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 Photocatalytic decomposition of PFOA using a TiO2‐rGO catalyst was studied 
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irradiation 

 Formation  of  intermediate  PFCAs  and  F‐  elucidated  the  PFOA  degradation 

mechanism 

 Faster degradation kinetics were observed for shorter carbon‐chain PFCAs  

 
 

ABSTRACT 

The inherent resistance of perfluoroalkyl substances (PFASs) to biological degradation 

makes necessary to develop advanced technologies for the abatement of this group of 

hazardous substances. The present work investigated the photocatalytic decomposition 

of perfluorooctanoic acid (PFOA) using a composite catalyst based on TiO2 and 

reduced graphene oxide (95% TiO2/5% rGO) that was synthesized using a facile 

hydrothermal method. The efficient photoactivity of the TiO2-rGO (0.1 g.L-1) composite 
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was confirmed for PFOA (0.24 mmol.L-1) degradation that reached 93±7% after 12 h of 

UV-visible irradiation using a medium pressure mercury lamp, a great improvement 

compared to the TiO2 photocatalysis (24±11% PFOA removal) and direct photolysis 

(58±9%). These findings indicate that rGO provided the suited properties of TiO2-rGO, 

possibly as a result of acting as electron acceptor and avoiding the high recombination 

electron/hole pairs. The release of fluoride and the formation of shorter-chain 

perfluorocarboxilyc acids, that were progressively eliminated in a good match with the 

analysed reduction of total organic carbon, is consistent with a step-by-step PFOA 

decomposition via photogenerated hydroxyl radicals. Finally, the apparent first order 

rate constants of the TiO2-rGO UV-Vis PFOA decompositions, and the intermediate 

perfluorcarboxylic acids were found to increase as the length of the carbon chain was 

shorter. 

 

Keywords: perfluorooctanoic acid, PFOA, TiO2-rGO, Titanium dioxide, graphene 

oxide, photocatalysis  
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1. INTRODUCTION 

The presence of poly- and perfluoroalkyl substances (PFASs) in industrial emissions, 

drinking water sources and groundwaters is of increasing concern due to their extreme 

persistence and potential toxicity [1–3]. As a result, the Stockholm Convention on 

Persistent Organic Pollutants restricted the use and production of 

perfluorooctanesulfonate (PFOS) and its salts, and at present perfluorooctanoic acid 

(PFOA) and PFOA related compounds are under review for listing under the 

Convention [4]. The United States Environmental Protection Agency established health 

advisory levels for PFOA and PFOS in drinking water at 0.07 µg.L-1, both individually 

and combined [5].  

Due to the inherent resistance of PFOA, PFOS and related compounds to biological 

degradation [6–8], there is an intense research on chemical oxidation/reduction 

technologies to degrade PFASs in water, including direct photolysis, photochemical 

oxidation, photochemical reduction, photocatalytic oxidation, electrochemical 

oxidation, persulfate oxidation and sonochemical pyrolysis [9–18]. Among these 

technologies, direct photolysis is an alternative that operates at ambient temperature and 

pressure and it does not require additional chemicals. However, the studies published so 

far have shown that PFOA was only efficiently decomposed using a light source 

emitting at wavelengths from deep UV-region to 220 nm [19,20] or under elevated 

irradiation intensity [21]. Therefore, direct photolysis application is constrained by the 

high energy demand needed to obtain the intensity of the active irradiating light and the 

long treatment times. 

A literature survey about the photocatalytic PFOA degradation in aqueous media is 

summarized in Table S1 (Supplementary Material). Despite the suitable properties of 
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TiO2 catalyst, such as non-toxicity, photostability and low cost [22–24], the majority of 

the previous studies revealed the low PFOA degradation rate achieved by TiO2 

photocatalysis, which was comprised in the range 7-44% in most of the studies 

[12,21,25–33]. The limited performance of TiO2 is attributed to its relatively large band-

gap, high recombination rate of electron-hole pairs and limited use of visible light 

spectrum. Nevertheless, the comparison of previous research is hindered by the 

diversity of the applied experimental conditions, e.g.: light intensity (0.45-9.5 mW.cm-

2), wavelength spectrum emitted by the light source (200-600 nm), reactor volume 

(0.12-3 L) and treatment time. The reaction medium has been also widely varied, in 

terms of PFOA concentration, background electrolytes and O2 or N2 supply [34]. Yet, 

the catalyst dosage was quite homogeneous in all the reviewed research, and was varied 

in the range of 0.25-2 g.L-1. The highest reported PFOA removal rates, 98 %, could be 

associated to the use of high intensity irradiation, a factor that would accelerate the 

degradation rates [21,34].  

