96 4.72 0.95 0.203 3.82 0.96 0.205 7.68 2.99 0.637 62.29 8.64 1.842

101 4.80 0.92 0.196 3.87 1.15 0.246 8.00 3.52 0.751 63.90 5.90 1.257
102 5.03 1.58 0.372 4.65 1.64 0.397 10.82 5.93 1.439 52.09 19.65 4.632
104 5.61 0.97 0.206 4.89 1.18 0.251 11.44 4.02 0.856 57.33 12.87 2.744
105 6.00 1.27 0.259 5.65 1.80 0.367 14.99 7.68 1.568 49.03 17.98 3.670
152 5.05 1.96 0.408 4.76 1.63 0.355 11.47 5.71 1.245 60.75 9.97 2.125
213 4.02 1.24 0.358 3.04 1.06 0.305 5.70 2.83 0.816 68.40 8.28 2.391
216 4.76 0.99 0.197 3.89 0.93 0.187 7.84 2.81 0.561 62.60 7.31 1.462
223 5.38 1.32 0.269 4.44 1.47 0.301 10.40 5.73 1.170 63.33 5.42 1.107
225 5.65 0.89 0.182 4.68 0.93 0.189 10.78 3.45 0.704 61.83 8.71 1.779
232 4.89 1.19 0.239 4.06 1.16 0.232 8.55 3.69 0.738 63.50 7.49 1.497
235 5.23 0.87 0.186 4.36 0.86 0.183 9.39 3.12 0.665 64.01 7.00 1.493
238 5.31 1.36 0.278 4.49 1.30 0.265 10.24 4.73 0.965 60.58 10.91 2.227
239 5.71 1.39 0.279 5.25 1.32 0.269 13.13 6.13 1.251 60.72 8.54 1.744
241 5.40 1.15 0.235 4.63 1.13 0.231 10.48 3.93 0.803 54.35 13.29 2.712
246 5.32 1.00 0.199 4.49 1.05 0.210 9.97 3.94 0.788 62.22 6.81 1.362
248 4.76 1.27 0.253 3.79 1.23 0.246 7.92 3.55 0.710 58.46 12.70 2.540
255 5.29 1.30 0.265 4.68 1.60 0.326 10.96 6.28 1.281 51.09 13.83 2.823
256 4.73 0.95 0.198 3.82 0.95 0.197 7.66 2.58 0.537 63.14 7.15 1.491
257 4.76 1.00 0.204 3.72 1.08 0.220 7.65 3.45 0.705 62.74 6.96 1.420
259 4.91 1.19 0.254 4.15 1.16 0.247 8.77 4.00 0.852 61.26 8.78 1.873
261 5.43 0.89 0.186 4.60 1.00 0.209 10.31 3.72 0.775 57.62 11.73 2.447
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Table 2. Cont.

