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Emissions from mechanically-biologically treated waste landfills at 

field scale 

 

 
Abstract 

Modern waste management tends towards greater sustainability in landfilling, with the 

implementation of strategies such as the pretreatment of solid waste. This work assesses 

the behaviour of rejects from a refining stage of mechanically-biologically treated 

municipal solid waste at the landfill. The main results of 18 months' monitoring of an 

experimental pilot cell with waste from a full-scale plant are presented. This first stages 

are expected to be the most problematic period for this type of waste. The evolution of 

the temperature and the composition of leachate and gas at various points within the cell 

are included. During the first weeks, pollutant concentrations in the leachate exceeded the 

reference ranges in the literature, coinciding with a rapid onset of methanogenic 

conditions. However, there was a quick wash, reducing concentrations to below one third 

of the initial values before the first year. pH values influenced concentrations of some 

pollutants such as copper. These results indicate that, right from the beginning of disposal, 

such facilities should be prepared to treat a high pollution load in the leachate and install 

the gas emissions control elements due to the rapid onset of methanogenesis.  
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INTRODUCTION 

In just a few years the controlled landfill (or sanitary landfill) has gone from being 

considered as the best technical solution to the search for options for zero discharge 

(European Council 2008), by recycling and recovery of many discarded materials. 

Moreover, in order to minimize landfill emissions, final rejects often undergo a 

stabilization process before being dumped (European Council 2009). The treatment of 

waste prior to sending it to a landfill has become a popular method of satisfying this 

requirement in order to reduce its biodegradability (Donovan et al. 2010). As a result of 

this development, the characteristics of the materials dumped in many countries are today 

very different from those received in traditional landfills. This leads to the need to adapt 

or generate criteria for the design, operation, closure and even post-closure monitoring 

and maintenance of these facilities. 

Specifically, in Europe, a large portion of the waste reaching landfills has previously 

undergone a mechanical-biological treatment (MBT). MBT plants include separation 

stages for recyclable materials that have not been previously retrieved, and some type of 

aerobic or anaerobic biological treatment, called biostabilization, which reduces the 

biodegradability of the organic fraction to decrease liquid and gaseous emissions once 

dumped in the landfill. 

In the European framework there are different situations. While in countries like Germany 

and Austria the pretreated waste is landfilled directly, in others where the selective 

collection of the organic fraction has not yet been extended, such as Spain, the stabilized 

organic matter generated in many of the MBT facilities is used for soil conditioning in 

different applications. Thus, these facilities include a refining treatment after 

biostabilization, which allows the impurities or “rejects” to be separated out from the 

biostabilized fraction. Even though the pretreatment practices are different, the behaviour 

of the landfilled waste might have similarities, because in both cases, the content of 

organic matter has been drastically reduced and the residual fraction stabilized.  

Many of the studies focused on the performance of MBT waste in landfills are based on 

laboratory results. However, several authors (Fellner et al. 2009; Di Maria et al. 2013) 

have noted that the processes that take place in actual landfills are different. Hence the 

importance of obtaining field data. 

From the first applications of pretreatment as an option to reduce pollution in municipal 

landfills, numerous studies have been conducted in this field, mainly in Europe. Most of 

them have dealt with the MBT reject dumped without separation of the organic fraction. 

Initially the authors centred on evaluating pretreatment systems as decontamination 

processes. It has been proved experimentally that, because the dumped waste is more 

degraded, gaseous and liquid contamination is lower and the settlements that take place 

during the operation are also diminished. Nevertheless, there are still queries, such as the 

quantification of this reduction in different cases or the assessment of the long-term effect. 

The current knowledge on emissions in new MBT landfills can be separated into two 

interrelated areas: evaluation of liquid pollution and quantification of gaseous emissions. 
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Liquid pollution 

Biological pretreatment aims to increase the stability of organic matter by shortening the 

stages of decomposition in the landfill. Shortly after the waste is buried, leachate 

characteristics show the end of the acidogenic phase, namely, reduced carbonaceous 

organic material concentration, low biodegradability (low biochemical oxygen demand 

(BOD) to chemical oxygen demand (COD) ratio) and pH close to neutrality (Bone et al. 

2003). 

Based on laboratory tests and/or field observations, a number of authors (Sormunen et al. 

2008; Siddiqui et al. 2012) have demonstrated that leaching of carbonaceous matter can 

be reduced with MBT by up to 10% of the initial leachability value, depending on the 

type and intensity of the previous treatment. In consequence, the organic load (COD, 

BOD, total organic carbon (TOC)) decreases in the leachate. 

The effect of MBT on other contaminants of the leachate is not so well known. In the case 

of some heavy metals, for example, several authors have not detected differences between 

fresh and pretreated waste, while others have observed lower leachability in the latter case 

(Münnich et al. 2006). Nonetheless, a complexation effect of the organic matter (COD) 

has been discovered, which favours the evolution of some pollutants together over time 

(Pantini et al. 2015). 

Additionally, more research is needed in order to know what happens to the nitrogenous 

substances. Different authors have pointed out a reduction similar to that shown by 

carbonaceous compounds (Cappai et al. 2005), but others have measured ammonium 

concentrations in the leachate that remain high for a long time (Salati et al. 2013). 

