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Abstract

Reverse engineering has become ubiquitous in the computer aided design and manu-
facturing industry (CAD/CAM). One of the most sought after tools in many industries
(automotive, aerospace, shipbuilding) and scientific fields (computer tomography,
magnetic resonance) is the ability to build a digital model from a 3D-scanned real
world object. In this Thesis we propose a methodology to automatically find an op-
timal free-form model that fits a given point cloud: the most common output of
real-world measurements.

In most real-world scenarios the data provided is devoid of any kind of infor-
mation beyond the sample points, i.e. both the geometry and topology of the point
cloud are unknown. Furthermore, the given data is usually of massive size with many
different types of noise added: from error measurements to missing points.

On the contrary, a free-form mathematical model can represent a given shape
with very few parameters, so if the quality of the fit is guaranteed, we can represent
a large point cloud with a very compact model. In this Thesis we propose a set of
spline models for approximating the data. We start with the simple, yet powerful,
non-rational Bézier curves and surfaces, a linear combination of Bernstein polynomi-
als, and as the complexity of the data increases we introduce the rational versions.
Finally, we use B-spline models, a superset of the Bézier family, to reconstruct the
most challenging scenarios.

Our methodology is based on three techniques, namely: least-squares regression,
the Simulated Annealing optimization algorithm and two information sciences crite-
ria. The first step consist of transforming the geometrical problem of reconstructing
the shape of data into an optimization problem taking advantage of the the least-
squares regression procedure. The resulting problem turns to be a highly non-linear
system of very difficult solution. To overcome the minimization of such a challenging
functional we make use of the Simulated Annealing algorithm, a powerful meta-
heuristic that mimics the thermodynamics behind the cooling of a metal. By means
of this stochastic-driven optimization method we retrieve the functional architecture
of our baseline spline model. These two steps are repeated for a range of baseline
splines of varying complexity. Finally we search the best among these candidate
models by means of either the Akaike or Bayes Information Criteria.

The Thesis is divided into four main parts. First, we introduce the mathematical
concepts needed to understand the problem. We continue with the proposed metho-
dology, with specific emphasis on the Simulated Annealing. Once all the necessary
elements have been carefully explained, we provide a set of illustrative examples to
show the performance of our method. We conclude with an outline of the main re-
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sults of this work, our contributions to the state of the art and some future lines of
research.



Resumen del Trabajo, Resultados y
Propuestas Futuras

Procuremos agradar e instruir;
nunca asombrar.

Santiago Ramón y Cajal

De acuerdo con la normativa que regula los estudios de doctorado de la Universidad
de Cantabria, se incluye a continuación un resumen de los principales resultados y
conclusiones de la Tesis Doctoral.

Ingeniería inversa

La creación de modelos digitales se ha convertido en una de las principales herra-
mientas en la cadena de producción de la industria de diseño y manufactura. A me-
dida que las tecnologías para la fabricación avanzan, como por ejemplo el auge en
la impresión 3D casera, la capacidad para producir objetos reales a partir de diseños
digitales se ha convertido en una tarea casi trivial. En cambio, el proceso inverso,
consistente en la reconstrucción de un modelo computacional a partir de un objeto
real, continúa siendo un problema de enorme dificultad que en su forma más ge-
neral está aún por resolver. Éste último proceso, conocido como ingeniería inversa,
juega un papel vital en la industria de la fabricación de hoy en día, especialmente en
sectores como la automoción, el aeroespacial y el naval [Pottmann et al., 2005].

A lo largo del presente trabajo nos vamos a centrar en un escenario muy concreto
dentro del campo de la ingeniería inversa, a saber: el ajuste de curvas y superficies. El
problema consiste en construir una curva o superficie a partir de una nube de puntos
ruidosos, por lo general de tamaño gigantesco [Pauly et al., 2002]. Para tratar el pro-
blema en su forma más general, no se asume la existencia de más información aparte
de los propios puntos dato, es decir, no se conoce ni la geometría ni la topología de
la nube, por lo que la conectividad entre los puntos de la muestra es desconocida. El
objetivo principal de la ingeniería inversa de curvas y superficies reside en la recons-
trucción de un modelo matemático que capture el máximo posible de información de
la función subyacente tras los datos: forma, topología, geometría etc.

Son numerosos los campos de la ciencia donde la reconstrucción de curvas y
superficies juega un papel esencial. Así, por ejemplo, el ajuste de datos median-
te splines es una importante herramienta en el aprendizaje automático, dado que
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es el soporte de varias técnicas de regresión (tanto lineales, como no lineales)
[Marsh and Cormier, 2001], la teoría de la aproximación [Rice and Saloin, 1969,
Cox, 1990] y el diseño geométrico asistido por computador [Dierckx, 1995]. Más
allá del universo de las matemáticas más clásicas, la ingeniería inversa de curvas y
superficies es clave en distintas áreas de la medicina no invasiva, como por ejem-
plo la recreación de superficies a partir de distintas secciones laminadas adquiri-
das mediante tomografía computacional o resonancia magnética [Bajaj et al., 1995,
Park and Kim, 1996].

Otra área donde la búsqueda de una curva o superficie cumple una función impor-
tante es en la visualización de determinados parámetros en las ciencias atmosféricas,
como por ejemplo el uso de las Thin Plate Spline (un modelo matemático basado
en funciones de base radial) para estimar la lluvia [Tait et al., 2006], un uso aproba-
do por la propia Organización Meteorológica Mundial (WMO) [Hutchinson, 1995].
En general, en la mayoría de los escenarios donde se usa el kriging (interpolación
mediante procesos Gaussianos), su uso se puede intercambiar por la aproximación
mediante algún tipo de spline [Hutchinson and Gessler, 1994], como los modelos de
temperatura y elevación en superficie.

Tal y como ya se ha mencionado anteriormente, lo más frecuente es tener
que reconstruir curvas y superficies mediante el ajuste de nubes de puntos des-
organizadas, por lo general de gran tamaño y con un gran contenido de infor-
mación errónea (ruido) debido a errores en los procesos mecánicos u ópticos de
captura de puntos, como escáneres 3D [Hoppe et al., 1992, Eck and Hoppe, 1996,
Kazhdan and Hoppe, 2013]. A fin de reconstruir el modelo matemático subyacente
existen numerosas propuestas en la literatura. En general se puede decir que existen
tres grandes familias de técnicas de reconstrucción, a saber: la aproximación median-
te mallados poligonales, la geometría constructiva de sólidos y el modelado mediante
curvas y superficies matemáticas de forma libre. El método propuesto en la presente
Tesis pertenece a la tercera categoría.

Nuestro objetivo consiste en reconstruir nubes de puntos ruidosos, mediante el
uso de unos modelos matemáticos de forma libre, conocidos como splines. A tal efec-
to, en primer lugar, se transforma el problema geométrico de la reconstrucción, en
uno de optimización matemática. Dicho problema se sabe que es continuo, altamen-
te no lineal, no-convexo y multi-modal [Jupp, 1978, Lane and Riesenfeld, 1983],
por lo que es de muy difícil solución. Durante las décadas de los sesenta y seten-
ta aparecieron las primeras investigaciones dedicadas al estudio del ajuste mediante
splines, al albor del desarrollo de una teoría general matemática, en torno a los
propios modelos matemáticos. Estas incipientes técnicas se basaban principalmen-
te en el uso de los algoritmos clásicos de optimización [de Boor and Rice, 1968,
Rice and Saloin, 1969, Powell, 1970] que, aunque capaces de resolver algunos ejem-
plos, eran incapaces de resolver el problema general, debido a la existencia de nume-
rosas cuencas de atracción, de las que resultaba casi imposible escapar [Jupp, 1978].
Durante las siguientes décadas aparecieron multitud de nuevas técnicas, tales co-
mo la división de los datos en pequeñas regiones apropiadas para la interpola-
ción mediante funciones polinómicas [Cox et al., 1990], métodos de búsqueda li-
neal basados en umbrales sobre el error [Park, 2004], la simplificación del proble-
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ma de aproximación mediante el uso de puntos dominantes [Park and Lee, 2007]
y varios otros métodos caracterizados por el uso de técnicas iterativas, basadas en
la construcción de un primer modelo base que posteriormente es mejorado me-
diante heurísticas (basadas en datos), entre las que destacamos las presentadas en
[Ma and Kruth, 1995, Piegl and Tiller, 2001, Brujic et al., 2011]. Estos métodos tien-
den a fallar cuando los datos están corruptos o incompletos, algo habitual en los
ejemplos no académicos. Durante los últimos años, la comunidad científica ha mos-
trado que el problema puede abordarse de forma más general mediante la aplicación
de técnicas de optimización difíciles de encuadrar dentro de la matemática clásica,
tales como la inteligencia artificial o la computación bio-inspirada. Dado que nuestro
método se encuentra encuadrado dentro de éste último grupo, se analizará con algo
más de detalle la literatura al respecto.

Figura 1: Ejemplo de una nube de puntos obtenida a partir de una talla de madera
de una Virgen en la catedral de Santander. Proporcionada por la empresa 3DINTE-
LLIGENCE.

Modelado con splines

El modelado con splines se ha convertido en el estándar de referencia para la in-
dustria del diseño y la manufactura (CAD/CAM). En términos matemáticos un spline
es una combinación lineal de un conjunto de funciones, que forman una base del
espacio funcional, a través de unos coeficientes conocidos como puntos de control.
Las funciones base, también llamadas de modelado o deformación, poseen una se-
rie de propiedades que las hacen especialmente adecuadas para su uso en el campo
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de los gráficos por computador. A continuación, se presentarán algunas de las más
relevantes:

• Compresión de información. Las splines, en su forma canónica, contienen gran-
des dosis de información acerca de la forma que representan, con el uso de
unos pocos parámetros, por lo que son modelos especialmente adecuados para
su uso computacional.

• Construcción de formas. Con un único modelo matemático se pueden llegar a
representar una gran variedad de formas, desde los modelos clásicos (cónicas,
superficies regladas y de revolución, etc.) hasta modelos paramétricos de forma
libre.

• Facilidad de manipulación. Gracias a las propiedades geométricas y analíticas de
las funciones base, la forma final se puede modificar de forma sencilla, incluso
localmente dependiendo de la familia spline, con tan sólo modificar los puntos
de control. Además la interpretación geométrica del modelo es clara y conci-
sa, por lo que son excelentes candidatos para su uso en el diseño geométrico
asistido por computador.

• Invariancia geométrica. Son invariantes bajo transformaciones afines (escala-
do, rotación, traslación); es más, basta con aplicar la transformación sobre los
puntos de control.

• Estabilidad numérica. Existen algoritmos que permiten evaluar y modificar un
spline de forma numéricamente estable y rápida.

Técnicas meta-heurísticas

Tal y como se ha mencionado anteriormente, el problema de la reconstrucción de cur-
vas y superficies es de una enorme dificultad, y no puede ser debidamente resuelto
con métodos matemáticos clásicos. A fin de superar dichas limitaciones, la comuni-
dad científica ha trasladado su atención hacia otras aproximaciones menos ortodo-
xas: desde el uso de técnicas propias de la inteligencia artificial, hasta la computación
bio-inspirada.

Dentro del paradigma de la inteligencia artificial, las redes neuronales artificiales
(ANN) se han utilizado con diversos grados de éxito para la resolución del proble-
ma en cuestión; así, por ejemplo en [Gu and Yan, 1995, Hoffmann and Varady, 1998,
Barhak and Fischer, 2001], se resuelve parcialmente el caso del ajuste de nubes de
puntos desorganizadas mediante superficies. Mientras que en [Kumar et al., 2004,
Hoffmann, 2005] se resuelve aprovechando las capacidades de los mapas auto-
organizados (SOM) para aprender la conectividad de los puntos dato. Una de las
grandes ventajas de estas aproximaciones radica en la capacidad que tienen las re-
des artificiales para auto-inferir la topología de la nube de puntos. Sin embargo,
los modelos resultantes son incapaces de aprender la estructura funcional del pro-
blema, necesitando, además, ser provistos de una arquitectura de red: un problema
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muy dependiente de los datos y de gran dificultad en sí mismo. Las redes funciona-
les solucionan parte de dichos problemas, al sustituir los pesos escalares por pesos
funcionales más apropiados para el problema. Un buen ejemplo de tal aplicación lo
encontramos en [Iglesias et al., 2004], donde se resuelve la reconstrucción de super-
ficies B-spline, y en [Iglesias et al., 2004] donde las redes funcionales se hibridan
con algoritmos genéticos, a fin de resolver el problema del ajuste mediante curvas y
superficies de Bézier. Finalmente, en [Iglesias and Gálvez, 2008] se extiende la apro-
ximación funcional, para incluir las fucniones base de las B-spline racionales para la
aproximación de curvas.

La optimización bio-inspirada es un área de conocimiento que se basa en la pre-
misa de tratar de emular computacionalmente los procesos propios de la Naturaleza:
desde la manera de pensar y procesar la información, hasta cómo resolver comple-
jos sistemas biológicos. La mayoría de los algoritmos de optimización bio-inpirada se
basan en sistemas de generación estocástica de soluciones, cuyo soporte se basa en
metáforas que explican el proceso natural que imitan. Cabe señalar que en el corazón
de nuestra metodología reside una implementación propia del algoritmo conocido
como Simulated Annealing [Kirkpatrick et al., 1983], una meta-heurística basada en
el proceso termodinámico del recocido de un metal. A continuación, presentamos
una serie de meta-heurísticas que han sido empleadas con diferentes grados de éxito
al problema de la reconstrucción de nubes de puntos ruidosos.

Algoritmos Evolutivos. Los algoritmos evolutivos (EA) forman parte del campo
de la computación natural, un área de la ciencia que trata de emular los mecanismos
evolutivos empleados por el mundo natural, tales como la mutación, selección, repro-
ducción, adaptación etc. Los algoritmos genéticos (GA) son un subconjunto de los al-
goritmos evolutivos que trata de imitar computacionalmente el proceso de selección
natural. En [Yoshimoto et al., 1999, Yoshimoto et al., 2003] se aplican al caso de las
B-splines con nodos libres, con un éxito moderado, pues necesitan de heurísticas a
posteriori, para resolver el problema completo; en [Valenzuela et al., 2013] el pro-
blema se resuelve utilizando una variante multi-objetivo de los algoritmos genéticos.
Los algoritmos de selección clónica (CSA), dentro de los basados en sistemas inmunes
(AIS), son un tipo de algoritmo evolutivo, cuya metáfora está basada en la emulación
de cómo el sistema inmune es capaz de generar ciertos anticuerpos específicos para
contrarrestar la presencia de antígenos invasores. En [Ülker and Arslan, 2009] se uti-
lizan los AIS a fin de resolver el problema de la reconstrucción mediante B-splines,
mientras que en [Iglesias et al., 2013, Gálvez et al., 2015] se resuelven los proble-
mas del ajuste, mediante modelos de Bézier y B-spline, a través de la optimización
mediante CSA.

Inteligencia de enjambre. Los métodos bajo el paradigma de la inteligencia de
enjambre, en cambio, tratan de emular el comportamiento socio-cognitivo de los
sistemas poblacionales, en los que se crean reglas idealizadas de cómo los indivi-
duos (ya sean humanos, aves, partículas físicas) cooperan para tratar de alcanzar
una meta común. La optimización mediante sistemas de partículas (PSO) es un al-
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goritmo poblacional basado en sistemas estocásticos que, partiendo de una pobla-
ción aleatoria de soluciones, es capaz de hacerlas evolucionar hasta el óptimo glo-
bal, mediante una serie de heurísticas que emulan la diseminación de la informa-
ción acerca del espacio entre las distintas partículas. El algoritmo PSO se usa en
[Gálvez and Iglesias, 2011, Gálvez and Iglesias, 2012] para la obtención de curvas
B-spline y superficies NURBS, respectivamente. Otras técnicas dentro del paradigma
de la inteligencia de enjambre tratan de imitar el comportamiento de ciertos siste-
mas biológicos; así, por ejemplo, en [Gálvez and Iglesias, 2013] se emula el complejo
comportamiento de las luciérnagas, mientras que en [Iglesias et al., 2015a] se hace
lo propio con los enjambres de murciélagos.

Basados en la Física. Los algoritmos de optimización basados en la emulación de
procesos físicos son todos muy distintos entre sí, pues su única conexión radica en
la metáfora derivada de la Física sobre la que soportan sus teorías. La optimización
basada en algoritmos electromagnéticos (EMA) basa su metáfora en la emulación de
los procesos de atracción-repulsión que pueden mover una partícula hasta los puntos
de mínima energía (los óptimos). Este algoritmo se ha usado con éxito para el caso de
la reconstrucción mediante curvas de Bézier [Gálvez and Iglesias, 2013] y posterior-
mente se amplió con el uso de técnicas miméticas, optimizadores locales embebidos
dentro de la estructura del algoritmo principal, en [Iglesias and Gálvez, 2016] para
el caso de las superficies racionales de Bézier. El algoritmo de Simulated Annealing
está encuadrado en esta categoría, siendo unos de los primeros, puesto que su metá-
fora está basada por completo en los procesos termodinámicos que llevan a la mejora
de la estructura interna de un metal. El SA se ha usado con éxito en el caso de la re-
construcción de la triangulación de mallados [Sen and Zheng, 1992] en el caso de
las B-spline de nodos libres [Valenzuela and Pasadas, 2010].

Objetivos de la Tesis

El objetivo del presente trabajo consiste en la construcción de una metodología gene-
ral para la reconstrucción de nubes de puntos ruidosos, mediante el uso de modelos
spline. Para construir el método de reconstrucción, se propone el uso de diversas im-
plementaciones del algoritmo Simulated Annealing que sean capaces de mejorar lo
existente en la literatura, para el problema del ajuste mediante splines.

La motivación de tal propuesta radica en la capacidad de los algoritmos basados
en procesos estocásticos, como el SA, para adaptarse al problema sin necesidad de
disponer de toda la información o en caso de que se encuentre distorsionada (ruido).
Como ya se ha descrito con anterioridad, el escenario que se asume a lo largo de la
Tesis cumple con dichos requisitos: nubes de puntos ruidosos en los que, en su forma
más general, se carece incluso de la geometría y topología del conjunto.

Para resolver el problema proponemos el uso de una serie de variantes del SA,
adaptados para cada modelo específico de spline: tanto las curvas y superficies de
Bézier, como las B-spline, tanto en su modalidad racional, como no-racional. A fin de
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poder automatizar la tarea, a la par que evitar el sobre-ajuste de los modelos, envol-
vemos a los meta-heurísticos dentro de una capa iterativa de selección de modelos,
mediante el uso de técnicas de ciencias de la información. Más concretamente, los
criterios de información de Akaike y Bayesiano (AIC/BIC).

Finalmente, para el caso de las nubes masivas y desorganizadas, proporcionamos
una serie de extensiones a la metodología que mediante una serie de transforma-
ciones son capaces de reorganizar y pre-procesar la nube de forma que pueda ser
atacada con la metodología anteriormente descrita. En la Figura 2 se puede ver una
represetación simplidficada del diagrama general de nuestro método para el ajuste
de curvas y superficies, así como el capítulo en el que se describen cada una de las
distintas técnicas.

Figura 2: Diagrama general del método.

Estructura de la Tesis

Aunque todos los capítulos están fuertemente ligados entre sí, bajo el marco de la
ingeniería inversa, la Tesis está dividida en tres grandes bloques de información. La
introducción, tanto en inglés como en castellano, y el trasfondo matemático tras el
problema, forman el primer gran bloque. La Tesis continúa con una presentación de
los métodos meta-heurísticos empleados, así como un análisis de la metodología em-
pleada. Posteriormente, un tercer bloque queda conformado por la presentación de
diversas aplicaciones de la metodología. Finalmente, en el último bloque se presen-
tan las conclusiones y contribuciones derivadas del presente trabajo, así como una
breve reseña de las principales líneas de trabajo de cara al futuro.
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A fin de comprender mejor el problema resuelto en este trabajo, se incluye a
continuación, Figura 3, un diagrama que trata de resumir la metodología propuesta,
junto con un breve resumen de cada uno de los bloques de los bloques:

Figura 3: Metodología propuesta para la reconstrucción de curvas y superficies me-
diante splines.

Complejidad Selección de los rangos para los parámetros que definen la compleji-
dad del modelo subyacente: número de nodos, grado de la curva etc.

LSQ Tranformación del problema geométrico en uno de optimización mediante el
asjute por mínimos cuadrados (LSQ). Es decir, se construye el funcional que
nos devuelve la energía del sistema.

SA Una implementación del algoritmo Simulated Annealing, que recibe o bien la
estructura funcional completa del modelo spline, esquema all-in-one, o bien
una parte de dicha estructura, esquema sequential.
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CIC Selección del modelo mediante el uso de critierios de ciencias de la información
(Akaike o Bayes).

All-in-one Esquema de uso mediante el que se computan todos los parámetros del
modelo subyacente en un único paso.

Sequential Esquema de uso en el que se computan secuencialmente los distintos
parámetros del modelo subyacente. Se inicializa la estructura funcional com-
pleta y progresivamente se van optimizando cada uno de los distintos tipos de
parámetros que requiera el modelo: parametrización, nodos, pesos etc.

Resumen de los resultados y conclusiones derivadas

La tercera sección de la Tesis recoge los principales resultados obtenidos al aplicar
nuestra metodología, a una serie de ejemplos paradigmáticos del problema a resolver.

Ajuste mediante modelos de Bézier

En el capítulo 6 se presentan los resultados obtenidos al aplicar nuestra metodología
al caso del ajuste de nubes de puntos ruidosos, mediante el uso de curvas y superficies
de Bézier, tanto en su modalidad racional, como no-racional.

Curvas de Bézier

Los primeros resultados presentados tienen como origen un artículo publicado por
los autores en la conferencia internacional Cyberworlds del 2014, bajo el nombre
Simulated Annealing Algorithm for Bézier Curve Approximation. En ese artículo se
emplea el método propuesto para el ajuste de nubes de puntos, mediante curvas no
racionales de Bézier, a través de una serie de ejemplos paradigmáticos que muestran
diversas dificultades desde el punto de vista geométrico: auto-intersecciones, ruido,
rápidos cambios de curvatura etc. A fin de computar los parámetros óptimos para
la curva de Bézier, se comparan el uso de dos distribuciones para la generación de
soluciones combinadas con dos esquemas de enfriamiento.

El método se puede resumir de la siguiente forma: dado un grado n, el método
computa una parametrización óptima para la curva de Bézier, mediante el Simulated
Annealing, representando la energía del sistema mediante la suma de los residuos del
ajuste mediante mínimos cuadrados. A la hora de seleccionar el modelo que ofrece
una mejor compensación entre fidelidad y complejidad, se comparan dos criterios
del campo de las ciencias de la información: el criterio de Akaike y el de información
Bayesiana.

De todas las posibles combinaciones probadas, el esquema de enfriamien-
to y generación de entornos que aproxima el Fast Simulated Annealing
[Szu and Hartley, 1987], junto con el uso del Criterio de Información Bayesiana
(BIC), son los que ofrecen resultados más estables, además de converger con ma-
yor velocidad que el resto de esquemas propuestos.
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Superficies de Bézier

Los resultados presentados para el ajuste de superficies de Bézier se basan en los pre-
sentados bajo el artículo A simulated annealing approach for data fitting with Bézier
surfaces, publicado en Proceedings of the International Conference on Intelligent Infor-
mation Processing, Security and Advanced Communication (2015). En este artículo se
presentó una extensión de la metodología propuesta en [Loucera et al., 2014] para
el ajuste mediante curvas de Bézier, al caso de la aproximación mediante produc-
tos tensoriales de polinomios de Bernstein. Dados los resultados obtenidos para el
caso unidimensional, se optó por continuar con el uso de un esquema basado en la
aproximación del Fast Simulated Annealing. Dado que para el caso de superficies es
necesaria la computación de las funciones bi-variadas de Bernstein, esto supone un
incremento de los parámetros a ajustar, puesto que ahora es necesario un mallado
bidimensional, así como la elección del grado óptimo en cada dirección paramétrica.
Además, ahora las nubes de puntos son de mayor tamaño, pues necesitan explicar
una superficie en 3D. Debido al aumento significativo en el número de parámetros
a ajustar, y por tanto a modelar al tratarse de superficies de Bézier, el problema de
optimización se complica considerablemente. A fin de adaptar el SA a este nuevo
escenario, se proponen una serie de modificaciones:

• La generación de nuevos candidatos se realiza mediante la composición de tres
funciones, a saber: en primer lugar, se utiliza la aproximación al FSA mediante
perturbaciones gaussianas, a su resultado se aplica una función de ajuste a la
frontera y finalmente se explota el entorno de la solución mediante una rápida
búsqueda local.

• A fin de evitar la alta dependencia en la selección de los parámetros iniciales
del algoritmo, se emplea una técnica de reinicialización: se lanzan varias ins-
tancias del algoritmo con pocas iteraciones hasta que se alcanza una proporción
cercana la 80 % en el cociente de aceptación.

• Estrategia de memorización. En todo momento se mantienen en memoria tanto
la mejor solución global como la mejor solución de cada ciclo de equilibrio
térmico.

• Al final del ciclo exterior se realiza una búsqueda para cada una de las solucio-
nes memorizadas.

Con objeto de asegurar la validez del método, se ha probado el método en una
serie de ejemplos académicos, mostrando diversas dificultades geométricas. En todos
ellos, nuestro método es capaz de obtener excelentes resultados, tanto desde el punto
de vista de minimización, como de visualización.

Curvas racionales de Bézier

Las curvas de Bézier adolecen de cierta rigidez, ya que, dada su composición poli-
nómica, el abanico de formas que pueden representar se ve limitado. Gracias a la
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introducción de unas funciones base de carácter racional, dichas curvas son capaces
de representar un gran número de formas, entre otras las cónicas. Sin embargo, las
nuevas capacidades tienen un coste en complejidad: además de unas funciones base
más complicadas, se introducen una serie de escalares, llamadas pesos, que alteran el
comportamiento de la forma de la curva (existe un peso por cada punto de control).
En el artículo Two Simulated Annealing Optimization Schemas for Rational Bézier Cur-
ve Fitting in the Presence of Noise, publicado en la revista Mathematical Problems in
Engineering, se propone el uso de curvas racionales de Bézier para el ajuste de nu-
bes de puntos ruidosos. La propuesta consiste en adaptar la metodología usada en el
caso no racional para la computación de los pesos, presentándose así dos esquemas.
El primer esquema, denominado all-in-one, consiste en buscar todos los parámetros
de los que depende el modelo, a través de una única instancia del Simulated An-
nealing. Por otra parte, el segundo esquema, denominado sequential, consiste en la
búsqueda de cada tipo de variable por separado, usando distintas instancias del Si-
mulated Annealing que toman como entrada la salida del paso anterior. Dadas las
nuevas dificultades, se hizo necesario adaptar de nuevo el Simulated Annealing. En
primer lugar, la estrategia computacionalmente costosa de re-inicialización, fue sus-
tituida por una heurística para el computo de la temperatura inicial, adaptada de
[Ben-Ameur, 2004]. Por primera vez en nuestro trabajo, y hasta donde conocen los
autores, por primera vez en el ajuste de curvas y superficies, se propone la utilización
de dos conjuntos de temperaturas, método basado en el Adaptive Simulated Annea-
ling [Ingber, 1993a]. Por una parte, la temperatura de aceptación trata de mantener
un equilibrio sobre los candidatos que sobreviven a una iteración, mientras las tempe-
raturas de generación tratan (una por cada variable libre del sistema), de adaptarse a
las fluctuaciones de energía del sistema, tratando de explotar direcciones potencial-
mente buenas, mediante la modificación de la función de distribución usada en la
generación de nuevos candidatos. La implementación se prueba con éxito en varios
experimentos: se mejoran los resultados obtenidos en [Loucera et al., 2014], a la par
que se evalúa exitosamente sobre un nuevo conjunto de ejemplos.

Superficies racionales de Bézier

La adaptación de nuestra metodología al caso de superficies racionales de Bézier,
se realiza en el artículo Simulated Annealing and Natural Neighbor for Rational Bé-
zier Surface Reconstruction from Scattered Data Points, publicado en Harmony Search
Algorithm: Proceedings of the 3rd International Conference on Harmony Search Algo-
rithm (ICHSA 2017). En dicha adaptación se trata por primera vez el problema de
las nubes de puntos desorganizadas. Para su ajuste mediante superficies racionales
de Bézier, nuestra metodología requirió de, entro otros, dos grandes ajustes: por una
parte, la generación de entornos se realiza mediante una distribución de Cauchy que
se adapta a la temperatura de generación. En segundo lugar, en el caso de datos des-
ordenados, se dota a la nube de puntos de una topología de conectividad, mediante
la construcción de una superficie base, a través de la interpolación mediante entornos
naturales [Sibson, 1981]. La metodología se valida mediante una serie de ejemplos,
tanto académicos, como reales, con muy buenos resultados.
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Ajuste mediante B-spline

El capítulo 7 está dedicado al ajuste de curvas y superficies mediante B-spline, tanto
racionales como no racionales. Estos nuevos modelos introducen, aún en el escenario
más sencillo, una serie de dificultades, a través de la inclusión de los llamados nodos:
puntos de rotura en el espacio paramétrico que permiten un control local sobre la
forma final del modelo. El incremento de su complejidad, los nodos añaden una capa
extra de no-linealidad, viene acompañado de una mayor flexibilidad en cuanto a
formas reproducibles. Cabe señalar que todo modelo de Bézier es a su vez una B-
spline, pero el reverso no es cierto. Además, gracias a lo que se denominan nodos
múltiples (nodos internos exactamente iguales) se pueden reproducir formas con
puntos cúspide (perdida de la diferenciabilidad), codos, saltos de continuidad etc.

Ajuste de curvas explícitas mediante B-splines de nodos libres

La sección de ajuste mediante B-spline comienza con un problema de gran interés,
desde el punto de vista de la optimización, especialmente en el campo de la regresión
no lineal: el ajuste de curvas explícitas. Es decir, suponiendo que la forma subyacente
se puede representar como una función explícita, tratar de buscar la B-spline óptima
que ajusta los datos. De nuevo, nuestra metodología transforma el problema geo-
métrico, en uno de optimización, mediante el ajuste de la suma del residuo de los
mínimos cuadrados. En este caso, los principales ajustes en nuestra metodología se
han realizado en el apartado del Simulated Annealing. Nuestra propuesta consiste
en sustituir las búsquedas locales mediante algoritmos clásicos por una serie de heu-
rísticas basadas en la búsqueda de patrones directos [Hedar and Fukushima, 2004],
completamente hibridados con la generación de entornos mediante distribuciones de
Cauchy. Para asegurar la viabilidad de nuestra renovada metodología, se han reali-
zado numerosos experimentos con una batería de ejemplos recogidos en la literatura
(que aseguran que todas las dificultades geométricas están recogidas). Los resultados
son alentadores en cuanto a su calidad, siendo capaces de reconstruir auténticos no-
dos múltiples, y están a la par de otros métodos bio-inspirados. Sin embargo, la gran
cantidad de parámetros de los que depende el método, teniendo que ser ajustados
para cada tipo de problema, supone una desventaja con respecto a dichos métodos.

Ajuste de curvas paramétricas mediante B-spline

Para resolver el caso del ajuste de curvas mediante B-spline paramétricas, nuestra
propuesta consiste en ampliar nuestra metodología con una variante mimética, de
diseño propio, del Simulated Annealing (MeSA). Dicha variante aparece por pri-
mera vez en el artículo Memetic Simulated Annealing for Data Approximation with
Local-Support Curves que será publicado en los Procedia of Computer Science y pre-
sentado en International Conference on Computational Science 2017. Nuestra variante
mimética utiliza una serie de procesos, integrados dentro del propio algoritmo, para
aprender ciertos parámetros (las temperaturas de aceptación y generación) así como
una búsqueda local que trata de aproximar las fluctuaciones de energía del siste-
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ma mediante aproximaciones lineales, basado en el método constrained optimization
by linear approximations (COBYLA) [Powell, 1994]. Por otra parte, la generación de
nuevos candidatos se basa en una adaptación de la ley µ−1 de teoría de las comunica-
ciones. La metodología se valida contra una serie de ejemplos extraídos de la litera-
tura con excelentes resultados. Cabe señalar que ninguno de los ejemplos pertenece
al mundo del diseño asistido por computador, por tanto, no son curvas apropiadas
para su optimización mediante splines. Sin embargo, los resultados son excelentes
desde un punto de vista de gráficos por computador.