Recently, different strategies have been proposed to overcome TiO2 limitations, such as 

the synthesis of titanate nanotubes (TNTs) out of a commercial TiO2 catalyst, that 

doubled the PFOA degradation rate [21]. Other approaches consisted of modifying the 

process conditions. Within this group, TiO2-mediated photocatalysis combined with 

perchloric acid [26] or ultrasonication [35], achieved 2-fold and almost 5-fold 

improvements in the PFOA degradation rate, respectively. The addition of oxalic acid 

also accelerated PFOA decomposition using TiO2, under nitrogen atmosphere [27]. 

However, these methods would involve adding different substances to the polluted 

water. A more promising strategy is focused on the synthesis of new composite 

catalysts that combine the photoactivity of TiO2 with transition metals, e.g.: Fe, Nb, Cu, 

Pb [12,30,36] or with noble metal nanoparticles Ag, Pt or Pd [31]. Transition and noble 
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metals have demonstrated to act as electron traps preventing the high electron-hole 

recombination, to successfully improve the photocatalytic features of TiO2-doped 

composites [37]. Also Song et al. [32] showed that the use of composites of TiO2 with 

multiple wall carbon nanotubes (TiO2-MWCNT) enhanced the photocatalytic PFOA 

decomposition. 

Among the new strategies to enhance the efficiency of photocatalysts, the combination 

of TiO2 with graphene materials has been reported to increase the lifetime of electron-

hole pairs, by reducing charge recombination, due to the excellent electron trapping and 

electrical conductivity properties of graphene. It is also thought that graphene provides a 

superior photoresponse by extending the excitation wavelength compared to bare TiO2 

[37–40]. The effective photocatalytic activity of the composite catalysts based on TiO2 

and graphene or graphene oxide has been demonstrated for the degradation of dyes as 

model of organic pollutants [39,41–44], and in a few seminal studies dealing with more 

complex organic contaminants, such as, dodecylbenzenesulfonate [45], 

diphenhydramine [46] or phenols [40]. A notable gap is that TiO2-graphene composite 

photocatalysts have not been tested yet for the degradation of neither PFOA nor other 

PFASs.  

This study aims to explore the photocatalytic degradation of PFOA by means of a 

composite catalyst of TiO2 and reduced graphene oxide (TiO2-rGO). Photocatalysis 

experiments under UV-visible irradiation examined the effect of TiO2-rGO catalyst 

concentration on PFOA removal and defluorination, and evaluated the generation of 

shorter-chain perfluorinated intermediate products, as well as the total organic carbon 

reduction. Results were compared with bare TiO2 and direct photolysis conditions to 

gain insight into factors influencing the significant photocatalytic enhancement that was 
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provided by the TiO2-rGO material. Finally, this work assessed the effect of the alkyl 

chain length on the kinetics of the photocatalytic degradation of perfluorocarboxylic 

acids by means of TiO2-rGO composite catalyst. 

2. MATERIALS AND METHODS 

2.1.Chemical Reagents  

All chemicals were reagent grade or higher and were used as received without further 

purification. PFOA (C7F15COOH, 96% purity), perfluoroheptanoic acid (PFHpA, 

C6F13COOH, 99% purity), perfluorohexanoic acid (PFHxA, C5F11COOH, 96% purity), 

perfluoropentanoic acid (PFPeA, C4F9COOH, 97% purity) were purchased from Sigma 

Aldrich Chemicals. TiO2 (P25, 20% rutile and 80% anatase, 50 m2.g-1, 21 nm) was 

obtained from Evonik Degussa. Graphite powder was supplied by Acros Organics. 

Sulfuric Acid 95-98% (H2SO4), chloride acid 37% (HCl), potassium permanganate 

(KMnO4), sodium nitrate (NaNO3), phosphoric acid (85%) and sodium di-hydrogen 

phosphate anhydrous were provided by Panreac. Hydrogen peroxide (H2O2, 30% v/v) 

and Methanol (UHPLC-MS grade) were obtained from Scharlau. All solutions were 

prepared using ultrapure water (Q-POD Millipore). 

2.2.Synthesis of composite TiO2-rGO catalyst. 

