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Abstract  
 

Morphine and related opioids are the mainstay of analgesic treatment, especially in 

patients suffering chronic pain. Besides their antinociceptive effects they may also 

exhibit anxiolytic-like properties that could contribute to pain relief. The 

pharmacological manipulation of the serotonergic system may not only modulate pain 

transmission and processing but also other behavioral effects of opioids. The present 

study aimed to analyze the effect of the concurrent treatment with citalopram, a 

selective serotonin reuptake inhibitor, on the antinociceptive, locomotor and anxiety-

related effects induced by acute and subchronic administration of morphine in mice. 

Citalopram (15 mg/Kg) enhanced the acute antinociceptive effects of morphine when 

concurrently administered as evidenced by a two-fold increase in the ED50 for the 

antinociceptive effect of morphine in the hot-plate test.  Chronic studies also revealed 

that concurrent citalopram treatment (15 mg/Kg) delayed the development of 

tolerance to the thermal antinociceptive effects of morphine. Additionally, morphine-

induced hyperlocomotion was potentiated by citalopram as assessed in the open-field 

test and in the spontaneous activity recording in the home cage, a behavioural 

outcome to which tolerance or desensitization was not developed. Interestingly, 

chronic administration of both drugs promoted an anxiolytic effect as evidenced by 

the increased central activity in the open field test. Future investigations on this 

pharmacological interaction, such as the possible translational research in clinics, 

might have consequences in future strategies for the therapeutic management of pain.  
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1. Introduction 
 

Pain modulation by opioids is intricately regulated by other neurotransmitter systems, 

essentially monoamines such as noradrenalin and serotonin. Both monoamines are 

generated in specific neurons allocated in discrete nuclei from the midbrain and brain 

stem which descending axonal projections reach those areas of the spinal cord 

involved in the transmission and processing of pain signals through different 

ascending nociception pathways (Millan, 2002; Ossipov et al., 2010). In this sense, 

the potentiation of monoamine neurotransmission by non-selective reuptake inhibitors 

such as tricyclic antidepressants (TCA) has been described as an effective therapeutic 

indication for the treatment of chronic pain either when used alone or in combination 

with other opioid analgesic drugs (Dharmshaktu et al., 2012; Knotkova and 

Pappagallo, 2007; Patetsos and Horjales-Araujo, 2016). Nociception studies 

conducted with experimentation animals have also described an antinociceptive effect 

of either non-selective monoamine as serotonin reuptake inhibitors, such as 

citalopram, on its own (Fasmer et al. , 1989, Gatch et al. , 1998), or as effective 

adjuvants to enhance the analgesic properties of some opioids compounds (Gatch et 

al., 1998, Larsen and Christensen, 1982, Larsen and Hyttel, 1985, Larson and 

Takemori, 1977, Sugrue, 1979). In addition, previous investigations carried out with 

rats assessed for thermal nociception described an increase of the analgesic effect 

together with a delay of the expression of morphine tolerance when this drug was co-

administered with either amitriptyline or venlafaxine, both of them 

noradrenaline/serotonin reuptake inhibitors (Ozdemir et al. , 2012) and also with 

fluoxetine, a serotonin selective reuptake inhibitor (Ozdemir et al. , 2011). These 

results further confirmed previous observations that pointed out serotonin as an 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 
 

essential element in the prevention of morphine tolerance upon sustained treatment. 

Moreover, it has been described that administration of 5-hydroxytryptophan, a 

precursor of serotonin, prior to morphine decreases the occurrence of tolerance to this 

opiate in mice (Contreras et al., 1973). Similarly, a more recent report demonstrated 

that the combination of morphine with fenfluramine attenuates the development of 

tolerance in rats chronically treated with morphine (Arends et al., 1998). On the other 

hand, preclinical and clinical studies have reported the modulatory role of opioidergic 

system in anxiety (Colasanti et al., 2011), a behavioral feature dependent on the 

serotonergic tone. In this regard, opioid agonists, especially morphine, have been 

shown to exhibit anxiolytic-like actions (Glover and Davis, 2008) that may also 

contribute to pain relief. Interestingly, the effect of the concomitant administration of 

serotonergic drugs upon these anxiolytic actions of morphine has not been addressed 

yet.  