Ajuste mediante superficies NURBS

Es, sin duda, el caso más difícil: ajuste de nubes de puntos, mediante el uso de
superficies racionales B-spline (NURBS). A la ya consabida dificultad de aproximar
funciones racionales y un nuevo juego de pesos, hay que añadir la dificultad de un
conjunto de nodos independientes por cada dirección paramétrica.

Uno de los principales problemas derivado del uso de técnicas de búsqueda di-
recta, como COBYLA, reside en lo que se conoce como la maldición de las muchas
dimensiones (the curse of dimensionality): a medida que el número de variables cre-
ce, las heurísticas de búsqueda local necesitan de un gran número de iteraciones
para poder mejorar la solución, a la par que la complejidad de cada ciclo aumenta
sustancialmente. Para superar dichos obstáculos, nuestra propuesta consiste en sus-
tituir el aprendizaje local mediante heurísticas, por una cadena de vuelos de Lévy que
sean capaces de capturar las fluctuaciones no-lineales de la energía del sistema. Los
resultados obtenidos al aplicar esta nueva metodología sobre una nube de puntos ex-
traída de la evaluación de una NURBS son excelentes, se obtiene con una precisión
del orden de 1e-14 en los parámetros del modelo subyacente.

En esa ocasión, además, se ha resuelto el problema real: una nube de puntos, des-
organizada, de tamaño masivo (unos 400 mil puntos), procedente de un escáner 3D.
Se trata de una nube de puntos obtenida al escanear la frente de una talla de madera
de una Virgen, de importante valor patrimonial para la ciudad de Santander. Para re-
solver este problema, se aplican una serie de procesos previos al ajuste, consistentes
en la aplicación de un filtrado de ruido, mediante el uso de k-vecinos más cercanos
(KNN), para posteriormente aplicar una reducción de su tamaño, mediante el uso de
técnicas de voxelización. Los resultados son muy prometedores y serán incluidos en
un artículo futuro que cerrará esta fase de nuestra investigación.

Principales contribuciones

A continuación, se resumen las principales aportaciones de la Tesis al estado del
conocimiento:

• Se ha elaborado una metodología general para la aproximar nubes de puntos
ruidosos, mediante modelos de Bézier y B-spline. El método no requiere de
ningún parámetro subjetivo, y es capaz de obtener el modelo óptimo de forma
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automática. Nuestra metodología fusiona varias técnicas, desde la optimización
por mínimos cuadrados, hasta la selección de modelos mediante métricas de
ciencias de la información, pasando por el uso de meta-heurísticas.

• Para cada tipo de problema tratado, se ha adaptado una versión específica del
Simulated Annealing.

• En el caso de datos desorganizados, se ha elaborado un método mediante el que
dotar de una estructura de conectividad a la nube de puntos, usando métodos
de interpolación basados en entornos naturales o de Sibson.

• Con respecto al Simulated Annealing, la Tesis concluye con la implementación
de dos novedosas técnicas:

– Un esquema de optimización mimético, mediante aproximaciones lineales
capaces de explotar los entornos más prometedores.

– Un esquema de optimización mimético, mediante la adaptación de las dis-
tribuciones de generación de entornos, a las fluctuaciones de la energía
del sistema.

Futuras líneas de trabajo

A continuación, mostraremos una serie de líneas abiertas de investigación. En esencia
podemos distinguir dos vertientes: las mejoras sobre el Simulated Annealing y los
trabajos futuros para la reconstrucción de curvas y superficies.

Meta-heurísticos

La línea abierta con la inclusión de los vuelos de Lévy muestra un prometedor futuro,
por lo que nuestra investigación se centrará en la mejora del aspecto mimético del
MeSA. Para ello planteamos la creación de un pool de distribuciones, de tal manera
que el algoritmo vaya eligiendo en cada momento qué distribución se adapta mejor a
las fluctuaciones del espacio de la energía. A medida que el algoritmo avanza, cuando
se detecte un atasco en el flujo de candidatos aceptados mediante heurísticas sobre la
variancia de la energía, se procederá a realizar un vuelo de Lévy a partir de puntos ya
obtenidos. De esta forma se puede escapar, tanto de las cuencas de atracción, como
de las mesetas energéticas. En cambio, la generación de entornos estará basada en el
FSA mediante la distribución de Cauchy, mientras que la explotación de las regiones
prometedoras se realizará mediante búsquedas tipo down-hill basadas en la función
µ−1.

Resolución del problema completo

Con respecto a la ingeniería inversa de curvas y superficies, el primer trabajo en el ho-
rizonte consistirá en realizar más experimentos con nuestro esquema mimético para
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el caso de superficies NURBS y comparar los resultados con los principales métodos
desarrollados en la literatura. Una vez concluida esta tarea, se dará por finalizada
la primera fase de nuestra investigación, para dar comienzo a la segunda fase: la
resolución del problema completo, así como la mejora de la metodología.

El problema completo

El problema completo hace referencia al caso en el que la nube de puntos es de
tamaño masivo, desorganizada y no puede ser representada por una única superficie.
En este caso el problema se puede dividir en cuatro fases claramente diferenciadas,
de las cuales ya hemos resuelto una en el presente trabajo.

1. Segmentación: Dado que la nube no se puede representar con una única super-
ficie, la primera tarea consiste en dividirla (segmentarla) en regiones que sí se
puedan representar con un único modelo.

2. Detección de agujeros. El método necesita detectar la presencia de agujeros, que
pueden ser, principalmente, de dos tipos: aquellos intrínsecos a la superficie
subyacente (p.ej. un toro) o bien aquellos que surgen como resultado de erro-
res en los procesos de adquisición. Un problema importante de solución no
trivial: si un agujero es rellanado con el modelo resultante, entonces no se es-
tá siendo fiel a la superficie subyacente. Por otra parte los agujeros debidos a
datos perdidos pueden suponer todo un problema para la estabilidad de los al-
goritmos. Nuestra propuesta al respecto pasa por la utilización de métodos de
aprendizaje no supervisado.

3. Ajuste de superficies. Aquí entra en juego el presente trabajo y sería la parte ya
resuelta.

4. Unión de segmentos. Una vez se haya realizado el ajuste de una superficie para
cada uno de los segmentos, es necesario volver a reunir cada uno de los modelos
(proceso de pegado). Se puede entender como un problema multi-objetivo en
que haya que satisfacer ciertas condiciones, en cada una de las fronteras de
pegado: continuidad, resolución de la intersección de puntos comunes etc. A
tal efecto, se está trabajando en un esquema mixto, en el que las restricciones
sean manejadas mediante sistemas inmunes.

Splines de nodo libre mediante técnicas de un único paso

La metodología presentada en el presente trabajo emplea la optimización de un con-
junto dado de modelos candidatos, en lo que comúnmente se denomina procesos en
dos-pasos: en primer lugar se seleccionan una serie de modelos base, a continuación,
para cada modelo se realiza una optimización de sus parámetros, para finalmente
obtener una puntuación. Dicha puntuación es transformada a posteriori, median-
te algún criterio que tenga en cuenta tanto la calidad de la reconstrucción, como
su complejidad. Finalmente se elige el modelo con mejor puntuación transformada.
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Nuestra propuesta contempla emplear una serie de meta-heurísticas que son capa-
ces de mezclar información continua, con otra de carácter binario, usando una única
función objetivo que condensa toda la información del problema. Para emplear dicho
método, planteamos la creación de un problema dual en el que se doblan la cantidad
de variables. Por cada nodo se crea una nueva variable ficticia binaria, que indica si
dicho nodo se emplea o no. La función objetivo devolverá de forma automática el
BIC, por lo que ya recogerá el balance entre complejidad y fidelidad.

Actualmente existen en la literatura varios métodos que emplean técnicas de un
único paso, como por ejemplo: en [Yoshimoto et al., 2003], la propuesta mediante
algoritmos genéticos ofrece buenos resultados, pero no consigue de manera auto-
mática auténticos nodos múltiples (los aproxima mediante los denominados quasi-
múltiples nodos), mientras que en [Valenzuela et al., 2013] se emplea un algorit-
mo genético multi-objetivo que, aunque reconstruye la forma subyacente, es inca-
paz de devolver el número óptimo de nodos, produciendo numerosos nodos inú-
tiles, por lo que las formas con discontinuidades o puntos cúspides quedan fue-
ra de su alcance. Actualmente los autores están trabajando en la adaptación de
los métodos de evolución evolutiva, mediante procesos de búsqueda desorganizada
[Egea et al., 2009, Egea et al., 2010]. Los primeros resultados son esperanzadores,
pues ya es posible la reconstrucción de todo tipo de funciones continuas, incluso
aquellas en las que se pierde la diferenciabilidad gracias a que se encuentra el núme-
ro óptimo de nodos (produciendo a la par nodos múltiples auténticos).

Acerca del autor

Cabe señalar, que el presente trabajo viene avalado por una serie de publicacio-
nes en el campo de la reconstrucción de curvas y superficies [Loucera et al., 2014,
Iglesias et al., 2015b, Iglesias et al., 2016b, Loucera et al., 2017b] y el que se pu-
blicará en breve, con nuestra propia variante mimética del Simulated Annealing
[Loucera et al., 2017a], que nos ha proporcionado el esqueleto conductor de la Tesis.
Además, otra serie de trabajos han sido realizados en paralelo a la Tesis, conectando
bien con la computación bio-inspirada [Cosido et al., 2013] o bien con la reconstruc-
ción de modelos matemáticos [Cosido et al., 2014]. Lejos del campo de los meta-
heurísticos o la ingeniería inversa, el autor ha comenzado a colaborar en el campo
de la ingeniería de comunicaciones con una publicaciÃşn en ciernes Experimental
Comparison of Non-Coherent SU-MIMO Schemes cuyo autor principal es Fanjul, J..

Actualmente, el autor trabaja como investigador en el Grupo de tratamiento Avan-
zado de la Señal de la Universidad de Cantabria, donde desarrolla tareas en el área
de reconocimiento de patrones en señales, mediante aprendizaje automático, bajo
los proyectos financiados por el Ministerio de Economía, Industria y Competitividad
(MINECO) TEC2013-47141-C4-R (RACHEL) y el proyecto industrial Development of
an Automatic System for Detection and Classification of Defects in Steam Generator
Tubes (AAUT). En el pasado, el autor ha trabajado en diversos puestos, dentro de
proyectos de investigación y/o técnicos, de entre los que destacan:



xxv

• Agencia Estatal de Meteorología (AEMET). Proyecto 14: Apoyo de sistemas a
la puesta a punto de modelos numéricos operativos y en desarrollo (Resolución
de 3 de diciembre de 2014).

• Instituto de Estadística de Cantabria (ICANE): Técnico de software y modeliza-
ción estadística.

• CODELSE, Proyecto SIeV: Propuesta, desarrollo e implementación de algorit-
mos meta-heurísticos con el fin de crear un Sistema Inteligente de Soporte a
la Evacuación de Edificios en Situaciones de Emergencia. Uso de técnicas de
aprendizaje automático en la predicción y clasificación de los niveles de alar-
ma.
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Notation and Acronyms

Used Notation
a Scalar (lowercase)
a Column vector (lowercase boldface)
S Multi dimensional array (uppercase boldface)
a [i] access element i of vector a
‖·‖p p-norm
|·| cardinal
Ck(I) Functions with first k continuous derivatives (calligraphic)
P k Space of polynomials of degree k (calligraphic)
· T Matrix transpose
· † Moore-Penrose pseudo-inverse
vec(· ) Column-wise vectorization
� Element-wise multiplication of two vectors
� Sampled from
R Set fo real numbers
N Set of natural numbers
N (µ,σ) Normal distribution with norm µ and variance σ
U ([a, b]) Uniform distribution over [a, b]

Acronyms

AIC Akaike Information Criterion
ASA Adaptive Simulated Annealing
BIC Bayesian Information Criterion
CSA Classic Simulated Annealing
FSA Fast Simulated Annealing
GSA General Simulated Annealing
MSE Mean Square Error
NMSE Normalized Mean Square Error
RMSE Root Mean Square Error
RSS Residual Sum of Squares
SA Simulated Annealing
NURBS Nobody Understands Rational B-Splines
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Chapter1
Introduction

An author never does more
damage to his readers than
when he hides a difficulty

Evariste Galois

In this chapter we discuss the issue of data fitting with curves and surfaces in reverse
engineering, a key component in the manufacturing processes of today. The chapter
provides an overview of the rest of this work, starting with an outline of the reverse
engineering problem and concluding with a brief overview of the goals and main
contributions of this Thesis.

1.1 Reverse engineering

Digital modeling has become one of the core tools in the design and manufacturing
industry. As the technologies to manufacture advance (e.g. 3D home printing), the
capability to produce physical objects from computer models has become trivial. On
the other hand, the ability to reconstruct a digital model from a given real world
object continues to be a very difficult problem. This process, known as reverse engi-
neering, plays a fundamental role in the manufacturing industries of today. This is
specially true in key areas of the current industrial infrastructure such as the auto-
mobile, aerospace, and shipbuilding sectors [Pottmann et al., 2005].

In this work, we focus on the issue of data fitting with curves and surfaces in
reverse engineering. The problem starts with a point cloud, usually of massive size,
that typically contains high quantities of noise due to measurement errors and other
artifacts produced by the acquisition method [Pauly et al., 2002]. In the general sce-
nario, the topology and geometry of the data is not provided, so the sample points
connectivity is of unknown nature. The main objective behind the reverse engineer-
ing procedure is the construction of a model that captures the underlying information
of the point cloud (shape, topology, geometry and so on).

The curve and surface reconstruction problem arises in several scientific fields.
For instance, spline fitting is an important tool in machine learning, as it forms
the core of many regression techniques [Marsh and Cormier, 2001], approximation
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theory [Rice and Saloin, 1969, Cox, 1990] and CAGD [Dierckx, 1995]. Beyond the
mathematics field, curve/surface-fitting plays an essential role in many other fields
of expertise such as noninvasive techniques in the medical and health areas, where
a typical problem involves the creation of a surface from a set of cross-sections
[Bajaj et al., 1995, Park and Kim, 1996], acquired by computer tomography or other
techniques such as magnetic resonance.

In climatology and meteorology thin-plate splines are often used to model some
parameter [Tait et al., 2006], usually by incorporating surface elevation constraints.
In general, in most scenarios where kriging is used [Cressie, 1990], such as surface
temperature and elevation models, a spline interpolation/regression model could be
used [Hutchinson and Gessler, 1994].

As it has been hinted before, the most common scenario for data fitting
is an unordered, massive and noisy point cloud [Pauly et al., 2002] usually ob-
tained by making use of scanner devices [Hoppe et al., 1992, Eck and Hoppe, 1996,
Kazhdan and Hoppe, 2013] which often introduce noise and other artifacts due to
measurement errors and mechanical deficiencies.

To construct the underlying model there exist various approaches that differ not
only on the inner workings of the method but in the resulting solution. The most
common approaches to fit a model to a point cloud can be divided into three cat-
egories: approximation by polygonal meshes, constructive solid-geometry modeling
and curve and surface mathematical modeling. Our methodology falls within the
latter approach; we aim to reconstruct the underlying shape of the data by means
of either Bézier or B-spline curves and surfaces. In chapter 3 we review some of the
most important curve and surface reconstruction methods in the literature.

In this work we provide a general methodology to fit, in an automatic way, a
spline model to the point cloud. This is done by transforming the geometrical
problem into a non-linear multivariate continuous optimization problem, known
to be non-convex and multi-modal. The first research techniques addressing the
data fitting issue with free-form parametric curves and surfaces appeared during
the sixties and seventies and were focused on the use of classical numerical algo-
rithms [de Boor and Rice, 1968, Rice and Saloin, 1969, Powell, 1970, Jupp, 1978].
Although many scenarios were successfully solved, the general problem was be-
yond the capabilities of traditional mathematical tools. During the next two decades
various approaches appeared, such as line use error bounds [Park, 2004], approx-
imations to dominant points [Park and Lee, 2007] and many other methods, usu-
ally based on iterative procedures that start from a rough baseline model which
is latter refined by a set of heuristics [Ma and Kruth, 1995, Piegl and Tiller, 2001,
Brujic et al., 2011]. These methods tend to fail with noisy data or require a set of con-
straints which are hard to enforce or meet in the general case. The last few years have
seen the rise of popularity of bio-inspired optimization [Yang, 2010, Yang, 2014],
which in the case of curve and surface fitting have been used with great success
[Iglesias and Gálvez, 2016].
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Figure 1.1: A 3D scanned point cloud of a Spanish Virgin wooden statue, kindly
provided by the company 3DINTELLIGENCE.

1.2 Why splines?

Spline models are nowadays ubiquitous in the CAD/CAM industry and the computer
graphics field of research. These free-form parametric models consist of a linear
combination over a set of functions, a basis in the functional space, which have
a series of properties specially well suited for computer graphics. The coefficients
of the combination, usually referred as the poles or control points, can be used to
directly modify the shape of the curve or surface. Its widespread acceptance and
popularity from the eighties onwards is due to the following (no-exhaustive) list of
properties:

I Information comprehension. A canonic mathematical form can store high quan-
tities of information about the shape with only relatively few parameters.

II Shape construction. The set of shapes and forms that can be reproduced are
limitless and includes the all classic models: conics, ruled and revolution sur-
faces etc. Thus, they provided a unified mathematical model to represent both
classical and free-form shapes.

III Easy of manipulation. Due to the mathematical properties of the blending
functions (the basis) the final shape can be locally manipulated by modifying
the control points (a must in interactive design). Furthermore, the geometrical
interpretations of the model are so clearly codified that a spline is very well
suited to geometric design.
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IV Invariance. The shapes are invariant under affine transformations (scaling,
rotation, translation) and some projective transformations. Even more, the
transformation could be applied to the spline poles and the result would be the
same shape as to applying it to the whole model.

V Computationally stable. There are very fast and stable algorithms to evaluate,
modify and interrogate a spline model.

1.3 Stochastic-driven optimization

As it has been mentioned before, the free-form curve and surface fitting optimization
problem is a really difficult one. To overcome the limitations of traditional mathe-
matical methods when dealing with the problem, the scientific community has shifted
its attention towards other approaches: from artificial intelligence to nature-inspired
computation.

A diverse set of techniques belonging to the artificial intelligence paradigm have
been applied to the problem with varying grades of success. For instance, in
[Gu and Yan, 1995, Hoffmann and Varady, 1998, Barhak and Fischer, 2001] artificial
neural networks are used to approximate scattered data with free-form surfaces,
whereas in [Kumar et al., 2004, Hoffmann, 2005] self-organizing maps are used to
the same effect. These artificial intelligence approaches share one key advantage, the
ability to learn the point cloud topology in a natural way. However, they present many
limitations from a model construction point of view, the main one being the inabil-
ity to infer the correct functional structure of the problem. Furthermore, the initial
network topology must be provided beforehand, a difficult problem-dependent task
in itself. These limitations are partially surpassed with the introduction of functional
networks as in the case of [Iglesias et al., 2004] with B-spline surface reconstruction
or [Gálvez et al., 2007] where genetic algorithms are combined with functional net-
works for curve and surface fitting (using Bézier models). The functional approach
is further extended in [Iglesias and Gálvez, 2008] by the introduction of rational B-
spline functions which can reconstruct the functional structure of a rational B-spline
model for curve fitting.

Nature-inspired optimization is a very promising area of research based on the
idea that Nature by itself is able to solve problems in very efficient ways, which
leads to the computational imitation of such processes. Most of these optimization
algorithms are driven by stochastic meta-heuristics backed by powerful metaphors
of the natural processes mimicked. For instance, at the core of our methodology
lies the Simulated Annealing algorithm [Kirkpatrick et al., 1983], a meta-heuristic
that mimics the thermodynamics behind the annealing of a metal. Other stochastic-
driven algorithms have been successfully applied to curve and surface fitting. What
follows is a brief overview of some of the most popular.

Evolutionary algorithms. The family of population-based meta-heuristics known
as evolutionary algorithms (EA) try to mimic the evolutionary mechanisms of Nature,
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such as mutation, reproduction, selection, adaptation etc. Genetic Algorithms (GA)
are one of the most developed subsets of EA, the meta-heuristic behind a GA tries
to model the process of natural selection. Genetic algorithms have been successfully
applied to B-spline curve fitting [Yoshimoto et al., 1999, Yoshimoto et al., 2003]. In
[Valenzuela et al., 2013] a multi-objective variant is proposed for the same problem.
Other types of EA haven been also used to spline fitting, most notably artificial im-
mune systems and clonal selection algorithms. AIS-CSA are based on the way the
immune system is able to adapt certain cells to counter antigen invaders. Free-knot
spline fitting is provided in [Ülker and Arslan, 2009] with the use of AIS whereas
in [Iglesias et al., 2013, Gálvez et al., 2015] CSA is used to fit Bézier and free-knot
splines.

Swarm intelligence. Swarm intelligence deals with natural and artificial systems
that are comprised of individuals with the ability to cooperate towards a common
goal by sharing information about the problem being solved. Particle swarm opti-
mization is a stochastic-driven algorithm for global optimization which updates a
set of candidate solutions (the swarm) through a certain set of iterations by sharing
space-related information among them. PSO is used in [Gálvez and Iglesias, 2011]
for free-knot spline fitting and in [Gálvez and Iglesias, 2012] for point cloud ap-
proximation with NURBS surfaces. Other swarm intelligence techniques applied in
data fitting mimic the patterns of biological systems, such as the firefly behavior
[Gálvez and Iglesias, 2013] or bat swarms [Iglesias et al., 2015a].

Physics based. This is a much broader field than the previous ones, as it encom-
passes all the optimization algorithms which mimic a certain physical process. In
[Gálvez and Iglesias, 2013] the electromagnetism algorithm (EMA) is used for Bézier
curve fitting. The EMA method is based on the attraction-repulsion mechanism to
move sample points towards the optimum. This algorithm is further improved in
[Iglesias and Gálvez, 2016] with the addition of a memetic approach (a local learn-
ing phase) for rational Bézier surface reconstruction. There are other physics-based
algorithms such as Big Bang-Big Crunch Algorithm (BB-BC) [Erol and Eksin, 2006]
which is inspired by the entropy fluctuations formulated in the homonymous the-
ory dealing with the evolution of the universe, and the Gravitational Search Algo-
rithm [Rashedi et al., 2009] which mimics the theory by the same name. The Sim-
ulated Annealing method used in this work, also belongs to this category of algo-
rithms as it is backed by a thermodynamics metaphor. SA has been used to solve
a specific set of curve and surface fitting problems, such as: mesh triangulation
[Sen and Zheng, 1992] and free-knot spline fitting [Valenzuela and Pasadas, 2010].

1.4 Goal of the Thesis

The aim of this thesis is to construct a general methodology for point cloud fitting by
means of spline models. To construct such a methodology we provide a set of Simu-
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lated Annealing variants which draws from the literature on meta-heuristic methods
to build optimization techniques tailored to the problem at hand. The motivation of
this work lies in the ability of the Simulated Annealing, as other meta-heuristics, to
adapt itself to the problem without the need of subjective decisions, even in the case
of incomplete or noisy information (a must when dealing with point clouds).

First, we present the problem of data fitting and the mathematical background
needed for its understanding. Although the canonical definition in mathematical
terms is clear and spline models are a very powerful tool for shape-driven tasks,
several difficulties arise from the problem itself (non-linear, multi-modal) and the
complexity of the models.

To deal with the problem difficulties we provide one specialized SA algorithm for
each kind of spline model: rational and non-rational curve and surface Bézier/ B-
spline fitting models. To prevent over-fitting problems we make use of information
sciences criteria which provide a trade-off between data-fidelity and model complex-
ity.

Next, we provide a set of extensions to the methodology to treat unorganized
point clouds of massive size. Thus, making our solution real-world ready. To show
the validity of our techniques we provide a set of experimental results, mostly taken
from an academic background. However, we conclude with the application to a real-
world scenario by fitting a piece of a 3D-scanned Virgin.

Figure 1.2 provides a general outline of the method with the chapter where each
technique can be found.

Figure 1.2: Outline of the methodology.
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1.5 Thesis overview

Although all chapters are closely interlinked within a reverse-engineering framework,
the Thesis is divided into four blocks of information. The introduction and back-
ground correspond to the first part. We continue with an outline of the optimization
methodology, while the third part deals with the presentation of some reverse en-
gineering applications of our data fitting framework. Finally, we conclude with a
chapter devoted to discuss the conclusions derived from our work and some hints
about future lines of research.

Part I presents an introduction to reverse engineering in CAD/CAM and the math-
ematical background needed to understand the problem.

Chapter 1. The current chapter. We provide the motivation behind reverse engi-
neering and a general overview of the problem and the solutions found in the litera-
ture.

Chapter 2. This chapter explains the mathematical models used to fit the underly-
ing shape of the point cloud. We describe the general concept of a spline and then
we provide definitions for the specific families used in this work, with an explanation
of the most relevant characteristics.

Chapter 3. In this chapter we present the data fitting problem in its most general
form: to fit a NURBS surface. We continue explaining the main difficulties that arise
from the given formulation and the relevant literature on the approximations taken
to deal with it.

In part II we present the core of our methodology: the Simulated Annealing and
the model selection framework.

Chapter 4. The classical Simulated Annealing is presented in this chapter, along
with the relevant literature on the subject. We explain each component and provide
the main proposals that have influenced our work.

Chapter 5. The full methodology is revealed in this chapter, once all the inner
workings have been presented in the receding chapters.

Different reverse engineering applications of our work are explained in detail in
part III.

Chapter 6. In this chapter we include the reverse engineering applications of our
methodology for the case of Bézier curves and surfaces.
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Chapter 7. This chapter provides the results for the application of our methodology
to different reverse engineering fitting scenarios: free-knot splines, parametric
B-Spline curves and NURBS.

In part IV we summarize the conclusions and contributions of this Thesis and
provide a general outline of our future lines of research. Beyond chapter 8 we include
the appendices and bibliographic references.

1.6 About the author

This Thesis is built on top of the results that have lead to the publications
of various research articles in the reverse engineering field [Loucera et al., 2014,
Iglesias et al., 2015b, Iglesias et al., 2016b, Loucera et al., 2017b] and a paper where
we introduce our own memetic variant of the Simulated Annealing for B-spline fit-
ting [Loucera et al., 2017a]. In addition to these works the author has also col-
laborated in the publication of [Cosido et al., 2013] where a meta-heuristic multi-
objective graph resolution technique based on the ant colony algorithm was used
to route selection. In [Cosido et al., 2014] reverse engineering models are used to
reconstruct an historical building. Beyond the meta-heuristic field, the author has
begun to collaborate in other areas such as communications where he has already
collaborated in Experimental Comparison of Non-Coherent SU-MIMO Schemes a soon
to be published paper by Jacobo Fanjul and others.

Nowadays the author has a full-time job as a machine learning researcher in the
Advanced Signal Processing Group (GTAS, in Spanish) under projects supported by the
Ministerio de Economía, Industria y Competitividad of Spain (MINECO) TEC2013-
47141-C4-R (RACHEL) and the industrial project Development of an Automatic System
for Detection and Classification of Defects in Steam Generator Tubes (AAUT). Other
related jobs by the author include:

• State Agency of Meteorology (AEMET). Project 14: Numerical models support,
research and development (2014 December resolution).

• Cantabria Statistics Institute (ICANE): Software engineering and statistical
model building

• CODELSE, SIeV Porject: Research and development on meta-heuristic algo-
rithms for near real-time route computation in fire-escape scenarios. Machine
learning research on how to predict a fire-alarm level.



Chapter2
Mathematical Background

Attend to your Configuration.

Edwin A. Abbott, Flatland

In this chapter we will discuss the main properties of the mathematical models at the
core of our methodology: the spline space of functions.

Definition 2.1. Let {ui}n+1
i=0 a partition of the interval I = [α,β] ⊂ R such that α =

u0 < . . . < un+1 = β. The functional f : I → R is a polynomial spline of degree k ∈ N
if:

• f ∈ Ck−1(I)

• f |[ui ,ui+1] ∈ Pk ∀i

The interior points ui are usually referenced as the spline breakpoints or the knot
vector. As different conditions are imposed on the polynomials and their derivatives
on the breakpoints, different families of splines are formulated. In this paper we are
interested in the Bézier and B-spline (basic splines) families, the de-facto standard
for computer graphics.

We begin our discussion of spline curves and surfaces by looking at the Bézier
family. Although in this work we make use of the most current formulation of each
curve and surface presented, these parametric curves were developed by Pierre Bézier
[Bézier, 1974] by taking into account geometrical considerations of the design prob-
lems he was working on, automobile body description and aircraft wing design, at
Renault. Later on, Forrest [Forrest, 1972] demonstrated the equivalence between
the Bézier formulation and the Bernstein basis approximation function (used in this
work).

The geometric considerations considered by Bézier play an important role, as
the resulting curves and surfaces must adhere to design problems where a trade-off
between aesthetic and functional requirements must be fulfilled. The rest of the para-
metric splines presented in this work could be seen as extensions to the Bézier family
with the premise of an increase in its design capabilities while maintaining the func-
tional requirements and the geometrical beautifulness. For an historical perspective
of how each spline family came to be, see [Rogers, 2000].
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2.1 Bézier curves

A Bézier curve of degree k in Rd, with control points {Pi}k
i=0, is a free-form paramet-

ric curve defined as follows:

b =
k

∑
i=0

Bi,k(u)Pi with u ∈ [0, 1] (2.1)

where Bi,k is the i-th Bernstein polynomial of degree k defined by:

Bi,k(u) =
(

k
i

)
ui(1− u)k−i (2.2)

2.1.1 Bernstein basis properties

The Bernstein basis of polynomial functions has several geometric and analytical
properties which play a very important role in the computer graphics field, such as:

Non negativity. Bi,k(u) ≥ 0 ∀u ∈ [0, 1] , i ∈ 0, k.

Partition of unity. ∑
k
i=0 Bi,k(u) = 1 ∀u ∈ [0, 1].

Symmetry. Bi,k(t) = Bk−i,k(1− t).

Linear precision. The polynomial u can be expressed as a linear combination of
the Bernstein basis: u = ∑

k
i=0

i
k Bi,k(u).

Differentiability. The derivative of a Bernstein polynomial can be expressed as a
linear combination of the basis: B′i,k(u) = k (Bi−1,k−1(u)− Bi,k−1(u)).

From a computationally point of view, there are two properties that facilitate both
the algorithm implementation and its numerical stability. From now on we take for
granted that B0,0(u) = 1 and Bi,k = 0 if i < 0 or i > k.

Recursion. The Bernstein polynomial of degree k can be expressed as a combina-
tion of those of the preceding degree:

Bi,k(u) = (1− u)Bi,k−1(u) + uBi−1,k−1(u) (2.3)
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Degree elevation. The Bernstein polynomial of degree k can be expressed as a
combination of those of degree k + 1:

Bi,k(u) =
(

1− i
n + 1

Bi,k+1(u) +
i + 1
k + 1

Bi+1,k+1(u)
)

(2.4)

For a more rigorous and deep treatment of the Bernstein basis, beyond the com-
puter graphics field, see [Lorentz, 2012].
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Figure 2.1: Cubic Bézier basis functions.

2.1.2 Curve properties

Bézier curves have the following properties, which form the backbone of every major
digital modeling tool.

Transformation invariance. To apply an affine transformation to a Bézier curve it
is only required to apply it to its control points. Furthermore, the shape of the curve
is preserved.

End point interpolation. The curve passes through the last and first control points.

Convex hull. Bézier curves are contained within the convex hull of its control
points.

Variation diminishing property. Let λ be the number of times a given d− 1 linear
variety H embedded in Rd intersects the control polygon of the curve, then b has at
most λ intersections with the variety H.
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Differentiability. The derivative of a Bézier curve b is another Bézier curve of de-
gree k− 1 and can be expressed as:

b′(u) =
k−1

∑
i=0

Bi,k(u)(kPi)

End point differentiability. The j-th derivative of a Bézier curve at an extreme
point depends on the derivative of b at the extreme point and its j consecutive
control points.