 

Gaseous emissions 

The pretreatment of the biodegradable fraction of municipal solid waste (MSW) has been 

suggested as a method of reducing landfill gas emissions (Donovan et al. 2010). The 

results of various studies reveal that, because the biodegradable material is more 

decomposed due to biological pretreatment, the generation of methane is accelerated, thus 

keeping the trends noted in traditional landfills. Methanization is established early when 

anaerobic degradation processes are still intense, and reduces gradually in the course of 

time to very low rates that extend for decades (Cappai et al. 2005). Heyer et al. (2013) 

proposed the representation of this evolution with a three-phase (slow, intermediate and 

fast degradation) model; however, other authors obtained good fits with a first-order 

model in two stages (Di Maria et al. 2013). 

In contrast, also in this kind of waste, both temperature and moisture have been proved 

to be key factors in the development of degradation and therefore in gas generation 

(Bockreis and Steinberg 2005). 
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Potential methane generation may be reduced by up to 90% through MBT (De Gioannis 

et al. 2009). But it is still not possible to predict the composition of biogas, and several 

authors have come to different conclusions. Kuehle-Weidemeier and Doedens (2003) 

found methane/carbon dioxide (CH4/CO2) ratios similar to those seen in conventional 

landfills, while Wagner et al. (2007) observed an inverse relationship. Nonetheless, 

Brockreis and Steinberg (2005) detected CH4/CO2 ratios that were significantly higher 

than the usual values, up to 45:1, depending on the waste pretreatment. 

After observing this decrease in the presence of methane, the study of another important 

greenhouse gas, N2O, has begun. In MBT landfills there is an important production 

associated with nitrification, which starts with the entrance of oxygen when dumping 

waste in the landfill (Harborth et al. 2013). 

Upon comparing waste pretreatment processes, it has been detected that the reduction of 

the gas potential depends on the duration of the process. Some authors have suggested 

that if the biological stage is aerobic, it should be extended to around 4 weeks, since a 

longer treatment diminishes the amount of recoverable gas, thereby increasing the overall 

environmental impact of the treatment–final disposal solution (Di Maria et al. 2013). 

Montejo et al. (2013) confirmed that the behaviour of the MBT waste in the landfill 

depends on both the process and the origin of the waste. Optimal solutions might be 

established to minimize the impact of the rejected fraction in landfills, but there are too 

many differences, due to the diversity of processes and inputs, to find a common solution 

(Di Lonardo et al. 2012). 

These significant differences among MBT processes, together with the disparity of results 

observed so far, point to the need for further research in this area. Moreover, in spite of 

the availability of numerous laboratory results, there is a need for field scale studies, 

especially those based on a comprehensive assessment, considering variables of different 

nature and their interactions (e.g. hydraulics, degradation, settlement, temperature). 

The aim of this research was to study the field behaviour of waste that is characteristic of 

the rejects generated in MBT similar to those installed in Spain. Other regions, with waste 

management strategies that tend to send to the landfill only pretreated waste after 

recovering recyclables, using bio-waste and valorising the fraction with high calorific 

value, may benefit from the results obtained. The study is based on the construction of a 

pilot cell from which real scale data could be obtained in a controlled environment. This 

paper discusses the main results achieved during the first months, which are expected to 

be the most problematic period for this type of waste, and analyses the practical 

implications of the operation of this new type of landfills. 

 

MATERIALS AND METHODS  

Pilot-scale cell 

This research is part of a three-year project, which included conventional waste 

characterization tests, percolation tests and specific tracer tests in laboratory columns on 
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different scales, as well as fieldwork. The results of the laboratory tests have been 

presented in other papers (Molleda et al. 2013; Molleda et al. 2015). The data gathered in 

the field are analysed in this article. 

In order to monitor the behaviour of MBT rejects under landfill conditions, a pilot-scale 

cell was built during the early months of 2014. The experimental cell is within the area 

of operation of the Meruelo landfill (Cantabria, Spain), which is part of the Meruelo 

Environmental Complex. 

In Cantabria, the glass, light packaging, and paper and cardboard fractions are collected 

separately. The complex receives 218,760 t/yr (data from 2014) of rest fraction of 

municipal waste (mixed materials, not collected separately). This fraction is treated in an 

MBT plant that obtains as a result several streams of recyclable material recovered from 

the mixture, including 118,700 t/yr of waste-derived fuel; 32,500 t/yr of biostabilized 

material used as a soil conditioner; and 36,000 t/yr of rejects from the refining treatment 

of this last fraction. The biostabilization process is performed on the material, which 

passes through a 9-mm trommel screen, in two covered buildings with a combined floor 

area of 165 x 35 m. The process lasts 8 weeks, during which the treatment is limited to a 

weekly turning with an automatic turning machine: there is no addition of water or other 

elements. 

The rejects of the refining stage after biostabilization are sent to the landfill, together with 

the slag from the energy recovery plant and other waste. Pretreatment rejects represent 

today approximately 40% of the total waste reaching the landfill (100,000 t/yr), but this 

proportion is expected to rise as the amount of waste subjected to pretreatment increases.   