Code H (m) Std Dev Std Err
Mean

D × 102

(m)
Std Dev Std Err

Mean
V × 103

(m3)
Std Dev Std Err

Mean CDI (%) Std Dev Std Err
Mean

265 5.48 1.01 0.207 4.68 1.25 0.255 10.76 3.93 0.802 62.47 8.70 1.775
267 5.82 1.18 0.245 4.89 1.23 0.257 11.91 4.99 1.041 56.33 9.26 1.932
270 5.30 1.06 0.226 4.40 0.98 0.209 9.69 3.86 0.822 56.88 18.17 3.874
271 4.98 1.18 0.240 4.10 1.17 0.245 8.93 4.16 0.866 61.05 11.97 2.444
275 5.02 0.97 0.199 4.35 1.12 0.228 9.16 3.24 0.661 59.63 8.16 1.665
279 5.15 0.93 0.198 4.05 0.84 0.179 8.60 2.82 0.600 64.83 6.15 1.311
282 4.96 1.28 0.280 4.14 1.28 0.280 8.91 3.88 0.847 63.33 9.76 2.130
283 6.24 1.19 0.248 6.18 1.63 0.340 17.13 8.22 1.714 42.67 16.59 3.460
286 5.06 1.24 0.259 4.33 1.26 0.262 9.46 4.61 0.962 55.45 12.91 2.691
287 4.93 0.95 0.202 4.20 1.20 0.256 8.86 3.86 0.822 58.50 9.80 2.090
338 5.11 1.01 0.212 4.36 1.26 0.263 9.55 4.88 1.017 57.60 10.10 2.107
339 5.26 1.12 0.228 4.30 1.24 0.253 9.62 4.30 0.878 59.28 14.57 2.973
340 4.87 0.70 0.146 4.02 0.77 0.160 8.10 2.42 0.505 64.96 8.38 1.747
341 5.36 1.16 0.237 4.82 1.31 0.267 11.04 4.46 0.911 52.40 10.80 2.204
342 4.44 1.62 0.324 3.76 1.79 0.358 8.19 6.24 1.247 59.50 14.21 2.843
343 4.41 1.32 0.270 3.71 1.12 0.233 7.44 3.38 0.706 58.88 12.36 2.577
345 4.93 1.29 0.268 3.93 1.42 0.297 8.64 4.83 1.006 65.38 7.97 1.662
346 4.78 1.12 0.233 4.20 1.30 0.270 8.78 4.32 0.902 58.30 10.57 2.204
347 4.64 1.58 0.322 3.48 1.57 0.321 7.66 4.97 1.014 62.27 8.35 1.704
348 5.32 1.25 0.272 4.31 1.19 0.259 9.71 4.28 0.933 66.70 5.90 1.287
349 4.88 1.17 0.245 4.34 1.15 0.239 9.09 3.85 0.803 59.27 10.44 2.226
350 5.13 0.97 0.199 4.09 0.94 0.191 8.74 3.18 0.650 65.03 6.02 1.228
351 4.62 1.00 0.224 3.96 1.29 0.288 8.03 3.56 0.797 55.39 13.16 2.944
352 5.41 1.59 0.331 4.71 1.78 0.372 11.42 5.56 1.159 58.52 11.18 2.331
353 5.46 1.46 0.291 4.53 1.26 0.253 10.56 5.60 1.119 59.96 9.56 1.912
354 4.77 1.09 0.227 3.91 1.00 0.209 7.95a 3.08 0.643 60.73 9.30 1.939
355 5.13 1.03 0.215 4.25 1.11 0.232 9.20 3.79 0.790 59.97 10.46 2.182
356 5.06 1.13 0.230 4.34 1.32 0.270 9.47 4.09 0.834 62.50 6.26 1.277
357 5.23 1.17 0.239 4.45 1.28 0.262 10.03 5.40 1.103 59.46 10.21 2.084
358 5.02 1.67 0.340 4.32 1.42 0.296 9.87 5.65 1.178 61.46 9.22 1.883
359 4.79 1.05 0.215 3.85 1.09 0.222 7.92 3.23 0.659 64.98 7.18 1.466
360 5.02 0.77 0.157 4.35 0.92 0.188 9.07 2.90 0.593 59.60 7.56 1.544
361 5.18 1.45 0.295 4.20 1.50 0.307 9.67 5.85 1.194 65.01 7.51 1.534
362 4.72 0.96 0.192 3.79 1.02 0.205 7.66 3.00 0.600 63.99 10.66 2.131
363 4.61 1.42 0.295 3.87 1.45 0.302 8.10 4.24 0.883 62.21 7.37 1.538
364 5.71 0.77 0.157 5.17 1.19 0.244 12.31 4.63 0.945 55.40 14.07 2.872
365 4.56 1.11 0.226 3.43 1.03 0.210 6.86a 2.67 0.545 66.15 10.11 2.063
366 4.65 1.47 0.300 4.06 1.48 0.303 8.60 4.66 0.951 57.82 8.73 1.782
367 4.85 1.23 0.251 4.12 1.34 0.274 8.77 4.30 0.877 59.33 11.42 2.382
368 5.54 0.87 0.177 4.45 0.82 0.167 9.98 3.13 0.638 65.95 5.10 1.040
370 4.74 1.13 0.303 4.04 1.17 0.311 8.30 3.66 0.978 61.01 4.22 1.127
372 4.80 0.85 0.185 4.24 1.31 0.287 8.80 4.00 0.872 55.71 11.00 2.401
377 4.53 0.94 0.200 3.57 0.97 0.206 7.03 3.00 0.639 60.88 7.29 1.555
379 5.28 0.97 0.194 4.36 1.05 0.210 9.60 3.95 0.790 61.44 8.64 1.728
380 5.36 1.48 0.309 4.50 1.04 0.221 10.37 3.78 0.806 63.72 9.33 1.946
381 5.30 0.89 0.186 4.81 1.07 0.223 10.64 3.64 0.759 57.32 7.76 1.619
384 5.06 1.22 0.244 4.48 1.52 0.305 9.97 4.92 0.984 60.10 11.18 2.237
388 5.13 1.35 0.276 4.13 1.31 0.267 9.13 3.69 0.753 64.43 9.02 1.881
389 5.50 1.11 0.222 4.38 1.10 0.220 10.05 4.58 0.916 62.28 7.69 1.538
390 4.94 1.15 0.239 4.16 1.01 0.210 8.70 3.39 0.707 62.99 7.89 1.645
391 5.47 0.99 0.203 4.59 1.10 0.225 10.46 4.13 0.842 64.30 4.30 0.878
393 4.24 1.45 0.303 3.64 1.54 0.327 7.46 4.34 0.925 60.87 10.10 2.106
395 5.31 0.89 0.239 4.51 0.94 0.252 9.89 3.79 1.014 60.34 8.06 2.153
402 4.70 1.15 0.235 3.63 1.11 0.227 7.44 3.27 0.667 66.09 7.17 1.464
403 5.09 1.13 0.247 4.19 1.28 0.279 9.14 3.98 0.868 62.31 12.54 2.736
404 4.67 1.11 0.232 3.82 1.21 0.253 7.84 3.64 0.759 61.36 9.14 1.906
405 5.05 1.16 0.231 4.14 1.13 0.225 8.91 3.90 0.779 57.36 14.28 2.856
406 4.62 1.36 0.284 3.86 1.49 0.312 8.18 5.12 1.067 61.64 8.99 1.875
407 5.04 1.47 0.307 4.12 1.25 0.261 9.03 4.50 0.938 60.14 12.51 2.609
408 5.06 1.09 0.227 4.24 1.34 0.280 9.22 3.93 0.819 63.20 7.07 1.474
410 4.96 1.25 0.267 4.00 1.36 0.291 8.75 5.00 1.065 64.13 11.95 2.547
411 5.52 1.35 0.270 4.83 1.62 0.325 11.80 6.83 1.366 53.29 16.84 3.368
412 5.44 1.09 0.233 4.58 1.35 0.289 10.68 5.78 1.232 59.35 11.57 2.467
423 5.18 1.35 0.296 4.54 1.50 0.327 10.35 5.22 1.139 58.69 11.58 2.526
424 3.94 1.46 0.344 3.02 1.27 0.298 5.81 3.70 0.872 63.77 13.40 3.159
425 3.28 0.44 0.139 2.28 0.43 0.137 3.74 0.74 0.235 63.25 7.46 2.359