Although in this work the last property does not play an essential role, as we try
to reconstruct a point cloud with a single curve, it is very important when joining
Bézier curves or computing the normals of a given surface. See Figure 2.2 for a
visual representation of how the \Omega symbol is internally represented by means
of a Bézier path, a series of interconnected Bézier curves, in the Times New Roman

font. See section A.1 for the code needed to generate the glyph.
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Figure 2.2: Cubic Bézier basis functions.

2.1.3 de Casteljau Algorithm.

From the recursion formula given by 2.3, a Bézier curve of degree k with control
points {Pi}k

i=0, denoted as bk ({Pi}), can be written as:

bk

(
{Pi}k

i=0

)
= (1− u)bk−1

(
{Pi}k−1

i=0

)
+ ubk−1

(
{Pi}k

i=0

)
(2.5)

which is, in fact, a procedure to recursively compute a point of a Bézier curve. If we
fix u = u0 and rename Pi as P0,i, then follows:

Pl,i (u0) = (1− u0) Pl−1,i (u0) + u0Pl−1,i+1 (u0) (2.6)



2.2 Rational Bézier curves 15

Equation (2.6) is known as the de Casteljau Algorithm: a geometric process to
compute a point of the Bézier curve. Note that this is a purely geometrical way of
computing the points of a Bézier curve without even needing the Bernstein polyno-
mials. In fact, the curve can be drawn with a pencil and a ruler by following the
geometrical interpretation. For the interested reader we recommend the lecture of
[Rogers, 2000].

2.2 Rational Bézier curves

A rational Bézier curve of degree n in Rd, with control points Pi, is a parametric
free-form curve represented by:

b =
k

∑
i=0

Ri,n(u)Pi with u ∈ [0, 1] (2.7)

were Ri,n are the rational extension of the Bernstein basis given by:

Ri,n =
wiBi,n(u)

∑
n
k=0 wkBk,n(u)

with u, v ∈ [0, 1] (2.8)

2.2.1 Curve and basis properties

Given that the basis functions of a rational Bézier curve are an extension of the non-
rational ones, there are some analytical and geometrical properties inherited from
the non-rational case, such as:

Projective invariance. The shape of a rational surface is preserved through pro-
jective transformations. Furthermore if the transformation is applied to the control
points, the resulting curve is exactly the same as if the transformation is directly
applied to equation (2.7).

End points interpolation. The curve passes through the extreme points of its con-
trol polygon.

Convex hull. The curve is fully contained within the convex hull of its control
points.

2.2.2 Motivation

Non-rational Bézier curves, as other polynomial-based constructions, are unable to
represent some classical figures, such as conics. However, rational Bézier curves can
be used to represent those forms (Theorem 2.2), thus providing a significant trade-
off between the added complexity and the flexibility gained. Furthermore, equation
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(2.1) can be retrieved from equation (2.7) by taking all weights equal to 1, so a
non-rational Bézier curve can be expressed as a rational one.

Theorem 2.2. Any non-degerative rational Bézier curve defined by three non-collinear
control points {Pi}2

i=0 and weights {wi}2
i=0, represents a conic section that is in corre-

spondence with the sign of d = w0w2 − w1 as follows:

• An ellipse if d > 0.

• A parabola if d = 0.

• A hyperbola if d < 0.

Figure 2.3 summarizes the findings of Theorem 2.2, with the control points and
the rational Bézier curve represented as dots and a continuous line, respectively.
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Figure 2.3: Conics construction by means of rational Bézier curves.

2.3 Bézier surfaces

A polynomial Bézier surface of degree (m, n) is a tensor-product parametric patch
with the following formula:

S(u, v) =
m

∑
i=0

n

∑
j=0

Bi,m(u)B j,n(v)Pi j, with u, v ∈ [0, 1] (2.9)

where Bi,m(u) and B j,n(v) are the Bernstein basis functions (2.2) in the u, v paramet-
ric space. The coefficients Pi, j ∈ Rd are the control net, which roughly determine the
shape of the surface.

2.3.1 Surface properties

Given that the basis functions are those of the Bézier curves, many properties are
inherited. From a computer graphics point of view the most important are:

End point interpolation. The surface passes through the corner points of its control
net.
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Affine invariance. In order to apply an affine transformation to a Bézier surface
one can apply the transformation to the control net. The resulting Bézier surface
formed by the transformed control points is the same as if applied to the whole
equation (2.9).

Non negativity. The basis functions are non-negative everywhere.

Partition of unity. ∑
m
i=0 ∑

n
j=0 Bi,n(u)B j,m(v) = 1

Convex hull. The surface lies in the convex hull of its control net.

Variation Diminishing. The variation-diminishing property for tensor surfaces is
both undefined and unknown, [Prautzsch and Gallagher, 1992].

Figure 2.4 shows the Utah Teapot [Blinn and Newell, 1976]: without a doubt
one of the most famous models in the history of computer graphics, and one of the
first cases of a hand-crafted reverse-engineered digital model of a real world object
[Crow, 1987].
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Figure 2.4: The Utah Teapot.

2.4 Rational Bézier surfaces

A rational Bézier surface of degree (m, n) can be formulated as:

S(u, v) =
m

∑
i=0

n

∑
j=0

Ri, j(u, v)Pi, j (2.10)

where Pi, j are the control points and Ri, j(u, v) are the blending or basis functions
given by:
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Ri, j =
wi, jBi,m(u)B j,n(v)

∑
m
k=0 ∑

n
l=0 wk,lBk,m(u)Bl,n(v)

with u, v ∈ [0, 1] (2.11)

2.4.1 Surface properties

Some of the properties for non-rational patches can be easily generalized directly to
the rational case:

Projective invariance. The shape of a rational surface is preserved through projec-
tive transformations. Furthermore, if the transformation is applied to the control net,
the resulting surface is exactly the same as results from applying the transformation
directly to equation (2.10).

End point interpolation. The surface passes through the corner points of its control
net.

Convex hull. The surface is contained within the convex hull of its control net.

Shape parameters. If a weight is increased, relative to its neighbors, the surface is
pushed towards the respective control point. For a visual example of the dramatic
effect of this property see Figure 2.5.
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Figure 2.5: Effect of increasing a weight in a rational Bézier patch.

2.4.2 Motivation

Non rational Bézier patches are unable to represent some classic surfaces, such as the
sphere, which are ubiquitous in the CAD/CAM industry. This is not the case for ratio-
nal Bézier patches as it could be seen in [Piegl, 1986], where a formal construction
of the sphere via bivariate rational surfaces is presented.
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2.5 B-spline curves

A parametric B-spline curve s ⊂ Rd of degree k is a piecewise function that can be
expressed as:

s(u) =
n

∑
i=0

Ni,k(u)Pi (2.12)

where u ∈ [α,β] represents the data parameters, {Pi} the control net of the curve
and {Ni} are the so called B-spline basis functions.

The blending functions of degree k on [ui, ui+1] and breakpoints u0 = α <=
u1 <= . . . <= um = β, can be computed via the Cox de-Boor recursion formula
[de Boor, 1978]:

Ni,k(u) =ϕ+
i,k(u)Ni,k−1(u) +ϕ−i,k(u)Ni+1,k−1(u) (2.13)

where ϕ+
i,k(u) = u−ui

ui+k−1−ui
and ϕ−i,k(u) =

ui+k−u
ui+k−ui+1

and Ni,0(u) is the unit function
with support on [ui, ui+1). In this work we only use splines clamped at the edges, so
u0 = · · · = uk = α and um−k = · · · = um = β. Note that each blending function is
a local support function, so perturbations on a given interval do not affect the global
shape of the curve, a must for the CAD/CAM industry. It is agreed that 0/0 = 0 for
each basic function.

The degree, knots and poles are bound together by the formula:

m = n + k + 1 (2.14)

Note that we have relaxed the knot vector condition of definition 2.1 to allow
knots with multiplicity higher than one. Although this change may introduce some
stability issues, as we will see in the next chapter, it allows the B-spline to reproduce
more complicated shapes such as curves with cusps and discontinuities.

2.5.1 Basic functions

The basic functions Ni,k(u) possess a series of fundamental properties that can be
summarized as follows:

Non-negativity. Ni,k(u) ≥ 0, ∀i, k, u.

Partition of unity. ∑
n
i=0(u) = 1, ∀u ∈ [u0, um]

Local support. Ni,k(u) = 0, ∀u /∈ [u0, ym].

Knot span support. For each knot span [ui, ui+1] at most k + 1 blending functions
are non-zero.
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Differentiability. Ni,k(u) ∈ C∞((ui, ui+1)) for each knot span interior. Let p ∈ N
be the multiplicity of knot ul, then Ni,k(u) ∈ Ck−p(ul).

Global maximum. Each basic function, with k > 0, Ni,k(u) has exactly one
maximum value.

For these and other fundamental properties of the spline space of functions see
[Piegl and Tiller, 1995].
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Figure 2.6: B-spline basis functions.

2.5.2 Curve properties

A B-spline curve of degree k as defined per equation (2.12) has a set of geometric
properties of fundamental importance in the CAD/CAM field.

Affine invariance. An affine transformation can be reconstructed from the affine
images of the B-spline control points.

End point interpolation. A clamped spline interpolates the control points at the
extremes.

Strong convex hull property. A B-spline curve is contained in the convex hull of its
control net. Furthermore, given a point u in a non-degenerated knot span [ul , ul+1),
the curve point s(u) lies in the convex hull of the sequence {Pl−k, . . . , Pl}.

Local shape parameters. From the local support properties of the blending func-
tions it follows that a given control point can only affect at most k + 1 knot spans.

Differentiability. A B-spline is infinitely differentiable at every point which is not
a knot. Let pl ∈ N be the multiplicity of the knot ul, then s ∈ Ck−pl(ul).
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Variation diminishing property. Let λ be the number of times a given linear va-
riety H of dimension d− 1 in Rd intersects the control polygon of the curve, then s
has at most λ intersections with the variety H. See [Lane and Riesenfeld, 1983] for
a proof of this interesting property.

2.5.3 The Bézier sub-family

A Bézier curve is a special case of a B-spline. Let s be a clamped B-spline curve of
degree k with control points Pi and knot vector τ (with no interior knots), then the
basic functions of s can be reduced to:

Ni,k(u) =
(

k
i

)
ui(1− u)k−i

which are in fact the Bernstein polynomials (2.2). So equation (2.12) gets trans-
formed into (2.1) as the blending functions are exactly the same.

2.5.4 Algorithms

In this section we will introduce the main algorithms used to compute a B-spline
curve point. For a full discussion of these and other computer graphics algorithms see
[Piegl and Tiller, 2012]. Another major resource for spline computing is the FITPACK

routines [Dierckx, 1995].
Lets assume that we want to compute the values of the basis functions and their

derivatives at a point t which lies in the knot span [ui, ui+1). The first step is to find
the span index i via the get_span_index routine. In order to simplify the notation
lets set the span index to j← m− k− 1, thus t lies now in the span [um−k−1, um−k).

Once we know that t lies in the span i by means of Algorithm 2.1 we compute all
the non-zero B-spline basis functions on the interval defined by the span index i as
per Algorithm 2.2.

2.6 B-spline surfaces

A parametric B-spline surface of degree (k, l) is a tensor-product patch which can be
expressed as:

S(u, v) =
m

∑
i=0

n

∑
j=0

Ni,k(u)N j,l(v)Pi j (2.15)

where Pi, j is the control net of the surface and Ni,k(u)B j,l(v) are the B-spline basis
functions of degree k, l with knot vectors U = u0 = αu <= u1 <= . . . <= umu = βu
and V = v0 = αv <= v1 <= . . . <= vmv = βv, as previously defined in equation
(2.13).
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Algorithm 2.1: get_span_index
Input: span index j, degree k, evaluation point t, knot vector τ
Output: knot span index i
if t 6= τ [ j + 1] then

le f t← k
right← j + 1
i← (le f t + right)/2

while t < τ [i] || t ≥ τ [i + 1] do
if t < τ [i] then

le f t← i
else

le f t← i
end
i← (le f t + right)/2

end
else

i← j
end
return i

Algorithm 2.2: bspline_basis_fun
Input: point t, knot span i, degree k, knot vector τ
Output: Vector N of non-zero basis functions evaluated at t
N← 1
for ` = 1 to k do

le f t [`]← t− τ [i + 1− `]
right [`]← −t + τ [i + `]
val ← 0
for r = 0 to r < ` do

var← N[r]
right[r+1]+le f t[`−r]

N [r]← val + right [r + 1] · val
val ← le f t [`− r] · var

end
N [`]← val

end
return N
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2.6.1 Surface properties

Because the B-spline basis forms the blending functions of the surface, several prop-
erties are inherited from the curve definition:

Corner point interpolation. The surface passes through the corner points of its
control net.

Affine invariance. The surface is invariant with respect to affine transformations,
the shape of the surface is unaltered. Furthermore, it is the same to apply an affine
transformation to either the whole surface, as per equation (2.15), or its control net.

Local control. The influence of a single control point is limited to k + 1, l + 1 knot
spans in each parametric direction.

Differentiability. The surface is Ck−1 and C l−1 in each parametric direction, u and
v respectively.

Convex hull. The surface lies within the convex hull of the control net formed by
the union of all the convex hulls of k, l neighboring control points.

Variation-diminishing. As with the rational Bézier surface the variation-
diminishing property is currently unknown for B-spline surfaces,
[Prautzsch and Gallagher, 1992].
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Figure 2.7: A bi-cubic B-spline surface.
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2.7 Rational B-splines

The classical definition of a rational B-spline is to consider the projection of a stan-
dard polynomial, non-rational, B-spline curve in Rd+1 with poles Ph

i back into Rd.

Definition 2.3. Let s(u) = ∑
n
i=0 Ni,k(u)Ph

i be a B-spline curve od degree k in Rd+1

defined as per equation (2.12), so Ph
i ∈ Rd+1. The projection to Rd yields the curve:

s =
∑

n
i=0 Ni,k(u)wiPi

∑
n
i=0 Ni,k(u)wi

which is a rational curve, known as rational B-spline.

Thus, the basis functions of a rational B-spline defined over the knot vector U =
{u0 = α <= u1 <= . . . <= um = β} and weights {wi}n

i=0 are:

Ri,k =
wiNi,k(u)

∑
n
i=0 Ni,k(u)wi

(2.16)

2.7.1 Curve properties

Given that the rational B-spline basis and curves are a generalization of the non-
rational B-spline ones, they share several essential properties, such as:

Non-negativity. Ri,k ≥ 0.

Partition of unity. ∑
n
i=0 Ri,k = 1.

Global maximum. Ri,k has exactly one maximum for all k > 0.

Variation-diminishing. A rational B-spline curve has the variation-diminishing
property as explained for the non-rational B-splines.

Convex hull. The curve lies within the union of convex hulls formed by k + 1 con-
secutive control points.

Projective invariant. The shape of a rational B-spline curve is preserved through
projective transformations. Furthermore, to apply a projective transformation one
has only to apply it to its control polygon.
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2.7.2 Motivation

The rational B-splines are a superset of the B-splines. To retrieve the non-rational
formulation from definition 2.3 it is sufficient to take all the weights equal to 1.
The rational B-spline is an industry standard because every previously defined spline
family can be written as one by varying the knot and weight vectors. Furthermore, a
rational B-spline provides a higher range of shapes to reproduce as more local shape
parameters are introduced into its formulation.

2.8 Rational B-spline surfaces

A rational B-spline surface, known as NURBS (Non-Uniform Rational B-splines), can
be constructed in a similar way as in the case of non-rational B-spline surfaces with
a similar set of properties. In the following chapter we provide a more concise treat-
ment of NURBS models.

S (u, v) =
m

∑
i=0

n

∑
j=0

Ri, j (u, v) Pi, j (2.17)

where Ri, j (u, v) are the rational B-spline basis functions defined as follows:

Ri, j (u, v) =
wi, jNi,k (u) N j,l (v)

∑
m
i=0 ∑

n
j=0 wi, jNi,k (u) N j,l (v)

(2.18)
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Figure 2.8: The sphere as a NURBS.
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Chapter3
The Problem

A problem well put is half
solved.

John Dewey

Let P be a point cloud in Rd, the aim of this work is to reconstruct a parametric
curve, or surface, that fits the data by taking into account both, the quality of the
approximation and the complexity of the model. In this chapter we will focus on
the data-fidelity aspect of the reconstruction, and later on we will introduce our me-
thodology for selecting a model which has a good compromise between complexity,
aesthetics and goodness of fit. Since a Bézier curve (surface) can be seen as a special
case of a B-spline curve (surface) we are going to present the problem in its most
generic and complex form: to fit a rational B-spline surface.

3.1 Problem statement

Let
{

Qp,q
}N,M

p=0,q=0 be a set of points in Rd, the problem consists of finding a rational
B-spline surface that approximates the given data, by taking into account both the
fidelity of the reconstruction and its complexity. From now on we refer to rational
B-spline surfaces and curves, or its blending functions, with the acronym NURBS:
Non-Uniform Rational B-splines.

In order to reconstruct the underlying shape of the data with a rational B-spline S
of degree k, l, our method must perform the parametrization, i.e. find the parameters{

up, vl
}

associated with the original data, compute the poles Pi, j and its weights
wi, j with the corresponding breakpoints (τ0, . . . , τmu) and (ζ0, . . . ,ζmv) and, finally,
the method must deal with the model complexity: how to minimize the number
of free parameters of the system. As a result, given a rational B-spline S surface
defined as per equation (2.17), the fitting problem can be written as the least-squares
minimization of:

E =
N

∑
p=0

M

∑
q=0

∥∥Qp,q − S
(
up, vq

)∥∥2
2 =

N

∑
p=0

M

∑
q=0

∥∥∥∥∥Qp,q −
∑

m
i=0 ∑

n
j=0 wi, jNi,k (u) N j,l (v)

∑
m
i=0 ∑

n
j=0 wi, jNi,k (u) N j,l (v)

∥∥∥∥∥
2

2

(3.1)
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where ‖· ‖2 is the L2 norm in Rd. In many real world problems neither the order and
degree, nor the parameterization and knots, nor the weight and poles of the surface
are known. On these terms, the minimization of the residual sum of squares given
by (3.1) becomes a highly non-linear, continuous and multivariate problem. A more
concise presentation of these facts follows:

Multivariate. The unknowns of the problem are: the degree of the surface, d(n +
1)(m+ 1) variables from the poles

{
Pi, j
}

i, j ∈ Rd, (n+ 1)(m+ 1) weights as {wi}i, j ∈
R+, µτ + µζ internal breakpoints due to the imposed constraints on the boundary
knots and finally the M + N + 2 parameters. Let η be number of free variables of the
system, then :

η = 2 + (d + 1)(n + 1)(m + 1) +µτ +µζ + M + N + 2 (3.2)

Non-linear. A direct consequence of the basis expression (2.18).

Continuous and multi-modal. If we assume a known set of weights and poles
the knot vector computation has been proved to be a non-convex and multi-modal
optimization problem [de Boor, 1978, Laurent-Gengoux and Mekhilef, 1993].

Problem linearization. Note however, that if the knots, weights and parameters
are known, the control net computation becomes an over-constrained linear system.
This fact plays an essential role in our methodology as we will see in Chapter 5:
on the one hand, the breakpoints, weights and parameterization are computed by
means of a variant implementation of the Simulated Annealing optimization algo-
rithm whereas the poles are a direct result of solving the linear system. On the other
hand, the spline degree computation is done via the Bayesian Information Criterion
BIC [Schwarz, 1978].

Scattered data. In the case of unorganized data we search for a projection through
Principal Component Analysis (PCA) where the point cloud can be written in the
(u, v) 7→ S(u, v) form. Finally, a structure is given to the point cloud by means
of the Natural Neighbor Interpolant [Sibson, 1981]. Therefore, we have actually
transformed the scattered data problem into the least square problem discussed in
the current chapter.

Solution. The least squares fitting approximation of equation (3.1) can be rewritten
as:

Q = R · P (3.3)
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where Q = vec
({

Qp,q
}

p,q

)
, P = vec

({
Pi, j
}

i, j

)
and R is constructed as the fol-

lowing matrix stacking:

R =
{

vec
((

R
(
up, vq

))T
)}

p,q
with R(u, v) =

{
vec

((
Ri, j (u, v)

)T
)}

i, j

Note that Q is a vector of size (N + 1)(M + 1) whereas P has length (n + 1)(m +
1), so the system (3.3) is overdetermined as in most real world applications the
inequality (N + M)� (n + m) holds. Pre-multiplication on both sides of the system
by the transpose of R leads to:

RT ·Q = RT ·R · P
which can be solved by classical least-squares methods. Through this work we have
opted for the SVD decomposition, by means of the Moore-Penrose pseudo-inverse, of
R. As we will see in the literature review that follows, the SVD decomposition is the
preferred method when paired with the minimization of the Residual Sum of Squares,
as other methods try to find the solution with most zeros, which is not appropriate
in the case of surface fitting. So the Moore-Penrose solution for equation (3.3) is:

P = R† ·Q (3.4)

3.2 Previous work

The creation of curves and surfaces, specially the B-spline family, from a set of mea-
sured points has been a central area of research in the Computer Aided Design and
Manufacturing industry for several decades. The reconstruction of free-form models
typically includes at least two phases: the parameterization phase, to search a suit-
able mapping between an artificial parametric domain and each measured point, and
the fitting phase, where the model parameters are found, such as the knots, poles and
weights in the NURBS case.

The rest of the current chapter is devoted to summarize the previous work in the
field, by focusing on each aspect the reconstruction.

3.2.1 Fitting approximations

Although in this work we are focusing our literature review on the methods that use
some sort of least-squares approximation, it is mandatory to note that, in general,
traditional interpolation methodologies provide curves and surfaces with a very good
parameterization and fitting errors with either a global [de Boor, 1978, Cox, 1990]
or a series of local models [Akima, 1970, Renner, 1982]. These approaches are par-
ticularly useful in the manufacturing industry, as most pieces are composed of com-
binations of conics. However, when the point cloud is large or noisy, as is the case
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when using modern data acquisition techniques, the interpolation methods tend to
produce erratic models that do not capture the underlying shape of the data.

Least-squares approximation has been the leading technique for curve and surface
fitting since its inception in the late sixties through the seventies [Reinsch, 1967,
Powell, 1970, Hayes and Halliday, 1974]. These first approaches were characterized
by their direct application of classical numerical mathematics methods, which were
found to provide very good approximations for a certain set of applications. However,
the general case was not solved, since classical methods tend to fall trapped at local
minima. Also, its automation was not easy as these methods required to supply a set
of a priori subjective parameters, as the expected general shape, smoothness etc.

3.2.2 Knot allocation

The knots placement and number have a profound impact on the resulting model.
For instance, the modification of a single knot has direct consequences on the shape
of its neighborhood, whereas the correct choice of the number of knots is directly
correlated with the quality of the global solution. On the one hand, if there are not
enough breakpoints it is not possible to capture the underlying shape of the data. On
the other hand, weird behaviors must be expected when unnaturally increasing the
size of the knot vector, as the stability of the system decreases while the computation
time increases. Thus, a careful approach must be taken when determining the length
and location of the knots.

The first successful strategies for the knot allocation problem were proposed by
deBoor, Rice, Jupp and Diercx during the seventies. Nowadays, more than forty
years later, this techniques conform the core of some of the most successful soft-
ware packages for spline interpolation and approximation, such as the open source
Scipy interpolation module [Jones et al., 2001–] and the spline toolbox for MATLAB
[Mathworks, 2001–]. These strategies where the knots are treated as free variables
of the system, such as our proposed methodology, are commonly referred in the lit-
erature as free-knot splines.

These early attempts share a common procedure based on solving the non-
linear squares system by separating the non-linear and linear aspects when
searching for both, the poles and the knots. For instance, deBoor and Rice
[de Boor and Rice, 1968] start with a rough approximation of the knot vector to
later apply a variational heuristic to each breakpoint, one at a time, in a cleverly
constructed interval.

The free-knot spline problem is comprehensively explored in [Jupp, 1978] which
demonstrates that the fitness landscape is full of local minima, leading the search for
the global optimum to many stationary points where the classical minimization algo-
rithms get trapped. To overcome such difficulties, Jupp proposes a knot transforma-
tion functional that increases the likelihood of convergence to the global optimum.
This method has two major drawbacks: it depends on a very good starting guess,
a very hard problem in itself, and no mechanism is provided in order to select the
correct number of knots.
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In [Dierckx, 1981] the knot vector is found via an iterative process that starts with
a set without interior knots, i.e. a Bézier curve, and at each iteration a knot is inserted
with its location optimized by means of a non-linear process. Each subprocess is
computationally expensive and subject to fall into the stationary points previously
pointed by Jupp. The global process ends by checking a tolerance on the RMSE.

Another popular approach for breakpoint allocation, proposed
by [Ma and Kruth, 1995] and later refined by [Piegl and Tiller, 2001,
Brujic et al., 2011], consists in extracting the knot and weight vectors from a
baseline curve/surface, a rough initial approximation of the final fitting model, in
order to linearize the system (3.1). These methods overemphasize the role of the
control net as a way to overcome the limitations of the knot location heuristic,
producing high fidelity models at the cost of a massive set of poles.

A meta-heuristic intermission

Although the variety of shapes that free-knot splines can reproduce outshine
those of other strategies, the inherent difficulties of the problem, as pointed out
in [de Boor, 1978, Jupp, 1978, Laurent-Gengoux and Mekhilef, 1993], has put the
problem on hold. However, recent advances in evolutionary, nature-inspired and
swarm intelligence computation have made possible to perform data fitting through
splines with free-knots: from genetic algorithms [Yoshimoto et al., 2003], particle
swarm optimization [Gálvez and Iglesias, 2011, Gálvez and Iglesias, 2012], clonal
selection [De Castro and Von Zuben, 2000, Gálvez et al., 2015] and many other soft-
computing algorithms. For a full review see [Iglesias and Gálvez, 2016].

Note that none of these models claim to be the better tool for all possi-
ble data fitting scenarios, a direct consequence of the no free launch theorem
[Wolpert and Macready, 1997]. The Simulated Annealing optimization algorithm is a
popular meta-heuristic that has been used to solve very specific problems in the area
of spline fitting, such as linear-spline approximations [Kreylos and Hamann, 2001]
or free-knot cubic splines [Valenzuela and Pasadas, 2010]. Our aim is to develop a
Simulated Annealing driven methodology that can solve the general case and im-
proves on the specific problems already solved.

3.2.3 Data parameterization

The most common curve and surface parametrization methods are the uniform,
chord length and centripetal models. The most simple of all those three methods
is the uniform, as it just builds an isometry between each parametric direction and a
line, so it does not take into account the distribution of the point cloud.

Cumulative chord length is a scalar approximation of the arc length of the curve
(the isoparametric curves in the case of model of dimension greater than one). The
impact of both methods on the resulting model was studied in [Epstein, 1976].

Finally, the centripetal model [Lee, 1989] also observes the distribution of the
data while trying to capture the changes in the curvature. A general formula, that
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encapsulates the three methods was also published in [Lee, 1989], as we will later
see in Chapter 5.

Many variants of the above methods have been published, the self-
explained averaging method [Piegl and Tiller, 1987] and a set of methodolo-
gies [Rogers and Fog, 1989, Sarkar and Menq, 1991a, Sarkar and Menq, 1991b] that
start from one of the classical parametrization models to later optimize it by mini-
mizing the deviations between points in the original data and their corresponding
pairs in the parametric domain.

In [Ma and Kruth, 1995] the parameterization is done through the projection of
the point cloud to a baseline model, a rough approximation of the final model created
from the boundary of the measured data. Although this method can be used even
with an unordered point cloud, the baseline model computation can be a very difficult
process if the measured data is noisy and has a complicated boundary.

As in the knots case, the development of new stochastic methods has allowed
the researchers to deal with the curve and surface reconstruction in new ways built
on the shoulders of classical approaches. What follows is just a small sample of the
recent advances in the reverse engineering field where this work belongs.

Neural networks [Gu and Yan, 1995, Hoffmann and Varady, 1998] have been ap-
plied to find the parameterization of reverse-engineered curves and surfaces with the
additional ability of re-arranging the data in the case of an unstructured point cloud.

Self-Organizing Map neural networks (SOM) are used in
[Barhak and Fischer, 2001] to construct a parameterization from a 2D plane
projection of the point cloud. This method improves on the previous ones by the
SOM ability to infer a better topology of the measured points. However, it suffers
from the same dependence on a good-enough boundary.

The full parameterization is recovered by means of evolutionary algorithms,
such as differential evolution [Hasegawa et al., 2013], artificial immune system
[Iglesias et al., 2013] and many others.

3.2.4 Other reverse engineering models

In this work we have put our attention into the spline reconstruction from a CAD
point of view, but no literature review would be complete without mentioning other
types of reconstructions which, in fact, are very good models for its use in other
fields.

A staple in surface reconstruction was achieved by Eck and Hoppe in
[Eck and Hoppe, 1996] with a schema for constructing a network of B-spline patches
which is later optimized by an adaptive refinement of the patch network. In
[Bajaj et al., 1995] a model is obtained from cross-sectional images, a very impor-
tant and difficult problem in the medical science field. A two-step method is pre-
sented in [Guo, 1997] where a baseline model is constructed from 3D α-shapes
and then a compact surface is constructed from the baseline structure, providing
a suitable model for engineering analysis. Finally, Simulated Annealing is used in
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[Sen and Zheng, 1992] to find a near optimal triangulation mesh of a given point
cloud, a perfect fit for computer graphics rendering.
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Chapter4
Simulated Annealing

There is a deep and useful
connection between statistical
mechanics and multivariate
optimization

S. Kirkpatrick, Optimization by
Simulated Annealing

One of the major trends in global optimization during the last few decades has been
to build algorithms trying to mimic certain efficient optimization patterns observed
in natural processes. As a result, a series of very powerful nature-inspired optimiza-
tion algorithms (e.g. particle swarm optimization, genetic algorithms, or ant colony
optimization) have been devised. Very often, they provide better solutions than pre-
vious traditional mathematical algorithms to several hard optimization problems. Al-
though they are very diverse, all of them share two common features: to be inspired
by real-world observation and to search for solutions in a stochastic way. Most of
them are also derivative-free, meaning that they can be applied to problems where
it is not possible to compute the derivatives of the objective function (or they are
very expensive computationally). In this work we apply the Simulated Annealing
optimization algorithm to the surface and curve reconstruction problem.

This chapter is organized as follows: we start with a brief summary of the his-
tory behind the technique and its thermodynamic roots. Afterwards, the Simulated
Annealing algorithm is presented with a concise discussion of its main parts and con-
vergence properties. We conclude with the different SA proposals used in this work.

4.1 Background and history

Simulated Annealing (SA), introduced by Kirkpatrick et al. in the seminal paper Op-
timization by Simulated Annealing [Kirkpatrick et al., 1983], is regarded as one of the
foundational algorithms of the nature-inspired computation field. It was presented
as a method to resolve a very complex combinatorial problem (optimizing thousands
of variables) which arises in optimal design of computers. The algorithm showcased
the deep connections between statistical mechanics and computational optimization.
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The thermodynamics metaphor behind the algorithm consists in mimicking the
annealing process of a metal, the cooling and freezing strategy applied to the mate-
rial so that it adopts a low-energy, crystalline state. During the process, atoms tend
to move to configurations that minimize the system energy even if during such mi-
gration certain configurations rise the system overall energy (when it stabilizes for a
fixed temperature, we call it thermal equilibrium). Such moves are more prominent
at the beginning of the process than at the end, when the particles loose thermal mo-
bility in order to polish the system inner structure to finally produce a better metal.
As a result, the metals become stronger and with better properties, specially if the
process is conducted several consecutive times (known as re-annealing).

The original SA algorithm is an advanced interpretation of the Metropolis-
Hastings sampling method [Metropolis et al., 1953] to generate sample states of a
thermodynamic system, showing the deep connections between statistical mechan-
ics and combinatorial optimization. Given an initial (usually random) state in the
solution domain, the algorithm iteratively perturbs it. Whenever a better solution is
found, the change is always accepted; otherwise, it is accepted only with a certain
probability. This probability is higher at the beginning (mimicking what happens in
the thermodynamic process at high temperatures) than at the end. In other words,
this idea of slow cooling is translated as a slow decrease of the probability of accept-
ing such worse solutions. So essentially the system evolves from a free exploration
of the search space at initial stages to a stochastic hill-climbing at latter stages.