Therefore, the aim of the present work is to further examine and characterize the 

effect of citalopram on morphine-induced antinociception in C57BL6 mice submitted 

to the hot-plate thermal test when acutely administered in terms of potentiation of the 

opiate response together with the modulation of the development of morphine 

tolerance after chronic treatment. Moreover, changes in other behavioral responses 

such as locomotion as well as exploratory and anxiety-related behaviors evoked by 

morphine alone and combined with citalopram were also evaluated by the open field 

test.  

 

2. Materials and Methods 

2.1. Drugs 
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Morphine sulphate was supplied by Alcaliber S.A. (Madrid, Spain) and citalopram 

hydrobromide was generously gifted by H. Lundbeck A/S (Copenhagen, Denmark). 

 

2.2. Animals and experimental groups   

Experiments were conducted with 2–3-month old male C57BL/6 mice weighing 25–

30 g. All procedures were approved by the Animal Care Committee of the University 

of Cantabria and according to the Spanish legislation (RD 53/2013) and the European 

Communities Council Directive (2010/63/UE) on “Protection of Animals Used in 

Experimental and Other Scientific Purposes”. Food and water were given ad libitum. 

Development of tolerance experiments were conducted with four experimental groups 

according to the drug treatment, i.e., vehicle, morphine, citalopram and morphine plus 

citalopram, each of them comprised by 10 mice. Three independent experiments were 

completed (120 mice in total). Dose-response curves to determine the ED50 of 

morphine and morphine plus citalopram were carried out with seven dose groups 

including 3-4 animals per group. These experiments were independently performed 

five times (125 mice in total).  

 

2.3. Nociception assays 

Hot plate nociception test was carried out with a BIO-CHP apparatus (Bioseb, 

France). Animals were placed on a surface at 55 °C and the latency time for reaction, 

defined as paw-licking or jumping, was counted. After reaction, mice were removed 

immediately from the hot surface. A cut-off time of 30 sec was considered throughout 

all the assays. Each animal was submitted to two consecutive tests 2 min apart and the 

mean of both determinations was considered as the final result which was expressed 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

6 
 

either as hot-plate latency in seconds or as percentage of maximum possible effect 

(%MPE) and according to the following formula: 

 

     
                             

                             
       

 

All drugs were diluted in a saline solution (0.15 M NaCl) and administered via the 

intraperitoneal route. For development of tolerance assays, drugs were administered at 

9:00 a.m. and 5:30 p.m during 7 days at the following doses per injection: morphine 

30 mg/kg, citalopram 15 mg/kg, morphine plus citalopram were co-administered at 

their respective doses and vehicle group was injected with an equivalent volume of 

saline solution. Nociception test was conducted on a daily basis 45 min after the first 

injection (9:00 a.m.). The day before starting this experimental schedule, all the 

animals were subjected to the tests in absence of drug administration in order to 

evaluate their basal response. Dose response experiments to discern the ED50 of 

morphine administered alone or concomitantly with citalopram (15 mg/kg) were 

performed by acute injections of morphine at the following doses: 5, 10, 15, 20, 25, 

30 and 50 mg/kg. ED50 calculation was done by non-lineal regression using the 

GraphPad Prism Software (GraphPad, San Diego, CA, USA) according to the 

following equation Y = 100/(1+10
(logEC50-X)

). 

 

2.4. Actimetry 

Mice spontaneous home-cage activity was evaluated with the Acti-System II device 

(Panlab, Spain), which detects changes produced in a magnetic field generated by the 
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animal movement. Animal activity was recorded during 1 hour. 