The first step was the synthesis of graphene oxide (GO) using the modified Hummers 

method [47] by the oxidation of graphite powder with NaNO3, H2SO4 and KMnO4. The 

oxidized graphite was centrifuged and washed with ultrapure water and with an aqueous 

HCl solution. The remaining solid was ultrasonicated to achieve exfoliated graphene 

oxide nanosheets. After that, the sample was centrifuged and the supernatant was 

collected and dried in an oven overnight, obtaining GO as a solid [46].  
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TiO2-rGO composites were synthesized using the hydrothermal method and following 

the procedure reported in the literature [37,48]. In brief, commercial TiO2 was added 

into 150 mL GO dispersion in ultrapure water. The content of GO was controlled to be 

5% wt. in the TiO2-rGO composites. After stirring for 2 h, the solution was placed in a 

200 mL Teflon-lined stainless steel auto-clave and maintained at 120 ºC for 3 h, to 

achieve simultaneously the reduction of GO and the loading of TiO2 on the reduced GO 

sheets. The resulting composite was recovered by centrifugation, rinsed with ultrapure 

water, and fully dried at 50 ºC overnight. 

The successful synthesis of the composite TiO2-rGO was examined by means of 

Attenuated Total Reflectance Fourier Transformed Infrared (ATR-FTIR) spectroscopy 

(Fig. S1, Supplementary Material). The intensity increase of the ATR-FTIR bands 

between 500-900 cm-1 for TiO2-rGO in contrast to the TiO2 material was indicating the 

formation of Ti-O-C bonds in addition to the typical Ti-O-Ti bonds present in TiO2. 

Furthermore, Transmission Electron Microscopy (TEM) results (Fig. S2 in 

supplementary material) demonstrated the homogeneous distribution of the TiO2 

catalysts on the rGO surface. Energy dispersive X-ray (EDX) spectroscopy of two 

distinct zones of the TiO2-rGO material were done to qualitatively discern between TiO2 

and GO presence. Both ATR-FTIR and TEM-EDX results are similar to those reported 

by Ribao et al [37]. X-ray diffraction analysis (Fig. S3 in supplementary material) 

showed that the crystalline phase of the commercial P25 TiO2 was maintained in the 

TiO2-rGO composite after the hydrothermal sysnthesis. Therefore, it can be deemed that 

TiO2-rGO composites were successfully prepared via hydrothermal synthesis. Finally, 

the specific surface area (S) of the catalyst materials was calculated by the Brunauer-

Emmett-Teller (BET) method from the nitrogen adsorption-desorption isotherm data 

employing the ASAP 2000 surface area analyzer (Micromeritics). 
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2.3.Photocatalytic experiments 

The schematic of experimental setup is shown in the Supplementary Material, Fig. S4. 

Photocatalytic experiments were conducted in a 1 L Heraeus Laboratory UV Reactor 

mounted on an Agimatic-S magnetic stirring plate (JP Selecta, Spain). A 

water/ethylene-glycol cooling jacket (PolyScience Digital Temperature Controller) was 

used to keep the reactor temperature at 293-298 K. A medium-pressure mercury lamp 

(Heraus Noblelight TQ 150 W z1) with an emission spectrum between 200 and 600 nm 

(Fig. S5, supplementary material) was used as irradiation source. The lamp was placed 

in a quartz sleeve in the centre of the reactor. It is noteworthy that the quart sleeve of the 

lamp did not absorb light in the UV wavelength range of interest. PFOA aqueous 

solutions 0.24 mmol.L-1 were used as feed in all experiments. The initial pH of the 

PFOA solution was 3.8 and it was not adjusted during the experiments. The TiO2-rGO 

catalyst doses were 0.05, 0.1 and 0.5 g.L-1. Samples were withdrawn from the reactor at 

different time intervals and filtered through 0.45 µm polypropylene filters to remove the 

catalyst particles before analysis. A HD2102.1 photo/radiometer (Delta OHM) provided 

with VIS-NIR, UVA, UVB and UVC detectors allowed measuring the light intensity 

received on the outer wall of the glass reactor. 

2.4.Analytical methods 

The concentration of PFOA and its degradation products, PFHpA, PFHxA, PFPeA were 

analysed using HPLC-DAD (Water 2695) system equipped with a X Bridge C18 

column (5 µm, 250 mm x 4.6 mm, Waters). The separation column was set in an oven at 

40 ºC. A mixture of methanol (65%) and di-hydrogen phosphate (35%) was used as 

mobile phase in isocratic mode with a flow rate of 0.5 mL.min-1. The wavelength of the 

detector was set at 204 nm. The limit of quantification (LOQ) was 10 mg.L-1 for PFOA 
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and 5 mg.L-1 for PFHpA, PFHxA and PFPeA. 