4.1.1 A family of meta-heuristics

What follows is a general overview of the evolution of the SA algorithm. Even
if the original implementation was proposed in the field of combinatorics opti-
mization, i.e. the minimization of a function which states are drawn from a dis-
crete set, the adaptation over continuous sets was formulated shortly afterwards in
[Vanderbilt and Louie, 1984, Bohachevsky et al., 1986].

Although a major milestone in optimization, the original algorithm presents
one major problem: an extremely slow convergence due to a slow cooling sched-
ule coupled with a rigid generation function. See [Bertsimas and Tsitsiklis, 1993,
Ingber, 1993b] for a more detailed analysis on its convergence properties.

To overcome these limitations the research developments in Simulated Annealing
during the last decades have been centered on improving the convergence rate and
the performance by showcasing the deep connection between the cooling schedule
and the neighborhood function.

The first proof of convergence for a Simulated Annealing algorithm
[Geman and Geman, 1984] was based on a logarithmic cooling schedule, also very
slow, coupled with Gaussian perturbations. Later, a very promising generation func-
tion was proposed in [Corana et al., 1987] which tries to maintain a consistent num-
ber of accepted solutions during the algorithm life by computing an adaptive step-size
for each dimension.
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A proof of convergence was proposed in [Szu and Hartley, 1987] for the Fast
Simulated Annealing which consists in coupling a fast cooling schedule with a
Cauchy distribution for generating new solutions. The Very Fast Simulated Anneal-
ing [Ingber, 1993b] was built upon the previous method and it provided a proof of
convergence for an even faster schedule. The Adaptive Simulated Annealing (ASA)
[Ingber, 1993a] is the result of combining the Very Fast Annealing with a re-annealing
technique (rise the temperature when certain conditions are met) and a very sophis-
ticated neighborhood function which dynamically adjust a custom temperature for
each decision variable that inter-operates with an adaptive step, thus taking into
account the different sensitivities of the variables. Due to a continuous technical
improvement, the ASA is considered, even today, a state of the art optimization al-
gorithm.

Another trend of research arises from hybridizing the Simulated Annealing
with either local search methods or population based meta-heuristics. Two com-
mon pitfalls in implementing major simulated annealing approaches are parame-
ter tuning and the inability to obtain the desired precision (in finite time), see
[Salamon et al., 2002, Suman and Kumar, 2005] for a survey on the topic. One way
to overcome these drawbacks consists in coupling well known search heuristics,
which exploit promising directions on the fitness landscape usually overlooked by
global optimizers [Osman and Kelly, 2012, Rios and Sahinidis, 2012], with a Simu-
lated Annealing implementation that gets a good enough approximation in a relative
short time.

4.2 The algorithm

According to [van Laarhoven and Aarts, 1987] the Simulated Annealing family of
meta-heuristics is composed of three core functions and the stop criterion:

• The neighborhood generation function, N, which generates a state based on a
previously generated state and takes into account how advanced the algorithm
is.

• An acceptance function, A, which sets the transition probability from one state
to another.

• An annealing schedule, S, governing the algorithm flow by reducing an artifi-
cial parameter which mimics the annealing temperature.

• The stop criterion sets the condition that ends the algorithm.

In this work we are interested in the global optimization (minimization) of real-
valued functions over a continuous domain:

min
x∈X

f (x) (4.1)
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where f : X ⊂ Rd → R is referred as the energy or cost function. In this context,
the Simulated Annealing algorithm can be summarized as follows: given an initial
feasible solution x0 ∈ X and the system temperature T0 ∈ R+, at each iteration k, the
next candidate yk+1 is sampled from a neighborhood distribution function N which
takes into account the current solution xk, its history and the system temperature Tk.
The new state is either accepted or ejected in accordance to an acceptance function
A which resembles a probability measure. Then, the system temperature is updated
or not by following the rules given by a cooling schedule S. This cycle is repeated
until some stopping criterion is met.

Algorithm 4.1 presents a general expression of the Simulated Annealing, where
no assumptions about its parts are made (cooling schedule, neighborhood function,
acceptance and stop criteria). Note that each choice of N,S,A and the stop criterion
leads to a different interpretation of the algorithm. More often than not, this choice
is done in order to take into account certain characteristics of the problem being
solved. Thus, the previous wording the Simulated Annealing family of algorithms is,
therefore, fully justified.

Algorithm 4.1: General Simulated Annealing
Input: An initial guess x0 and temperature T0. Cost function f
Output: The final solution x
Initialization, k← 0
while The stop criterion is not met do

zk ← {xk}
Get a sample point from the neighborhood distribution:

yk+1 � N (·, {zk, Tk})

Get a sample from the uniform distribution p � U ([0, 1])
Accept or reject the trial solution in accordance to the acceptance function:

xk+1 ←
{

yk+1 if p ≤ A (xk, yk+1, Tk)

xk otherwise

Sampling retrieval, zk+1 ← {zk} ∪ {yk+1}
Apply the cooling schedule, Tk+1 ← S ({zk+1} , Tk)
Iterate, k← k + 1

end
return xk

The rest of this section is devoted to explain the main components of the Simu-
lated Annealing algorithm.
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4.2.1 The acceptance criterion

A major difference between the Simulated Annealing algorithm and other stochastic
optimizers is the ability to accept worse transitions, i.e. continue the search from a so-
lution which is fitness-wise worse than the preceding one. The underlying metaphor
behind this ability comes from the statistical thermodynamics field: the probability
of an atom to exist at an energy state E for a given temperature T can be modeled
by the Boltzmann distribution.

P (E) = exp
( E
κT

)
(4.2)

where κ is the Boltzmann constant. Note that the probability of an atom to exist at a
high energy state is greater at strong temperatures than at lower temperatures.

The law governing the probability of accepting a given transition follows the mod-
ified Metropolis criterion [Metropolis et al., 1953]:

A← min
{

1, exp
(
−∆ fk

Tk

)}
(4.3)

which is a computational model of the previous Boltzmann law: on the one hand, a
positive transition is always accepted. On the other hand, the probability of accept-
ing worse solutions is slowly decreased as the algorithm progresses (lower tempera-
tures).

From now on, if it is not otherwise specified, any reference to an acceptance
function must be interpreted as the one given by equation (4.3) which is, by far, the
most used one [Suman and Kumar, 2005].

There is a theoretical framework that supports such a decision. Let A (x, y, T)
an acceptance function that can be expressed as A∗

(
∆ fx,y, T

)
, i.e. the criterion only

depends on the energy difference of the solutions at a given temperature. Then, if
the following conditions are met:

• A∗
(
∆ fx,y, T

)
> 0 holds ∀T > 0 and ∆ fx,y > 0

• A∗ (1, T) is a strictly increasing function over R+

it has been proved [Schuur, 1997] that there exists a strictly increasing function
g(T) : R+ → R+ such that:

A = min
{

1, exp
(
− ∆ fk

g (Tk)

)}
in other words, given the aforementioned thermodynamic-driven constraints all ac-
ceptance functions are equivalent to the modified Metropolis criterion.
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4.2.2 The next candidate distribution and cooling schedule

As it has been noted before, the cooling schedule and neighbor function are so inter-
linked that decoupling both terms leads to an unintuitive read. Thus, we will explain
the most relevant choices in the literature by looking into how S and N interact.
Before we get into the details of each method, it helps to explain some generalities
about the cooling schedule and neighbor function.

On the one hand, the next candidate distribution, also known as the neighbor-
hood function or visiting distribution, handles the way a new trial solution is pro-
posed. An efficient candidate generator function N must try to adhere to two opti-
mization expectations derived from the SA thermodynamical principles:

• Energy fluctuations: as the system is cooled, the neighborhood function must
produce candidates in such a way that their energy is lower than that of a
random sample of the solution space. In other terms, after a certain number of
iterations ∆ fk must be comparable to Tk by an order of magnitude or less.

• Flatland and deep basin escape: as a general rule, the system must allow for
occasional big jumps in the solution space, to explore new dimensions of the
fitness landscape, in order to avoid being trapped, for a long set of iterations,
in basin attractors or energy plateaus.

On the other hand, the annealing or cooling schedule specifies when and how
the temperature is updated. Ideally, the cooling rate must be slow enough to let
the system reach a thermal equilibrium, the stabilization of the accepted solutions
energy, after each change of temperature. However, the number of iterations spent
at the inner loop should be completely dependent on the fitness landscape and the
new temperature. Thus, a successful SA implementation must take into account
the coupling of the annealing schedule and the new candidate distribution, as the
exploration of the solution space is essential in determining how long it takes to
reach for the thermal equilibrium at a given temperature.

We conclude the cooling and candidate generation schemes dissertation with a
summary of the most important concepts behind the principal schemes found in the
literature.

Boltzmann annealing. The first proof of convergence [Geman and Geman, 1984]
was proposed for the Classical or Boltzmann Annealing which consists in the pair-
ing of a logarithmic cooling schedule with a Gaussian candidate distribution. More
specifically:

Tk+1 ←
T0

log (1 + k)
with T0 > 0 (4.4)

yk+1 ←xk +∆k with ∆k � N d
(

0,
√

Tk

)
(4.5)
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Figure 4.1: Cauchy distribution.

where the temperature is reduced every Ninner iterations for a total of Nouter itera-
tions, which are problem-dependent. Note that the visiting distribution does not take
into account the topology of the fitness landscape in the neighborhood of a given
solution. To guarantee the full convergence of the algorithm it needs to spend thou-
sands of iterations each temperature Tk and T0 should be greater than the deepest
local basin [Hajek, 1988]. Thus, although it is backed by a formal proof of conver-
gence it may not happen in finite time.

Fast annealing. The Fast Simulated Annealing (FSA) [Szu and Hartley, 1987] con-
sist in the pairing of an inverse logarithmic cooling rate with a D-dimensional Cauchy
visiting distribution which allows for occasional long jumps, see Figure 4.1. It has
been proven that the cooling schedule could be improved up to Tk+1 ← T0/k, which
is faster than the inverse logarithmic rate. The neighborhood function is given by:

Tk+1 ←T0/k (4.6)

yk+1 ←xk + ∆xk where ∆xk �
Tk(

‖∆xk‖2 + T2
k

) d+1
2

(4.7)

where T0 must be chosen high enough to allow the algorithm to explore the solution
landscape. As with the Boltzmann Annealing, the algorithm depends on two cycles,
the general or outer cycle, ended with the stopping criterion, and an inner loop
also called the thermal equilibrium criterion. The most common choice consists in
selecting two integers Ninner and Nouter to control the behavior of the inner and outer
cycle, respectively. In most FSA implementations the temperature is reduced when
a certain ratio of accepted solutions has been met for a given temperature. Note
that the FSA takes into account the desired thermodynamic-based criteria for a good
neighborhood function and cooling schema.
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Adaptive Simulated Annealing. The Adaptive Simulated Annealing
[Ingber, 1993a] presents a sophisticated cooling schedule and neighbor func-
tion that can be summarized as follows: if the optimization process is not satisfied
at a given temperature, by consulting the fitness variance, the cooling is temporarily
stopped in order to take long jumps. By means of such an adaptive cooling scheme,
the algorithm takes control of the probability distribution of the transitions during
the stochastic search by taking into account both the acceptance rate and the
variance of the visiting distribution.

Figure 4.2: ASA.

The ASA algorithm has over 100 parameters that
can be fine-tuned; it is beyond the scope of this work
to explain with enough detail the internal workings
of the method. Instead, we will introduce the cool-
ing schedule and visiting distribution which play an
essential role in the evolution of the Simulated An-
nealing and in our implementation.

One of the principal contributions of the ASA al-
gorithm consists in the introduction of two set of tem-
peratures, one for each decision variable, namely:
the acceptance Tacc

k,i and generation temperature Tgen
k,i

(the i index indicates the decision vector compo-
nent).

The neighborhood function takes the form of

yk+1 = xk +α � (u− l) with α = sign
(
p− 1

2

)
Tgen

(4.8)
where u, l are the upper and lower bounds for the
decision vector, p � U d [0, 1] and the generation tem-
perature is updated according to:

Tgen
k = max(s)

s Tgen
k with


s =

∥∥∥ f (xbest+δ)− f (xbest)
δ

∥∥∥
k =

(
− 1

c log
(

Tgen
k

Tgen
0

))
(4.9)

where xbest represents the best point so far and vector
s is usually referred as the sensitivities, one for each
decision variable. This temperature update takes
place after Nacc points have been accepted, the so
called re-annealing. Similarly the acceptance temper-
ature vector, which is the control parameter used in

equation (4.3), is updated according to:

kacc =

(
−1

c
log

(
Tacc

kacc

Tacc
0

))d

(4.10)
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Finally, after Ngen generated points, the temperatures and its indexes are updated:

k← k + 1 Tgen = Tgen
0 exp

(
−ck

1
n

)
(4.11)

kacc ← kacc + 1 Tacc
kacc

= Tacc
0 exp

(
−ck

1
d
acc

)
(4.12)

The reasoning behind this highly sophisticated S−N schema is to adapt the
temperatures to the fitness landscape and to search for a steeper and more sensitive
dimension where the visiting distribution should have a narrower shape than that of
a component less sensitive to change. One advantage of these adaptiveness is that
the initial set of temperatures plays a less significant role than in other approaches,
as it is going to be recursively changed to adopt the variations on the fitness function.

The most critical choices are the parameters that decide when to update the tem-
peratures Ngen, Nacc and the annealing rate control parameter c. For most problems,
it is enough to set Nacc and Ngen in the order of hundreds and thousands, respectively.

We include a flowchart, Figure 4.2, of the algorithm in order to showcase the
differences between the ASA and the other approaches, which are more akin to the
classical version.

The Adaptive Simulated Annealing is without a doubt the most tested variant
of the SA; we recommend the reading of [Ingber, 1996] for a better insight on the
algorithm.

General Simulated Annealing. We conclude our discussion with the General Sim-
ulated Annealing (GSA) [Tsallis and Stariolo, 1996], a unified vision of the Sim-
ulated Annealing algorithm which parameterizes both, the next candidate dis-
tribution and the cooling schedule, in order to provide a generalized frame-
work where the classical SA [Kirkpatrick et al., 1983] and the Fast Annealing
[Szu and Hartley, 1987], correspond to a specific choice of the parameters.

Let Tqv ,k be the temperature at iteration k > 0, then a next candidate xk is found
by altering it with a slight perturbation sampled from a generalized Cauchy-Lorentz
distribution given by:

yk+1 = xk + ∆ (xk) with ∆ (xk) �
T
− d

3−qv
qv ,k(

1 + (qv − 1) (∆xk)
2

(Tqv ,k)
2

3−qv

) 1
qv−1+

d−1
2

(4.13)

where qv is a parameter which controls the shape of the distribution and the temper-
ature is updated from a starting value Tqv ,0 as per:

Tqv ,k+1 = Tqv ,0
2qv−1 − 1

(1 + k)qv−1 − 1
(4.14)
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If qv = 1, the neighbor function given by equation (4.13) and the temperature
update (4.14) get transformed into the Boltzmann distribution and its associated
cooling schedule, i.e. the classical SA. Instead, the Fast Simulated Annealing is recov-
ered by setting qv = 2.

4.2.3 Stopping criterion

The stopping criterion, as its name would suggest, addresses the question about when
to finalize the execution of the algorithm. As it happens in other parts of the method,
it is impossible to give a universal rule that guarantees that the global optimum has
been reached, due to the (often) unknown nature of the fitness landscape. Fur-
thermore, most of the times there is not enough information to even assert that it has
been reached with a desired probability. In order to circumvent these difficulties most
SA implementations resort to a set of heuristic rules. The underlying idea behind al-
most every criteria consists in stopping the algorithm when not enough progress has
been made during a certain number of iterations. Following is a brief overview of
some relevant stopping criteria.

The natural principle of every major stochastic optimization algorithm is to run
the method for a prescribed number of iterations. Most SA implementations let
the method run for a massive number of iterations with an heuristic stopping rule
checked at each iteration.

One common rule consists in stopping either when no new points has been ac-
cepted for a predefined number of iterations [Bohachevsky et al., 1986] or when the
acceptance ratio falls below a parameter settled at start time [Ingber, 1993b].

In [Vanderbilt and Louie, 1984] the algorithm is stopped by looking into the fit-
ness variance each ν iterations. Let Xν the produced states at the last ν iterations,
and fν , f best

ν the mean and minimum of their associated fitness values, then the algo-
rithm is stopped after its difference fall below a threshold adapted at each thermal
cycle: i.e. fν − f best

ν ≤ ε fν, where ε < 1 is a parameter chosen by the user.
Note that the previous rule can be generalized, to a more thermodynamics-driven

implementation, if the rule is checked after each time the thermal equilibrium is
reached (for a given temperature). See for example [Corana et al., 1987] where
this rule is implemented by replacing fν with the best global fitness found by the
algorithm.

A more convoluted variation of the above rules is presented in
[Dekkers and Aarts, 1991]: the method is stopped when the temperature falls
below a given small value and the variance of the cost function is small enough, but
instead of using the fitness values directly, they are approximated with a smooth
functional with a known closed derivative, so the variation can be expressed in terms
of its gradient.
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4.2.4 On the computation of the initial temperature

We conclude the Simulated Annealing section by addressing the role of the initial
temperature, the artificial control parameter used to simulate the melting stage.

In theory, the start temperature must be high enough to let the system have suffi-
cient energy to explore the entire solution space. A very high T0 can lead to a system
with vast amounts of energy, thus being a pure random walk, which is neither intu-
itive in a thermodynamic sense nor useful in a computational way: a lot of iterations
are going to be wasted until the visiting distributions provides a more guided ap-
proach. Instead, if the initial temperature is not high enough, the system can be led
to a premature convergence as the exploration resembles a gritty search too early,
i.e. the system does not have enough energy to let the particles move freely.

Note that the initial temperature is extremely problem-dependent, as we are talk-
ing about the system energy which is directly linked to the fitness function. To control
the behavior of the system at the first stages several authors have proposed a set of
heuristics for the determination of the start temperature. What follows is a brief
summary of the most important ones.

The Classical Simulated Annealing [Kirkpatrick et al., 1983] relies on a very intu-
itive and thermodynamics-driven heuristic: before the start of the algorithm choose
a very high initial temperature, then perform a random walk over the solution space
recording each transition acceptance status. If the ratio of accepted solutions is not
high enough (usually 80%) increase the temperature by a factor of 2. This heuristic
is repeated until the ratio is beyond the desired acceptance threshold. In case the
ratio is too high (usually 90%), divide the temperature by 2.

In [van Laarhoven and Aarts, 1987, Dekkers and Aarts, 1991] it is suggested that
the fitness distribution must be correctly approximated during the initial stages. To
this end, the method estimates the energy distribution when T0 → ∞ by performing
random walks on the solution space and computing their acceptance status, thus
the expected value E∞(∆ f ) is computed in order to set the start temperature as
T0 = κE∞ (where κ ranges between 5 and 10).

In the case of combinatorial optimization, also applicable to the continuous case,
one of the most used techniques for the initial temperature estimation was proposed
in [Johnson et al., 1989, Johnson et al., 1991]. Let X+

0 = {∆ (xk)}k a set of ran-
domly chosen positive transitions, and χ0 the desired acceptance ratio, typically 0.8.
Then, the initial temperature is given by:

T0 = −mean (X∆)

log (χ0)

which can be summarized as the average of the temperatures needed to raise the
fitness with a probability of χ0.

In [Ben-Ameur, 2004] an algorithm is provided in order to compute an initial
temperature which is compatible with a given acceptance ratio. This procedure is
detailed in Algorithm 4.2 as it is used in our Simulated Annealing implementation
for computing the parameters of a Rational Bézier Curve.
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Let χ0 ∈ [0, 1] be the desired acceptance probability, X+
0 = {∆ (xn)}n a random

set of positive transitions, we define χ̂ (Tk) as:

χ̂ (T) =
∑n exp

(
− f+n

T

)
∑n exp

(
− f−n

T

) (4.15)

where f+n and f−n denote the state after and before the transition ∆n, respectively.

Algorithm 4.2: Computing the initial temperature
Input: Desired acceptance probability χ0, cost function f , ε0 � 1, p > 1
Output: Initial temperature T0
Sample the solution space and store the positive transitions X+

0
i← 1
Ti � U (0, 1)
do

Compute val ← χ̂ (Ti) by following Equation (4.15)
T0 ← Ti

Ti+1 ← Ti

(
log(χ̂(Ti))

log χ0

)1/p

while |val − χ0| ≤ ε0
return T0



Chapter5
The Method

All models are wrong, but some
are useful.

George Box

The aim of this Thesis is to find a free-form spline model from a point cloud which
does not require any subjective parameter for its computation. The resulting model
must provide a good trade-off between data-fidelity and complexity in a fully auto-
mated way.

The rest of this chapter is organized as follows: we begin with a brief outline of
the underlying ideas behind the methodology. Then, related works on spline fitting
model selection are discussed. Finally, we conclude the chapter with a discussion of
the different approaches followed.

5.1 Outline

In its most general form our methodology, as outlined in Figure 5.1, can be summa-
rized as follows: given a point cloud {Qi}i in Rd, select a set of spline models to
approximate the data, construct a fitness function that takes into account the model
parameters and contains enough information about the model data-fidelity, optimize
it with the Simulated Annealing algorithm to get a final fitness value, and the associ-
ated spline parameters, for each model. Finally, compare all the models through the
use of an information sciences criteria, thus producing one new fitness value for each
model, then select the model with the best transformed fitness.

5.1.1 Model selection

As discussed above, our problem consists of reconstructing the underlying shape of a
given set of noisy data points by using a spline model. The model is fully determined
by the spline choice and the problem being solved, see Table 5.1 for a summary of
each problem-model complexity.
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Figure 5.1: General diagram of the proposed methodology.

The complexity of each model is unequivocally determined by the number of free
parameters required to define the spline being used. For example, the number of free
parameters needed to define a NURBS was constructed in equation 3.2. Note that,
the same procedure can be formulated for each of the spline models considered in
this work, namely: rational and non-rational Bézier/B-spline curves and surfaces.

5.1.2 The fitness function

Once an underlying spline model is chosen, we need a measure of the quality of
the model. At this stage, there is no need for the fidelity metric, also known as
fitness or cost function, to capture any information about the complexity or other
characteristics of the data to be fitted.

In all our implementations, the residual sum of squares RSS is used as the per-
formance metric to measure the data-fidelity. Thus, for a given spline model, we use
the RSS as the fitness function for the Simulated Annealing. Note that is choice is
compatible with the proposed AIC (5.1) and BIC (5.2) criteria.

Note that, as the complexity increases so does the non-linearity of the objective
function, as per equation 3.1. Thus, although a NURBS is more feature complete than
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Model Control Points Parameters Weights Knots

Bézier X X
Rational Bézier X X X
Free-knot spline X X
Parametric B-spline X X X
NURBS X X X X

Table 5.1: Model complexity summary table.

any other spline model, it is still needed a general method to obtain less complex
models that can be numerically more stable, faster and easier to understand and
manipulate.

5.1.3 Information Sciences Criteria

The Akaike Information Criterion (AIC) [Akaike, 1974, Akaike, 1998] and
the Bayesian Information Criterion [Schwarz, 1978] are penalized information-
theoretical criteria which involve the creation of a new fitness function with the aim
of providing a fair trade-off between data-fidelity and complexity. The new measure
is comprised of two competing terms: on the one hand the residual sum of squares
(RSS) is used to provide an estimation of the model fidelity, on the other hand a
penalty term is introduced in order to take into account the complexity via the num-
ber of free parameters of the model, η. The AIC is given by:

AIC = N log (RSS) + 2η (5.1)

whereas the BIC is given by:

BIC = N log (RSS) + η log (N) (5.2)

where N is the number of parameters to be fitted and log is the natural logarithm.
In the particular case of data fitting, the main advantages of AIC and BIC criteria

is that they allow us to select a model in a fully automated way, without the need of
any subjective decision or parameter: select the model with the lower transformed
fitness. Note that for a given problem, i.e. N is fixed, if we fix the number of free
parameters η, both criteria behave like the original fitness. Instead, for a given error,
RSS, the transformed fitness increases along the model complexity.

Although both criteria produce similar models, it is important to note that, due
to the penalizing term expression, the BIC tends to produce simpler models than
the AIC. This simple fact has an important ramification in the case of data fit-
ting with splines: the BIC, thanks to yielding less unnecessary parameters than
the AIC, provides a more robust model when the underlying shape of the data ex-
hibits sharp elbows, discontinuities or rough localized areas. The problem arises
especially in the case of free-knot splines, as evidenced in [Yoshimoto et al., 2003,
Gálvez and Iglesias, 2011, Gálvez and Iglesias, 2013, Gálvez et al., 2015] and our
take on the problem in Section 7.1, where the issue gets a more detailed explanation.
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5.1.4 Other methodologies

Although our method is in accordance with other state of the art nature-inspired
methodologies for spline fitting [Yoshimoto et al., 2003, Gálvez and Iglesias, 2011,
Gálvez et al., 2015] here we will discuss other model selection techniques.

The most common methods for spline approximation [Farin, 2002] are based on
one of two opposite procedures. On the one hand, a class of methods begins with a
small set of knots, or control points in the case of Bézier models, and then iteratively
increase its numbers after a certain condition is met (usually a desired precision).
On the other hand, the reverse procedure starts from a large number of knots, or
control points, and then the set is reduced until a threshold is no longer met. Both
procedures rely on a good initial set of breakpoints or control points, the problem
itself is a difficult one and it is extremely complicated in the case of free-knot splines
[Jupp, 1978]. Furthermore, both methodologies tend to fail in the case of noisy or
large point clouds.

In the case of Bézier curves and surfaces the typical use case does not in-
volve a model selection procedure, as the data fitting is made by the smooth con-
nection of cubic Bézier curves or surface patches. These methods are compati-
ble with the requirements of certain industries, such as font design and storage1

[Yannis Haralambous, 2007]. Note however, that our methodology can indeed meet
those requirements by making use of the Bézier subdivision capabilities. Therefore,
our final model could be subdivided into a path of cubic Bézier curves through one
of the many robust methods found in the literature [Warren and Weimer, 2001].

5.2 Scattered data

Let us assume that a given point cloud is composed of samples of a real-valued func-
tion of one or two variables with an unknown topology, i.e. we do not know the
connectivity between the data points. The construction of a digital model of such a
dataset is of extreme importance in such areas as high-resolution terrain maps, laser
scans or medical data [Nielson, 1993].

A dataset with an unknown ordering is commonly referred in the literature as a
scattered point cloud. Although it has not been explicitly pointed out, the proposed
methodology assumes a point cloud with a known topology. Our approach to finding
a suitable connectivity for the dataset consists in constructing a baseline surface, with
a known topology, that approximates the data. By evaluating this baseline surface
we get a transformed point cloud with a known topology as close to the original
point cloud as we want, so we can now apply the previously presented methodology
(Figure 5.1). The baseline surface is obtained by means of the natural neighbor
interpolation method.

1For example, cubic Bézier paths are used as the basis of the Compact Font Format (CFF), part of
the OpenType Standard
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5.2.1 The Sibson method

The natural neighbor interpolation method [Sibson, 1981], also known as the Sibson
method, is a powerful general-purpose spatial-data estimation technique based on
combining a local weighted-average interpolation over a query point via its neighbors
(in a Voronoi sense). The resulting transformed data has some useful properties, such
as C1 continuity, locality and a good fitting error. The major drawbacks of the method
are its computational inefficiency and difficult implementation.

However, many methods have been proposed to accelerate the procedure. A
Vornoi diagram can be efficiently discretized and computed through the use of graph-
ics hardware [Hoff III et al., 1999], a shortcut which can be used to accelerate the
Sibson method. In [Park et al., 2006] a method is presented in order to avoid the
computation of the full Voronoi diagram, a very demanding task, via the use of kd-
trees to find the nearest neighbors of only a subset of the point cloud.

5.2.2 Constructing the natural neighbor interpolant

A full discussion of the method is well beyond the aim of this dissertation; however
we will provide a brief outline of the method. First we will introduce the necessary
mathematical concepts behind the interpolation, then we conclude by examining the
Sibson interpolation technique.

Voronoi diagram. A Voronoi diagram of a convex domain D ⊂ Rd is a partitioning
of D into a series of tiles (cells) which are based on a finite set of points (sites). A
Voronoi diagram of the set X = xN

1 over D, denoted as N (X), parts the domain into
regions knows as cells υxi ⊂ X, in a way that any given point in the cell is closer to
xi than to any other point in X.

Natural neighbors. Given a set of sites and its associated diagram, the natural
neighbors of a query point y are computed as follows. If we insert the query point
into the Voronoi diagram, the Voronoi cell υy has k neighboring cells {υx1 , . . . , υxk}.
The k associated sites are known as the natural neighbors of y.

Natural Neighbor Interpolation. In its most basic form the interpolant can be writ-
ten as I(u0, v0) = ∑

D
µ=1ξµ,0Qu. For a given (u0, v0) the method computes a Delauney

triangulation N(Q) of the data in order to find the closest nodes that form a convex
hull around the query point, then the associated weights ξµ,0 are calculated by find-
ing how much area could be stolen when inserting the point into N.

To be more precise, let say that y is the point where we want the interpolation
to be done. The first step consists in constructing a Voronoi diagram of our point
with and without y: N+ and N− respectively. If a Voronoi Cell of a given point x
lies in N+, we label it as υ+x , in the other case υ−x . Now, we construct the discrete
set of natural neighbors of y, Ny =

{
n ∈ N : yn is a natural neighbor of υ−y

}
. The
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weights are computed by finding the stolen volumes from the Voronoi diagram when
y is added by following:

wn =


vol(υ+n )
vol(υ−n )

if n ∈ N

0 otherwise
(5.3)

Finally, the estimated value of a point is computed by the resulting weighted sum:
∑n wnyn.
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Chapter6
Curve and Surface fitting with

Bézier models

If your system were that good,
the Americans would have
invented it first!

A short-sighted manager to
Bézier.

6.1 Non-rational Bézier Curves

This section is devoted to present the results of Simulated Annealing Algorithm for
Bézier Curve Approximation presented in the Cyberworlds 2014 [Loucera et al., 2014].

6.1.1 Introduction

Curve approximation is a very important topic in many industrial and applied fields.
The typical input in real-world applications is a set of sampled data points for which
a fitting curve is to be obtained. This work addresses this problem by using Bézier
curves as the approximating functions. This formulation leads to a continuous multi-
variate nonlinear optimization problem. Unfortunately, this is very difficult problem
that cannot be solved with classical mathematical optimization techniques. In this
chapter, we solve the problem through a hybrid strategy combining classical methods
(linear least-squares minimization), modern stochastic methods (Simulated Anneal-
ing) and information science metrics. For a given degree n, our method computes
a near-to-optimal parameterization of data points by using Simulated Annealing for
global search and a local search optimizer for further refinement of the global solu-
tion. Then, we compute the control points by least-squares minimization. Finally,
we determine the best value for the degree of the curve by using two information
science metrics that represent an adequate compromise between data-fidelity and
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model-complexity. Our method is applied to four illustrative examples of mathemat-
ical curves and noisy scanned data and different configurations. Our experimental
results show that the method performs well for all examples.
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Figure 6.1: Original point clouds.

6.1.2 The problem

The problem being solved in this section is a smaller subset of the fitting scenario
outlined in Chapter 3. The problem can be summarized as follows: let {Qi}m

i=1 be a
set of points in Rd, our aim is to find s, the best fitting non-rational Bézier curve of
degree n, as defined per equation (2.1).