 

2.5. Open field test 

The open field apparatus was a brightly lit (350 lx) white wooden box 

(50 cm × 50 cm × 30 cm) with white floor and luminescent walls. Mice were released 

in the center of the apparatus for 5 min, and behavior was video-tracked by a 

computerized system (Any-maze Video-Tracking software, Stoelting Co., U.S.A.). 

Total distance travelled and time spent in the center area (30 cm × 30 cm) were 

considered for analysis. The test was conducted with those animals submitted to the 

development of tolerance schedule 2 h and 30 min after the first injection (9:00 a.m.) 

on day 1 and 7. 

 

2.6. Statistical analysis 

The statistical analyses were performed using Student's t-test, one-way or two-way 

ANOVA where appropriate. When effects of independent variables (dose, time), or 

interactions were significant, two-way ANOVA analysis was followed by Tukey's 

multiple comparisons post-hoc test. The type of statistical analysis is indicated in the 

results/discussion section and in the figure legends. The level of significance was set 

at p < 0.05. Graph editing and statistical analyses were performed using the GraphPad 

Prism Software (GraphPad, San Diego, CA, USA). 

 

3. Results  

3.1. Antinociceptive potentiation 

In order to determine the degree of morphine analgesic effect on thermal nociception, 
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mice were administered with different doses of this opioid agonist, ranging from 10 to 

50 mg/kg, and subsequently submitted to hot-plate test evaluation. The hot plate test 

is a thermal nociception assay that contemplates two behavioral components, i.e. 

mouse paw licking and jumping, resulting from the supraspinal integration of 

different neural processes (Le Bars et al., 2001).  Response measurements, considered 

as the reaction time of the first of any of those behavioral elements, were taken at 15 

min intervals during 2 hours. The graphical plot of these results (Figure 1A) reveals 

an evident dose response effect of morphine on thermal nociception that was 

confirmed by statistical analysis (two-way ANOVA for dose variable F(4,15)  = 8.832, 

p < 0.005); in this sense, morphine administered at 10 mg/kg resulted completely 

ineffective, compared to vehicle,  in terms of thermal antinociception whereas the 

maximal response, arbitrarily established at 30 sec to avoid animal tissue damage, 

was achieved at the highest doses, i.e. 40 and 50 mg/kg.  Regarding the time course of 

morphine antinociceptive effect (two-way ANOVA for time variable F(8,120) = 16.93, 

p < 0.0001), all the effective doses reached their maximal response between 45 and 60 

min after injection (Tukey´s multiple comparison tests P < 0.001) (Figure 1A). 

Equivalent experiments were conducted, combining various doses of morphine with 

citalopram administered at 15 mg/kg (Figure 1B). In this case we decided to use a 

lower range of morphine doses, from 5 to 20 mg/kg, because it was observed in 

previous pilot tests a substantial potentiation of the morphine antinociceptive effect 

when injected in combination with citalopram. The confirmation of this potentiation 

is evident in data shown in Figure 1B, where the lowest morphine dose (5 mg/kg) 

evoked a robust antinociceptive reaction compared to mice only treated with 

citalopram, whereas doses ranging from 10 to 20 mg/kg already achieved 30 sec of 
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response latency. When comparing the time course of the antinociceptive effect after 

morphine injection, responses observed with the combination of both drugs appears to 

be less sustained than the equivalent obtained when morphine was administered alone 

(Figure 1A and 1B), with the exception of the morphine highest doses in combination 

with citalopram, 15 and 20 mg/kg, where responses are more stable across the time 

after reaching the maximal value between 45 and 60 min (two-way ANOVA for time 

variable F(8,120) = 21.20, p < 0.0001). This fluctuation observed in the antinociceptive 

response throughout time is reflected by the absence of statistical significance when 

comparing the different doses (two-way ANOVA for dose variable F(4,15)  = 1.368, p = 

0.2917). According to these results, we designated 45 min as the time interval after 

drug administration before nociception evaluation in the following experiments. 
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Figure 1. Time course of morphine antinociceptive effect evaluated by hot-plate test.  
Data in graphs represent different responses measured as the latency to appear thermal nociceptive 

reaction in mice treated either with different doses of morphine alone (A) or in combination with 

citalopram at 15 mg/kg (B). Insets indicate the different doses of morphine used in each treatment. 