The landfill began a new phase of operation in November 2011. It is located in a sunken 

area on a former landfill, which had been isolated according to the Council Directive 

1999/31/EC (European Council 1999). The material deposited in the new phase is kept 

completely separated from the previously dumped waste by means of a double-bottom 

liner that has two clay layers and two high-density polyethylene geomembranes and then 

a drainage gravel layer followed by a geotextile.  

The operating system includes the dumping of compacted waste in layers that are about 

4 m thick, with intermediate clay covers of approximately 30 cm. These layers extend 

along the entire surface, that is, from the upstream to the landfill retaining wall. In 

addition to the bottom drainage layer with 50 cm of gravel and collection pipes, a 

dendritic drainage network is placed in each layer. This is formed by cross-drains of 

gravel (parallel to the retaining wall) that lead the leachate to a main pipe which divides 

the layer into two halves in the direction of the slope. The pipes of each layer are 

connected to the main pipe through the retaining wall. In this pipe, leachate collected at 

all layers of the different phases of the landfill is gathered and taken to the regulation 

pools and, subsequently, for treatment. 

In order to minimize the production of contaminated water, as the deposition of waste 

moves forward in each layer, the dumping area is isolated from the empty areas by means 

of perimeter ridges that separate the leachate from the clean runoff. This runoff is led to 
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the perimeter ditch where, after checking that it is unpolluted in a control concrete pit, it 

is discharged into the environment. 

The collection pipes installed in the first of these phases have been raised through the 

liner system for biogas collection and extraction. Thus, the gas generated by the new 

waste is mixed with that generated in the lower layers before being led to the gas treatment 

and energy production plant. 

The total bottom area of the landfill is 7.5 ha, but it is reduced to 0.9 ha in the current 

operating area. 

The footprint of the pilot cell is a square of 30 x 30 m2. The cell was filled with rejects 

coming directly from the refining stage (after biostabilization) of the MBT plant until it 

was four metres high. 

A load of 4,966 T of waste with a global moisture of 30% and the composition shown in 

Table 1 was introduced into the cell (Molleda et al. 2013), resulting in a dry density of 

967 kg/m3. Table 1 shows that almost 10% of the waste was classified as unidentified. 

This category includes inert as well as biodegradable materials that, after undergoing the 

MBT, could not be identified. 

 

Table 1 Composition of the waste in the pilot-scale cell 

Component 
Fraction of dry matter 

(%) 

Rigid plastics 0.8 

Flexible plastics 3.3 

Paper and cardboard 12.1 

Textile 1.3 

Wood 4.1 

Shell and seed 7.0 

Bones 2.0 

Metals 1.5 

Glass 51.5 

Stones and ceramics 6.6 

Unidentified > 4 mm 3.1 

Unidentified < 4 mm 6.7 

Total 100 

 

The cell was built on the current operating area of the landfill, on the first waste layer, 

which was covered by approximately 30 cm of clay marl. To isolate the cell, both the 

bottom and the perimeter were covered with a plastic liner protected with a geotextile on 

the top. The leachate collection system was placed on the geotextile, on the diagonal of 

the cell and following the slope. This consisted of a coarse aggregate with a perforated 

plastic tube in its final stretch. Leachate percolates to the bottom of the cell, where it is 
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collected by a perforated pipe which in turn conveys it to the leachate sampling point, 

outside the cell (see Figure 1). Moreover, a 50-cm high perimeter wall was built with the 

same clay marl aggregate used in other places in the landfill (Figure 1). Once the cell was 

filled, 30 cm of the same material was extended over it, mimicking the usual intermediate 

cover, and a new perimeter wall was placed to collect the runoff and isolate it from the 

surroundings. 

For a detailed follow-up of the evolution of the cell, besides conventional systems for 

leachate and runoff sampling, several measurement devices for continuous in situ 

monitoring were installed at various points within the waste. Instrumentation was 

distributed in three layers and at four points at each level (Figure 1). Every monitoring 

point was represented by a number indicating its plant position (from 1 to 4), followed by 

the number corresponding to the depth of the sensor (1 the deepest level, 2 the 

intermediate and 3 the shallowest one). 

Instrumentation included four piezometers (located at the lower level), 12 thermometers 

(PT100) and 12 gas/liquid samplers. The signals of the thermometers and piezometers 

were collected and recorded in a data logger every 30 minutes. Samplers were small 

stretches of handmade perforated tubes connected to the outside by hoses, through which 

the fluid accumulated in the waste could be drawn by suction. In addition, two flowmeters 

for continuous monitoring of leachate (PLU-100, Desin Instruments) and runoff flows 

(Sigma 950, Hach Co.) were installed. 

The monitoring plan for the cell at this stage of the research lasted 18 months (535 days). 

It included the capture and analysis of instrumentation data once a week; monthly 

sampling and laboratory analyses of the leachate taken from the sampling point and runoff 

and gas collected in the samplers inside the cell, and a monthly topographical survey of 

four settlement plates. These instruments consisted of square 1 m2 stainless steel plates 

with a welded central steel shaft that were custom-manufactured to control settlements. 

The shafts were extended as the landfill level rose, and acted as the reference rod to be 

measured periodically by means of topographical surveys. 