TOC analyses were performed using a TOC-V CPH (Shimadzu). Fluoride was analyzed 

by ion chromatography (Dionex 120 IC) provided with an IonPac As-HC column and 

using a 9 mM Na2CO3 solution as eluent, that was circulated at a flowrate of 1 mL.min-

1, based on Standard Methods 4110B (Standard Methods, 1998). The LOQ for fluoride 

analysis was 0.03 mg.L-1. The possible fluoride incorporation onto the TiO2-rGO 

surface was investigated by X-ray photoelectron spectroscopy (XPS), using an SPECS 

(Berlin, Germany) system equipped with a Phoibos 150 1D-DLD analyser and 

monochromatic Al Kα radiation (1486.6 eV). 

3. RESULTS AND DISCUSSION 

3.1.Photocatalytic decomposition of PFOA 

The photocatalytic degradation of PFOA using the TiO2-rGO composite and 

commercial TiO2 was studied. Moreover, the removal of PFOA by direct photolysis 

under UV irradiation was also studied for comparison. The intermediate products 

formed upon PFOA degradation were analysed, and PFOA mineralization rate was 

monitored using the progress of TOC and the released fluoride as indicators. The 

adsorption of PFOA in the experimental system was negligible (less than 1%) after 12 h 

of contact of the feed solution inside the glass reactor. The amount of PFOA adsorbed 

on the TiO2 and TiO2-rGO (0.5 g.L-1) were found to be 6.4±0.6% and 8.4±0.4%, 

respectively, after 12 h of contact under stirring in dark conditions. These values of 

adsorption could be explained by the higher BET specific surface area of TiO2-rGO, 

STiO2-rGO = 62.2 m2.g-1, compared to TiO2, STiO2=50 m2.g-1 [48]. Similar values of PFOA 

adsorption on TiO2 and metal-modified TiO2 have been reported [31]. The electrostatic 

attraction between the negatively charged perfluorooctanoate anion and the positively 
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charged surface of TiO2 particles in acidic solution could have favoured the adsorption 

[12,26], that nevertheless reached only a minor fraction of the initial content. 

Next, the influence of the photocatalytic media was assessed. Fig. 1 allows the 

comparison of the disappearance of PFOA with time by means of direct photolysis 

(without catalyst) and when using TiO2 and TiO2-rGO as photocatalysts. In every 

experiment, a volume of 0.8 L of an aqueous PFOA solution (0.24 mmol.L-1) was 

irradiated. It is observed that the application of UV light in the absence of any catalyst 

produced a significant PFOA degradation that reached 58 ± 9% removal after 12 h of 

irradiation. These results are in agreement with available data reported elsewhere [9,21]. 

PFOA molecule strongly absorbs light with wavelengths from deep UV-region to 220 

nm, and presents weak absorption in the 220-270 nm range of light wavelengths [19]. In 

line with these properties, some authors reported high PFOA photoabatement using a 

vacuum UV lamp with a monochromatic emission at 185 nm, although the kinetics of 

PFOA removal were significantly reduced when using the more common emission at 

254 nm [49,50]. However, the comparison of literature data about the direct photolysis 

of PFOA is hindered by the diversity of the applied experimental conditions, range of 

UV emission wavelength and power of the UV lamp [21]. In line with the previous 

discussion, it was concluded that the medium-pressure mercury lamp used in the present 

study promoted PFOA degradation by means of the deep UV-region of its emission 

spectrum.  

The addition of the TiO2 catalyst (Fig. 1, UV-TiO2) had the effect of decreasing the 

PFOA removal to only 24 ± 11%, after 12 h of irradiation. Although PFOA could have 

been partially adsorbed on the TiO2 surface (6.4% adsorption was observed in the dark 

experiments), the little release of fluoride (0.14 mmol.L-1) and the detection of a small 
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amount of PFHpA (0.023 mmol.L-1) confirmed that PFOA had been partially degraded 

into shorter-chain perflurocarboxylic acids. The lower degradation rate of PFOA 

observed upon the addition of TiO2 can be assigned to a light screening effect by the 