The fitting problem gets transformed into the following least-squares minimiza-
tion:

E =
m

∑
i=1
µi

∥∥∥∥∥Qi −
n

∑
j=0

P jBn
j (ti)

∥∥∥∥∥
2

2

(6.1)

where {µi}i=1,...,m are scalar numbers used in situations when it may not be reason-
able to assume that every sampled data should be treated equally. Note that we need
to associate a parameter ti to each data point {Qi}. It is obvious that, since each
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blending functions is non-linear in t, the system (6.1) is also non-linear. Therefore,
we are dealing with a continuous nonlinear minimization problem that involves a
large number of variables for large sets of data points, a typical case in many real-
world technological problems (e.g., the Michelangelo project).
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(a) Boltzman-Boltzman.
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(b) Exponential-Boltzmann.
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(d) Fast-Fast.

Figure 6.2: Agnesi curve: Best fit (BIC-sense) after local search.

6.1.3 Method implementation

Our method consists of three major steps: data parameterization, least-squares mini-
mization and error evaluation. The last step is not only aimed at computing the value
of the fitness function (6.1) required for second step, but also at determining the best
value for the degree n of the curve. This is a critical task: to decrease the complexity
of our problem, it is convenient to choose a low value for the degree of the curve;
however, a very low value of n also means less degrees of freedom and hence, more
difficulties to describe the underlying shape of data. On the other hand, the curve de-
gree is the only available parameter to accomplish this goal, since we have no control
over the size of the point cloud. We compare the Akaike and Bayesian Information
Criteria for the model selection.
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Simulated Annealing. Data parameterization is computed by means of the min-
imization of equation (6.1) by making use of the Simulated Annealing algorithm.
The implementation used here follows the classical SA schema presented in Algo-
rithm 4.1. We consider a memory effect in the form of elitism: we allow the best state
from the current generation to carry over to the next, unaltered. This feature pro-
vides faster convergence rates with respect to the non-elitist variant and improves
the memory capacity of the approach. Finally we test a set of different neighbor
functions and cooling schemes:

Boltzmann annealing. It performs a step-size equal to the square root of the
current temperature and the direction vector is uniformly random.

Fast annealing approximation. It consists of performing steps of length pro-
portional to the current temperature, and the direction is uniformly random.

Power schedule. Tk+1 = 0.95kT0

Boltzman schedule. Tk+1 =
T0

log(k)

Fast schedule. Tk+1 =
T0

k

6.1.4 Experimental Results

To evaluate the performance of our approach, it has been applied to different ex-
amples with varying difficulty levels. In this section, we analyze four of them. Our
examples include two scanned figures containing a significant amount of noise (ex-
amples 1 and 4, corresponding to the five character and a famous logo, respectively),
and two noise-free mathematical curves (examples 2 and 3, corresponding to Agnesi’s
curve and Archimedes spiral curve respectively). They are represented graphically in
Figure 6.1.

Parameter selection and general test configuration

For each example we fit the data to a Bézier curve of degree n, with n ranging from
4 to 90. To remove the spurious effects of stochasticity, each example is executed 20
times for each value of n and for each simulated annealing parameter configuration.
In this paper we consider the following four configurations:

• Boltzmann’s cooling schedule & neighborhood function.

• Exponential cooling schedule & Boltzmann’s neighborhood function.

• Exponential cooling schedule & Fast Annealing neighborhood function.

• Fast Annealing cooling schedule & neighborhood function.
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(b) Exponential-Boltzmann.
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(c) Exponential-Fast.
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(d) Fast-Fast.

Figure 6.3: Five symbol: Best fit (BIC-sense) after local search.

Performance discussion

Our experimental results for the four examples are displayed in Figures 6.3 to 6.5.
Each figure shows the best fitting curve according to the BIC criterion after local
search. Table 6.1 summarizes our main results. The corresponding examples are
listed in rows, for each of the configurations indicated above (where B, E, FA, T and
N stand for Boltzman, exponential, fast annealing, cooling schedule, and neighbor-
hood function, respectively). The table shows the best and average values of AIC and
BIC computed in terms of the Bézier curve degree n, along with the optimal value for
this parameter n. The table also reports such results before and after the local search
stage. Note the substantial improvement of our results for the latter case. Finally,
mean errors after local search for coordinates x and y are reported.

From our experimental results we conclude that the method performs pretty well,
as we have been able to reconstruct the underlying shape of data in all cases. As
expected, the method performs better in the cases of mathematical curves, because
they are unaffected by noise. In such cases, we obtain an excellent visual quality,
as shown in Figures 6.2 and 6.4. The method also performs well for noisy scanned
data, but the quality of reconstruction is visually less appealing. Also, in those cases
our method is more sensitive to the configuration used for each example. This fact is
clearly visible in Figure 6.5, where some configurations find troubles to reconstruct
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(d) Fast-Fast.

Figure 6.4: Archimedes spiral: Best fit (BIC-sense) after local search.

some parts of the image, remarkably the leftmost loop. Note, however, that this
example is particularly challenging because it is too noisy and contains several self-
intersections and changes of concavity. Yet, the method captures well the overall
shape of data for all configurations.

All our experiments have been done on an AMD-FXtm-4100 Quad-Core Processor
at 3600 Mhz with 8GB DDR3 RAM running Debian 7.1 and MATLAB 2012a.
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Table 6.1: Experimental results.
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(b) Exponential-Boltzmann.
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(d) Fast-Fast.

Figure 6.5: Famous logo: Best fit (BIC-sense) after local search.

6.2 Bézier Surfaces

This section is devoted to the research article titled A Simulated Annealing Approach
for Data Fitting with Bézier Surfaces as found in the Proceedings of the International
Conference on Intelligent Information Processing, Security and Advanced Communica-
tion - IPAC ’15 [Iglesias et al., 2015b]

6.2.1 Introduction

This work presents a new method for reconstructing a cloud of noisy data points
through Bézier surfaces. Our approach is based on the combination of a single-
particle metaheuristic technique called simulated annealing, the Bayesian informa-
tion criterion, and classical fitting techniques (least-squares). Three illustrative ex-
amples are used to show the good performance of this approach.
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6.2.2 The problem

A polynomial Bézier surface of degree (n, m) is given by:

S(u, v) =
n

∑
i=0

m

∑
j=0

Pi, j Bn
i (u) Bm

j (v) (6.2)

where u, v ∈ [0, 1] are the parameters of the surface, and
{

Pi, j
}

the control net. See
chapter 2 for a more detailed discussion on the topic.

Let now {Qk,l}k=1,...,p;l=1,...,q be a set of data points in R3. Our objective is to
reconstruct the Bézier surface S(u, v) that fits the data in the discrete least-squares
sense, i.e. we want to minimize the sum of squares of residuals:

E =
p

∑
k=1

q

∑
l=1

∥∥∥∥∥Qk,l −
n

∑
i=0

m

∑
j=0

Pi, j Bn
i (uk) Bm

j (vl)

∥∥∥∥∥
2

2

(6.3)

Note that we are dealing with an over-constrained system of equations. Further-
more, it also remains the problem of computing a suitable parameterization of data
points. Note that since the blending functions are nonlinear in u and v, the least-
squares minimization is a strong nonlinear problem. Our strategy to solve this issue
consists of applying the simulated annealing algorithm, explained in next section, for
data fitting and the Bayesian Information Criterion for model selection.

6.2.3 Modified Simulated Annealing Method

In the following we will discuss the modifications we have carried out to adapt the
classical Simulated Annealing, as outlined in chapter 4 and section 6.1, for Bézier
surface reconstruction.

Let xold, xnew, xbest ∈ D ⊆ Rd be a set of three solutions, at a certain iteration, cor-
responding to the previous, new and best solutions reached so far. We also have the
temperatures T0, Told, Tnew ∈ R+, and, following the same notation, the system ener-
gies f old, f new, f best. In section 6.1 four SA schemes were discussed: the Boltzmann-
Boltzmann, B − B, Exponential-Boltzmann, E − B, Exponential-Fast, E − F , and
Fast-Fast, F −F . The first and second part of these names refer to the cooling sched-
ule and the neighborhood function, respectively. From them, we have finally opted
for the Fast-Fast F −F schema, which offers more visually appealing results and is
generally faster. In fact, as we have empirically tested, the other schemes typically
waste too many iterations without further improvement of the solution. They are
also very sensitive to the initial choice of T0 and the total number of evaluations of
the objective function, n f eval. The Fast cooling schedule updates the temperature
according to the expression T0/k. In this work, we have also hybridized the SA ap-
proach with a simplex method to further strengthen the local search capabilities of
our method. The resulting neighborhood function N is actually the composition of
three functions:
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NL ◦ND ◦NF (6.4)

where: NF is used to obtain a step proportional to the current system temperature,
which is subsequently perturbed according to a Gaussian random law; ND is used
to ensure that the new generated state is kept within the search space domain D,
by sending it back into D whenever it goes away; and NL performs a very fast local
search by making use of a smaller number of evaluations of the target function. This
local search is performed by a bounded simplex algorithm.

The acceptance criterion is an adaptation of the Metropolis-Hastings algorithm
[Metropolis et al., 1953]. For a minimization problem, it can be described through
the following equation:

A(ϕ) =

{
1 if f (ϕ) ≤ 0

e−ϕ/T otherwise
(6.5)

where ϕ denotes the transition from xold to xnew, and f (ϕ) = f new − f old. Note that
equation (6.5) meets the conditions indicated in section 4.2.1.

In addition to these modifications, we have introduced three new improvements
into the basic algorithm:

I Restart strategy. To make the technique less sensitive to parameter tuning, we
restart the annealing until the ratio of rejected transitions versus the accepted
ones tends towards 0.8. The primary goal of this restart strategy is to select a
good starting temperature even if it is initially overestimated. Another benefi-
cial collateral effect is that of improving the convergence of the F −F schema.

II Memory effect. We also provide the algorithm with a two-side memory effect by
storing the best overall solution,

(
xbest, f best), and the best solution for each

time the system reaches a thermal equilibrium state.

III Local search strategy. At the end of our algorithm, we perform a local search
for each of these solutions with a higher number of evaluations of the energy
function.

With these additional improvements, our approach outperforms the original SA
method described in Sect. 6.1 for the surface reconstruction problem addressed in
this paper.

6.2.4 Method implementation

Our method is comprised of three main steps: data parameterization, data fitting,
and degree determination. In first step we apply the SA algorithm described above
to create a suitable one-to-one mathematical association between the data points
{Qk,l}k=1,...,p;l=1,...,q and their corresponding surface parameters (uk, vl). In our
setting, the states correspond to different associations (parameterizations) of data
points, while the energy function is given by equation (6.3). Given a random initial
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state, we select the different components of the Simulated Annealing method previ-
ously described. As discussed in Section 6.2.3, we selected the Fast cooling schedule
and the neighborhood function given by equation (6.4), thus embedding a bounded
simplex method for fast local search in our approach. We also select the acceptance
criterion given by equation (6.5). The resulting Fast-Fast schema is enriched by its
hybridization with a local search method with a higher number of function evalua-
tions, the two-side memory effect (a kind of elitism to keep the best solution achieved
so far) and the restart policy described above. Finally, the stopping criteria are given
by the three following conditions: (1) n f eval > 1000 ∗ξ; (2) #[∂(Θ)] = 10 ∗ξ, and
(3) #[∂(xbest)] = 10 ∗ξ, where n f eval means the total number of evaluations of the
energy function, ξ denotes the number of free parameters of the problem, and the
notation ∂(.) is used to indicate the lack of changes of the mean variation of the
corresponding input function for a given number of function evaluations. Thus, the
second rule means that the procedure stops if the mean value of the energy func-
tion E does not change during 10 ∗ξ function evaluations. Similarly, the procedure
stops if the mean value of the best state xbest does not change for the same number
of function evaluations. In both rules, the number of function evaluations does not
include those performed during the local search phase. The function NL performs
local search by using a smaller number of evaluations, set to ξ/2 in this work.

The data fitting step consists of the least-squares minimization of kernel (6.3)
to compute the Bézier surface coefficients. This process can be achieved by either
LU decomposition or singular value decomposition (SVD), which provides the best
numerical answer for the Moore-Penrose pseudo-inverse of the least-squares prob-
lem. Finally, the optimal degree value (n∗, m∗) for the Bézier surface is determined
by using the Bayesian Information Criterion (BIC). This is achieved by introduc-
ing a penalty term on the number of free parameters of the model, described by:
BIC = η log(E) + ξ log(η) where log denotes the natural logarithm and η is the
number of sampled points. We have applied this criterion in order to obtain a Bézier
surface fitting the data points with high accuracy but with a minimal degree. In
other words, our fitting surface is not obtained at the expense of an unnecessarily
large value for the surface degree, thus preventing overfitting to happen.

6.2.5 Experimental results

Our surface reconstruction approach has been applied to three illustrative examples:
a random surface (Figure 6.6), a noisy digital representation of a heart (Figure 6.7)
and a noisy parametric surface representing a seashell (Figure 6.8).

First example corresponds to a Bézier patch generated from a collection of 4× 4
randomly chosen control points. From this surface, a collection of 900 points were
sampled and then perturbed at each component independently by a Gaussian addi-
tive noise of mean zero and standard variation σ = 0.2. Then, it was fitted with our
approach by using a Bézier surface with degree varying from 3 to 10 for each com-
ponent. Figure 6.6 shows the noisy data points of this example along with the best
fitting surface, obtained for degree (3, 3) according to the BIC measure. The corre-
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sponding mean value of the fitting error between the original and the reconstructed
data points for each coordinate are reported in Table 6.2. We have performed 10 sim-
ulations for each choice of (n, m) to remove any undesirable spurious effect derived
from the randomness of the process. The table reports the mean value (left column)
and the best value (right column) of these 10 simulations. The table also reports the
number of data points and the value of σ used in this example (first and second rows
of the table, respectively). This table also provides similar stats for each example,
they are differentiated by the accompanying graphical representation. Second exam-
ple corresponds to a collection of 1891 data points sampled from a computer model
of a human heart. These data points have been obtained from [Malchenko, 2005]
and then perturbed at each component by a Gaussian additive noise of mean zero
and standard variation σ = 0.1. Then, we applied our approach with degrees vary-
ing from 3 to 40 for each component. Results for the optimal value, obtained for
(n, m) = (11, 17), are reported in Table 6.3. Last example corresponds to a collec-
tion of 3600 data points sampled from a popular parametric surface usually called
seashell and subjected to Gaussian additive noise of mean zero and standard varia-
tion σ = 0.05. Once again, we applied our approach with degrees varying from 3 to
40 for each component. Results for the optimal value are reported in Table 6.3. As
the reader can see from Table 6.2, we obtain a very good fitting of data points, with
mean errors ranging from order 10−5 ∼ 10−6 for the first example to order 10−3

for the heart and seashell examples. These values are obtained even in presence of
additive white noise of low-medium intensity.

Figure 6.6: Random Bézier surface of degree (3,3).

Table 6.3 reports the main results for the best fitting Bézier surfaces of the three
examples (arranged in rows). The following data are reported (in columns): opti-
mal degree in u and v, mean and best value of n f eval, mean and best value of the
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Figure 6.7: Heart shape: Bézier surface of degree (11,17).

Figure 6.8: Seashell: Bézier surface of degree (30,30).
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stat mean best mean best mean best

points 900 1891 3600
noise 0.2 0.1 0.05

x_mean 1.44e-5 7.49e-6 0.0052 0.0019 0.0029 0.0026
y_mean 1.29e-5 5.88e-6 0.0029 0.0013 0.0029 0.0026
z_mean 1.32e-5 5.65e-6 0.0055 0.0022 0.0029 0.0028

Table 6.2: Results for the random, the heart and the seashell surfaces examples.

degree_u degree_v nfeval_mean nfeval_best mse_mean mse_best bic_mean bic_best

3 3 2871 2743 6.36e-07 1.30e-07 -3.7670e+04 -4.1957e+04

11 17 11429 11308 0.2638 0.0172 -5942.8719 -16636.7217

29 29 39520 35120 0.0892 0.0828 87.9482 -708.1069

Table 6.3: Results for the best fitting Bézier surfaces of the three examples.

mean square error (MSE), and the mean and best value of BIC. The reported values
confirm the good behavior of the method and its resilience against noise of moderate
intensity.

6.3 Rational Bézier curves

This section is devoted to present the results of Two simulated annealing optimization
schemas for rational Bézier curve fitting in the presence of noise, a paper published in
the journal Mathematical Problems in Engineering [Iglesias et al., 2016b]

6.3.1 Introduction

Fitting curves to noisy data points is a difficult problem arising in many scientific
and industrial domains. Although polynomial functions are usually applied to this
task, there are many shapes that cannot be properly fitted by using this approach.
In this paper, we tackle this issue by using rational Bézier curves. This is a very
difficult problem that requires computing four different sets of unknowns (data pa-
rameters, poles, weights, and the curve degree) strongly related to each other in
a highly nonlinear way. This leads to a difficult continuous nonlinear optimization
problem. In this paper, we propose two simulated annealing schemes (the all-in-one
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schema and the sequential schema) to determine the data parameterization and the
weights of the poles of the fitting curve. These schemas are combined with least-
squares minimization and the Bayesian Information Criterion to calculate the poles
and the optimal degree of the best fitting Bézier rational curve, respectively. We apply
our methods to a benchmark of three carefully chosen examples of 2D and 3D noisy
data points. Our experimental results show that this methodology (particularly, the
sequential schema) outperforms previous polynomial-based approaches for our data
fitting problem, even in the presence of noise of low-medium intensity.

6.3.2 The problem

A rational Bézier curve of degree n (as defined in chapter 2) can be expressed as:

s(t) =
n

∑
j=0

R j,nb j with t ∈ [0, 1] (6.6)

where b j are the control points and R j,n are the rational blending functions with
weights

{
w j
}n

j=0 given by:

R j,n =
w jB j,n (t)

∑
n
`=0 w`B`,n

with Bi,k(t) =
(

k
i

)
ti(1− t)k−i (6.7)

Let now {Q}M
i=1 be a set of data points in Rd. The problem consists of obtaining

the rational Bézier curve, s(t), of a certain degree n providing the best least-squares
fitting of the data points. This leads to a minimization problem of the least-squares
error E defined as the weighted sum of squares of the residuals:

Θ =
M

∑
i=1
µi

∥∥∥∥∥Qi −
∑

n
j=0 w jB j,n (t) b j

∑
n
`=0 w`B`,n

∥∥∥∥∥
2

2

(6.8)

where µi are scalar numbers used in situations when it may be reasonable to assume
that sampled data should not be treated equally. In order to reflect faithfully the
most common situation in real-world problems, in this paper we will assume that no
information about the problem is available beyond the data points. This means that
all data points must be treated equally; that is, µi = 1 , for all i. Note, however,
that our method is independent on the values of µi. To represent the geometrical
distribution of the data we need to associate a parameter Ti for each input point
Qi. Therefore, our goal is to obtain the three sets of parameters {ti}M

i=1,
{

w j
}n

j=0,

and
{

b j
}n

j=0. It is obvious that since each blending function in (6.7) is nonlinear
in t, system (6.8) is also non-linear. As a consequence, we have to deal with a
multivariate continuous nonlinear minimization problem. In this paper we solve this
problem by applying two different schemas of the simulated annealing optimization
method, which is described in the next section.
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Note, that this functional 6.8 is an special case of the more general problem for-
mulated in chapter 3. Therefore, once the weights and parameters are known, it can
be solved by means of the Moore-Pensrose pseudo-inverse.

6.3.3 Method implementation

As discussed above, our problem consists of reconstructing the underlying shape of a
given set of noisy data points by using a rational Bézier curve. This implies solving a
nonlinear least-squares minimization problem while simultaneously minimizing the
required number of free parameters. Solving this problem requires computing four
different sets of unknowns: data parameters, poles, weights (represented in this sec-
tion by vectors p, b, and w, resp.), and the curve degree, n. Our approach to tackle
this issue is a hybrid strategy combining classical methods (least-squares minimiza-
tion), modern stochastic methods (simulated annealing), and information science
metrics (Bayesian Information Criterion (BIC)).

Figure 6.9: Workflow of the proposed method described in three layers (from up-
per to lower layer): the general workflow; decomposition of the SA-LSQ procedure;
the two different SA schemas introduced in this paper: all-in-one schema (top) and
sequential schema (bottom).



6.3 Rational Bézier curves 73

Before explaining how our method works, let us introduce the following nota-
tion: from now on, we will use the subindex (·)w when searching for the curve
weights, (·)p when searching for the curve parameters, and (·)w,p when searching
for both, parameters and weights. Thus, SAp stands for simulated annealing applied
to parameter search, fw,p means the objective function with domain of definition
y = (w, p) ∈ W ×D ⊂ Rn+1 × [0, 1]M, and so on. The superindex (·)B denotes the
search for a non-rational Bézier curve and (·)R stands for a rational one. Hereafter,
consider W = (0, 100]n+1 and D = [0, 1]M. Without loss of generality, we can also
assume that w0 = wn = 1, t1 = 0, and tm = 1.

Figure 6.9 shows the main steps of our method. Basically, it consists of four major
tasks: data parametrization, weight computation, data fitting, and degree determi-
nation. Upper part of this figure summarizes the method: we initially set a range
for the curve degree n; then, for each value of this parameter n within that range,
we apply a combination of simulated annealing and least-squares optimization (box
SA-LSQ) to perform the first three tasks and compute the data parameters, weights,
and poles of the best fitting rational Bézier curve for this value of n. Then, the BIC
value of the resulting curve (corresponding to the last task, degree determination)
is obtained (box BIC). At its turn, the SA-LSQ can be decomposed into two steps
(middle layer of Figure 6.9): SA performs data parameterization and weight compu-
tation, while LSQ is used to compute the poles. This combination of SA and LSQ is
repeated iteratively until no further improvement is reached. In this paper, we intro-
duce two different SA schemas, shown graphically in the lower layer of Figure 6.9:
the sequential schema and the all-in-one schema. They are explained in detail in the
next section.

6.3.4 Simulated Annealing for rational Bézier curves

In this section we discuss our two Simulated annealing optimization schemata specif-
ically tailored for data fitting with rational Bézier curves. The core of our SA imple-
mentation is based on the classical Simulated Annealing as explained in chapter 4
with the improvements exposed in sections 6.1 and 6.2 for non-rational Bézier curve
and surface fitting, respectively. Thus, emphasis is placed on the new method dis-
crepancies with respect the previous ones.

Simulated Annealing for data parameterization and weight computation

In this step we perform two different (but intertwined) tasks: data parameterization
and weight computation. The former consists of obtaining a discrete association
between the set of parameters {ti}M

i=1 and the noisy data points {Q}M
i=1 to be fitted,

while the latter computes the weights. Both tasks are performed simultaneously by
using the simulated annealing approach described in the previous section. The input
for the SA method is given by the following:

I Model complexity. The curve degree, n.
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II Initial solution. Initial random parameter vectors p0, w0, and b0.

III Energy function. The energy function, given by equation (6.8).

IV Neighborhood function. A next candidate generator function N.

V Cooling schedule. A cooling schedule S: how to decrease the SA control pa-
rameter.

VI Stopping Criterion. When to finish the algorithm (frozen state).

In this work, two different simulate annealing schemas are considered: the se-
quential schema and the all-in-one schema. Basically, the former calculates the differ-
ent sets of unknowns of our optimization problem in a sequential way (i.e., only some
parameters are initially computed and subsequently used to compute the remaining
parameters), while the latter computes all unknowns at once. Let us analyze them in
detail.

Using the notation introduced above, the sequential schema (SEQ) begins by find-
ing the best non-rational Bézier fitting curve through SAB

p , then it performs the fol-
lowing sequence iteratively:

SAR
w → SAR

p (6.9)

until there is no further improvement in the final solution of either SA procedure in
comparison with the previous one. Each routine takes the preceding solution as an
input parameter. The schema can be summarized as follows (see also the lower layer
of Figure 6.9, where the numbers in red indicate the different steps of the algorithm):

(1) Apply the SAB
p with a random initial guess p0 to find a non-rational Bézier curve

that fits the data better. Let pB be the resulting solution.

(2) Search for a rational Bézier curve through SAR
w with a random initial guess

w0 ∈ W and fixed parameters (pB). Let (wR, pB) be the resulting solution.

(3) Apply the SAR
p optimization with (pB) as the initial guess and fixed weights

wR. Let (wR, pR) be the resulting solution.

(4) Repeat (2)-(3) iteratively until there is no improvement in the resulting solu-
tion.

In general, the energy function for the simulated annealing procedures SAR in
steps (2) and (3) above is that of equation (6.8). However, a different energy func-
tion is required for the non-rational case (i.e. w j = 1 for all j) in step (1), SAB, given
by:

Θ =
M

∑
i=1
µi

∥∥∥∥∥Qi −
n

∑
j=0

B j,nb j

∥∥∥∥∥
2

2

(6.10)
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On the other hand, the all-in-one schema (AIO) corresponds to the minimization
of functional

fw,p :W ×D → R (6.11)

where for each state vector (w, p) we compute f (w, p) as the least-squares solution
of equation 6.10.

Neighbor function

The neighborhood function is one of the key components of the SA algorithm. Fur-
thermore, its role becomes even more important for multi-modal optimization prob-
lems, where the objective function is of the many local peaks surrounded by deep
valleys type. This is exactly what happens in this paper. There are several alterna-
tives for the neighborhood function. A very popular choice is the fast next candidate
generator, which builds the new solution by modifying the previous one in steps pro-
portional to the system temperature:

xnew = xold + Tv (6.12)

where is a random vector holding ‖v‖2
2 = 1. This is an approximation of FSA

schema, one of the tested functions in section 6.2, but it required another support
function (a local search method) in order to exploit the neighborhood of a solution.
In this work we remove the supporting local method by maintaining two sets of
controlling parameters: firstly, the global real temperature following the classical SA
temperature. Then, the algorithm builds a second set of virtual temperatures (one
for each spatial dimension) that are restarted at the beginning of each inner cycle.
The resulting equation becomes

xnew = xold + T� v (6.13)

where T has all its components set to the current system temperature at the begin-
ning of each outer cycle. Thus, whenever xnew is accepted through the acceptance
criterion, we compute the absolute difference between the old and new solutions.
For each component that behaves better than the previous one in the comparison,
we update the corresponding component on T according to the cooling schedule.
The proposed method is based on the Adaptive Simulated Annealing (ASA), see sec-
tion 4.2.2.

Cooling schedule.

By the cooling schedule we refer to a triplet S = {T0, T,T} accounting for the selec-
tion of the initial temperature, the temperature parameter, and the cooling function
(T), respectively, along with the thermal equilibrium criterion. The cooling sched-
ule governs the pace at which the temperature is updated during the execution of
the SA. Therefore, its choice is of primary importance for the good performance of
the algorithm. In this work we considered initially the power, Boltzmann, and fast
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schedules. However, our computational experiments showed that the fast schedule
provides more visually appealing results and runs faster than the other two alterna-
tives. Since these are two particularly valuable features in the context of data fitting,
we eventually selected the fast schedule as the best choice for rational Bézier curve
fitting. The fast schedule is governed by the law Tnew ← T0/k, which provided a
good balance among simplicity, speed, and good performance for other data fitting
problems as has been exposed in our previous works (sections 6.1 and 6.2).

In order to select the initial temperature we have discarded the time-consuming
restarting strategy used in our previous work in favor of the method presented in
[Ben-Ameur, 2004]. It consists of setting an acceptance ratio, χ0, and determin-
ing, through an iterative algorithm, a compatible starting temperature. Among the
several possible ways to define χ0, in this work we choose the classical one of the
quotient between the number of bad transitions accepted and the attempted ones, al-
ready proposed in [Aarts et al., 1985]. According to this definition, we set χ0 = 0.8,
a typical value in previous literature in the field. For further details on the proposed
T0 initialization schema see section 4.2.4, more specifically Algorithm 4.2.

Stopping criterion

Similar to the choice of the initial temperature, there is not a general set of stopping
conditions suitable for all problems. There are, however, two common practices: the
first one is to set a maximum number of iterations; the second one is to stop the
execution of the algorithm when the system is frozen, that is, when no new solutions
(either better or worse states) are accepted for a predefined number of iterations.
Since the former can waste a lot of computation time with no further improvements
on the solution, in practice the stopping criterion is often a combination of the two. In
our implementation, the algorithm stops whenever one of the following conditions
is met: either n f eval > 1e3 · ξ or ]

[
∂∆global

]
= 10 · ξ, where n f eval denotes the

total number of evaluations of the energy function, ξ denotes the number of free
parameters of the system, and ∂(·) denotes the lack of changes of the mean variation
of the energy function.

Memory effect

We improve the memory capacities of the method through elitism: the best state
from the current iteration is encoded as a vector (xk

best, f k
best) and stored in a temporal

buffer. Obviously, this best so far solution is updated whenever a better solution is
achieved during SA execution. We remark however that this (xk

best, f k
best) vector is not

used to drive the SA execution; instead, it is only used as a memory effect, with the
role to (possibly) improve the convergence rate with respect to the standard (non-
elitist) version of SA.
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Cast back operator

We add a new operator, related to the domain of the problem, to work in combina-
tion with the neighborhood function. This extra functionality checks whether a new
generated solution goes outside the search domain of the problem and sends it back
into the search space whenever it goes away. To this purpose, we apply the classical
cast back operator, a widely accepted routine in numerical methods. Suppose that
the SA returns a new solution xnew outside the problem domain D, obtained from
a previous solution xold within D. The cast back procedure replaces xnew by a new
value xcb given by the convex combination: xcb = α · Proj(xnew) + (1−α)xold, where
Proj(·) is the operator that projects any point outside the domain onto its closest
point on the boundary of D and α � U((0, 1)) is a uniform random number in the
interval (0, 1). This procedure returns a new point that is well within the search
domain while simultaneously ensuring that the probability of the boundary is not
increased by this operator.

Adaptive thermal equilibrium

We improve the cooling schedule (S) with extra conditions for the thermal equilib-
rium. In our implementation, the inner cycle stops if the value of χ0 is reached after
ξ iterations.

6.3.5 Experimental results

In this section, we analyze the performance of our method by applying it to a bench-
mark of three illustrative examples of 2D and 3D noisy data points. These examples
have been carefully chosen so that they exhibit challenging features such as self-
intersections or strong changes of slopes and curvatures. The first two examples
correspond to real-world instances so that we can replicate the usual conditions of
real-world applications, including the presence of noise of low-medium intensity. The
last one is an academic example designed to analyze the effect of different levels of
noise on our method. For each example, we report the results of three different
schemas used for comparative purposes: non-rational, rational all-in-one, and ra-
tional sequential. Finally, we analyze the robustness of the method in the presence
of noise by comparing each schema against the same data perturbed with different
levels of noise for the last example.

Regarding the implementation issues, all the experiments were run on a AMD-
FXtm-4100 Quad-Core Processor at 3600 Mhz with 8GB DDR3 RAM running Linux
3.14.x LTS kernel and MATLAB 2012a. For each dataset and schema, the experiment
has been executed 26 times. Then, 20 executions are finally selected (after removing
the three best and three worst executions) to provide statistical evidence for the
results presented and assert the experiment reproducibility.

Table B.1 reports our results for each dataset and experiment. The following
items are arranged (in columns): dataset examined, the type of curve reconstructed
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(NR: non-rational; R: rational), the schema executed for rational curves (AIO: all-
in-one; SEQ: sequential), the total number of calls to the energy function in the best
case (represented by n f eval), the best and average BIC, the number of poles for the
best BIC (represented by npol), and the relative mean error for each component
(xmean, ymean, and zmean). When used, the acronym N.A. stands for not applicable.
The logo, shoe, and torus names refer to the scanned logo, shoe profile, and curve on
a torus datasets described below, respectively. The number after torus refers to the
signal-to-noise ratio (SNR) applied. For the non-rational examples, a local search was
performed in order to refine the SA solution. Our results show the good performance
of the method even in highly noisy situations, which are the common case in real-
world applications.

A Scanned Logo

The first example corresponds to the shape of a digitally scanned logo. The dataset
consists of a set of noisy 2D data points, represented by black symbols in Figure 2.
The figure shows our experimental results for the three cases analyzed: non-rational
case (top), the all-in-one rational case (middle), and the sequential rational case
(bottom). The figures on the left show the reconstructed points, represented as red
empty circles. On the right, the best fitting curve is displayed as a red solid line.
This example has been chosen because it represents a common real-world scenario:
a scanned figure with the typical noise introduced during the scanning process. In
addition to the high-intensity noise (clearly visible in all instances of Figure 6.10),
this shape is also challenging because it includes difficult geometric features, such as
several self-intersections and strong changes of slope and curvature. This example
was first reconstructed in section 6.1 by making use of (non-rational) Bézier curves,
both results are presented here, side by side, to have a better grasp of our new
methodology added value over the old one.