 

Laboratory analysis 

The leachate was sampled monthly during the study period at the leachate sampling point, 

located outside the cell, at the lowest point of the leachate collection pipe. Altogether 17 

samples were analysed. Electrical conductivity (EC), pH, redox potential and dissolved 

oxygen (DO) were measured in situ with portable equipment (CRISON 524 conductivity 

meter, CRISON 507 pH meter with electrode 52-00 and redox potential electrode and 

WTW Oxi 330/SET oxygen probe). To preserve the sample, the UNE-EN ISO 5667-3 

standard was followed. The leachate parameters analysed in the laboratory were: pH, EC, 

dissolved and total COD, dissolved and total biochemical oxygen demand after 5 days 

(BOD5), total nitrogen (TN), ammonia nitrogen (NH4_N), alkalinity, sulphates, total 

solids (TS), volatile solids (VS), suspended solids (SS), volatile suspended solids (VSS) 

and concentrations of several heavy metals. All the analyses were performed according 

to standardized methods (APHA 2005). 
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At the same time leachate samples were taken from the leachate collection system of the 

landfill where the pilot cell was located. The same parameters were analysed in this 

leachate to compare the results with those of the cell. The landfill and the cell were subject 

to the same climatology and similar operation practices (waste compaction, cover) but 

the former included other types of waste. Comparing the leachate characteristics may help 

to identify the impact of MBT rejects on the pollution that is generated. 

Furthermore, samples were taken every two weeks from the sampling ports installed 

inside the cell. On four occasions a small amount of liquid was obtained from the 

sampling ports located in the bottom of the cell (points 2, 3 and 4 at level 1). The rest of 

the time, only biogas could be found at each point.  

Biogas sampling from the inside of the cell was conducted fortnightly. Concentrations of 

CH4, CO2, oxygen (O2) and hydrogen sulphide (H2S) were determined using a portable 

gas analyser (initially GA2000 model and later GA5000, from Geotechnical Instruments, 

UK). 

 

RESULTS AND DISCUSSION  

 

Leachate  

 

Flow rates 

Leachate flow rates showed a rapid response to rain. As water passed through the small 

height of the cell, much of the infiltrated water quickly collected at the bottom of the cell. 

This caused a great variability in flows (a range between 5 L/h and 100 L/h was observed) 

that could not be recorded by the equipment installed. Therefore, a continuous record 

throughout the experimentation is not available, but only partial records for a few days. 

From these it has been estimated that approximately 20% of the volume of incident 

rainwater has become leachate. 

During the 18 months of follow-up 2,108 mm of total precipitation and approximately 

422 mm of leachate were recorded, representing a total volume of 379 m3 (an average of 

709 L/d). Taking into account all the weight of the dumped waste, at the end of the 

monitoring period a liquid–solid ratio (L/S) of 0.11 L/kg was obtained. 

Moreover, the piezometers occasionally registered some leachate accumulation on the 

bottom. This coincides with the samples extracted from the sampling ports, which only 

included leachate in four cases. 

 

Composition 

Table 2 shows the ranges of variation of parameters throughout the study: those noted in 

"conventional" young (acid phase) and old (methanogenic phase) landfills; the values 

proposed for MBT waste with different degrees of composting pretreatment; and, finally, 

the results achieved for the overall leachate collected in the landfill.  
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Table 2 Leachate quality results versus values published in literature 

PARAMETER UNITS 
Pilot-scale cell a 

(17 samples) 

Meruelo landfill a 

(17 samples) 

Christensen et al. 2001 Robinson et al. 2005 

Acid phase 
Methanogenic 

phase 

Landfill 

leachate 

MBT High 

degree of 

composting b 

MBT Low-

medium degree 

of composting 

pH  7.9-9.6 (8.9) 7.4-8.6 (8.0) 4.5-7.5 7.5-9 4.5-9 7.5-8 7.5-8.5 

Conductivity mS/cm 31.5-67.8 (46.8) 6.6-22.3 (13.7)    6-10 10-20 

Total COD mg/L 10833-79478 (29981) 1037-11013 (2894)      

Dissolved COD mg/L 9943-72912 (25858) 843-10771 (2535) 6000-60000 500-4500 140-152000 2000-1500 1000-5000 

Total BOD5 mg/L 850-20400 (6700) 160-4400 (984)      

Dissolved BOD5 mg/L 200-16000 (5100) 120-2900 (722) 4000-40000 20-550 20-57000 50-30 20-200 

Dissolved TOC mg/L 2736-27395 (8560) 263-5151 (970)   30-29000 500-500 500-2000 

NH4-N mg/L 1378-5600 (3420) 323-1230 (667)   50-2200 30-200 50-1000 

Sulphates (as SO4) mg/L 88-2179 (937) 57-332 (150) 70-1750 10-420 8-7750 500-500 1000-5000 