Figure 1 shows the weight percentage of leaf loss over a null CDI. It is worth noting that as the CDI
increases the leaf loss is more pronounced, reaching values close to 48% for CDI above 60%. In more
specific terms, at 27 months, the average loss of leaves per tree is approximately 1.5 kg. This loss not
only results in a reduction of biomass and of tree growth, but also can favour the development of other
pathogens due to the weakness of the tree after the first attack of TLD, and could possibly lead to the
tree’s death [49].
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Figure 1. Leaves losses at 27 months of age according to the CDI.

Similarly, Figure 2 shows the loss percentage of wood with bark. It can be observed that the loss of
this fraction at a CDI of 60% is between 50% and 60% in weight. Thus, for juvenile Eucalyptus globulus
with 60% CDI, the average losses of dry wood and bark per tree are about 3 kg.

Forests 2017, 8, 447  6 of 12 

 

Figure 1 shows the weight percentage of leaf loss over a null CDI. It is worth noting that as the 
CDI increases the leaf loss is more pronounced, reaching values close to 48% for CDI above 60%. In 
more specific terms, at 27 months, the average loss of leaves per tree is approximately 1.5 kg. This 
loss not only results in a reduction of biomass and of tree growth, but also can favour the 
development of other pathogens due to the weakness of the tree after the first attack of TLD, and 
could possibly lead to the tree’s death [49]. 

 
Figure 1. Leaves losses at 27 months of age according to the CDI.  

Similarly, Figure 2 shows the loss percentage of wood with bark. It can be observed that the loss 
of this fraction at a CDI of 60% is between 50% and 60% in weight. Thus, for juvenile Eucalyptus 
globulus with 60% CDI, the average losses of dry wood and bark per tree are about 3 kg. 

 
Figure 2. Wood with bark loss at 27 months of age according to the CDI. 