As the reader can see from the figures, the method is able to recover the general
shape of the data points with good accuracy. This is a very remarkable result because
the original data points are highly noisy. Best results correspond to the sequential
rational schema, while the non-rational and the AIO rational schemas perform almost
similarly in this case. This fact is clearly visible in the topmost loop of the figures in
right column, best fitted through the sequential schema (bottom figure). These visual
results are in good agreement with the numerical results reported in Table B.1. The
best and average BIC for the sequential schema are approximately −770 and −701,
respectively, while they are both −691 for the non-rational schema and −661 and
−658 for the AIO rational schema. Note also that the three methods obtain the same
optimal number of poles npol = 13. In other words, the good accuracy of our method
is not at the expense of a very large number of free variables.

Shoe profile

The second example corresponds to a shoe profile obtained from a pressure-
mechanical method without filtering, leading to a set of 400 three-dimensional noisy
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Figure 6.10: Experimental results for Example 1: left: reconstructed points (red
circles); right: best fitting curve (red solid line); top: non-rational case; middle: AIO
rational case; bottom: sequential rational case. In all cases, npol = 13.

data points. Figure 6.11 shows our experimental results. The interpretation of this
figure is similar to that of previous example and, hence, it is omitted here to avoid
redundant information. Once again, the best fitting is obtained with the sequential
rational schema, although in this case, the visual and numerical results are closer for
the two rational schemas and significantly worse for the non-rational one. Note also
that we obtained a similar parameter value, npol = 24, for the number of poles in all
cases.
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Figure 6.11: Experimental results for Example 2: left: reconstructed points (red
circles); right: best fitting curve (red solid line); top: non-rational case; middle: AIO
rational case; bottom: sequential rational case. In all cases, npol = 24.

Example 3: Curve over a Torus

Last instance in our benchmark corresponds to an academic example. It has been
carefully designed to analyze the performance of our method against noise of differ-
ent intensities. To this aim, we consider the parametric curve given by:
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
x(t) = (a + b cos(5t) cos(2t)
y(t) = (a + b cos(5t) sin(2t) t ∈ [0, 2π ]
z(t) = c sin(5t)

(6.14)

which corresponds to a curve on a Torus. We consider a set of three-dimensional data
points with uniform sampling in the interval domain [0, 2π ]. This dataset, labeled as
torus in Table B.1, is then perturbed with additive white noise of different intensities,
modulated by a signal-to-noise ratio (SNR) ranging from 10 (very high intensity)
to 90 (low intensity), with step-size 10. The corresponding datasets are labeled as
torusN, where N indicates the SNR intensity. The simulation results with our method
for the resulting 10 datasets are reported in the last 10 horizontal blocks of TableB.1.
Some important observations can be obtained from the numerical data in the table.
The most important one is that the sequential rational schema outperforms the others
in terms of BIC value, meaning that it provides the best trade-off between accuracy
and complexity for all instances in this example. According to our results, the optimal
number of poles for this example is npol = 20 in all cases, except for the instance
torus10, which corresponds to a case of very high noise intensity. In other words, this
schema is able to capture the optimal number of poles in cases of noise of low and
medium intensity. Furthermore, the method fits the data points very accurately. For
instance, the relative fitting error for the noiseless case is as good as 10−6 for each
coordinate. These striking results are visually confirmed in Figure 6.12. Note, for
instance, the very good fitting for the sequential rational schema (bottom row).

On the other hand, as expected, the BIC increases as the noise level increases,
meaning that the method is affected by the noise intensity, but not drastically. In fact,
the method is very resilient against noise, as it still yields very reasonable relative
fitting errors of order 10−2 for high-intensity noise (for instance, of SNR = 10) and
10−3 for SNR = 30. For example, the visual quality of the fitting is clearly visible
for the case SNR = 50, as shown in Figure 6.13. We remark, however, that in this
case, the non-rational and AIO rational schemas require extra parameters to obtain
their best fitting. Note, for instance, that npol = 25 for the non-rational schema in
this example. This effect can be explained by the fact that the non-rational curve has
less degrees of freedom because no weights are available. As a consequence, more
poles are usually required to compensate this limitation. But even in this case, the
value of this parameter is lower or equal to 25. This result is a clear indication of the
effectiveness of our proposal to use BIC to keep the dimension of the problem as low
as possible and to prevent over-fitting.

This third example has also been used to illustrate the good performance of our
neighborhood function, described during the Simulated Annealing implementation
section. Figure 6.14 shows two graphical examples of the evolution of the BIC for
the rational all-in-one schema versus the number of evaluations of the fitness function,
given by the parameter n f eval. The pictures display the examples torus and torus50
from Table B.1, corresponding, respectively, to the noiseless case (left) and the noisy
case with SNR = 50 (right). Both pictures show the evolution of the maximum,
mean, and minimum BIC in a color-coded representation (in blue, green, and red,
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Figure 6.12: Experimental results for Example 3 (without noise): left: reconstructed
points (red circles); right: best fitting curve (red solid line); top: non-rational case;
middle: AIO rational case; bottom: sequential rational case.

resp.). These BIC values have been obtained with our method from 20 executions out
of 26 executions after removing the three best and three worst results for each case.
As the reader can see, our neighborhood function allows the method to escape from
local minima, a situation that happens particularly at earlier stages of the evolution,
associated with an intensive exploration of the search space. Two temporal windows
have also been included in the pictures to enlarge these initial stages by zooming for
better visualization. After this initial period, the BIC decreases slower and the fitting
error reaches a plateau where the exploitation phase becomes dominant. Finally,
convergence to the optimal values (marked by the vertical magenta line) is achieved
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Figure 6.13: Experimental results for Example 3 (with SNR = 50): left: recon-
structed points (red circles); right: best fitting curve (red solid line); top: non-
rational case; middle: AIO rational case; bottom: sequential rational case.

and the fitting error does no longer improve. These pictures clearly show that the
method is well suited for multi-modal problems, being able to escape from local
minima, thus preventing premature convergence to happen.

The main limitations of our approach concern its performance in situations of
high-intensity noise. Figure 6.15 shows our results for the third example with noise
of SNR = 10. In general, our method is able to capture the tendency of the data even
under these strongly adverse conditions, but some problems may arise in the neigh-
borhood of the initial and last poles of closed curves. In particular, the continuity of
such curves at that point cannot be assured. This situation is not critical at all; it can



84 Curve and Surface fitting with Bézier models
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Figure 6.14: Evolution of the maximum, mean, and minimum value of BIC (in blue,
green, and red color, resp.) versus the number of function evaluations for the curve
on a torus example: top: noiseless case; bottom: noisy case (with SNR = 50). The
inner boxed pictures also show a zoom of the initial exploration stages in both cases
for better visualization.

readily be avoided by introducing additional constraints in our problem. However, as
expected, the performance of the method is affected by the noise intensity, meaning
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that some kind of preprocessing (such as filtering) might be advisable in highly noisy
environments for real-world applications.

Figure 6.15: Experimental results for Example 3 (with SNR = 10): left: recon-
structed points (red circles); right: best fitting curve (red solid line); top: non-
rational case; middle: AIO rational case; bottom: sequential rational case.

6.4 Rational Bézier Surfaces

In this section we reproduce the results presented in the paper Simulated Anneal-
ing and Natural Neighbor for Rational Bézier Surface Reconstruction from Scattered
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Data Points during the International Conference on Harmony Search Algorithm (ICHSA
2017) [Loucera et al., 2017b].

6.4.1 Introduction

Surface reconstruction is a very important problem in fields such as geometric model-
ing and processing, and CAD/CAM. Most of the methods proposed to solve this prob-
lem rely on parametric polynomial schemes. However, there are shapes that cannot
be described by using a strictly polynomial approach. In this paper we introduce
a new method to address the surface reconstruction problem from scattered data
points through rational Bézier surfaces. Our approach is based on the combination of
Simulated Annealing, the natural neighbor interpolation method, and least-squares
minimization to perform data parameterization, data fitting, and weight computa-
tion. Some computer experiments carried out for both organized and unorganized
data sets show the good performance of our approach.

6.4.2 The problem

Let
{

Qp,q
}N,M

p=0,q=0 be a given set of data points in R3. We seek to find the rational
Bézier surface that approximates the given data better in the least-squares sense. This
means that, for a given degree (m, n), the problem consists of finding the rational
Bézier surface S given by equation (2.10) that minimizes the following least-squares
functional E:

E =
N

∑
p=0

M

∑
q=0

∥∥∥∥∥Qp,q −
∑

m
i=0 ∑

n
j=0 wi, jBi,m(up)B j,n(vq)Pi, j

∑
m
k=0 ∑

n
l=0 wk,lBk,m(up)Bl,n(vq)

∥∥∥∥∥
2

2

(6.15)

which closely follows the general problem presented in chapter 3.
In the case of scattered data {Qµ}M

µ=0, i.e. the topology of the point cloud is
unknown, we handle the case a similar way. The equation to be minimized is given
by:

E =
M

∑
µ=0
‖Qµ − S (uµ , vµ)‖2

2 (6.16)

6.4.3 Method implementation

The implementation of our algorithm for selecting the optimal rational Bézier surface
is illustrated in Figure 6.16b. For the rest of this section, η represents the number of
free variables of the system. In our method, two cases are considered:

I Organized data. If the data is structured the Simulated Annealing performs all
required computations, namely: the surface parameters and weights via the
SA neighborhood function and the control points by solving equation (6.15).
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Figure 6.16: Methodology flowchart for rational Bézier surface reconstruction.
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Thus SA process is referred to as SA(1). The solution encoding for the SA(1)

algorithm is given by column-wise stacking the following vectors u, v and w
where w = vec

(({
wi, j
})T

)
.

II Scattered data. When dealing with unorganized data {Qµ}M
µ=0, we first com-

pute the natural neighbor interpolant I of the data, see chapter 5. Then, eval-
uate it at an evenly spaced mesh which generates an structured set of points{

I
(
ũ p̃, ṽq̃

)
= Q p̃,q̃

}
. Now we can approximate

{
Q p̃,q̃

}
using the previously

outlines methodology, i.e. solving equation (6.15) to obtain a rational Bézier
surface S

(
ũ p̃, ṽq̃

)
. Finally, we find the associated parameterization (uµ , vµ) to

the original data Qµ by minimizing equation (6.16) by means of the simulated
annealing process referred as SA(2). note, however, that the only unknowns in
(6.16) are the parameters (uµ , vµ). The solution encoding for the SA(2) process
is given by the column-wise stacking of vectors {uµ}µ and {vµ}µ.

In all cases the model selection step is done via the Bayesian Information Criterion
BIC.

6.4.4 Simulated Annealing implementation

Let f : Rd → R+ be a real-valued function. The algorithm starts with a ran-
domly chosen state x0 ∈ Rd, f0 ≡ f (x0), and an initial temperature T0 ∈ R+

Then, at each iteration k, a new candidate is generated via a neighborhood func-
tion N : Rd × R+ → R+ by taking into account the system temperature, the pre-
vious candidate, and the solution space intrinsic characteristics. Each new pro-
posed state is accepted or rejected in accordance with a modified Metropolis criterion
[Metropolis et al., 1953]: a better proposal is always accepted; a worse one is only
accepted with a probability that depends on the system temperature, and the energy
transition between the previous and current state. Then, the temperature is reduced
by a monotonically decreasing function T : R+ → R+ and a check for stagnation is
made, i.e. to see if the average change in the objective function after Ns iterations is
below a threshold εs. In case of stagnation, the algorithm triggers a local search with
the current candidate as an initial guess. In either case, if the stopping criterion is
not met, a new candidate is generated, effectively restarting the annealing cycle. A
flowchart for our Simulated Annealing implementations for real-valued optimization
problems is shown in Figure 6.16a. The main components of the algorithm are:

I Temperature reduction. T : Tk+1 ← T0
k .

II Neighbor function. N : xk+1 ← xk +∆xk, where ∆xk is a random variable sam-
pled from the Cauchy temperature-driven distribution given by equation (4.6),
thus:

∆xk �
Tk(

‖∆xk‖2 + T2
k

) d+1
2
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where d is the dimension of the search space.

III Acceptance function. A = min
{

1,
(

1 + exp
(

∆ f
Tac

k

))−1
}

Parameter tuning. Regarding the choice of values for the parameters of our
method, they have been chosen as follows:

I Initial temperature. The initial temperature T0 has been selected as: T0 =
max(1, 0.8 f ∗), where f ∗ is the maximum distance between the evaluation of
100 random points.

II Stagnation. We set Ns = 10η and ε = 10−4.

III Stopping Criterion. An iteration budget of Nend = 104 is considered.

IV Local search. We refine each candidate by means of the Nelder-Mead simplex
optimization algorithm [Nelder and Mead, 1965] as implemented in the NLopt

library [Johnson, 2010].

6.4.5 Experimental results

Our methodology for surface fitting has been tested against three different datasets
providing a broad range of challenging features for surface reconstruction. Our ex-
periments were run on a AMD-FXtm-4100 Quad-Core Processor at 3600 Mhz with
8GB DDR3 RAM running Linux 3.14 LTS kernel and MATLAB 2012a. Each experi-
ment has been executed 16 times; then, we removed the three best and three worst
executions in order to provide statistical evidence for the results presented and assert
the experiment reproducibility. Each example is reconstructed for surfaces of degrees
(m, n) with m, n ∈ {3, . . . , 20}. In this work we show only the best results according
to their BIC value.

Franke’s test function. First example is constructed by evaluating the Franke’s bi-
variate test function, given by:

3e−
9y
10−

(9x+1)2
49 − 1

10
4 − e−(9x−4)2−(9y−7)2

5 + 3e−
(9x−2)2

4 − (9y−2)2
4

4 + e−
(9x−7)2

4 − (9y−3)2
4

2
(6.17)

at an evenly spaced grid of size 51 × 51, i.e. 2601 points. Then, a Gaussian noise
of intensity 0.03 is applied to every point and 100 points are randomly removed.
Finally we permute 100 randomly chosen points. As a consequence, the resulting
point cloud is noisy, dense, and unorganized. But even under these very adverse
conditions, our method is able to reconstruct the underlying shape with high fidelity
as shown in Figure 6.17. The degree of the resulting surface is (6, 5) with an RMSE
(root-mean-square error) of 0.0162.



90 Curve and Surface fitting with Bézier models

Figure 6.17: A high density and noisy point cloud (Franke function) reconstructed
with a rational Bézier surface.

Pipe elbow. This example uses a data point set coming from a NURBS surface, so
it is also a good test for our method. It consists of 10,000 points generated from a
NURBS surface of degree (4, 4) with three and four free knots, evaluated at an evenly
spaced mesh of 100× 100 points. Since the data is structured, we apply the SA(1)

process to compute the data parametrization, the weights, and the control points.
The best reconstructed rational Bézier surface is shown in Figure 6.18. The surface
degree is (7, 9): as expected from the original NURBS surface, the degree is higher
on the v direction. The fitting RMSE value of the reconstructed surface is 0.0040.

Figure 6.18: A NURBS surface reconstructed with a rational Bézier surface.
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Big Sur Data. The final example corresponds to the Big Sur dataset [Foley, 1987],
a point cloud generated by taking water temperature measurements from a boat.
This low density (64 points), rapid varying and unorganized dataset poses a chal-
lenge for most interpolation and approximation methods. Our method automatically
reconstructs the underlying shape without the need of any user input or subjective
parameter. Because we are dealing with a very low density dataset where we typi-
cally require the interpolation/approximation to be extremely accurate at the verti-
cal component, we have computed the normalized mean square error, and we got
NMSEx = 0.85, NMSEy = 0.83, NMSEz = 0.96. Note that this metric vary be-
tween−∞ (bad fit) and 1 (perfect fit). The best reconstructed rational Bézier surface
is displayed in Figure 6.19.

Figure 6.19: The Big Sur dataset reconstructed with a rational Bézier surface.
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Chapter7
Curve and surface fitting with

B-spline models

Nobody Understand Rational
B-spline Surfaces, but see the
possibilities.

Some engineer at Boeing

In this chapter we present the results for data fitting by means of B-spline models.
We start with the explicit case, continue with parametric curves and conclude with
rational B-spline surfaces.

7.1 Free-knot splines

This section is devoted to the presentation of the results of a yet to be published
paper on data fitting with free-knot splines. The free-knot spline terminology comes
from the regression analysis [Marsh and Cormier, 2001] and approximation theory
[Rice and Saloin, 1969, Cox, 1990] fields of expertise.

7.1.1 Introduction

Data fitting through free-knot splines has been extensively studied for its numerous
applications in CAD/CAM, medical imaging, ship building, virtual reality and many
more fields. When the number and locations of knots are treated as free parameters,
the resulting problem is highly non-linear and multi-modal, thus very difficult to op-
timize. In this work we have developed an optimization framework to automatically
compute the knots and its number by coupling a global optimization meta-heuristic,
a Simulated Annealing schema paired with local optimizers, and the Bayesian Infor-
mation Criterion for model selection. The resulting method can identify the general
shape of the underlying function of the data, even in the presence of noise, and is
able to reconstruct its critical points by computing truly identical knots. The results
of numerical experiments are presented for a variety of shapes.
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7.1.2 The problem

Let {Q}N
i=1 be a set of data points in Rd. The problem consists of obtaining a free-

knot spline, s(t), that fits the data and provides a good trade-off between fidelity and
complexity.

We assume that d = 2 and that the data to be fitted can be written in the following
functional form:

yi = F(ti) +εi (i = 1, . . . , N) (7.1)

where F(t) is the underlying (unknown) function of the data and εi is the measure-
ment error.

We fit the data given by equation (7.1) with a free-knot spline of degree k defined
as per equation 2.12. Let E be the sum of the squares of the residuals:

E =
N

∑
i=1
µi

∥∥∥∥∥yi −
n

∑
j=0

N j,k (ti) Pj

∥∥∥∥∥
2

2

(7.2)

where µi are weights associated to the data used in situations when the measure-
ments are uncorrelated but have different uncertainties.

As it has been explained in chapter 3, equation (7.2) describes a multivariate
continuous highly non-linear problem, known to be non-convex and multi-modal
[Jupp, 1978, Laurent-Gengoux and Mekhilef, 1993].

7.1.3 Method implementation

By means of equation (7.2) we have transformed the geometrical problem of fitting a
spline to the data into an optimization problem. This data fitting technique assumes
a given number of knots and poles (the free variables). As this quantity increases
so does the resulting B-spline complexity; even if the fitting error decreases, it is
desirable to minimize this complexity, as the resulting curve would be easier to ma-
nipulate (and given the non-linearity, it would also be more numerically stable). To
compute the resulting model complexity we make use of the Bayesian information
criterion (BIC) as presented in equation (5.2).

To summarize, for each p in a given range, find the optimal fitting B-spline of
degree k and p free (inner) knots, by making use of the provided optimizer (intro-
duced below). Then, compute the resulting model transformed fitness by means of
the BIC. Finally, we obtain the optimum number of knots, and the control points as
a side effect, by selecting the model with the smallest BIC.

7.1.4 Heuristic Pattern Search with Cauchy Annealing

The Fast Simulated Annealing (FSA) [Szu and Hartley, 1987] and the Simulated An-
nealing Heuristic Pattern Search (SAHPS) [Hedar and Fukushima, 2004] algorithms
provide the foundation of our simulated annealing implementation.
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For readability, let D denote the dimension of the solution space, f : (0, 1)D → R+

the function to minimize, x one of such solutions and k, k+ 1 the previous and current
iteration, respectively. The algorithm presentation is organized as follows: first, we
introduce de main ideas behind the algorithm, then each core idea is described with
more detail, and finally, we put all the concepts together.

The execution begins with a randomly chosen solution. In order to freely explore
the search space at the initial stages, a set of very high temperatures are paired
with an acceptance function that initially rewards hill climbing transitions. At each
iteration, a new solution is generated from the previous one, in accordance to a
Cauchy distribution that samples a deviation from the latter. This sampling technique
depends on the general temperature and allows a good compromise between local
and global exploration, when paired with and acceptance temperature that decreases
at a slower rate than the general temperature. After a certain number of iterations,
the algorithm checks if the system has stagnated, i.e. no significant improvement has
been seen in the optimum. A local exploration phase begins when the system falls
into stagnation, and an instance of the local optimizer is launched with the current
solution as initial guess. A tabu list is maintained in order to minimize the time
wasted when visiting previously visited solutions, a solution is appended to the tabu
list when it has been locally exploited at least once. After each iteration the stopping
criterion is checked in order to finalize the algorithm.

The neighborhood generation function. The next candidate point xk+1 is gener-
ated by slightly perturbing the previous one, xk, as stated in (7.3)

xk+1 = xk + ∆xk (7.3)

where ∆x is a random variable sampled from the following Cauchy distribution (at
generation temperature Tgen

k ):

gk (∆x) =
Tk(

‖∆x‖2 + T2
k

) (D + 1)/2
(7.4)

Note that it is just equation 4.6 reprinted here for clarity purposes. By combining
together equations (7.3) and (7.4) we obtain the neighborhood function, N, which
is clearly non-deterministic. In essence, we are sampling a deviation ∆xk from the
previous point xk taking by into account the current temperature. Therefore, the
proposed visiting distribution provides a good compromise between global and local
exploration [Szu and Hartley, 1987, Locatelli, 2000].

Cooling schedule. In order to guarantee an appropriated acceptance ratio, under-
stood as the proportion between the proposed solutions and the accepted ones, we
make use of two different (artificial) control parameters, namely the acceptance (Tac)
and global (Tgen) temperatures:
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Tac
k+1 =

Tac
0

log(k + 1)

Tgen
k+1 =

Tgen
0

k + 1

(7.5)

where log indicates the natural logarithm.

Acceptance criterion. In order to decide if a solution is accepted we
use the classical acceptance function derived from the Metropolis-Hastings
[Metropolis et al., 1953] sampling algorithm:

A = min

{
1,
(

1 + exp
(
∆ f
Tac

k

))−1
}

(7.6)

This acceptance function has been carefully explained in chapter 4.

Local optimizers. For the sake of completeness we include here the Heuris-
tic Pattern Search HPS and Approximate Descent Direction ADD algorithms.
Together, this heuristic processes build the local search procedure, see
[Hedar and Fukushima, 2004] for a deeper discussion.

I Initialization. Fix an initial mesh size ∆0 > 0, the shrinkage coefficient σ ∈
(0, 1) and the maximum number of iterations mh. Set k = 0 and the first trial
point x0.

II ADD. Set xk+1 ← xk + ∆kv if f (xk + ∆kv) < f (xk) where v is the result of
running the ADD algorithm with xk as the initial guess.

III Trial points. Obtain Dp
k via eq. (7.7). Compute f for each trial point in{

p j = xk + ∆kd j : d j ∈ Dp
k , d j = 1, . . . , |Dp

k |
}

IV Gather solutions. Update the solution:

∆k+1 ← σ∆k if min
1≤ j≤|Dp

k |
f (p j) > f (xk)

xk ← arg min
1≤ j≤|Dp

k |
f (p j) otherwise

V Iterate. Update k← k + 1, if the stopping condition is not met, go to (II)

The pruned direction set Dk
p is obtained as follows:

Dp
k =

{
d ∈ D : dTv ≥ β|d||v|

}
if v is a descent direction

Dp
k =

{
d ∈ D : dTv ≤ −β|d||v|

}
otherwise

(7.7)
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The Approximate Descent Direction (ADD) method tries to find and approximate de-
scent direction, v, from a point x ∈ RD by randomly generating {y}ma

i=1 points in the
neighborhood of x and calculating v in the following way:

v =
ma

∑
i=1

f (yi)− f (x)
∑

ma
j=1 | f (yi)− f (x)|

p− yi

||x− yi||
where ||yi − x|| ≤ ra for each i ∈ {1, . . . , ma} and ra > 0.

The algorithm. Our simulated annealing implementation can be summarized as:

I Initialization. Start at k = 0, with an arbitrary xk. Choose Tgen
0 and Tac

0 .

II Cauchy. Then randomly generate xk+1 from xk according to equations (7.3)
and (7.4).

III Metropolis. Accept or reject xk+1 by following the acceptance criterion given
by equation (7.6).

IV Thermal equilibrium. In case of stagnation, if the solution is not in the tabu
list: run the ADD and HPS local optimizers with xk+1 as the initial guess.
Update both, xk+1 with the optimizer output and the tabu list.

V Iterate. Calculate the new set of temperatures, Tk+1 and Tac
k using equa-

tion (7.5)) and go back to (II) until the system freezes.

7.1.5 Experimental results

Our methodology for curve fitting has been tested against a well-known set of bench-
mark functions and datasets. All the experiments were run on a AMD-FXtm-4100
Quad-Core Processor at 3600 Mhz with 8GB DDR3 RAM running Linux 3.14.x LTS
kernel and MATLAB 2012a. Each experiment has been ran 30 times, dropping the
five best and worst runs, in order to provide statistical evidence for the results pre-
sented and assert the experiment reproducibility. To evaluate the performance of our
method, the results of our experiments are compared with a set of state of the art
methods.

Parameter tuning. The parameter tuning step is crucial to the behavior of most
meta-heuristic methods. In our case, there are two set of parameters that are very
closely interlinked by the algorithm flow: the local search procedure parameters, and
those of the global annealing.

• x0 is randomly selected in (0, 1)p.

• Tgen
0 = 1 and Tac

0 is generated according to (7.8) in order to ensure an initial
transition probability close enough to 1.
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• To decide if a given point xk+1 is accepted, we compute a random number
Rk+1 ∈ (0, 1), if it is lower than A(xk+1, xk, Tac

k ) we accept the new solution.

• Stagnation Check if | fk − f j| < fTol = 10−6 for j ∈ {k− nS, . . . , k} where
nS = 100.

• The neighborhood radius ra is the minimum between
{

Tgen
k , 10−3} and na =

10.

• The mesh size ∆0 is set to 1/10, the shrinkage coefficient σ is set to 0.7 as per
[Hedar and Fukushima, 2004] and the maximum number of iterations for the
local search mh is defined as p× 10.

• The pruning control parameter β = − 1/√p provided the most consistent results
.

• Global stopping criterion: Stop when a budget of p × 103 n f eval is exhausted
(but never stop in the middle of a local optimization).

The initial acceptance temperature is set upon a random search of feasible points in
the neighborhood of the starting point.

Tac
0 = − 1

log (0.9)
· max

1≤i≤na
| f (x0)− f (xi)| where ||xi − x0|| < 10−1 (7.8)

Benchmark functions

In this section we test our method against a set of benchmark functions extracted
from the literature on the topic, we assume that all points must be treated equally,
i.e. µi = 1 for all i in equation (7.2), since no further information about the problem
is available except for the data. Each function has been evaluated at N = 201 evenly
spaced points with an additive Gaussian noise with variance σ (see each benchmark
definition for further details on the chosen noise intensity). The numerical results
and the best fitting spline can be consulted in Tables B.2-B.7 and Figures 7.1a-7.1f,
respectively.

The first benchmark (7.9) consists in a continuous function with an asymptomat-
ically behavior around t = 4, resembling and step function. The noise is computed
by taking σ = 1.0.

φ1(t) =
90

1 + e−100(t−0.4)
with t ∈ [0, 1] (7.9)

As can be seen in figure 7.1a, the optimal computed spline has a total of four knots
which are grouped around t = 0.4 where the underlying data representation behaves
like an step function.

The second benchmark (7.10) consists in a smooth function with a discontinuity
in t = 6.0, and a different concavity behavior around it. The noise is computed by
taking σ = 1.0.
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Figure 7.1: Best fitting splines (in continuous blue) to each example (in crosses).

φ2(t) =


1

0.01 + (t− 0.3)2 if t ∈ [0, 0.6)

1
0.015 + (t− 0.65)2 if t ∈ [0.6, 1]

(7.10)

Although the example is particularly challenging since a B-spline of degree k needs a
knot of multiplicity k + 1 at t = t0 in order to have a discontinuity at t0, our method
captures the singularity at t = 0.6 by obtaining exactly 4 equal knots at t = 0.6,
remember that we are dealing with cubic splines (k = 3). The best computed spline
totals 8 knots, with four used to correctly represent a discontinuity, the remaining
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knots are used to accurately reconstruct the smooth part of the underlying curve, as
it can be seen in Figure 7.1b.
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Figure 7.2: BIC evolution charts for each example.

The third benchmark (7.11) is a continuous function that loses the differentially
at t = 0.5. The noise is computed by taking σ = 1.0.

φ3(t) =
100

e‖10t−5‖
(10t− 5)5

500
with t ∈ [0, 1] (7.11)

The best model obtained by our method has a total of 5 knots which are distributed
such that 3 are identical at t = 0.5 where the cusp takes place and the remaining 2
knots are used to re-construct the general shape of the curve, see figure 7.2c for a
visual representation. As has been pointed out in chapter 2 a cubic B-spline needs
exactly 3 equal knots to loose de differentiability while still being continuous
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The fourth benchmark (7.12) is a continuous function with a soft cusp-like point
near t = 0.5, and a varying smoothness with sharply increasing and decreasing areas
where several changes of concavity take place. The noise is computed by taking
σ = 0.06.

φ4(t) = sin(t) + 2e−30t2
t ∈ [−2, 2] (7.12)

The 5 knots of the best fitting model are gathered around the cusp neighborhood,
where the challenging features of the underlying function take place (Figure 7.2d).

The fifth benchmark provides a good example of a highly oscillating sinusoidal-
type function with a soft peak-like point near t = 0.5. The noise intensity is set to
σ = 0.06.

φ5(t) = sin(2t) + 2e−16t2
+ 2 t ∈ [−2, 2] (7.13)

The best fitting model, Figure 7.2e, has 5 knots distributed along the changes of
slope, with an special emphasis around t = 0.5, providing a very good fit to data.

The last benchmark function, with σ = 0.03, provides an extremely challenging
example: a set of polynomials joined with continuity C1 at t = 0.75 and a strong
discontinuity at t = 0.5.

φ6(t) =


4t2(3− 4t) if t ∈ [0, 0.5)

4
3 t(4t2 − 10t + 7)− 3

2 if t ∈ [0.5, 0.75)

16
3 t(t− 1)2 if t ∈ [0.75, 1]

(7.14)

As it has been mentioned before, in order to reconstruct the discontinuity with a
B-spline we need k + 1 equal knots. The best fitting model, Figure 7.2f, has exactly
4 equal knots at t = 0.5 and represents with great accuracy the general shape of the
curve.

In Table 7.2 we provide a graph of the BIC evolution for each example: the
x-axis represents the free parameters η of the system whereas the y-axis shows
the best BIC value for each baseline model. Note that the number of inner knots
can be directly obtained from η as per chapter 3. These results are in the same
range as those presented in the literature on the subject [Yoshimoto et al., 2003,
Ülker and Arslan, 2009, Gálvez and Iglesias, 2011, Gálvez et al., 2015].

7.2 Approximation with local support curves

This chapter is devoted to present the results of Memetic Simulated Annealing for Data
Approximation with Local-Support Curves, a paper to be presented in the International
Conference on Computational Science 2017 and published in the Procedia of Computer
Science journal [Loucera et al., 2017a].
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7.2.1 Introduction

This work introduces a new memetic optimization algorithm called MeSA (Memetic
Simulated Annealing) to address the data fitting problem with local-support free-
form curves. The proposed method hybridizes simulated annealing with the con-
strained optimization by linear approximations (COBYLA) local search optimization
method. This approach is further combined with the centripetal parameterization
and the Bayesian information criterion to compute all free variables of the curve re-
construction problem with B-splines. The performance of our approach is evaluated
by its application to four different shapes with local deformations and different de-
grees of noise and density of data points. The MeSA method has also been compared
to the non-memetic version of SA. Our results show that MeSA is able to reconstruct
the underlying shape of data even in the presence of noise and low density point
clouds. It also outperforms SA for all the examples in this paper.