Total Solids mg/L 22258-138706 (46100) 4010-13770 (7238)   2000-60000   

Calcium mg/L 9-917 (180) 83-287 (147) 10-2500 20-600 10-7200 250-300 100-800 

Sodium mg/L 3485-7043 (5326) 612-2600 (1407)   70-7700 800-1200 2000-4000 

Magnesium mg/L 38-793 (163) 43-131 (69) 50-1150 40-350 30-15000 60-100 100-400 

Iron mg/L 7-40 (16) 2-11 (3)   3-5500 2-10 5-20 

Chromium µg/L 209-1180 (746) <44-259 (156)   20-1500 50-100 100-500 

Cadmium µg/L 4-287 (55) <1-21 (11)   0.1-400 3-3 5-100 

Copper µg/L 747-10422 (2140) 52-238 (115)   5-10000 200-200 200-500 

Zinc µg/L 1500-18584 (4083) 104-4794 (615) 100-120000 30-4000 30-1000000 500-200 500-3000 

Lead µg/L 88-1626 (437) <8-231 (63)   1-5000 20-40 100-400 

Nickel µg/L 88-3331 (1582) 77-460 (198)   15-13000 100-100 100-700 

Arsenic µg/L 290-630 (463) 26-110 (61)   10-1000 4-6 10-100 

Mercury µg/L 0.9-5.0 (1.8) <0.5-0.8 (<0.5)   0.1-160 0.1-0.1 0.1-10 
a Values in parentheses indicate the average value found for each parameter. 
b The first number corresponds to the initial value, typically up to 2-3 years. The second number refers to later measurements.
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The basic pH of the leachate, above 8 from the early months onwards, is typical of a 

mature landfill, where the waste is quite degraded. However, it does not correspond with 

that observed in the laboratory. Several percolation tests were performed according to 

CEN/TS 14405:2004 and in all cases initial pH values below 7 were obtained, mostly 

around 6.5 (Molleda et al. 2015). This observation agrees with previous findings as in 

Pantini et al. (2015), who detected pH values varying between 6 and 7 in different 

percolation tests with MBT from an Italian plant. This difference may be a consequence 

of the different conditions in the laboratory (higher L/S ratio, 24 hours contact time, etc.). 

However, it could also indicate that some materials used in landfills, such as drainage 

aggregates or soil coverage, alter the composition of the leachate generated. It highlights 

the fact that laboratory results cannot be translated to the field directly. Nevertheless, 

Salati et al. (2013) also found slightly acidic pH in the first months of laboratory tests, 

which simulated landfill conditions in the laboratory with organic waste treated 

aerobically for 28 days, but pH stabilized at above 7 when the acid concentration in the 

leachate decreased. Robinson et al. (2005), in turn, also found basic pH in all MBT 

landfills studied, with values of 7.9 where the waste had undergone a pretreatment similar 

to that of Meruelo, and even higher than 8, where the waste had received a higher degree 

of pretreatment. 

High concentrations of dissolved solids (DS), organic compounds (COD, BOD, TOC) 

and especially ammonia nitrogen show that the waste is not yet stabilized. Conversely, 

although a general downward trend over time is detected, there were notable variations 

due to dilution during rain events. 

Both measured DS and EC, with a mean value of 46.8 mS/cm, are within the range of the 

typical values for conventional landfills with untreated waste. 

EC is also in the order of the values pointed out by Münnich et al. (2011) in an 

experimental MBT waste cell, but well above the values found by other authors. It is for 

example more than twice the values measured by Siddiqui et al. (2012) in their 

Consolidating Anaerobic Reactors (CAR) tests with two types of MBT, where the less 

stable waste, subjected to recirculation, peaked at 20 mS/cm. This large difference can be 

attributed in part to the effect of several dilutions, since Siddiqui et al. (2012) worked 

with L/S ratios of 2 L/kg, whereas in this study the cell only reached 0.11 L/kg at the end 

of the experimental period. As shown in Figure 2, after the first few months, when the 

highest values are maintained, conductivity decreases as the waste is washed. 

Fellner et al. (2009) revealed that, as a rule, EC is directly related to the concentration of 

chlorides (Cl) in leachates. These authors studied an old conventional waste landfill since 

its opening in 1987, and in the early years they obtained maximum Cl values of 5,000 

mg/L, that is, less than half the maximum concentrations in this work (13,500 mg/L). As 

a reference, Robinson et al. (2005) suggested up to 8,000 mg Cl/L for MBT waste 

leachate with a low degree of composting, which is close to the noted value.  

In relation to the mass of waste, for the same L/S ratio as this study, Fellner et al. (2009) 

observed a release of 300 mg Cl/kg dry matter (DM) in conventional waste, while in this 

research the ratio is twice that value: 600 mg Cl/kg DM (see Table 3). This difference 

indicates the effect of pretreatment: it makes the degraded compounds readily available 

(facilitating their dissolution when they come into contact with water), to the extent that 
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they appear in the early stages of leachate, increasing the rate of release (doubling it in 

this case). 

The most abundant cations in the collected leachate were sodium (Na), calcium (Ca) and 

magnesium (Mg), with mean concentrations during the study period of 5,326 mg/L, 180 

mg/L and 163 mg/L respectively. This order of abundance coincides with the one of 

Robinson et al. (2005), who noted values of 1,250 mg/L, 329 mg/L and 104 mg/L for Na, 

Ca and Mg in waste after passive windrow composting, and the one by Pantini et al. 