Regarding the branches and twigs fraction, Figure 3 shows the results of the losses depending 
on the CDI value. For a 60% CDI, the average loss percentage reaches 50%, compared to a CDI of 
zero. This implies a loss per tree of around 1.25 kg of branches and twigs for this species, at 27 months 
of age. 

y = 0.7437x + 0.0015
R² = 0.2594

0

20

40

60

80

100

40 45 50 55 60 65 70

Le
av

es
 lo

ss
es

 (%
)

CDI (%)

y = 1.0082x - 0.0005
R² = 0.2491

20

40

60

80

100

40 45 50 55 60 65 70

W
oo

d 
w

ith
 b

ar
k 

lo
ss

es
 (%

)

CDI (%)

Figure 2. Wood with bark loss at 27 months of age according to the CDI.

Regarding the branches and twigs fraction, Figure 3 shows the results of the losses depending
on the CDI value. For a 60% CDI, the average loss percentage reaches 50%, compared to a CDI of
zero. This implies a loss per tree of around 1.25 kg of branches and twigs for this species, at 27 months
of age.
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Figure 3. Branch and twig loss percentage at 27 months of age, according to the CDI.

Comparing Figures 1–3, it can be seen that losses increase with increasing CDI, and that wide
differences appear between codes. For example, code 241 incurs lower losses than other codes with
a similar CDI, and it exhibits comparable losses to other codes with lower CDI levels. For a given CDI,
the disease causes greater loss percentages in wood and bark than in the other fractions that comprise
the tree. Figure 4 brings together all the biomass (leaves + branches + twigs + bark) representing
the weight in kg of dry biomass per tree, depending on the CDI. For a CDI of around 42%, the dry
biomass production at the age of 27 months is more than 8 kg per tree, whereas for CDI higher than
66%, the dry biomass production is lower than 3.8 kg per tree. These results show a 200% difference in
production when the CDI varies by only 20%. This fact suggests a possible method of selection for
the future, based on the observation that distinct families or individuals present a certain tolerance to
TLD. They could be the genetic basis of viable energy stands of Eucalyptus globulus in the future. In our
case, the codes 105 and 283 are those that generate more biomass in areas with high prevalence of TLD,
manifesting a certain tolerance to the disease.
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Figure 4. Total weight of dry biomass per tree depending on the CDI (age 27 months).
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Considering the data in [23] and the biomass losses, the amount of energy lost (MJ ha−1) in
a juvenile stage Eucalyptus globulus stand, based on the CDI, has been estimated (see Figure 5).
A planting density of 1600 stems ha−1 and a rate (number of trees that mortalyted 12 months of age) of
10%, were taken into account. This death rate can be considered as an extensively managed plantation
representative of an E. globulus stand that has not been damaged by external agents. The results shown
in Figure 5 relate biomass losses with energy losses. In our case, it is observed that between CDImaximum
and CDIminimum the losses range between 83,000 and 184,000 MJ ha−1 respectively.
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Figure 5. Dry biomass and energy losses per ha, at 27 months of age, according to the CDI.

Figure 6 compares the E. globulus dry biomass yields, in Megagrams ha−1, from our study, with
yields from other genera used as SRF (poplar and willow clones) in northern Europe.

According to [8,50], poplar and willow clone production, in experimental stands with densities of
16,600 stems ha−1, varies between 10 and 40 Mg ha−1 and 15 and 38 Mg ha−1, respectively, at five years
of age and depending on fertilization treatments and soil characteristics. This implies an annual
average yield of 6 and 4 Mg ha−1 for poplar and willow, respectively. It is worth highlighting that
two codes of Eucalyptus globulus, even with much lower planting densities (see Figure 6), can achieve
annual productions exceeding those of poplar and willow clones. It can be concluded that these two
codes, namely 283 and 105, are most suitable for bioenergy stands in areas with high TLD prevalence.
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Figure 6. Eucalyptus globulus annual productivity (Mg ha−1) versus Poplar and Willow clones.
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It should be noted that average productions of poplar and willow clones are calculated for five
year rotations and planting densities 10 times higher than those in this study. Moreover, in this
study, the analysis was performed on trees at the age of 27 months. This fact has relevance since the
damage caused by TLD in Eucalyptus globulus occurs mainly from the second year on, specifically
between 22 and 30 months of age [50]. Thus, if the rotation period is less than two years, the damage
caused by TLD would be lower, and productivity per hectare would increase. This option would
entail much higher planting densities, difficulty with regrowth, soil depletion due to overexploitation;
in a word, significantly greater environmental impact. In practice, this strategy, from a purely business
standpoint, would involve costs not feasible today. However, it would be interesting to test different
rotation periods and planting densities in order to optimize production of this tree species in areas
with TLD prevalence.