Each point represents mean ± SEM (n = 4 mice). 
 

Next, morphine dose-response experiments to determine the extent of citalopram 

enhancement in thermal antinociception assays were carried out by acutely treating 

animals with a range of increasing doses of morphine from 5 to 50 mg/kg, either 

solely or in combination with citalopram at 15 mg/kg. Comparison of curves 

corresponding to both experimental conditions in a single graph (Figure 2) reveals a 

robust leftward shift of the curve obtained with animals treated with the combination 

of morphine plus citalopram, indicating the gain in potency of morphine when co-

administered with citalopram. Non-lineal regression analysis of sigmoid curves from 

independent experiments resulted in a ED50 = 24.50 ± 1.31 (mean ± SEM; n = 5 

experiments) for morphine that was significantly larger (t-student (8) = 4.329, p = 

0.0025) than the equivalent value obtained in morphine plus citalopram experiments, 

i.e. ED50 = 13.49 ± 2.18 (mean ± SEM; n = 5 experiments). 
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Figure 2.  Evaluation of morphine dose-response effect on thermal nociception.   
Data represented as % MPE were obtained from mice acutely treated with different doses of morphine 

alone (filled symbols) or in combination with citalopram at 15 mg/kg (opened symbols) and submitted 

to hot-plate test. Each point represents mean ± SEM (n = 3-4 mice) 
 

3.2. Development of tolerance. 

In order to induce morphine tolerance to antinociception in the hot plate test, mice 

were chronically treated with morphine (30 mg/kg), citalopram (15 mg/kg) or 

concurrently with morphine plus citalopram by injecting them twice daily during 

seven days as described in the Methods section. Thermal nociception was evaluated 

every day 45 min after the first drug injection and results from one representative 

experiment expressed as the percentage of maximum possible effect (%MPE) are 

shown in Figure 3.  

 

 

Figure 3. Induction of morphine tolerance to thermal antinociception evaluated by hot-plate test.  
Data expressed as % MPE were obtained from mice treated chronically during 7 days with morphine 

(30 mg/Kg), citalopram (15mg/Kg), morphine plus citalopram and vehicle. Nociception was assessed in 

a daily basis during the treatment period.  * p < 0.01, ** p < 0.001 and *** p < 0.0001 vs vehicle group. 

♯♯♯ p < 0.0001 vs morphine group. +++ p < 0.0001 vs citalopram group (Tukey's multiple comparisons 

post-hoc test). Each point represents mean ± SEM (n = 10 mice). 
 

The two-way ANOVA of this data resulted significant when considering either the 
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time variable (F(6,120) = 42.34, p < 0.0001), the group treatment variable (F(3,35) = 

13.98, p < 0.0001) or the interaction between both variables (F(18,120) = 14.67, p < 

0.0001). Similarly as observed in prior acute treatments, animals treated with 

morphine at this dose and evaluated on the day 1 presented an increase in the reaction 

time of some 50 % of the maximal response and significantly different from the 

reaction evoked by the group treated with vehicle (Post-hoc test p < 0.001). This 

effect was completely absent on the second day of treatment and not significantly 

different to the response observed for the vehicle group during the following 5 days 

demonstrating, therefore, a rapid development of morphine tolerance in mice to this 

type of thermal nociceptive stimulus. In relation to citalopram treatment, the time 

course curve presented a profile comparable to that observed with morphine (Figure 

3), i.e., the acute administration on day 1 resulted in an antinociceptive response of 

some 50 % of the maximal response that was followed by values not different from 

the vehicle group during the next 6 days. Further actimetry experiments were 

conducted to evaluate the spontaneous activity of mice in their home cages 1 hour 

after drug administration in order to verify that the increment in locomotion observed 

in our experiments was due to the animal exposition to a novel environment.  