(2015), who observed a release of 5.6 g Ca /kg DM, 3.6 g Na /kg DM and 0.6 g Mg/kg 

DM for an L/S ratio of 10. In the present work, accumulated values reached 0.522 g Na 

/kg DM, 0.013 g Ca/kg DM and 0.015 g Mg/kg DM (Table 3). 

Table 3. Release of contaminants 

PARAMETER UNIT 
Pilot cell Pantini et al. 2015 

L/S 0.11 L/S 10 

pH  9.6-7.9 (8.9) 6.5 

Conductivity mS/cm 67.8-31.5 (46.8)  

Dissolved COD mg/kg DM 2496  

Dissolved TOC mg/kg DM 857 14800 

Chlorides mg/kg DM 602 7300 

NH4-N mg/kg DM 418  

Sulphates mg/kg DM 56  

Calcium mg/kg DM 12.9 5600 

Sodium mg/kg DM 522 3600 

Magnesium mg/kg DM 14.8 600 

Iron mg/kg DM 1.52 60 

Chromium mg/kg DM 0.091 0.76 

Cadmium mg/kg DM 0.005  

Copper mg/kg DM 0.203 6.26 

Zinc mg/kg DM 0.427 38.3 

Lead mg/kg DM 0.038 2.9 

Nickel mg/kg DM 0.177 2.4 

Arsenic mg/kg DM 0.018  

Mercury µg/kg DM 0.057  

 

The concentrations of the metals that were measured (Table 2) are also higher than those 

in other references. The concentrations reached by iron (Fe), copper (Cu), zinc (Zn) and 

nickel (Ni) stand out above the rest. In their work on the leaching of metals in MBT waste 

in laboratory columns, Pantini et al. (2015) obtained maximum release rates (for L/S = 

10 L/kg) of 70 mg/kg DM, 6 mg/kg DM, 45 mg/kg DM and 2.5 mg/kg DM for Fe, Cu, 

Zn and Ni respectively. The values achieved in this research, 1.52 mg Fe/kg DM, 0.20 

mg Cu/kg DM, 0.43 mg Zn/kg DM and 0.18 mg Ni/kg DM, are much lower than both 



 

13 

these and the values the authors obtained for L/S= 0.1 L/kg. These differences can be 

attributed to the fact that the waste tested in the above-mentioned work experienced a 

shorter, although more intense, treatment (28 days with forced aeration, watering and 

daily turning) than the waste studied here, and also to the influence of pH. In their study, 

pH is slightly acidic, which increases the solubility of metals as compared to this study. 

The concentrations of many of the contaminants decreased to less than one-third of the 

initial value after the first nine months, thus showing the washing effect.  

In all measured cations, such as Fe, Ni, Mg and Ca, concentrations also maintained a 

downward trend (Figure 3a). The mass release curves (Figure 3b) show how, in March 

2015, the release of these elements slowed down, coinciding with the increase in pH, 

which exceeded 9 in April of the same year. This effect is especially noticeable in the 

case of Ca, the release of which does not exceed 13 mg/kg DM at the end of the period. 

However, in the laboratory leaching tests, Ca releases of about 2,200 mg/kg DM were 

obtained (data not shown here). This seems to indicate that the low concentrations at the 

end of the monitoring period are influenced by the low solubility of these cations at high 

pH. This effect must be considered in the design of the leachate collection system, since 

the formation of precipitates in these conditions could clog the pipes.  

Decline over time is more pronounced for the organic components (Figure 4), which is 

the result of an active degradation also reflected in the biogas, as described in the next 

section. The measured values of COD (72,000 mg/L), TOC (27,000 mg/L) and BOD 

(16,000 mg/L) initially exceed the ranges of waste with low-medium pretreatment, with 

maximum values of 5,000 mg/L, 2,000 mg/L and 200 mg/L respectively (see Table 2). 

These parameters remain at high levels and even increase during the first weeks and then 

descend drastically when methanization becomes predominant. This causes the reduction 

of BOD concentrations by two orders of magnitude, with final values of 200 mg/L in the 

monitoring period. 

The average concentrations of COD observed in this study are consistent with those 

achieved by Suchowska-Kisielewicz et al. (2013), who reported values of 23,500 mg/L 

during the unstable methanogenic phase. Taking these authors' results into account, the 

stable phase (in which measured COD concentrations were 1,300 mg/L) has not yet been 

reached in this research. 

The TOC concentrations noted in this work coincide with those obtained for low L/S by 

Pantini et al. (2015) in their MBT tests. In the experimental period, the total TOC released, 

857 mg/kg DM, is within the range of that detected by Fellner et al. (2009) for similar 

L/S ratios in a conventional landfill during the acidogenic phase. 

The case of ammonia nitrogen is noteworthy as, despite an initial decrease (see Figure 

4c), it maintains concentrations above those achieved by other authors. Robinson et al. 

(2005), for example, obtained similar concentrations in landfills with fresh organic 

matter, but lower values, from 50 to 1,000 mg NH4-N/L, in leachate generated from waste 

subjected to low-intensity aerobic pretreatment. 