In the stands of poplar and willow clones, planting densities are around 16,600 stems ha−1, [8] which
represents a significant increase in the planting and fertilization costs compared to those of
Eucalyptus globulus. From an economic standpoint, this fact favours Eucalyptus globulus, since,
with planting densities several times lower than poplar and willow, this species can attain similar
biomass productivities, even when TLD is present. Despite the impact of the TLD on the plantations
of Eucalyptus globulus, this previously selected species can be used as SRF in temperate places where
the fungus is a limiting factor during the spring and summer months. Knowledge about the control
of the disease [51] together with the selection of individuals will allow the establishment of viable
E. globulus plantations.

4. Conclusions

The attack on Eucalyptus globulus short rotation stands by the foliar disease TLD significantly
reduces its productivity, since it is precisely the juvenile stage that is affected. There are taxa
(identified by codes in this study) of E. globulus in which the disease severity is significantly lower
than the average, suggesting that these families are endowed with a certain tolerance to the disease,
as compared to their counterparts.

The loss of dry biomass varies according to the CDI. For trees at 27 months of age, with a CDI of
around 60%, the loss ranges between 8 and 10 Mg ha−1. This total loss corresponds to the sum of the
partial losses that make up the biomass. The greatest losses are seen in the fraction representing wood
and bark, which, at 60% CDI, experiences a reduction of approximately 70% in weight.

The weighted average NCV of juvenile E. globulus, (dry biomass), is 16,774 kJ kg−1. In this study,
when combined with the loss of biomass per ha, the energy loss per area unit range between 83,000
and 184,000 MJ ha−1. This loss could be translated into economic terms by considering the current
high prices for electricity obtained from forest energy crops.

Despite the incidence of TLD in stands of E. globulus, their productivity is similar (when CDI
values are low enough), to other species used for energy purposes (clones of poplar and willow),
and this happens even when the planting densities of the E. globulus stands are much lower. In general,
E. globulus biomass yields can be considered similar to those of poplar and willow when the CDI is
lower than 56%. This finding suggests a future research focus which could involve the selection of
families tolerant to the disease that would serve as the genetic basis for future stands. In our case,
the families represented by codes 283 and 105 are best suited for this purpose.

The presence of the foliar disease TLD in stands of E. globulus influences the forestry and
management of such plantations. An effective response to the threat posed involves the selection
of individuals and families tolerant to disease. One barrier to overcome is the known difficulty of
E. globulus to be cloned by cuttings due to low rooting capacity. This limitation, as well as the tolerance
to TLD appears to be strongly linked to the genetics of each individual and/or family.

Acknowledgments: The authors wish to thank the Council on Research and Technological Development of the
University of Cantabria and the company Sniace, S.A. for its great help.



Forests 2017, 8, 447 10 of 12

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
contributions must be provided. The following statements should be used “S. Pérez conceived and designed the
experiments; C.J. Renedo, performed the experiments; A. Ortiz and F. Ortiz analyzed the data; A. Santisteban
contributed reagents/materials/analysis tools; S. Pérez, wrote the paper.” Authorship must be limited to those
who have contributed substantially to the work reported.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current
technologies. Science 2004, 305, 968–972. [CrossRef] [PubMed]

2. Werther, J.; Saenger, M.; Harthge, U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy
Combust. Sci. 2000, 26, 1–27. [CrossRef]

3. Strelher, A. Technologies of wood combustion. Ecol. Eng. 2000, 16, 25–40. [CrossRef]
4. Walle, I.V.; Camp, N.V.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple,

poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential.
Biomass Bioenergy 2007, 31, 276–283. [CrossRef]

5. Sims, R.E.; Senelwa, K.; Maiava, T.; Bullock, B.T. Eucalyptus species for biomass energy in New
Zealand—Part II: Coppice performance. Biomass Bioenergy 1999, 17, 333–343. [CrossRef]

6. Zewdie, M.; Olsson, M.; Verwijst, T. Above-ground biomass production and allometric relations of
Eucalyptus globulus Labill coppice plantations along a chronosequence in the central highlands of Ethiopia.
Biomass Bioenergy 2009, 33, 421–428. [CrossRef]

7. Sixto, H.; Hernández, M.; Barrio, M.; Carrasco, J.; Cañellas, I. Plantaciones del género Populus para producción
de biomasa con fines energéticos: Revisión. Investig. Agrar. Sist. Recur. For. 2007, 16, 277–294. [CrossRef]

8. Hofmann-Schielle, C.; Jug, A.; Makeschin, F.; Rehfuess, K. Short-rotation plantations of balsam poplars,
aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships.
For. Ecol. Manag. 1999, 121, 67–83. [CrossRef]