7.2.2 The problem

Let {Qk}M
k=1 be a set of points in Rd. Our goal consists of finding a B-spline curve

s(t) approximating the given data with high fidelity while trying to keep the model
complexity as low as possible. Because the curve is parametric, our method must
perform data parametrization, i.e. finding the {tk} associated with the original data.
Then, we have to compute the control points Pi as well as the knots u j and, finally,
deal with the model complexity: how to minimize the number of free parameters of
the system. Due to the constraints imposed on the boundary knots, we can assume
that s(t1) = Q1 and s(tM) = QM. As a result, the equation to minimize in a least-
squares sense is given by:

E =
M−1

∑
k=2

∥∥∥∥∥Qk −
n

∑
i=0

Ni,p (tk) Pi

∥∥∥∥∥
2

2

(7.15)

where Ni,p are the B-spline blending functions introduce in chapter 2. Note that
when the order of the curve, the data parameterization, and the knot vector are
known, equation (7.15) becomes a simple linear system. However, see chapter 3
for a full discussion on the topic, in many real-world problems, such values can-
not be obtained directly from the data; instead, they have to be fully computed.
In such a case, the least-squares minimization problem (7.15) becomes highly non-
linear, continuous, and multivariate. In addition, the computation of the knot vec-
tor has been proved to be a non-convex and multi-modal optimization problem
[Jupp, 1978, Laurent-Gengoux and Mekhilef, 1993]. To overcome such difficulties
we propose an optimization schema that deals with each sub-problem sequentially:
firstly, data parameterization; then, knot vector and control points computation; and,
finally, model complexity. This new method has two important contributions to the
general methodology presented in chapter 5: On the one hand, the parameterization
is computed by means of the centripetal method; on the other hand, we introduce
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for the first time our memetic variant of the Simulated Annealing (the core of our
method).

7.2.3 Memetic simulated Annealing.

Algorithm 7.1: MeSA: Memetic Simulated Annealing
Input: An initial guess x0, the cost function f , lower l and upper bounds u
Output: The final solution x
Tac

0 ← LearnParameters( f , l, u)
x← x0 and fx ← f (x)
Tac ← Tac

0
Tgen ← Tgen

0
while The System is not Frozen do

while Thermal Equilibrium is not Reached do
xnew ← N(x) and fnew ← f (xnew)
if A( fnew, fx, Tac) then

x← xnew and fx ← fnew
end

end
x← LocalLearn(x, l, u) and fx ← f (x)
Tac ← Tac(Tac

0 )

Tgen ← Tgen(Tgen
0 )

end
return x

Memetic algorithms were originally introduced as an enhancement for genetic-
driven meta-heuristics by introducing the idea of individual learners potentially able
to refine some members of a population [Harris and Ifeachor, 1998], thus mimicking
more closely the domain-specific processes of the universal Darwinian theory (incor-
porate knowledge of the problem). Nowadays, the memetic optimization approach
has been applied with varying grades of success to a wide range of meta-heuristic
optimization techniques beyond the genetic algorithms paradigm. Some illustrative
examples of memetic approaches can be found, for instance, in [Petalas et al., 2007]
where a memetic enhancement of the original particle swarm optimization algo-
rithm is proposed, whereas in [Gálvez and Iglesias, 2016] the firefly optimization
algorithm is enhanced with a local learning phase. In recent years the number of
memetic approaches used in the field of data fitting with splines has greatly in-
creased, for instance, the previously mentioned memetic firefly algorithm is used
in [Iglesias and Gálvez, 2015] for curve fitting with rational Bézier curves, while
a memetic enhanced bat algorithm is used for non-rational Bézier curve fitting in
[Iglesias et al., 2016a]. Bézier rational surfaces are fitted by means of the memetic
electromagnetism algorithm in [Iglesias and Gálvez, 2016].
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In this paper we propose a memetic variant of the simulated annealing algorithm
that performs solution refinement by means of the constrained optimization by linear
approximations (COBYLA) local search procedure. The proposed optimization frame-
work is described in Algorithm 7.1. Our memetic approach can be divided into three
closely intertwined phases: information gathering, cooling, and local learning. About
the information gathering phase, a remarkable feature of recent developments for
memetic optimization is the inclusion of problem knowledge during the generation
of the initial population [Hart et al., 2004]. Our MeSA approach learns the temper-
ature parameter by initially exploring the fitness landscape via the LearnParameters

process. The method generates a random population within the search space and
sets the initial temperature to 0.8 times the worst energy transition.

During the cooling phase, the general SA schema is applied to compute the knots.
It consists of two nested loops. The main or outer loop, labeled in the literature as
the annealing or cooling loop, controls the temperature update process and the stop
criterion. In our implementation, the stop criterion consists of running the outer loop
for a predefined number of iterations Nouter. Let k be the outer iteration index from
now on. The method keeps track of two control parameters, the acceptance (Tac) and
generation (Tgen) temperatures, which are initialized during the information gather-

ing phase and subsequently updated during the cooling phase as: Tac : Tac
k+1 ←

Tac
0
k

and Tgen : Tgen
k+1 ←

(
kouter

Nouter

)−1

, respectively. The inner loop mimics the achievement

of thermal equilibrium system state at a given temperature. Similarly to the outer
loop, our implementation runs the inner loop Ninner iterations. During the inner loop,
the new candidate solutions, N : x← x +∆x, are generated according to the inverse
µ-law function [Sklar, 2001] given by:

∆x = g−1
µ (y)� (u− l) with g−1

µ (y) =
(1 +µ)|y| − 1

µ
� sign(y)

where the � symbol represents the element wise vector multiplication, µ = 10100Tgen

and y ∈ Ud([−1, 1]). See [Yang et al., 2005] for a more detailed discussion on this
search procedure. Then, the law governing the probability of accepting a given tran-
sition follows the modified Metropolis criterion [Metropolis et al., 1953]:

A← min

{
1,
(

1 + exp
(
∆ f
Tac

k

))−1
}

At the end of each inner loop , i.e. when the thermal equilibrium for a given
temperature has been reached, the algorithm performs a local search procedure with
the last accepted point as an initial guess. This is called the local learning phase. This
local search is performed via the COBYLA algorithm with a budget of Nlocal function
evaluations. We provide a brief outline of the constrained optimization by linear
approximations (COBYLA) method in section A.3, further information can be found
in [Powell, 1994].
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7.2.4 Method implementation

To summarize, our problem consists of finding the best B-spline fitting curve to a
given set of (possibly noisy) data points while keeping the complexity of the model
as low as possible. To do so, we need to compute a suitable parameterization of
the data, the optimal number of knots along with their location, and the B-spline
control net. We solve all those problems by combining four different techniques:
the centripetal method for data parameterization, our Memetic Simulated Annealing
(MeSA) method based on hybridizing Simulated Annealing with the COBYLA local
optimization method along with least-squares minimization for the determination
of the knot vector and the control points respectively, and finally, BIC (Bayesian
information criterion) for model selection.

Centripetal parameterization. The centripetal parameterization is one of the most
popular data parametrization methods [Farin, 2002], as it takes into account both
the distribution of data and sharp turns. It is given by:

t1 = 0 and tk =

k

∑
j=2

∣∣Q j −Q j−1
∣∣ 1

2

M

∑
j=2

∣∣Q j −Q j−1
∣∣ 1

2

for k = 2, . . . , M. (7.16)

Solution encoding and parameter tuning. In this work, we consider cubic B-spline
curves (although our method is actually independent on the order of the fitting
curve). Now, assuming a given parameterization and the number of knots, the only
unknowns in (7.15) are the control points and the knot vector. To compute the knots,
we apply the MeSA algorithm, where each state is given by the following represen-
tation scheme: x ∈ (0, 1)σ , where σ refers to the number of free (i.e. not-clamped)
knots. The elements in x are then sorted to conform to the ordered structure of the
knot vector. Finally, our fitness function is taken as f ≡ E. Regarding the parameter
tuning, it is as follows: Nouter = 500, Ninner = 50, Nlocal = 200,σ ∈ {1, . . . , 70}.
We use the same parameter setup for the non-memetic SA approach, used here for
comparative purposes. However, we increase the number of iterations as Nouter =
1000, Ninner = 100 for the non-memetic version to allow this simpler (and arguably
slower) version to reach convergence. Once the knots are obtained, the control points
can be computed by linear least-squares minimization of the functional E, leading to
an overdetermined linear system that can be solved by standard numerical methods.

Model selection. The functional E does not contain any information about the
model complexity, so the model might (potentially) be affected by over-fitting. This
is a common problem when approximating data with B-splines, as E decreases as the
number of knots increases. To overcome this limitation, we compute the modified
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BIC (Bayesian information criterion) cost [Schwarz, 1978], given by:

BIC = M log(E) +ζ log(M) (7.17)

where ζ represents the total number of free parameters of the problem and log(.)
represents the natural logarithm function. As a general rule, the model with the
lower BIC is preferred.

Other metrics. To measure the goodness of the fit, we also compute the normalized
mean square error NMSE (7.18) for each spatial component. The NMSE is given by:

NMSEi = 1−
∥∥∥∥ Qi −Q∗i

Qi −mean(Q∗i )

∥∥∥∥2

(7.18)

where Q∗i represents the reconstructed point associated with Qi, and i represents
the spatial component (x and y in our examples). Note that the NMSE values vary
between −∞ and 1; the closer to one, the better the fit.

Shape Parameters σ Method E BIC NMSEx NMSEy

208 35
MeSA 0.0029422 -64.777 0.99988 0.99974

SA 0.0081525 147.21 0.99911 0.99972

204 50
MeSA 0.0012596 9.968 0.99993 0.99992

SA 0.0027904 172.24 0.99984 0.99983

208 60
MeSA 0.0008605 79.845 0.99992 0.99991

SA 0.0059459 481.88 0.99946 0.99935

752 40
MeSA 0.058327 1187.7 0.99991 0.99993

SA 0.0700 1325.25 0.99981 0.99991

Table 7.1: Numerical fitting errors for MeSA and SA on the four examples in our
benchmark.

7.2.5 Experimental results

To assess our MeSA method, we consider four datasets of synthetic shapes (elephant,
camel, beetle, and bell) from [Carlier et al., 2016, Thakoor et al., 2007], depicted as
black dots on the left of Figs. 7.3–7.6. The datasets consist of 104, 102, 104, and 376
points, respectively (only 124 are drawn for the bell example for better visualization).
The figures also show the best fitting curve (blue solid line) obtained with the MeSA
method according to the BIC. To this aim, Figs. 7.3–7.6 (right) show the evolution
of the BIC value against σ .

A total of 26 independent runs are executed for each σ value. The three best and
worst runs are then removed to provide statistical evidence for the results and assert
the experiment reproducibility. The mean BIC value is displayed as a red solid line,
while the minimum and maximum values are represented by the lower and upper
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Figure 7.3: Reconstruction of the elephant shape: (l) best fitting curve (σ = 35); (r)
BIC vs. σ .
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Figure 7.4: Reconstruction of the camel shape: (l) best fitting curve (σ = 50); (r)
BIC vs. σ .

dashed lines. The deviation area is filled up with a gray tone for better visualization.
From the figures and the numerical results, the best value for σ is determined and
used for the fitting curves in Figs. 7.3–7.6 (left). Note that all shapes present difficult
geometric features, such as strong changes of slope and curvature. Still, our method
is able to reconstruct the general shape of the data with good accuracy, as confirmed
visually in those figures. Table 7.1 summarizes our numerical results. The following
data are reported (in columns): the shape, number of free parameters, best value
for σ , the method used, and the E, BIC, and NMSE (for x and y) fitting errors.
For further assessment, the results for the MeSA method are compared with those
of a standard implementation of the (non-memetic) SA. As shown in Table 7.1, our
method outperforms SA for all shapes in our benchmark.

Machine implementation issues. Regarding the implementation issues, all compu-
tations have been carried out on an Intel i7-7600 quad-core processor with 16GB of
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Figure 7.5: Reconstruction of the beetle shape: (l) best fitting curve (σ = 60); (r)
BIC vs. σ .
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Figure 7.6: Reconstruction of the bell shape: (l) best fitting curve (σ = 40); (r) BIC
vs. σ .

RAM. The source code has been implemented by the authors in the native program-
ming language of MATLAB, v.2014b. We also used the COBYLA implementation in
the NLopt library [Johnson, 2010]. All the simulations took less than 30 seconds. Fu-
ture work includes the comparison with other optimizations schemes reported in the
literature, as well as the extension of the proposed methodology to surface fitting.

7.3 Rational B-spline surfaces

We conclude our reverse engineering applications chapter with a very experimental
case for data fitting by means of a NURBS surface. These results demonstrate that
the findings of this Thesis are a solid foundation for future work.
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7.3.1 Introduction

In this section we address the problem of obtaining an optimal, in a least squares
sense, rational B-spline surface (NURBS) that fits a given point cloud. Our approach
extends the methodology previously used on the case of rational Bézier surfaces by
incorporating the Memetic Simulated Annealing, used as the vessel for B-spline fit-
ting, and a set of data-filtering techniques used as a pre-process step in the case
of massive and noisy datasets. The method has been applied to two challenging
problems, we start with an academic free-form shape (a pipe elbow) used as a unit
test. Then, we fit a massive and noisy point cloud which consists of (real world) 3D
scanned data of the forehead of a Spanish regional Virgin statue. Our experimental
results show that the proposed fitting method performs very well: on the one hand,
the parameters of the underlying NURBS for the pipe elbow case are retrieved with
extremely high precision. On the other hand, the underlying shape of the forehead
is fitted with a NURBS that is capable of capturing the sharp changes of curvature
while reconstructing the general shape of the data.

7.3.2 The problem

The problem that we address in this section follows the exact formulation that we
provided in chapter 3, as we want to fit a NURBS surface S, as per equation (2.17),
to a point cloud in R3.

Given an structured point cloud
{

Qp,q
}

p,q, we need to minimize the residual sum
of squares given by equation (3.1), which we repeat here for easy reference:

E =
N

∑
p=0

M

∑
q=0

∥∥Qp,q − S
(
up, vq

)∥∥2
2 =

N

∑
p=0

M

∑
q=0

∥∥∥∥∥Qp,q −
∑

m
i=0 ∑

n
j=0 wi, jNi,k (u) N j,l (v)

∑
m
i=0 ∑

n
j=0 wi, jNi,k (u) N j,l (v)

∥∥∥∥∥
2

2

As has been mentioned in numerous occasions along this dissertation, the prob-
lem is multivariate, multi-modal, non-convex and highly non-linear. Remember
that the basic functions depends on two knot vectors τ = (τ0, . . . , τmu) and ζ =
(ζ0, . . . ,ζmv) which introduce a hidden set of unknowns of great importance for the
shape of the fitting surface [Dierckx, 1995].

We handle the case of an unorganized point cloud {Qµ}M
µ=0 in a similar way:

E =
M

∑
µ=0
‖Qµ − Sµ‖2

2

7.3.3 Method implementation

The implementation of our schema for selecting the optimal Rational B-spline surface
distinguishes between structured point clouds, i.e. the sample connectivity is known,
and unorganized data. When dealing with an organized dataset, we compute all the
free parameters of the fitting NURBS by following the all-in-one schema discussed
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in chapter 5. Otherwise, we follow a procedure to get a point cloud, with a known
topology, that approximates the original unstructured data. Then, we follow the
previous method for organized data with this baseline point cloud as the input.

Although our method only deals with be-cubic NURBS, a de-facto industry stan-
dard, the algorithms do not depend on the degree of the baseline model. In fact,
if models of different degrees are supplied to the first phase in our methodology,
the method automatically takes into account these differences as the number of free
parameters is going to change and so will happen with the transformed fitness.

Structured data. As has been mentioned before, if the original data is structured we
follow the all-in-one schema for data fitting: all the NURBS parameters are computed
by a new take on the Memetic Simulated Annealing. The full methodology can be
summarized as follows.

I Selection of candidate models. The first step in our methodology consists in se-
lecting the underlying model that we are going to fit to the data. In this case,
we make use of a selection of bi-cubic NURBS surfaces differentiated by the
number of inner knots at each parametric direction. Note that, each choice also
impacts the number of control points, as the degree is fixed.

II Model fitting. For each candidate model we perform the data fitting process
by transforming the problem into an optimization scenario: the minimization
of equation (3.1). Thus, we obtain a fitness score, the resulting RSS, along with
the NURBS parameters (parameterization, knots, weights and poles) for each
baseline model.

III Model selection. By means of the Bayesian information criterion (BIC) we
compute the transformed fitness score for each fitted model. Finally, we com-
pare all model scores in order to choose the one with the best BIC score (i.e.
the model with the least BIC).

Unorganized point clouds. When the point cloud topology is unknown we
have designed a fitting schema that improves on the work presented in
[Loucera et al., 2017b] for Rational Bézier Surface fitting. This new methodology
is specially tailored to real-world 3D point clouds which are characterized by their
lack of a connectivity topology, massive size and noise due to measurement errors.
In section 7.3.5 we explain the changes required to our method in order to deal with
such difficulties.

7.3.4 Pipe Elbow

In this section we reconstruct the pipe elbow dataset previously used as an example
for Rational Bézier Surface Fitting in [Loucera et al., 2017b]. As has been mentioned
before, the point cloud was generated by evaluating a NURBS surface, so this is the
perfect candidate to unit testing our framework for Rational B-spline Surface fitting.
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As expected, our method is able to reconstruct with high level of detail the underlying
surface, as evidenced by a NMSE of almost 1 for each component. Furthermore,
our method reconstructs the full NURBS with the exact number of knots on each
parametric direction with a MSE of 1e−16, and the full weights and control points
with a combined MSE of 1e−14. See Figure 7.7 for the visual result of our fitting
technique.
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(a) Pipe elbow dataset.
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(b) Best fitting NURBS.

Figure 7.7: Reconstruction of the pipe elbow point cloud.

7.3.5 A real world scenario: a Spanish Virgin statue

In this section we will explain each part of the method for NURBS fitting by following
its application to a real world scenario: a 3D scanned forefront of a Spanish Virgin
wooden statue, of great importance from a historical heritage point of view (from
now on referred as the Virgin dataset). This wooden statue is one of the few pieces
of art that survived the catastrophic fire that hit the city of Santander in 1949. Thus,
its preservation, inducing geometric models, are of great importance. The statue can
be admired at the cathedral of Santander.

The point cloud has been kindly provided by 3DINTELLIGENCE, a company de-
voted to the research and development of new visualization techniques, specially in
the historical heritage field. The point cloud has been acquired by means of the pro-
cess known as convergent photogrammetry. In Figure 7.8 we can see a portion of the
point cloud, the big rectangle refers to the supplied point cloud by 3DINTELLIGENCE

whereas the small region refers to actual area reconstructed.
As discussed above, our problem consists of reconstructing the underlying shape

of a point cloud by using a Rational B-spline Surface. In addition to the challenges
already faced when fitting surfaces (a highly non-linear, multi-modal non-convex
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Figure 7.8: Picture of the real-world Virgin wooden statue (left). Supplied dataset
by 3DINTELLIGENCE (right).

function), real-world 3D scanned objects have a series of characteristics that makes
them extremely complicated from a surface fitting point of view. Here we will present
the most relevant challenges of such datasets along with our proposed solution.

Massive and noisy. The first challenge comes from its massive size (from thou-
sands to millions points) [Pauly et al., 2002]: 3D scanned objects are represented by
point clouds so dense, that they present a problem even for on-screen rendering. Due
to the physical and mechanical processes used to obtain the data, the measurements
are often corrupted by noise and other distortions. For instance, the Virgin dataset is
comprised of nearly 400k points which have been obtained from a modern 3D scan-
ning device in an attempt to retrieve a digital model of a Spanish Virgin statue. To
circumvent this problem, we have added a pre-processing step to our methodology
which consists in the concatenation of two procedures, namely:

I Point cloud denoising. We make use of a simple filter based on the nearest
neighbor distance: a given point Qµ is marked as an outlier if the average
distance of its ι nearest neighbors is greater than λ · ε, where ε represents the
median of average distance to neighbors of all points. For the Virgin dataset,
ι = 4 and λ = 1 provided the most reliable results. See Algorithm A.1 for the
companion pseudo-code on the subject.

II Data reduction. We use a voxel grid filter to reduce the size of the point cloud,
a method commonly referred as downsampling. A 3D voxel grid can be seen as
a grid of small cubes, the voxels, which cover the entire point cloud. Then, we
approximate all the points inside each voxel by its centroid. Thus, the down-
sampling.

Orientation. Our methodology for surface fitting, as any other method based on
parametrized surfaces, needs an orientation: a parametric plane from which to
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project the surface, i.e. a mapping (u, v) 7→ S (u, v). To find a suitable reference
system, we perform an orthogonal planar regression to the point cloud by using Prin-
cipal Components Analysis (PCA), a well-known method outlined in Algorithm A.2.
The parametric directions for the Virgin dataset are obtained from the PCA as seen in
Figure 7.9. The defining vectors of the PCA plane along with the normal, form our
new reference system.

A note on the implementation. The entire point cloud of the Virgin dataset is a
real-world example that requires to be segmented in order to fit a surface to each
segment. The complete problem of how to segment a point cloud in order to apply
our method is part of a larger project beyond the limits of the Thesis. However, we
have provided all the necessary tools to fit a NURBS to one of those segments. To
showcase the visual performance of our method, we have manually segmented the
point cloud by making use of the Meshlab software [Cignoni et al., 2008]. We do
not have permission to show the entire point cloud, only our segmented piece which
corresponds to the brow and part of both eyebrows. The downsampling has been
carried out with the Point Cloud Library (PCL): a large scale, open project for point
cloud processing [Rusu and Cousins, 2011]. A render of the best fitting NURBS, in a
BIC sense, for the Virgin dataset could be seen in Figure 7.10. The results are quite
promising for a first attempt of reconstructing a real world 3D scanned point cloud.
Note that the segmented point cloud, after the pre-processing steps, has exactly 1713
points (i.e. 5139 parameters to be fitted).
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Figure 7.9: Get parametric plane (u, v) through PCA for the Virgin dataset.

Figure 7.10: A rendered view of the best fitting NURBS surface for the Virgin dataset.
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Conclusions and future work

Every real story is a never
ending story.

Michael Ende, The Neverending
Story

During the last two decades bio-inspired computing has attracted great interest in
almost every area of science, engineering, and industry. In particular, the field of
stochastic-driven mathematical optimization has become an attractive framework to
resolve a wide range of non-linear problems in almost every science branch. The rich
metaphors behind these methods usually lead to a better understanding of the prob-
lem being solved, whereas the ever-increasing push towards a better mathematical
core, has developed into the first stages of a unified theory.

In this Thesis we have proposed the application of several Simulated Annealing
implementations, a well-known thermodynamics-driven meta-heuristic optimization
method, to different problems in non-linear data fitting such as the point cloud ap-
proximation by Bézier and B-spline geometric models. The core of our methodo-
logy consists of transforming the data fitting problem into an optimization procedure
which is solved my merging least-squares regression with the Simulated Annealing
technique. To maintain a good trade-off between model complexity and data-fidelity,
we glue all the parts together by making use of some information sciences criteria,
the Akaike and Bayesian Information Criteria to be more precise. In the case of point
clouds with unknown topologies, we reconstruct the samples connectivity by approx-
imating the original data with a baseline surface by means of the natural neighbor
interpolant.

The main contributions to the state of the art presented in this Thesis are:

• A general methodology for point cloud approximation with Bézier and B-spline
models.

• Several Simulated Annealing implementations tailored to each specific prob-
lem.

• A unified framework to deal with scattered data.
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• A new Simulated Annealing variant which merges a signal-processing based
visiting distribution with a memetic approach.

The rest of this chapter is devoted to summarize the conclusions of each part of
the Thesis. We conclude with a brief outline of future lines of research to be built
upon our findings.

8.1 Analysis of the general methodology

We have proposed a curve and surface reconstruction method consisting in three ma-
jor phases. The first phase consists in reconstructing the data topology through a
baseline model, if unknown, by means of the natural neighbor interpolation method.
In phase two, we select a range of spline models of increasing complexity and trans-
form the data fitting reconstruction into an optimization problem solved with a
problem-specific Simulated Annealing procedure which retrieves the parameters of
each model. In addition to the model-defining parameters, the second phase also
assigns a fitness score to each proposed model. Finally, the last phase builds a trans-
formed fitness score for each model, by means of the Akaike and Bayesian Infor-
mation Criteria, and the model with the best fitness (i.e. the model with the lowest
transformed fitness) is selected. The proposed methodology looks for the best model
by taking into account the numerical quality of the approximation and the complex-
ity of the model. Furthermore, this is done in a fully automated way, without the
need for subjective decisions or parameters. To assert the goodness of the recon-
struction we have applied it to several datasets that exhibit challenging features for
data fitting, such as self-intersections, noisy and scattered point clouds. The results
are robust from a numerical point of view, and ascetically pleasant.

8.1.1 Bézier models

The Bézier models used in chapter 6 for curve and surface fitting provide a series of
low-complexity methods which can produce very pleasant results from a computer
graphics point of view, making the resulting curve or surface indistinguishable from
the ones produced by higher complexity models.

The papers in which these methods were first presented provide a good overview
of the evolution of our Simulated Annealing implementations. We started in
[Loucera et al., 2014] with an implementation of our methodology for data fitting
by means of non-rational Bézier curves. The study provided an empirical evalua-
tion of the performance of distinct cooling strategies and candidate generators for
the optimization phase, the findings were clear: the SA by itself provided a good
enough solution that could be further improved by performing a local search at the
end. Of all the cooling and visiting distributions used, the fast-fast schedule, an initial
approximation to the Fast Simulated Annealing [Szu and Hartley, 1987], performed
the best. From this point on, it became clear that both, the Bayesian and Akaike
Information Criteria provided similar results from an aesthetically point of view, but
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the models chosen by means of the BIC were better suited to our needs due to the
higher penalization.

The findings of the preceding article were later confirmed by the natural extension
of the methodology to data fitting by means of Bézier surfaces [Iglesias et al., 2015b].
This article further refined the SA implementation by incorporating the local search
procedure into the candidate generator function. In order to solve some issues with
the premature convergence of the proposed method, we included a restarting strat-
egy that performed fast sampled runs of the entire algorithm with different starting
temperatures.

In [Iglesias et al., 2016b] we proposed two different schemes for Rational Bézier
curve fitting. The problem being solved has a high number of unknowns as neither
the parameterization nor the control points and its associated weights are given.
Both schemes use the same implementation of the Simulated Annealing built on top
of the previous ones: On the one hand, the time consuming restarting strategy used
for Bézier surfaces was substituted by the procedure presented in Algorithm 4.2. On
the other hand, we incorporated an adaptation of the acceptance and generation
temperatures of Adaptive Simulated Annealing [Ingber, 1993a] in order to increase
the exploitation of good directions in the fitness landscape while maintaining the
chance to explore the solution space. The algorithm is further improved with the
addition of adaptive rules for checking the thermal equilibrium and stop criteria.

The proposed schemes can be summarized as follows: the all-in-one schema
search for all the unknowns at once whereas the sequential schema computes each
set of unknowns in sequence, using the previous set of computed variables as the
new input.

Finally, the Bézier cycle of papers ends with the fitting of point clouds by means
of rational Bézier surfaces [Loucera et al., 2017b]. The main contributions of the
paper are, an updated all-in-one schema that now fully embraces the Cauchy visiting
distribution, and the addition of the natural neighbor interpolation method to fully
reconstruct the point cloud topology in the case of scattered data. When the samples
has not known connectivity structure, we build a baseline surface by constructing
the natural neighbor interpolant of the data, thus transforming the problem into one
already solved by the all-in-one schema.

8.1.2 B-spline models

The Bézier models discussed above provide the baseline for our B-spline data fitting
methodology. Now, even in the most simple case, the optimization procedure must
deal with a highly non-linear problem due to the inclusion of the knot vector, which
we always treat as a new set of free variables of the system.

As we have seen in chapter 2, the B-splines curves/surfaces are a super set of the
Bézier curves/surfaces, so in addition to the data fitting difficulties of the latter we
must deal with one knot vector per each parametric direction. This fact has a direct
impact on the optimization phase, as the problem being solved by the Simulated An-
nealing implementation is in the general case a continuous multivariate non-convex
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multi-modal function. Another type of problem-driven difficulties arises from the
point cloud underlying function of the data which can present non-smooth features,
even to the point of losing the continuity.

To overcome such difficulties we propose a series of enhancements to the Sim-
ulated Annealing. In section 7.1 we present a SA implementation which further
improves on the method presented for Bézier data fitting: instead of launching sep-
arate instances of a local search procedure, we merge the Cauchy visiting distribu-
tion with local optimization methods based on pattern search heuristics presented
in [Hedar and Fukushima, 2004] which are closely interlinked with the flow of the
Simulated Annealing algorithm. Although the results are on par with other state of
the art techniques, the parameter fine-tuning exceeds by far those of other nature-
inspired methods which have been successfully applied to free-knot spline recon-
struction, such as genetic algorithms [Yoshimoto et al., 2003], particle swarm opti-
mization [Gálvez and Iglesias, 2011] or clonal selection [Gálvez et al., 2015].

In section 7.2 we present the Memetic Simulated Annealing (MeSA) and its ap-
plication to parametric B-spline curve fitting, that appeared for the first time in
[Loucera et al., 2017a]. This memetic variant of the SA tries to simplify all the pa-
rameter tuning of the free-knot variant: on one side, the algorithm tries to locally
learn the fitness landscape in order to provide a good starting temperature, with a
simple statistical procedure, and exploit promising basins by means of a fast run of
the constrained optimization by linear approximations [Powell, 1994] local optimizer
(each time the thermal equilibrium is reached). Besides that, a new candidate gen-
eration function is introduced which follows the communications-based µ−1-law. On
the data fitting side, we propose the use of the centripetal parametrization, thus
reducing the parametric-fitting to the already discussed free-knot spline fitting prob-
lem.

Finally, we present a further improved MeSA for NURBS fitting in section 7.3. The
algorithm is tested against two very different problems: a point cloud generated by
evaluating a rational B-spline surface, and real-world scanned data in the form of an
unordered massive and noisy point cloud. In the original MeSA the thermal and stop
criteria were fixed at the start of the algorithm whereas in the current implementation
the variance of the fitness is checked in order to prematurely end a thermal cycle.

When dealing with the NURBS-induced dataset, our methodology does not re-
quire further improvements as we can recreate the original surface parameters with
tremendous precision. However, when dealing with a massive scattered dataset, we
first apply a de-noising filter and data-reduction techniques, then our methodology
for unordered point clouds is applied with a NURBS as baseline model.

8.2 Lines of research

In the following we list some interesting lines of research. We distinguish between
two main areas: the meta-heuristic approach, where we present some enhancements
to our Simulated Annealing implementation, and the data fitting problem.
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8.2.1 Meta-heuristics

Our future work on the Simulated Annealing proposal for data fitting is going to be
directed towards getting rid of the local optimizers as most derivative-free proce-
dures suffer from the curse of dimensionality and slow down the system. Our plan to
overcome the refinement provided by the local search algorithm goes towards the in-
clusion of various visiting distributions that adapt to both the state of the system and
the fitness landscape, thus fully embracing the memetic approach. Our research in
this area has started with the inclusion of a pool of Lévy distributions in conjunction
with the temperature-binded Cauchy distribution and the µ−1-law. As the system
advances, the visiting distribution has the ability to perform Lévy flights in order to
explore the space. How far this random walk goes depends on the state of the system
energy distribution during the thermal cycle. Thus, we guarantee the ability to es-
cape basins of attraction and energy plateaus. To exploit promising regions, we run
short temperature-unchained µ−1-law searches.

This new MeSA schema is still under heavy development, we need to further
refine the adaptive choice of a distribution at any given temperature and study the
mathematical behavior of the complete model. Once these steps are fulfilled, we
plan to test the algorithm against the classical optimization benchmark problems
and compare the results with other state of the art nature-inspired methods.

8.2.2 Data fitting

Future work will start with the adaptation of the full MeSA algorithm for NURBS data
fitting and its comparison with other optimization schemes reported in the literature.

Once this task is finished we plan to expand our research horizon into two direc-
tions. On the one hand, we want to solve the complete problem, i.e. given a massive
scattered point cloud, segment it, fit each part and then glue all the patches together.
On the other hand, we want to build a one-step free-knot method, one that does not
rely on the optimization of each possible model.