TiO2 particles, that would have significantly reduced the penetration of the UV light 

into the reaction medium [51]. In contrast, the use of the TiO2-rGO composite (Fig. 1, 

UV-TiO2-rGO) enhanced PFOA degradation compared to direct photolysis and TiO2-

mediated photocatalysis. 93 ± 7% of the initial PFOA was removed after 12 h of 

irradiation, 4-fold higher than in TiO2-mediated photocatalysis for the same reaction 

time. This high degradation has been previously demonstrated in the literature using 

TiO2 catalysts modified with metals such as Pb [36]. Moreover, a control experiment 

using GO nanoplatelets showed that graphene oxide particles did not produce a 

significant variation of PFOA concentration, at the same time no degradation products 

were detected in solution. This result pointed out a synergistic effect between the 

reduced graphene oxide (rGO) layers and TiO2 nanoparticles during the photocatalytic 

degradation of PFOA. The effect can be ascribed to the good transparency of one-atom 

thickness rGO sheets towards the UV-visible spectrum, that can decrease the light 

screening phenomena caused by TiO2 particles, and therefore, facilitate a more efficient 

utilization of light and avoid the electron-hole recombination [39,52]. 

The irradiance received on the outer wall of the reactor was measured to get an indirect 

evaluation of the light screening phenomena. The results are displayed in Figure 2, 

using a background PFOA (0.24 mmol.L-1) aqueous solution in all cases. The radiation 

received when using TiO2 suspensions was significantly lower than through TiO2-rGO 

suspensions, for every ultraviolet light range tested and for each catalyst concentration. 

If we focus on the UV-A range (315-400 nm) and 0.1 g.L-1 catalyst dose, where the 

TiO2 catalyst can absorb photons to generate the electron/hole pairs, the irradiance 
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through TiO2 suspensions was approximately one-tenth of the irradiance received 

through the TiO2-rGO solution. These results confirm that TiO2 particles were 

promoting the UV light screening and hindered UV-A light penetration through the 

PFOA solution. While the TiO2-rGO composite (0.1 g.L-1) still reduced the light 

transmission compared to the absence of catalyst, the suitable photocatalytic properties 

of the prepared TiO2-rGO composite overcame the UV light screening, as the achieved 

PFOA degradation yield (93%) was much higher than the degradation percentage 

obtained under direct photolysis conditions (58%), as it was reported in Fig. 1. 

Some studies have already shown that the combination of TiO2 with rGO leads to a 

reduction in the band gap energy to 2.72 eV [48], a feature that would provide the 

composite TiO2-rGO with the ability of visible light adsorption, and a more efficient 

utilization of light than TiO2 (band gap 3.2 eV). On the other hand, Kamat and co-

workers [53,54] have shown that photo-electrons generated by TiO2 under UV 

irradiation can be transferred to rGO thanks to the excellent electron conductivity of 

graphene materials, thus avoiding the electron/hole recombination [43,55]. Therefore, 

rGO sheets would act as an electron-trap similar to the reported behaviour of the 

metallic nanoparticles in metal-modified TiO2 photocatalysts [31,37]. The electron 

conduction throughout the TiO2-rGO photocatalyst may further allow higher generation 

of superoxide and hydroxyl radicals [37,56], which in turn will enhance the oxidation of 

PFOA molecules.  

The structure and morphology of TiO2-rGO could also have a significant role in the 

photocatalytic process. It is well known that the spherical-like TiO2 nanoparticles 

aggregate to form larger particles [46,56]. Sun et al. [57] demonstrated that UV 

irradiation of TiO2 nanoparticles suspended in water accelerated particle aggregation, 
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that hindered the TiO2 photocatalytic degradation of Rhodamine B. However, the TiO2-

rGO composite prepared in the present study presented a homogeneous distribution of 

TiO2 nanoparticles spread on the platform of a graphene oxide nano-sheet (Fig. S2, 

supplementary material). This structure may have limited TiO2 particles agglomeration 

with the benefit of a more efficient use of the UV light by the composite particles. 

Results for experiments performed at different TiO2-rGO catalyst concentrations are 

provided in  Figure 3. The concentration of the catalyst was first increased from 0.1 g.L-

1 to 0.5 g.L-1, as the latter value is a common dose in TiO2 photocatalytic experiments, 

according to the literature survey (Table S1). However, increasing the catalyst dose had 

the effect of reducing significantly the rate of PFOA removal. Considering that TiO2 is 

the major component (95% wt.) of the composite catalyst, the higher concentration of 

TiO2 at the highest catalyst dose may have facilitated the UV light screening, as it can 

be seen in Fig.2. In contrast, the reduction of the catalyst dose to 0.05 g.L-1 had a 

minimal effect on PFOA removal in comparison to 0.1 g.L-1 catalyst concentration, in 

agreement with the similar values of  light transmission for 0.05 g.L-1 and 0.1 g.L-1 

TiO2-rGO concentrations (Fig. 2).  