9. Misra, R.K.; Turnbull, C.R.A.; Cromer, R.N.; Gibbons, A.K.; LaSala, A.V. Bellow-and above ground growth of
Eucalyptus nitens in a young plantation I. Biomass. For. Ecol. Manag. 1998, 106, 283–293. [CrossRef]

10. Van den Broek, R.; Vleeshouwers, L.; Hoogwijk, M. The energy crop growth model SILVA: Description and
application to Eucalyptus plantations in Nicaragua. Biomass Bioenergy 2001, 21, 335–349. [CrossRef]

11. Sochacki, S.J.; Harper, R.J.; Smettem, K.R.J. Estimation of woody biomass production from a short-rotation
bio-energy system in semi-arid Australia. Biomass Bioenergy 2007, 31, 608–616. [CrossRef]

12. Rockwood, D.L.; Rudie, A.W.; Ralph, S.A. Energy product options for Eucalyptus species grown as short
rotation woody crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. [CrossRef] [PubMed]

13. Sims, R.E.H.; Maiava, T.G.; Bullock, B.T. Short rotation coppice tree species selection for woody biomass
production in New Zealand. Biomass Bioenergy 2001, 20, 329–335. [CrossRef]

14. Gasol, C.M.; Gabarrilla, X.; Antón, A.; Rigolad, M.; Carrascoe, J.; Ciriae, P.; Rieradevalla, J. LCA of poplar
bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario.
Biomass Bioenergy 2009, 33, 119–129. [CrossRef]

15. Zalesny, R.S.; Wiese, A.H.; Bauer, E.O.; Riemenschneider, D.E. Ex situ growthand biomass of Populus
bioenergy crops irrigatedand fertilized with landfill leachate. Biomass Bioenergy 2009, 33, 62–69. [CrossRef]

16. Coylea, D.R.; Colemana, M.D.; Durante, J.A.; Newman, L.A. Survival and growth of 31 Populus clones in
South Carolina. Biomass Bioenergy 2006, 30, 750–758. [CrossRef]

17. Ceulemans, R.; Mcdonaldt, A.J.S.; Pereira, J.S.A. A comparison among eucalypt, poplar and willow
characteristics with particular reference to a coppice, growth-modelling approach. Biomass Bioenergy 1996,
11, 215–231. [CrossRef]

18. Arevalo, C.B.M.; Volk, T.A.; Bevilacqua, E.; Abrahamson, L. Development and validation of aboveground
biomass estimations for four Salix clones in central New York. Biomass Bioenergy 2007, 31, 1–12. [CrossRef]

19. Aravanopoulos, F.A.; Kimb, K.H.; Zsuffa, L. Genetic diversity of superior Salix clones selected for intensive
forestry plantations. Biomass Bioenergy 1999, 16, 249–255. [CrossRef]

20. Kidanu, S.; Mamo, T.; Stroosnijder, L. Biomass production of Eucalyptus boundary plantations and their
effect on crop productivity on Ethiopian highland vertisols. Agrofor. Syst. 2005, 63, 281–290. [CrossRef]

http://dx.doi.org/10.1126/science.1100103
http://www.ncbi.nlm.nih.gov/pubmed/15310891
http://dx.doi.org/10.1016/S0360-1285(99)00005-2
http://dx.doi.org/10.1016/S0925-8574(00)00049-5
http://dx.doi.org/10.1016/j.biombioe.2007.01.002
http://dx.doi.org/10.1016/S0961-9534(99)00043-4
http://dx.doi.org/10.1016/j.biombioe.2008.08.007
http://dx.doi.org/10.5424/srf/2007163-01016
http://dx.doi.org/10.1016/S0378-1127(98)00555-6
http://dx.doi.org/10.1016/S0378-1127(97)00339-3
http://dx.doi.org/10.1016/S0961-9534(01)00032-0
http://dx.doi.org/10.1016/j.biombioe.2007.06.020
http://dx.doi.org/10.3390/ijms9081361
http://www.ncbi.nlm.nih.gov/pubmed/19325808
http://dx.doi.org/10.1016/S0961-9534(00)00093-3
http://dx.doi.org/10.1016/j.biombioe.2008.04.020
http://dx.doi.org/10.1016/j.biombioe.2008.04.012
http://dx.doi.org/10.1016/j.biombioe.2005.08.005
http://dx.doi.org/10.1016/0961-9534(96)00035-9
http://dx.doi.org/10.1016/j.biombioe.2006.06.012
http://dx.doi.org/10.1016/S0961-9534(98)00013-0
http://dx.doi.org/10.1007/s10457-005-5169-z


Forests 2017, 8, 447 11 of 12

21. Tejedor, C. Basic density selection for Eucalyptus globulus in Northern Spain. Within-tree and between-tree
variation. In Proceedings of the IUFRO Conference Eucalyptus in a Changing World, Aveiro, Portugal,
11–15 October 2004.