Actimetry tests (Supplemental Figure 1) resulted in a significant hyperlocomotion 

effect in animals treated either with morphine alone or in combination with 

citalopram (two-way ANOVA for treatment variable F(3,48) = 225.5, p < 0.0001). In 

contrast, treatment with only citalopram resulted in values significantly lower to those 

ones observed in groups treated with morphine (Post-hoc test for curve comparison, p 

< 0.0001) and not different to the vehicle control group.  

As expected, the combination of morphine plus citalopram evoked the highest 
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antinociceptive reaction on the first day of treatment (Figure 3). In fact, this response 

was about two fold larger than the one observed with each of these drugs individually 

administered  (Figure 3, day 1) suggesting the summation of their effects in the final 

response.  Conversely, morphine plus citalopram reached an antinociceptive response 

of some 90% on day 2 regardless the lack of effect of each drug when separately used 

at this time point (Figure 3, day 2) ruling out any assumption that considers a final 

accumulative effect upon concurrent administration. This difference, although at a 

lesser but significant extent, was still detected on the third day delaying the 

manifestation of tolerance to the analgesic effect of morphine co-administered with 

citalopram until the day 4 of treatment (Figure 3).  

 

3.3. Actimetry evaluation. 

Further actimetry experiments were conducted to evaluate the spontaneous activity of 

mice in their home cages 1 hour after drug administration in order to verify that the 

increment in locomotion observed in our experiments was due to the animal 

exposition to a novel environment.  Actimetry tests (Figure 4) resulted in a significant 

hyperlocomotion effect in animals treated either with morphine alone or in 

combination with citalopram (two-way ANOVA for treatment variable F(3,48) = 225.5, 

p < 0.0001). In contrast, treatment with only citalopram resulted in values 

significantly lower to those ones observed in groups treated with morphine (Post-hoc 

test for curve comparison, p < 0.0001) and not different to the vehicle control group. 
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Figure4. Evaluation of mice spontaneous activity. Mice actimetry measurements were conducted in a 

daily basis in their habitual home cages 1 hour after treatment with morphine (30 mg/Kg), citalopram 

(15 mg/Kg), morphine plus citalopram and vehicle. 
 

3.4. Open field test assessment. 

Mice assessed for thermal nociception in experiments of morphine development of 

tolerance were also evaluated in the open field test on days 1 and 7 by recording their 

behavior within the apparatus during 5 min. Two parameters were taken into account 

when analyzing the final results, i.e., locomotor activity as total distance and central 

activity as time spent in central area. In good agreement with actimetry results, 

locomotor hyperactivity was also detected on the open field test in mice administered 

with morphine alone or in combination with citalopram (two-way ANOVA for 

treatment variable F(3,58) = 38.94,  p < 0.0001).  Moreover, posthoc analysis revealed a 

potentiation of morphine-induced hyperlocomotion by citalopram that persisted after 

7 days of treatment (p < 0.0001 morphine plus citalopram versus morphine alone on 

days 1 and 7) (Figure 5A). Regarding central activity, the combined treatment of 

morphine plus citalopram induced a significant anxiolytic effect as evidenced by an 

increase in this parameter, particularly on day 7 (two-way ANOVA for interaction 

F(3,49) = 3.377,  p < 0.0255 and  time variable F(3,49) = 6.456,  p < 0.0143 ) (Figure 4B).  
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Discussion 

Early reports already described the augmentation of morphine antinociceptive effects 

in experimentation animals when citalopram was simultaneously administered. In this 

regard, hot plate nociception assays conducted with rats determined 10 mg/kg as the 

minimum dose of citalopram required for a significant increase in reaction times of 

morphine analgesia (Sugrue, 1979) and, interestingly, this potentiation was selective 

for morphine since no equivalent effects were observed with methadone and 

pethidine. Nevertheless, this was contradicted by later results also obtained with rats 

evaluated for thermal nociception by hot plate test (Larsen and Hyttel, 1985). The 