3.2.PFOA Mineralization and intermediate degradation products 

Generation of shorter chain PFCAs that were formed as intermediates from PFOA 

degradation is presented in Fig. 4a, working with a catalyst concentration of 0.1 g.L-1. 

The corresponding fluoride generation for the same experiment is shown in Fig 4b, that 

also presents the total fluorine in the reactor calculated as the sum of fluoride anions in 

solution and the fluorine contained as part of the quantified PFCAs. Finally, Fig. 4c 

presents the reduction of TOC together with the TOC calculated from the organic 

compounds that were found in the analytical survey. Lines plotted in Figs. 4a and 4c 
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correspond to simulated vales that were obtained using the model and kinetic 

parameters that will be described next in this section. 

PFOA removal can be described by a first order rate kinetic law. Several studies have 

reported that PFOA oxidation by hydroxyl radicals proceeds via a stepwise mechanism 

in which C–C bond cleavage occurs between the carbon chain and the carboxylate 

group, coupled with fluoride elimination, resulting in the intermediate generation of 

shorter chain PFCAs [30]. Consistent with this mechanism, in the present work the 

generation of shorter chain PFCAs was observed. The order of appearance and the 

concentrations observed in solution support the stepwise degradation mechanism, in 

which PFOA would have lose one –CF2 group to give PFHpA, and consecutively 

PFHxA and PFPeA. The next molecule in the degradation pathway would be 

perfluorobutanoic acid (PFBA) that was detected although at concentrations below the 

LOD (Limit Of Detection) of the analytical technique. Volatile pefluoropropionic acid 

(PFPrA) and trifluoroacteic acid (TFA) were not observed in the liquid phase. 

TOC was reduced by 62% during the photocatalytic decomposition of PFOA. The 

difference between the PFOA reduction (93%) and TOC decrease can be ascribed to the 

presence of intermediate degradation products. It is worth mentioning the good match 

between the analyzed TOC and the TOC calculated from the quantified concentrations 

of PFOA, PFHpA, PFHxA, and PFPeA. The coincident trends prove the step-by-step 

PFOA degradation pathway in which shorter-chain perfluorocarboxylates are the 

intermediate products.  

The gradual increase of fluoride in the aqueous solution demonstrated that the cleavage 

of the C-F bonds was effective during PFCAs degradation. Total fluorine measurements 

showed a net loss of fluorine of 20 % after 12 h of photocatalytic treatment. The loss of 
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fluorine may be attributed to two factors: i) fluoride adsorption on the surface of the 

TiO2 fraction of the composite catalysts, which is positively charged in acidic 

conditions [28,29,58], and ii) the volatilization of  the shortest PFCAs obtained as end 

products of the PFOA degradation chain [33]. 

In order to verify the possible fluoride incorporation onto the photocatalyst surface, 

XPS analysis of the TiO2-rGO particles surface was performed, using both fresh and 

used samples of the photocatalytic material. The XPS survey spectra and elemental 

composition for both materials is provided as Fig S6 and Table S2 (supplementary 

material). As expected, fluorine was only detected on the TiO2-rGO sample that had 

been used as catalyst for PFOA photocatalytic degradation. The mass percentual 

elemental composition of the fresh TiO2-rGO sample was 13.8/58.1/28.1 as C/O/Ti, 

while in the used catalyst the elemental composition was 13.1/53.2/26.9/6.8 as 

C/O/Ti/F. 