22. Faúndez, P. Potential costs of four short-rotation silvicultural regimes used for the production of energy.
Biomass Bioenergy 2003, 24, 373–380. [CrossRef]

23. Pérez, S.; Renedo, C.J.; Ortiz, A.; Mañana, M.; Silió, D. Energy evaluation of the Eucalyptus globulus and the
Eucalyptus nitens in the North of Spain (Cantabria). Thermochim. Acta 2006, 451, 57–64. [CrossRef]

24. Hunter, G.C.; Crous, P.W.; Carnegie, A.J.; Burgess, T.I.; Wingfield, M.J. Mycosphaerella and Teratosphaeria
diseases of Eucalyptus: Easily confused and with serious consequences. Fungal Divers. 2011, 50, 145–166.
[CrossRef]

25. Park, R.F.; Keane, P.J.; Wingfield, M.J.; Crous, P.W. Fungal disease of eucalypt foliage. In Diseases and
Pathogens of Eucalypts; Keane, P.J., Kile, G.A., Podger, F.D., Brown, B.N., Eds.; CSIRO Publishing: Collingwood,
Australia, 2000; pp. 153–239.

26. Crous, P.W.; Hong, L.; Wingfield, B.D.; Wingfield, M.J. ITS rDNA phylogeny of selected Mycosphaerella
species and their anamorphs ocurring on Myrtaceae. Mycol. Res. 2001, 105, 425–431. [CrossRef]

27. Milgate, A.W.; Potts, B.M.; Joyce, K.; Mohammed, C.; Vaillancourt, R.E. Genetic variation in
Eucalyptus globulus for susceptibility to Mycosphaerella nubilosa and its association with tree growth.
Australas. Plant Pathol. 2005, 34, 11–18. [CrossRef]

28. Park, R.F.; Keane, P.J. Three Mycosphaerella species from leaf diseases of Eucalyptus. Trans. Br. Mycol. Soc.
1982, 79, 95–100. [CrossRef]

29. Royle, D.J.; Hubbes, M. Diseases and pests in energy crop plantations. Biomass Bioenergy 1992, 2, 45–54.
[CrossRef]

30. Royle, D.J.; Ostry, M.E. Disease and pest control in the bioenergy crops Poplar and Willow. Biomass Bioenergy
1995, 9, 69–79. [CrossRef]

31. Sage, R.B. Short rotation coppice for energy: Towards guidelines. Biomass Bioenergy 1998, 15, 39–47.
[CrossRef]

32. Pinkard, E.A.; Mohammed, C.L. Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease.
New Phytol. 2006, 170, 119–127. [CrossRef] [PubMed]

33. Eyles, A.; Barry, K.; Quentin, A.; Pinkard, E. Impact of defoliation in temperate Eucalypt plantations:
Physiological perspectives and management. For. Ecol. Manag. 2013, 304, 49–64. [CrossRef]

34. Tuskan, G.A. Short-Rotation woody crop supply systems in the United States: What do we know and what
do we need to know? Biomass Bioenergy 1998, 14, 307–315. [CrossRef]

35. Dickmann, D.I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now.
Biomass Bioenergy 2006, 30, 696–705. [CrossRef]

36. Park, R.F. Epidemiology of Mycosphaerella nubilosa and M. cryptica on Eucalyptus spp. in South-Eastern
Australia. Trans. Br. Mycol. Soc. 1988, 91, 261–266. [CrossRef]

37. Carnegie, A.J.; Addes, P.K. The proportion of leaf spots caused by Mycosphaerella cryptica and M. nubilosa on
Eucalyptus globulus, E. nitens and their F1 hybrids in a family trial in Tasmania, Australia. Australas. Mycol.
2002, 21, 53–63.

38. Maxwell, A. The Taxonomy Philogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western
Australia. Ph.D. Thesis, School of Biothecnology and Biological Science, Murdoch University, Murdoch,
Australia, 2004.