If the evolution of ammonia nitrogen is compared to that of BOD, a slightly smaller drop 

is observed in the first case. This may be the result of a slower release of the compound 

coupled with its permanence in the leachate, since, in contrast to the carbonaceous 

material, nitrogen is not turned into biogas. On another note, there is also agreement on 
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the idea that one of the expected benefits of the biological pretreatment of waste is the 

reduction of the nitrogen pollution load in landfills (Siddiqui et al. 2012). 

The main cause of the high concentrations of ammonia noted at the beginning of the 

monitoring of the cell can be the ammonification of organic nitrogen in the MBT plant, 

leaving a large amount of ammonia nitrogen available. Because the waste does not 

undergo a maturation process that would promote its nitrification, it is released as of the 

moment when waste is dumped. Siddiqui et al. (2012) observed a similar effect, i.e. a 

quick release, in their laboratory study, but they reached NH4-N concentrations only 

slightly above 1,000 mg/L in the least stabilized waste. However, although the L/S ratio 

of 2 L/kg used by these authors was higher than the one in this study, the amounts of 

nitrogen released in their experiments – 850 and 390 mg/kg DM for each of the 

mechanically-biologically pretreated samples of waste – are close to those obtained here: 

420 mg/kg DM. In their study with old conventional waste, Fellner et al. (2009) achieved 

lower releases, below 150 mg/kg DM of NH4-N with L/S ratios similar to those in this 

research. As these authors pointed out, these large differences are affected by the nature 

of the waste, by the distribution of the water flow, which, not being homogeneous, 

determines the actual L/S ratio in the landfill, and by the moisture at different points, 

which also modifies biological rates. 

Comparison with the landfill 

The leachate from the cell has significantly higher concentrations than those from the 

landfill in which it is located (Table 2). The reason for this is twofold. First, the landfill 

has a much larger area exposed to rain, which facilitates greater dilution. Furthermore, 

the landfill is older than the cell, since it began operation in 2011, and therefore the waste, 

which also includes a non-pretreated conventional urban waste fraction, has undergone a 

longer stabilization process. The average concentrations of various inorganic parameters 

in the landfill leachate remain between 10% and 30% of the values measured in the cell 

leachate. Exceptions are Ca, whose mean concentration in the landfill leachate is 80% 

that of the cell leachate (147 mg/L versus 180 mg/L), and Cu, with a concentration of 5% 

of that of the cell leachate (0.12 mg/L versus 2.14 mg/L). The slight difference in Ca 

concentrations is explained by the effect of pH on its solubility. The reduction of Ca 

solubility is significantly higher in the cell leachate, as pH values above 9 have been 

measured, compared to a maximum of 8.6 in the landfill leachate. 

On a different note, Cu is one of the metals that is most affected by complexation 

processes with organic compounds. In addition, complexation of Cu increases 

dramatically with pH, leading to the highest overall migration velocities for Cu at high 

pH values (Christensen et al. 2001). This could explain the great difference between Cu 

concentrations in the leachate of the cell and of the landfill, since no significant 

differences were identified with regard to the Cu content between the waste dumped in 

the landfill and the material in the cell. 

As regards organic matter (COD, BOD), there is a greater difference between the average 

values. As shown in Figure 4a, b, during the first months of degradation concentrations 

in the cell are very high, but immediately they are reduced to values similar to those in 

the overall landfill. This indicates the rapid initial stabilization of organic waste. 



 

15 

All this reveals that the waste in the cell contributes to leachate pollution in a similar way 

to the rest of the landfill and underlines the possible influence of the pH of the leachate, 

as it seems to modify its content. 

 

Instrumentation 

Gases 

Figure 5 shows the composition of the gas collected in the samplers located at different 

heights at point 1, within the cell. Similar trends were recorded at the other points (data 

not shown), except for the points resting on the bottom, which were filled with water from 

April 2015 onwards and, hence, from then on did not allow gas extraction. 

Gas composition is similar at all levels. The CH4 concentration exceeds that of CO2 in the 

same month (July 2014) as the cell is closed, which reveals that methanogenesis has 

already been established. Hence, in this type of landfills waste should be covered early 

and, where appropriate, gas collection equipment should be installed in coordination with 

the advance of the working face.  

The CH4/CO2 ratio (slightly below 60/40) remains within the usual range of fresh waste 

landfills in the methanogenic phase.  

Figure 5b presents the measured concentrations of H2S and H2. In April 2015 the portable 

measuring equipment GA2000 was replaced by the GA5000 model. The first had an 

upper detection limit of 500 ppm for H2S and could not measure hydrogen, while the 

detection limit of the second one is 5,000 ppm and is capable of detecting hydrogen up to 

1,000 ppm. For this reason H2 concentrations only appear at the end of the graphs, and 

values of H2S above 500 ppm prior to 15 April 2015 are not included. Despite a clear 

downward trend in the concentration of H2S, a definite trend cannot be identified in H2. 

The stratification of concentrations, in keeping with the density of each compound, is 

noteworthy in both cases. H2S concentration varies, exceeding 1,500 ppm at the lower 

level, 1,000 ppm at the intermediate one, and not reaching 50 ppm at the top level. These 

concentrations surpass the odour threshold of the compound, estimated to be between 

0.02 and 0.13 ppm but are well below those measured in construction and demolition 

(C&D) debris landfills, with values up to 12,000 ppm (Lee et al. 2006). H2 showed 

maximum concentrations of approximately 50, 100 and 500 ppm at the lower, middle and 

upper levels, respectively.  