Fig. 5 shows the section of the high resolution XPS spectrum of used TiO2-rGO 

particles, where the F-1s region has been magnified. Three deconvoluted peaks at 684.2 

(A), 688.8 (B) and 691.0 eV (C) can be observed: the first peak was related to 

negatively charged monovalent fluorine (F-); and the signals around 688-691 eV could 

be assigned to fluorine bonded to carbon, as it happens in the C-F bonds of PFOA and 

its perfluorinated degradation intermediates that may have been absorbed on the catalyst 

surface [28,29]. Moreover, F-1s spectra for TiO2-rGO composite before use was not 

detected (Fig. S6). Similar peak distribution and binding energies for raw and used 

TiO2-rGO catalysts samples confirmed that the photocatalyst surface remained 

unchanged after its use in the PFOA photodegradation experiments. Based on the above 

results, part of the fluoride anions that were released during PFOA abatement were 
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absorbed onto the TiO2-rGO photocatalyst, to account for 6.8% of the total mass of the 

catalyst sample used in the XPS analyses (Table S2). As this adsorption rate did not 

represent the total fluorine loss, the volatilization of the shortest PFCAs could have also 

contributed to the 20% of fluorine loss observed in Figure 4b. 

Fig. 6 presents the proposed mechanism and pathway of PFOA decomposition in the 

TiO2-rGO mediated photocatalysis and the role of rGO in the mechanism. Previous 

studies considered different possibilities for the initiation of the PFOA molecule 

oxidation: i) direct reaction of PFOA with the photogenerated holes of the photocatalyst 

surface [26,29,31,34], ii) indirect reaction with hydroxyl radicals [21,30,36,59,60] or iii) 

combination of both mechanisms. Thereby, the degradation of PFOA could start from 

terminal carboxylic end, where the photogenerated hydroxyl radicals can attack the first 

alkyl C atom adjacent to the -COOH group, leading to the cleavage of C-C bond 

between the perfluorinated alkyl chain -C7F15 and -COOH by the formation of 

perfluorinated alkyl radicals, which can then react with water to produce the unstable 

perfluorinated alcohol C7F15OH (reactions 1-3). After that, C7F15OH would eliminate 

HF to form C6F13COF (Eq. 4). The active C6F13COF undergoes hydrolysis in the 

solution, resulting in the formation of PFHpA with the release of CF2 unit (Eq. 5). 

CFଵହCOOି  	HO •	→	• CFଵହCOOା  OHି																																																																								ሺ1ሻ 

• CFଵହCOOା →	• CFଵହ  COଶ 	Hା																																																																																				ሺ2ሻ 

• CFଵହ  HଶO	 → 	CFଵହOH  Hା																																																																																										ሺ3ሻ 

CFଵହOH → CFଵଷCOF  Fି  Hା																																																																																										ሺ4ሻ  

CFଵଷCOF  HଶO →	CFଵଷCOOH  Fି  Hା																																																																						ሺ5ሻ 

On the other hand, other possible initiation of PFOA degradation could be the direct 

reaction of C7F15COO- with the holes. This step would involve the electron transfer 
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from the dissociated PFOA to the valence band of the photocatalyst, generating the 

C7F15COO· radical that subsquentelly would undergo Kolbe descarboxylation, to give 

perfluoroalkyl radical C7F15· and CO2 [34]. The next degradation pathways would be 

similar to reactions (3) to (5).  

Correspondingly, the intermediates will be decomposed stepwisely into shorter-chain 

PFCAs, and eventually to CO2 and F-. Although the reaction mechanism seems to be 

mostly driven by HO• radical attack, the formation of the reactive species such as 

radical superoxide anion (O2 • −) may also be associated with the PFOA degradation. 

3.3.Kinetic model for PFOA and its degradation products 

In a first attempt to quantify the kinetics of PFOA photocatalytic degradation by the 

TiO2-rGO composite catalyst, the concentrations of PFOA and intermediate products 

were fitted to the following first-order rate equation [20,26,28–30,33]: 

݀ሾܥሿ
ݐ݀

ൌ ݇ାଵ	ሾܥାଵሿ െ ݇	ሾܥሿ																																																																																																ሺ6ሻ 

where n is the carbon atoms number in each PFCA molecule, C is the concentration in 

the solution (mmol.L-1), t is the time (h), k the observed degradation rate constant (h-1)  

of  each PFCA. 

Concentration data shown in Figure 4a (0.1 g.L-1 TiO2-rGO) were used for the 

estimation of kinetic parameters. The obtained values of the apparent kinetic constants 

can be ordered as kPFPeA > kPFHxA > kPFHpA > kPFOA, with values of 2.14, 0.54, 0.27 and 

0.163  h-1, respectively. These results point to a clear influence of the length of the 

perfluoroalkyl chain on the degradation rate. Similarly to our process, Qian et al. [10] 

reported that the rate constant of PFCAs UV-persulfate decomposition distinctly 
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increased when the carbon-chain of the PFCAs was shorter.  