39. Carnegie, A.J.; Keane, P.J.; Ades, P.K.; Smith, I.W. Variation in susceptibility of Eucalyptus globulus provenances
to Mycosphaerella leaf disease. Can. J. For. Res. 1994, 24, 1751–1757. [CrossRef]

40. Lundquist, J.E.; Purnell, R.C. Effects of Mycosphaerella Leaf Spot on growth of Eucalyptus nitens. Plant Dis.
1987, 71, 1025–1029. [CrossRef]

41. Stone, C.; Matsuki, M.; Carnegie, A.J. Pest and Disease Assessment in Young Eucalypt Plantations: Field Manual
for Using the Crown Damage Index; Parson, M., Ed.; National Forest Inventory, Bureau of Rural Sciences:
Canberra, Australia, 2003.

42. Pita, P.A. Tablas de CubicacióN Por DiáMetros Normales y Alturas Totales; Instituto Forestal de Investigaciones y
Experiencias (I.F.I.E. Ministerio de Agricultura): Madrid, Spain, 1967.

43. Reed, D.; Tomé, M. Total aboveground biomass and net dry matter accumulation by plant component in
young Eucalyptus globulus in response to irrigation. For. Ecol. Manag. 1998, 103, 21–32. [CrossRef]

http://dx.doi.org/10.1016/S0961-9534(02)00164-2
http://dx.doi.org/10.1016/j.tca.2006.08.009
http://dx.doi.org/10.1007/s13225-011-0131-z
http://dx.doi.org/10.1017/S0953756201003835
http://dx.doi.org/10.1071/AP04073
http://dx.doi.org/10.1016/S0007-1536(82)80194-0
http://dx.doi.org/10.1016/0961-9534(92)90087-7
http://dx.doi.org/10.1016/0961-9534(95)00080-1
http://dx.doi.org/10.1016/S0961-9534(97)10055-1
http://dx.doi.org/10.1111/j.1469-8137.2006.01645.x
http://www.ncbi.nlm.nih.gov/pubmed/16539609
http://dx.doi.org/10.1016/j.foreco.2013.04.033
http://dx.doi.org/10.1016/S0961-9534(97)10065-4
http://dx.doi.org/10.1016/j.biombioe.2005.02.008
http://dx.doi.org/10.1016/S0007-1536(88)80213-4
http://dx.doi.org/10.1139/x94-226
http://dx.doi.org/10.1094/PD-71-1025
http://dx.doi.org/10.1016/S0378-1127(97)00174-6


Forests 2017, 8, 447 12 of 12

44. Hubbard, W.N.; Scott, D.W.; Waddinton, G. Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience:
New York, NY, USA, 1956.

45. Brañas, J.; González-Río, E.; Merino, A. Content and distribution of nutrients in Eucalyptus globulus
plantations in Northwestern Spain. Investig. Agrar. 2000, 2, 317–355.

46. Singh, R.P.; Sharma, V.K. Biomass estimation in five different aged plantations of Eucalyptus tereticornis
Smith in Western Uttar Pradesh. In Oslo Biomass Studies; College of Life Sciences and Agriculture,
University of Maine: Orono, ME, USA, 1976; pp. 143–161.

47. Soria, S. Especies de Mycosphaerella, y Teratosphaeria en Plantaciones Jóvenes de Eucalyptus globulus:
Evaluación de Daño y Control. Ph.D. Thesis, Facultad de Ciencias, Universidad de Uruguay, Montevideo,
Uruguay, 2016.

48. Dungey, H.S.; Potts, B.M.; Carnegie, A.J.; Ades, P.K. Mycosphaerella leaf disease: Genetic variation in damage
to Eucalyptus nitens, Eucalyptus globulus, and their F1 hybrid. Can. J. For. Res. 1997, 27, 750–759. [CrossRef]

49. Balmelli, G.; Altier, N.; Marroni, V. Daños provocados por enfermedades foliares y por heladas en E. globulus
I. Efecto fenotípico sobre el comportamiento productivo posterior. Bol. CIDEU 2007, 3, 67–75.

50. Vande Walle, I.; Van Camp, N.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of
birch, maple, poplar and willow in Flanders (Belgium) I—Biomass production after 4 years of tree growth.
Biomass Bioenergy 2007, 31, 267–275. [CrossRef]

51. Pérez, S.; Renedo, C.J.; Ortiz, A.; Ortiz, F.; Tejedor, C. Strategies to combat Mycosphaerella leaf disease in
Eucalyptus globulus plantations in northern Spain. Forests 2016, 7, 190. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1139/x96-210
http://dx.doi.org/10.1016/j.biombioe.2007.01.019
http://dx.doi.org/10.3390/f7090190
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 