Other parameters 

Regarding settlement, monitoring data were used to estimate an average settlement in the 

cell of 4 cm (1% of the thickness of the cell) during the first months of operation, without 

any overload on top of the waste cell. 

Figure 6 shows the temperature records of the PT100 probes in contact with the waste at 

different depths at points 2 and 4 during the first months of follow-up, compared to the 

ambient temperature in the landfill. 

The rejects from the refining treatment are taken to the landfill immediately after MBT, 

in which temperatures above 60°C are reached. This explains the high temperatures 

recorded since the construction of the pilot cell, with an initial increase favoured by 
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aerobic conditions existing at the beginning (Yeşiller et al. 2005). Nevertheless, while 

thermometers located at the bottom remained at high values, the rest record a continuous 

drop in temperature, caused by the influence of the contour. This effect is more evident 

at points 3 (not shown here) and 4 because they are closer to the perimeter of the cell in 

contact with air (the rest are confined between landfill waste). In an actual facility, this 

contour effect will have less influence, due to the greater isolation favoured by a larger 

surface and a higher burial depth. 

These high temperatures may be an operational advantage for this type of landfills. 

Several authors have observed that the optimal range for the conditions of degradation in 

landfills is around 30 to 45°C (Zhao et al. 2016). For example, when modifying operating 

practices at the landfill (intermediate coverage, layer heights, etc.), high temperatures can 

be promoted to accelerate degradation. Relevant effects that should be tackled in this case 

would be the increase of gaseous emissions including organic volatile compounds or 

nitrogen oxides, enhanced by high temperatures, and the impact on the geomembrane 

durability (Bouazza et al. 2011). In addition temperatures would have to be mitigated in 

case of fire risk. 

 

 

 

CONCLUSIONS 

 

Some field results on the behaviour of a landfill for rejects of MBT are presented in this 

paper. The study includes the first stages in the life of the landfill (18 months). Instrument 

monitoring and a detailed follow-up have allowed useful information to be obtained with 

implications for the short-term operation of facilities which receive this kind of waste.  

It has been proved that biological pretreatment does not stabilize the organic fraction 

completely in this case. The waste studied has been subjected to a low-intensity 

fermentation treatment without undergoing a maturation process. This pretreatment 

leaves a significant amount of contaminants in the waste, and thus available to be swept 

by the landfill leachate. 

As for organic matter in the leachate (COD, BOD, TOC), the concentrations that have 

been measured throughout the research are similar to those noted by other authors who 

studied little-stabilized waste. Nevertheless, at the beginning of the dumping, they exceed 

the reference ranges which some of them propose for waste that has undergone low-to-

medium degree pretreatment. The NH4-N concentrations stand out and can be compared 

to those measured in fresh waste. pH values seem to have influenced concentrations of 

some pollutants in the leachate. The washing of contaminants occurs quickly and 

concentrations are therefore reduced below one-third of the initial values in less than 9 

months. With regard to gas, a rapid onset of methanogenic conditions (in less than one 

month) has been observed. The quick pollutant release means a decline in the long-term 

remaining pollution, which is in fact the main reason for the pretreatment.  

From the obtained information, several proposals for the management of this type of 

landfill can be derived. First, pretreatment brings about an important reduction in volume, 

which will extend the useful life of the landfill. Another consideration is that, if 

regulations regarding emissions from landfills were highly restrictive, a biological 
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treatment like the one studied here should be intensified, to further stabilize the residue. 

Otherwise, the design and operation of the landfills for this MBT waste must be adjusted 

to its pollution potential.  

The dramatic change in the characteristics of the leachate during the first months modifies 

the ideal treatment conditions for decontamination. This implies that initially the leachate 

treatment could incorporate a biological treatment to reduce the high concentrations of 

organic pollution including, from the beginning stages, biological or physicochemical 

processes to remove nitrogen. After the first landfill stages, the treatment must be adapted 

to less biodegradable contaminants, with lower but still high ammonia nitrogen 

concentration. 

If the intention is to use the remaining gas potential, the installation of gas collection 

equipment in coordination with the advance of the working face should be considered. In 

any case, it is important to cover waste early in order to control emissions. 

Finally, the high temperature of the reject dumped, which could even be promoted 

through operating practices such as intermediate coverage, can favour rapid degradation 

conditions. However, some drawbacks such as a potential increase in gaseous emissions 

or possible impacts on the liner must be taken into account. 
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Figure 1. Scheme of the pilot-scale cell 



 

22 

 

Figure 2. Evolution of conductivity and pH in the leachate with the L/S ratio 
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Figure 3. Evolution a) and accumulated liberation b) of Ca, Mg, Fe and Ni in the 

leachate 
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Figure  4. Evolution of a) COD, b) BOD and c) NH4-N in the leachate 
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Figure 5. Evolution of the concentration of a) CH4 and CO2 and b) H2S and H2 in 

the biogas within the cell 
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Figure 6. Evolution of the temperature inside the cell 
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