The complete model

The complete problem refers to the case when the original data is a massive and
noisy point cloud. In this case, we plan to divide the problem into three clearly
differentiated stages:

Point cloud segmentation. We need to segment the point cloud into regions that can
be fitted with the methodology proposed in this Thesis, i.e. regions that ca be
fitted in the form (u, v) 7−→ (x̃, ỹ, z̃) in some coordinated axis.

Hole detection. The method needs to detect the presence of holes which can be of
two types: either the hole is intrinsic to the underlying function of the data,
e.g. a torus surface, or is the result of errors during the data acquisition. The
problem is as important as it is difficult to solve: if an original hole is filled,
then the resulting surface does not resemble the underlying shape. In case of
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missing data, if the problem is not properly addressed it could drive to serious
numerical issues.

Data fitting. This is the final result of the present work.

Region merging. Once all the previous steps has been taking care of, we need to
glue all the fitted patches together by attending a full set of constraints on the
boundaries, typically Gk continuity.

One step free-knot splines

The methodology presented in this Thesis relies on the optimization of a given range
of models is what is often referred as a two-step process: select a set of models differ-
entiated by their complexities, then for each model optimize its parameters to obtain
a score. For each score, compute its transformed fitness by means of some criteria
that penalizes complex models. Our intention here is to use meta-heuristics that al-
low for the mix of continuous and binary variables to search for the correct number
of knots and their optimal locations at the same time, by minimizing a transformed
problem where a binary variable is introduced for each internal knot. The fitness
score to minimize is going to be BIC, as the extra binary variables would decide
which knot plays a role in the model.

In the literature there are not many methods that address this problem in a
one-step way. To the knowledge of the authors, beside the classical or heuristic-
driven methods, the main ones are [Yoshimoto et al., 2003], where no true multiple
knots are obtained and [Valenzuela et al., 2013] which produces redundant knots.
Our first research on the subject, based on the enhanced scatter search proposed in
[Egea et al., 2009, Egea et al., 2010] are very promising: in the case of continuous
data, even in the presence of cusps and other singularities, our methodology com-
putes the correct number of knots and its optimal positions, even producing true
multiple knots.



AppendixA
Algorithms

In this appendix we present some algorithms that have been kept out of the disserta-
tion body due to information-flow reasons.

A.1 The Omega glyph

In this section we provide the necessary code to reproduce the Bézier glyph seen in
Figure 2.2

// glyph . asy :
// ht tp :// tex . stackexchange . com/ ques t ions /178892/
// can−i−v i s u a l i z e−the−bez ier−cont ro l−points−of−a−l e t t e r−in−tex
s i z e (7cm) ;
\ usepackage { font spec }
\ setmainfont {Times New Roman}
import f o n t s i z e ;

defau l tpen (TimesRoman ( ) ) , f o n t s i z e (9 pt ) ) ;

r e a l wd=0.6bp ;
pen dotPen=deepblue+wd;
pen d o t F i l l=dotPen ;

pen dotPenB=blue+wd;
pen dotPenC=red+wd;

pen l inePen=deepblue+wd;
pen f i l l P e n=l i g h t g r e y+opac i t y ( 0 . 5 ) ;

pen thinLinePen=black+wd/2;

guide [] g ;
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g=texpath ( " $\Omega$ " ) ;

f i l l d r a w (g , f i l l P e n , l inePen ) ;

pa i r a , b , c , d ;
pa i r l a b d i r ;
i n t pointNo=0;

fo r ( i n t i =0; i<g . length;++i ){
fo r ( i n t j =0; j<s i z e (g[ i ])−1;++ j ){
a=point (g[ i ] , j ) ;
d=point (g[ i ] , j +1);
i f ( s t r a i g h t (g[ i ] , j ) ){
draw(a−−d , th inLinePen ) ;
} e l s e {
b=p o s t c o n t r o l (g[ i ] , j ) ;
c=precon t ro l (g[ i ] , j +1);
draw(a−−b−−c−−d , th inLinePen ) ;
dot (b , dotPenB , UnF i l l ) ;
dot ( c , dotPenC , UnF i l l ) ;
}
dot (a , dotPen , F i l l ( d o t F i l l ) ) ;
l a b d i r=r o t a t e (−90)* d i r (g[ i ] , j ) ;
l a b e l ( " $\ s c r i p t s i z e "+ s t r i n g ( pointNo)+"$ " , a , l a b d i r ) ;

++pointNo ;
}
dot (d , dotPen , F i l l ( d o t F i l l ) ) ;
l a b d i r=r o t a t e (−90)* d i r (g[ i ] , s i z e (g[ i ])−1);
l a b e l ( " $\ s c r i p t s i z e "+ s t r i n g ( pointNo)+"$ " , d , l a b d i r ) ;
}

A.2 An introduction to simplex-driven methods

In this section we present a brief introduction to the simplex methods
[Nelder and Mead, 1965] used for the minimization of real valued function in Rd.
Note that, the simplex idea also plays an important role in the COBYLA algorithm.

Let f : Rd → R be a real valued function. For the purposes of this introduction
we call d + 1-simplex a set of d + 1 points {xk}d

k=0 in Rd, which have been already
ordered to satisfy f0 ≤ f1 ≤ . . . ≤ fd where fk ≡ f (xk), such that the polytope
formed by their convex hull has a non-zero finite volume.

A Nelder-Mead solves the minimization of f by maintaining a (d + 1)-simplex
which is transformed at each iteration, through the use of a pre-configured set of
rules. These heuristics try to substitute a simplex vertex in such a way that the re-
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placement has a lower function value that the preceding one. The rules are backed by
a set of parameters λr, λe, λc, and λc which are respectively the reflection, expansion,
contraction and shrink coefficients.

To be more concise, let {xk}d
k=0 be the simplex at any given iteration and x̃ its

centroid (with the last point removed for its computation). Then:

I Reflection. Compute the reflection x̃r = x̃ + λr (x̃− xd). If the reflection con-
dition f0 ≤ f (x̃) < fd holds, replace the worst point in the simplex with x̃r,
reorder and start over.

II Expansion. If x̃r < f0, then compute the centroid extension as per equation
x̃e = x̃ + λe (x̃r − x̃). If x̃e < x̃r holds, replace the worst point in the simplex
with x̃e, reorder and start over. In other case, the replacement is done with x̃r.

III Contraction. When f (x̃r) < fd−1, we compute the contracted point by fol-
lowing x̃c = x̃ + λc (x̃d − x̃). If x̃c < fd holds, replace the worst point in the
simplex with x̃c, reorder and start over.

IV Shrink. Replace all simplex vertex by following x j ← x0 + λs
(
x j − x0

)
for all

j > 0 and start over.

A.3 Optimization by linear approximations

In this section we present the Constrained Optimization By Linear Approximations
(COBYLA) algorithm [Powell, 1994]: a nonlinear derivative-free constrained opti-
mization method that uses a linear approximation approach for minimizing a real
valued function f : Rd → R. The algorithm can be summarized as a sequential trust-
region method that employs linear approximations to the objective and constraint
functions. Each approximation is constructed as a linear interpolation at certain
points, a (d + 1)-simplex, in the solution space while maintaining a regular-shaped
simplex over iterations.

What follows is a brief outline of the COBYLA method, we do not provide the
pseudo-code. However, the full source code was released under the GNU Lesser
General Public License (GNU LGPL). In all of our works we make use of the imple-
mentation found in NLopt [Johnson, 2010]: a free/open-source library for nonlinear
optimization.

A.3.1 The COBYLA algorithm.

The COBYLA algorithm iteratively minimizes a problem with the following canonical
form:

minimize
x∈Rd

f (x)

subject to g j (x) ≤ b j, j = 1, . . . , m.
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At each iteration i a trust region is constructed with an adaptive radius R >
0. The method approximates the objective and constraint functions by performing
linear interpolations over all the vertexes of a (d + 1)-simplex. The simplex size R is
adaptively changed at each iteration between [Rstart, Rend], the initial and final values
provided at the beginning of the algorithm. The simplex plays the trust region role of
a trust-region driven algorithm, a zone around a search point where f is expected to
have a local minimum. For a given radius R, the method the solutions are perturbed
in such a way that they stay with the region. The simplex size is reduced until Rend is
reached, and the reductions are based on how well the approximation model agrees
with the cost function evaluations.

Let f̃ be the linear interpolation which approximates f , and {xk}d
k=0 the simplex

of size R at any given iteration. The next point x̃ is obtained by minimizing f̃ subject
to ‖x̃− x0‖2, whose solution can be directly computed as:

x̃ = x0 −
(

R
‖∇ f̃ ‖2

)
∇ f̃

note that, f̃ is constructed as and interpolant of the simplex vertexes, so (by con-
struction) satisfies f̃ (xk) = f (xk). Thus, f̃ (x̃) < f̃0 = f0 ≤ fk holds for all k. Now,
a vertex from the simplex is substituted by x̃. The replacement is done by following
a simple heuristic that avoids the construction of degenerated polytopes (those with
no volume). A careful choice of Rend must be carried out to ensure that ∇ f̃ is not
misleading the search.

A.4 Point cloud denoising

In this section we present our simple, yet robust, technique for point cloud denoising
based on the one presented in [Rusu et al., 2008]. Algorithm A.1 provides a high
level interface to the method, the implementation uses a kd-tree for indexing, and
all the computations are done by the returned indexes. Thus, no list appending is
needed.
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Algorithm A.1: Point cloud denoising

Input: A point cloud Q = {Qµ}M
µ=1, number of neighbors k ∈ N, λ ∈ N

Output: Q̃ =
{

Q̃µ̃

}M̃
µ̃=1 ⊂ {Qµ}M

µ=1
Initialize Q̃ as an empty list.
foreach point xµ ∈ Q do

Compute the distances dµ of the k nearest neighbors of xµ, excluding itself
mµ ← mean (dµ)

end
εmean ← mean ({mµ})
εstd ← std ({mµ})
Compute the threshold t← εmean + λεstd
foreach point dµ do

if dµ ≤ t then
Append xµ to Q̃.

end
end
return Q̃

A.5 Orthogonal Planar Regression by PCA

In this section we present the pseudo code for Orthogonal Planar Regression by using
Principal Components Analysis (PCA), a method that tries to fit a plane to a set of
given data. Not that the algorithm could be easily generalized to other dimensions .

Algorithm A.2: PCA regression plane
Input: A point cloud Qµ = (xµ , yµ , zµ)
Output: Orthogonal regression plane defining vectors eu, ev and its normal n
Let C, s be the coefficients and scores associated to pca ({Qµ})
The regression plane normal gets determined as n← Cz

‖Cz‖2
The u, v parametric directions get defined as:eu ← Cx

‖Cx‖2

ev ← Cy
‖Cy‖2

return eu, ev, n
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AppendixB
Tables

Model Statistical results
dataset type schema n f val BIC BICavg npol xmean ymean zmean

logo NR - 10010 -691.913 -691.83 13 0.0005 0.0001 NA
logo R ALL 4208 -661.908 -658.804 13 0.0002 0.0003 NA
logo R SEQ 13031 -770.212 -701.338 13 0.0001 0.0001 NA
shoe NR - 16624 2915.2 3020.1 24 0.097 0.030 0.011
shoe R ALL 6648 2098.859 2470.634 24 0.008 0.012 0.008
shoe R SEQ 20202 1996.226 2289.712 24 0.011 0.012 0.008
torus NR - 18546 -2204.821 -2301.567 20 1.063e-04 1.231e-04 1.064e-04
torus R ALL 1529 -6067.465 -6001.324 21 6.42e-05 5.3904e-05 2.1686e-05
torus R SEQ 5286 -7798.643 -7796.846 20 1.4814e-05 1.4814e-05 6.75e-06

torus10 NR - 13276 4307.409 4390.492 17 0.311 0.342 0.225
torus10 R ALL 3768 4354.618 4414.523 19 0.300 0.304 0.200
torus10 R SEQ 23119 4341.604 4381.367 17 0.312 0.323 0.201
torus20 NR - 12027 3887.839 4991.823 20 0.222 0.201 0.183
torus20 R ALL 3778 3474.463 3479.345 20 0.130 0.137 0.091
torus20 R SEQ 45775 3446.804 3465.673 20 0.128 0.139 0.092
torus30 NR - 16174 3033.538 3561.901 20 0.109 0.094 0.086
torus30 R ALL 5546 3060.624 3066.298 20 0.097 0.089 0.075
torus30 R SEQ 48511 3021.939 3035.634 20 0.098 0.089 0.071
torus40 NR - 11015 6662.487 6700.738 40 0.183 0.144 0.173
torus40 R ALL 5111 2740.208 2788.422 20 0.074 0.073 0.047
torus40 R SEQ 53640 2708.680 2729.980 20 0.074 0.072 0.048
torus50 NR - 14101 2386.160 2501.900 25 0.057 0.059 0.038
torus50 R ALL 4205 2357.285 2408.811 21 0.054 0.053 0.038
torus50 R SEQ 45206 2344.050 2378.280 20 0.055 0.052 0.038
torus60 NR - 12052 3574.142 4713.190 20 0.179 0.121 0.170
torus60 R ALL 4012 2116.800 2145.321 20 0.041 0.045 0.031
torus60 R SEQ 45191 2051.304 2080.235 20 0.031 0.033 0.019
torus70 NR - 8860 3574.142 3866.889 21 0.058 0.057 0.058
torus70 R ALL 4205 2210.012 2284.590 21 0.039 0.0406 0.027
torus70 R SEQ 45797 1963.317 1995.759 21 0.038 0.0393 0.028
torus80 NR - 14100 3574.142 3934.296 25 0.038 0.044 0.026
torus80 R ALL 4002 1814.950 2008.400 21 0.032 0.036 0.022
torus80 R SEQ 13366 1803.356 1931.721 20 0.032 0.0364 0.022
torus90 NR - 14100 1828.028 1981.534 25 0.031 0.041 0.024
torus90 R ALL 4204 1671.145 1799.627 21 0.0307 0.0309 0.021
torus90 R SEQ 13350 1654.944 1786.873 20 0.0307 0.0312 0.022

Table B.1: Rational Bézier curve fitting: Experimental results for each dataset.
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p stat E RMSE BIC Runtime

max 29970.64076 12.21096 2103.72251 11.49650
1 mean 29970.64004 12.21096 2103.72251 11.24640

min 29970.63980 12.21096 2103.72250 11.20110

max 14108.04217 8.37790 1962.88100 13.35840
2 mean 14108.03803 8.37790 1962.88094 12.42730

min 14108.03630 8.37790 1962.88091 12.34860

max 5546.76717 5.25318 1785.84813 13.84280
3 mean 5546.76404 5.25317 1785.84802 13.63670

min 5546.76380 5.25317 1785.84801 13.56930

max 151.69946 0.86875 1073.04183 15.00680
4 mean 151.69369 0.86873 1073.03418 14.8365

min 151.68610 0.86871 1073.02412 14.77720

max 151.47680 0.86811 1083.35320 16.46310
5 mean 148.56240 0.85972 1079.44829 16.10750

min 146.22320 0.85292 1076.25825 15.99370

max 149.60590 0.86273 1091.46178 18.19350
6 mean 145.64000 0.85122 1086.06158 17.45940

min 144.83150 0.84885 1084.94265 17.31000

max 143.99910 0.84641 1094.39071 19.74890
7 mean 143.31650 0.84440 1093.43564 18.91000

min 142.48050 0.84194 1092.25972 18.71130

max 144.05970 0.84659 1105.08189 21.09730
8 mean 142.67600 0.84251 1103.14194 20.31340

min 140.71400 0.83670 1100.35872 19.99530

max 141.70660 0.83965 1112.37821 24.41490
9 mean 140.58690 0.83632 1110.78369 23.83150

min 139.53160 0.83318 1109.26922 23.37060

max 140.00710 0.83460 1120.55964 26.76100
10 mean 138.65570 0.83056 1118.61009 25.84430

min 137.61070 0.82742 1117.08948 24.63840

max 138.27430 0.82942 1128.66305 28.94090
11 mean 137.20160 0.82619 1127.09765 27.88740

min 136.04780 0.82271 1125.40019 26.53520

max 137.58170 0.82734 1138.26034 31.06730
12 mean 135.81060 0.82199 1135.65605 30.17210

min 133.56320 0.81516 1132.30207 29.24250

max 136.12580 0.82295 1146.72862 32.64620
13 mean 133.75280 0.81574 1143.19380 31.76430

min 132.05320 0.81054 1140.62333 30.74540

max 134.11910 0.81686 1154.35013 35.68190
14 mean 132.27940 0.81124 1151.57394 34.47980

min 130.21940 0.80490 1148.41912 33.02300

max 133.23850 0.81417 1163.63266 38.07740
15 mean 130.28290 0.80509 1159.12372 36.59570

min 127.86990 0.79760 1155.36605 35.26970

max 131.45260 0.80870 1171.52689 41.00360
16 mean 128.92810 0.80090 1167.62921 39.62690

min 126.56910 0.79353 1163.91745 37.89200

max 130.32930 0.80524 1180.40852 43.21570
17 mean 127.90270 0.79770 1176.63082 41.95970

min 125.41460 0.78991 1172.68222 40.40720

Table B.2: φ1
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p stat E RMSE BIC Runtime

max 68402.37117 18.44750 2269.58555 11.56210
1 mean 68402.36217 18.44750 2269.58552 11.50500

min 68402.36200 18.44750 2269.58552 11.45560

max 37479.62025 13.65525 2159.26851 13.05990
2 mean 37479.61246 13.65525 2159.26847 12.90750

min 37479.61220 13.65525 2159.26847 12.82990

max 10563.94681 7.24962 1915.33870 14.42060
3 mean 10563.94658 7.24962 1915.33869 14.38930

min 10563.94300 7.24962 1915.33863 14.33370

max 8126.02660 6.35830 1873.20796 15.88050
4 mean 6871.94770 5.84712 1839.51543 15.84820

min 6683.83580 5.76653 1833.93657 15.80070

max 4299.07455 4.62476 1755.84344 17.90920
5 mean 4299.07022 4.62476 1755.84323 17.72160

min 4299.06430 4.62476 1755.84296 17.43600

max 3514.86960 4.18174 1725.96918 19.64220
6 mean 3514.86122 4.18173 1725.96870 19.45490

min 3514.85440 4.18173 1725.96831 19.10640

max 768.12770 1.95487 1430.89464 21.65880
7 mean 765.65040 1.95172 1430.24535 21.42900

min 763.74590 1.94929 1429.74475 21.10210

max 157.27600 0.88457 1122.72455 23.32230
8 mean 157.27370 0.88457 1122.72161 23.1160

min 157.27120 0.88456 1122.71841 22.58670

max 157.26160 0.88453 1133.31275 24.04900
9 mean 155.84430 0.88054 1131.49305 23.52540

min 152.94640 0.87231 1127.72030 22.73710

max 156.99730 0.88379 1143.58127 26.34130
10 mean 155.00060 0.87815 1141.00854 25.63890

min 152.27110 0.87038 1137.43748 24.96020

max 156.14220 0.88138 1153.09012 28.10870
11 mean 152.25300 0.87033 1148.02019 27.57220

min 149.28590 0.86181 1144.06444 26.97710

max 156.10720 0.88128 1163.65167 30.99950
12 mean 150.69380 0.86586 1156.55778 29.40220

min 147.87580 0.85773 1152.76346 28.66590

max 154.57820 0.87695 1172.27987 32.64220
13 mean 149.49050 0.86240 1165.55295 31.45280

min 144.87190 0.84897 1159.24498 30.01950

max 154.71750 0.87735 1183.06753 34.75550
14 mean 148.36500 0.85915 1174.64052 33.69370

min 144.70550 0.84849 1169.62059 33.01380

max 151.51630 0.86822 1189.47170 37.75210
15 mean 145.08280 0.84959 1180.75059 36.31950

min 141.77210 0.83984 1176.11076 35.00960

max 147.50510 0.85665 1194.68539 39.78080
16 mean 143.05570 0.84363 1188.52902 38.69920

min 140.66370 0.83655 1185.13974 37.37080

max 147.91320 0.85784 1205.84734 42.18510
17 mean 142.78900 0.84285 1198.76056 41.23680

min 137.73270 0.82779 1191.51387 40.08130

Table B.3: φ2
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p stat E RMSE BIC Runtime

max 24292.68959 10.99360 2061.50391 11.27830
1 mean 24292.68209 10.99359 2061.50385 11.23330

min 24292.67290 10.99359 2061.50377 11.21980

max 18196.09310 9.51461 2014.02784 12.55090
2 mean 17670.14130 9.37609 2008.13238 12.39690

min 17611.70230 9.36058 2007.46653 12.35690

max 495.84560 1.57063 1300.49223 13.91820
3 mean 495.84350 1.57063 1300.49138 13.71700

min 495.84250 1.57063 1300.49097 13.65070

max 315.87100 1.25359 1220.46177 15.46300
4 mean 301.81750 1.22539 1211.31399 14.86660

min 300.25600 1.22222 1210.27138 14.76490

max 95.39400 0.68891 990.40743 16.57930
5 mean 95.39081 0.68890 990.40071 16.0784

min 95.38850 0.68889 990.39583 15.99880

max 94.38110 0.68524 998.86839 17.75770
6 mean 92.98190 0.68014 995.86625 17.37390

min 91.61640 0.67513 992.89255 17.29040

max 92.58990 0.67871 1005.62368 19.57680
7 mean 90.50440 0.67102 1001.04458 18.83530

min 88.65040 0.66411 996.88430 18.61320

max 89.33390 0.66667 1009.03469 21.22680
8 mean 88.58860 0.66388 1007.35074 20.33100

min 87.64300 0.66033 1005.19372 20.00260

max 88.62520 0.66402 1018.04037 24.25370
9 mean 87.17910 0.65858 1014.73360 23.80230

min 85.81150 0.65339 1011.55547 23.36920

max 87.25230 0.65886 1025.50891 26.28920
10 mean 86.03220 0.65423 1022.67837 25.61280

min 85.40790 0.65185 1021.21448 25.21040

max 86.65010 0.65658 1034.72344 28.17860
11 mean 85.48680 0.65216 1032.00669 27.57610

min 84.59930 0.64876 1029.90905 27.17860

max 85.30540 0.65146 1042.18633 30.80330
12 mean 84.81820 0.64960 1041.03508 29.63500

min 84.28270 0.64755 1039.76204 29.12190

max 84.63180 0.64889 1051.19947 32.28520
13 mean 84.07110 0.64673 1049.86338 31.50240

min 82.63940 0.64120 1046.41095 30.74290

max 84.19150 0.64720 1060.75764 34.77100
14 mean 82.86650 0.64208 1057.56916 33.92020

min 82.04660 0.63890 1055.57052 33.07610

max 83.25720 0.64360 1069.12122 38.30550
15 mean 82.38870 0.64023 1067.01347 36.66810

min 81.19960 0.63559 1064.09134 35.32530

max 82.51000 0.64070 1077.91580 40.14510
16 mean 81.45780 0.63660 1075.33608 39.01170

min 79.82430 0.63019 1071.26440 37.55890

max 81.69280 0.63752 1086.52173 42.71040
17 mean 81.03540 0.63495 1084.89769 41.70070

min 80.42310 0.63255 1083.37318 40.29230

Table B.4: φ3
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p stat E RMSE BIC Runtime

max 26.29369 0.36168 688.95492 11.50170
1 mean 26.28733 0.36164 688.90632 11.48740

min 26.28170 0.36160 688.86328 11.47150

max 22.80089 0.33680 670.91317 12.93180
2 mean 22.79446 0.33676 670.85650 12.88210

min 22.78670 0.33670 670.78802 12.82510

max 5.78345 0.16963 405.78818 14.56780
3 mean 5.77796 0.16955 405.59737 14.48730

min 5.77750 0.16954 405.58123 14.38230

max 3.06010 0.12339 288.44763 15.90660
4 mean 2.96860 0.12153 282.34584 15.87040

min 2.94570 0.12106 280.78930 15.82230

max 0.15328 0.02762 -302.72457 17.94660
5 mean 0.14559 0.02691 -313.07710 17.7515

min 0.14180 0.02656 -318.37460 17.45370

max 0.14150 0.02653 -308.19369 19.78080
6 mean 0.13890 0.02629 -311.92133 19.48530

min 0.13730 0.02614 -314.25010 19.04810

max 0.13940 0.02634 -300.59248 21.79590
7 mean 0.13730 0.02614 -303.64349 21.47530

min 0.13640 0.02605 -304.96538 21.10900

max 0.13720 0.02613 -293.18333 23.44180
8 mean 0.13600 0.02601 -294.94908 23.06980

min 0.13490 0.02591 -296.58143 22.26800

max 0.13710 0.02612 -282.72328 24.10460
9 mean 0.13470 0.02589 -286.27304 23.57800

min 0.13310 0.02573 -288.67486 22.95880

max 0.13540 0.02595 -274.62459 26.36140
10 mean 0.13380 0.02580 -277.01392 25.53110

min 0.13250 0.02567 -278.97638 24.92950

max 0.13340 0.02576 -267.00910 28.13490
11 mean 0.13220 0.02565 -268.82538 27.47240

min 0.13110 0.02554 -270.50484 26.66080

max 0.13250 0.02567 -257.76316 30.29060
12 mean 0.13080 0.02551 -260.35872 29.60250

min 0.12970 0.02540 -262.05623 28.33720

max 0.13170 0.02560 -248.37382 31.95970
13 mean 0.12960 0.02539 -251.60465 31.16920

min 0.12780 0.02522 -254.41589 30.55670

max 0.13080 0.02551 -239.14550 34.35050
14 mean 0.12890 0.02532 -242.08664 33.50730

min 0.12730 0.02517 -244.59721 32.05900

max 0.12900 0.02533 -231.32415 36.89300
15 mean 0.12760 0.02520 -233.51747 36.04780

min 0.12590 0.02503 -236.21337 35.26330

max 0.12860 0.02529 -221.34177 39.69190
16 mean 0.12600 0.02504 -225.44717 38.44630

min 0.12480 0.02492 -227.37063 37.59300

max 0.12660 0.02510 -213.88569 41.86790
17 mean 0.12490 0.02493 -216.60303 41.12980

min 0.12350 0.02479 -218.86875 40.12130

Table B.5: φ4
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p stat E RMSE BIC Runtime

max 31.98679 0.39892 728.34975 11.51720
1 mean 31.98245 0.39889 728.32245 11.49330

min 31.97470 0.39885 728.27377 11.45930

max 15.93905 0.28160 598.94961 12.93790
2 mean 15.93251 0.28154 598.86711 12.91410

min 15.92800 0.28150 598.81023 12.87920

max 3.65039 0.13476 313.29473 14.46080
3 mean 3.64966 0.13475 313.25451 14.41520

min 3.64430 0.13465 312.95907 14.36300

max 1.30994 0.08073 117.90538 15.94110
4 mean 1.30402 0.08055 116.99505 15.88900

min 1.29860 0.08038 116.15830 15.82350

max 0.47814 0.04877 -74.06203 18.00490
5 mean 0.46921 0.04832 -77.85184 17.8678

min 0.46910 0.04831 -77.89853 17.65870

max 0.46550 0.04812 -68.84040 19.81860
6 mean 0.46150 0.04792 -70.57504 19.63540

min 0.45780 0.04772 -72.19302 19.16140

max 0.45820 0.04775 -61.41086 21.66300
7 mean 0.45360 0.04750 -63.43896 21.46480

min 0.44840 0.04723 -65.75650 21.05880

max 0.45090 0.04736 -54.03235 23.30190
8 mean 0.44760 0.04719 -55.50882 23.12010

min 0.44580 0.04709 -56.31876 22.82600

max 0.44560 0.04708 -45.80234 24.22650
9 mean 0.44260 0.04693 -47.16015 23.64200

min 0.43970 0.04677 -48.48148 23.16680

max 0.44270 0.04693 -36.50813 26.46510
10 mean 0.43850 0.04671 -38.42417 25.75550

min 0.43310 0.04642 -40.91479 25.26590

max 0.43680 0.04662 -28.59832 28.59210
11 mean 0.43170 0.04634 -30.95897 27.75580

min 0.42440 0.04595 -34.38693 26.81860

max 0.43370 0.04645 -19.42331 30.12000
12 mean 0.42850 0.04617 -21.84784 29.46920

min 0.42380 0.04592 -24.06468 29.02520

max 0.43050 0.04628 -10.30525 32.55870
13 mean 0.42400 0.04593 -13.36324 31.55680

min 0.41900 0.04566 -15.74761 30.89890

max 0.42290 0.04587 -3.27877 34.60420
14 mean 0.41890 0.04565 -5.18898 34.07800

min 0.41450 0.04541 -7.31139 33.28900

max 0.42150 0.04579 6.66133 37.60380
15 mean 0.41690 0.04554 4.45568 36.47740

min 0.41310 0.04533 2.61518 35.52860

max 0.41460 0.04542 13.95032 39.59980
16 mean 0.40840 0.04508 10.92183 38.77020

min 0.40250 0.04475 7.99688 38.21250

max 0.41000 0.04516 22.31436 43.02680
17 mean 0.40200 0.04472 18.35365 42.00560

min 0.39350 0.04425 14.05807 40.78980

Table B.6: φ5



135

p stat E RMSE BIC Runtime

max 1.70374 0.09207 138.91726 12.62820
1 mean 1.70137 0.09200 138.63768 11.56010

min 1.69850 0.09193 138.29868 11.45960

max 0.93014 0.06803 27.87070 12.96080
2 mean 0.92261 0.06775 26.23577 12.91900

min 0.92250 0.06775 26.21219 12.88460

max 0.75050 0.06111 -4.65709 15.10110
3 mean 0.74680 0.06095 -5.65048 14.47650

min 0.74560 0.06091 -5.97372 14.33380

max 0.13810 0.02621 -334.29556 16.05420
4 mean 0.13740 0.02615 -335.31698 15.9292

min 0.13730 0.02614 -335.46332 15.82970

max 0.13730 0.02614 -324.85671 17.21730
5 mean 0.13670 0.02608 -325.73700 17.03670

min 0.13550 0.02596 -327.50924 16.93070

max 0.13590 0.02600 -316.31015 18.58900
6 mean 0.13480 0.02590 -317.94370 18.41980

min 0.13330 0.02575 -320.19288 18.27440

max 0.13550 0.02596 -306.29602 20.11880
7 mean 0.13440 0.02586 -307.93442 19.91420

min 0.13230 0.02566 -311.09984 19.74580

max 0.13460 0.02588 -297.02892 21.70590
8 mean 0.13270 0.02569 -299.88643 21.46350

min 0.13120 0.02555 -302.17141 21.28370

max 0.13300 0.02572 -288.82593 24.96620
9 mean 0.13210 0.02564 -290.19070 24.31690

min 0.13110 0.02554 -291.71806 23.90380

max 0.13220 0.02565 -279.43199 26.69210
10 mean 0.13050 0.02548 -282.03347 26.10060

min 0.12850 0.02528 -285.13778 25.57410

max 0.13070 0.02550 -271.11905 28.85580
11 mean 0.12950 0.02538 -272.97303 27.92780

min 0.12800 0.02524 -275.31480 27.43970

max 0.13000 0.02543 -261.59185 30.91150
12 mean 0.12840 0.02527 -264.08105 29.96890

min 0.12630 0.02507 -267.39561 29.39250

max 0.12940 0.02537 -251.91508 32.61710
13 mean 0.12750 0.02519 -254.88827 31.67540

min 0.12540 0.02498 -258.22643 30.90780

max 0.12680 0.02512 -245.38823 34.74650
14 mean 0.12550 0.02499 -247.45960 33.95020

min 0.12160 0.02460 -253.80492 33.20850

max 0.12750 0.02519 -233.67505 37.46510
15 mean 0.12450 0.02489 -238.46100 36.42890

min 0.12110 0.02455 -244.02650 35.59890

max 0.12480 0.02492 -227.37063 43.27920
16 mean 0.12300 0.02474 -230.29078 39.58670

min 0.11980 0.02441 -235.58927 37.95510

max 0.12330 0.02477 -219.19452 47.98770
17 mean 0.12130 0.02457 -222.48159 42.56110

min 0.11840 0.02427 -227.34541 39.64010

Table B.7: φ6
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