Eq. (6) and the reported k values were used to simulate the concentration of PFCAs, as 

depicted by the solid lines included in Fig. 4a. Similarly, simulated PFCAs 

concentrations were employed to calculate TOC evolution, which is also shown as solid 

line in Fig. 4b. The good agreement between measured and simulated TOC supports the 

validity of the kinetic constants obtained from the fitting of the experimental results. 

 

4. CONCLUSIONS 

This study reports for the first time the effective photocatalytic degradation of 

perfluorooctanoic acid (PFOA) using a composite catalyst based on TiO2 and reduced 

graphene oxide (rGO) successfully synthesized by a hydrothermal method.  

The efficient photoactivity of the prepared TiO2-rGO composite was positively 

confirmed for PFOA degradation under UV-Visible irradiation. After 12 hours of 

irradiation, the PFOA removal ratio was as high as 93 ± 7%. using a 0.1 g.L-1 

concentration of the composite catalyst. The PFOA degradation ratio obtained using 

TiO2-rGO was 4-fold higher than the TiO2-mediated photocatalysis, under the same 

experimental conditions. It is hypothesized that reduced graphene oxide can efficiently 

capture the electrons photogenerated by the TiO2, thus reducing the electron/hole pair 

recombination, that would promote the PFCAs degradation by means of active radicals 

or direct oxidation by the photogenerated holes. The progress of shorter-chain 

perfluorocarboxilyc acids as well as fluoride release elucidated the step-by-step PFOA 

decomposition mechanism by gradually losing a CF2 unit in each step, generating CO2 

and F-. The PFOA mineralization was also demonstrated with the 60% TOC reduction. 
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Furthermore, the effect of the alkyl chain length on the kinetics of PFCAs was revealed, 

showing that shorter chain PFCAs degraded faster than their longer chain homologues. 

It is concluded that TiO2-rGO composite catalyst offers an unprecedented effectiveness 

for the degradation of recalcitrant PFCAs, to become a promising alternative for the 

photocatalytic degradation of this group of persistent organic pollutants.  

APPENDIX A. SUPPLEMENTARY DATA 

The supplementary information gathers: a) A survey of literature about PFOA 

photocatalytic degradation; b) ATR-FTIR spectra, TEM-EDX images and XRD spectra 

of TiO2-rGO, GO and TiO2 materials are provided; c) The experimental setup and the 

emission spectrum of the medium-pressure mercury lamp; d) XPS results of the TiO2-

rGO surface before and after use in the photocatalytic experiment are also included. 
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Figure captions 

 

Fig. 1. Evolution of PFOA concentration (mmol.L-1) with irradiation time by photolysis 

and photocatalysis using TiO2 and TiO2-rGO; photocatalyst loading: 0.1 g.L-1. 

 

Fig. 2. Irradiance measurements (W.m-2) on the outer wall of the reactor using TiO2 

(0.05, 0.1 and 0.5 g.L-1, red bars) and TiO2-rGO suspensions (0.05, 0.1 and 0.5 g.L-1, 

green bars) in a PFOA (0.24 mmol.L-1) aqueous solution, in the regions: UV-A (315-

400 nm), UV-B (280-315 nm) and UV-C (110-280 nm).  

 

Fig. 3. Influence of the TiO2-rGO loading on the PFOA concentration (mmol.L-1) with 

the irradiance time. TiO2-rGO concentrations were 0.05, 0.1 and 0.5 g.L-1. 

 

Fig. 4. Evolution of (A) PFOA, PFHpA, PFHxA and PFPeA (mmol.L-1), and their 

simulated concentrations using the pseudo-first order estimated kinetic parameters 

(solid line); (B) fluoride (mmol.L-1) in solution and calculated total fluorine (%), and 

(C) measured TOC/TOC0, calculated TOC/TOC0 from the analyzed PFCAs, and 

simulated TOC/TOC0 using the simulated PFCAs concentrations. Experimental data 

obtained using 0.1 g.L-1  of TiO2-rGO. TOC0 was the initial value in each experiment. 

 

Fig 5. XPS spectrum in the F-1s region of TiO2-rGO surface after PFOA photocatalytic 

degradation. A peak is attributed to inorganic fluorinated species. B and C peaks are 

assigned to organic fluorinated compounds. 

 

Fig. 6. Photocatalytic pathways of PFOA decomposition using the TiO2-rGO catalyst. 
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Fig. 6  
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