Figure 5.  Behavioural effects of morphine, 

citalopram and their coadministration in the open-

field test.   
Mice were administered with morphine (30 mg/kg), 

citalopram (15 mg/kg), morphine plus citalopram and 

vehicle. Locomotor activity (total distance) (A) and 

central activity (time in the center area) (B) were 

evaluated after drug administration during 5 min at days 

1 and 7. * p < 0.05, ** p < 0.01 and  *** p < 0.001 vs 

respective vehicle group; # p 0.05 < and ## p< 0.01 vs 

respective morphine group (Tukey's multiple 

comparisons post-hoc test). Each bar represents mean ± 

SEM (n = 10 mice). 
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potentiation of morphine analgesia by citalopram observed in the present work 

confirmed previous results in rats assessed in hot plate test and in mice evaluated in 

grid shock assays (Larsen and Christensen, 1982) although a precise analgesic 

potency of morphine in terms of ED50 was not previously resolved.  On the other hand, 

a more recent publication reported results in complete disagreement with those 

described herein and by others, since the combination of citalopram and morphine in 

acute and chronic treatments performed in mice not only resulted in a potentiation of 

morphine, but also caused a decrease of its analgesic effect in both tail-flick and hot 

plate tests (Pakulska and Czarnecka, 2001).   

It has been extensively described that chronic treatments with morphine, and other 

opioid compounds, leads to the development of tolerance to the analgesic effects of 

these drugs. The pharmacological basis of this manifestation is related with the 

functionality of mu opioid receptors, the main site of action of morphine, and the 

desensitization processes that take place upon sustained receptor activation (Williams 

et al. , 2013). Furthermore, other adaptive changes within the CNS resulting from the 

continued receptor stimulation by morphine concern alterations in the expression of 

different proteins at the cellular level or modifications in the connectivity of neurons 

involved in the nociception transmission and/or supraespinal integration (Christie, 

2008). The antinociceptive-like effect detected after the acute administration of 

citalopram observed in development of tolerance experiments (Figure 3) has not been 

consistently described in previous investigations regardless its possible participation 

as potentiator of morphine analgesia (Fasmer et al., 1989, Larsen and Christensen, 

1982, Larsen and Hyttel, 1985, Lee et al. , 2012, Sugrue, 1979). The reason for this 

discrepancy probably resides in the nature of the hot-plate nociception assay where 
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experimentation animals are subjected to a novel environment in order to generate 

paw thermal stimulation introducing, consequently, an additional element that might 

interfere the behavioral outcome considered as response, i.e. paw licking and/or 

jumping, and influencing therefore the final interpretation of experimental 

observations. In this sense, it has been previously described in the case of citalopram, 

along with other SSRIs, a specific increase of spontaneous locomotor activity 

mediated by 5-HT1B and 5-HT2A serotonin receptors associated with the exposition of 

animals to a novel environment only observed in mice and not when tested in rats 

(Brocco et al., 2002, Millan et al. , 2003). Interestingly, this induced hyperlocomotion 

completely disappeared when mice treated with a similar dose of citalopram were pre-

exposed to the activity chamber consisting in a white plexiglass cage different to the 

one where the animals were habitually housed. In our case, the hot plate apparatus 

containing plexiglass walls to impede animal evasion could be considered as the new 

environment responsible of the increase in the locomotion activity only observed in 

animals treated with citalopram the first day of treatment (see Supplemental Video 1). 

This generalized hyperactivity would delay the appearance of behavioral signs 

associated to thermal nociception (paw licking and/or jumping) and would augment, 

consequently, the latency of the response. As far as we know, the only previous 

investigation that used the hot-plate test to evaluate antinociceptive properties of 

citalopram in mice also described an 86% increase of the response latency when 

administered at 40 mg/kg while it was ineffective at 10 mg/kg (Fasmer et al., 1989). 

This dose-response effect of citalopram observed in nociception assays was similarly 

described by Brocco et al. in experiments conducted to investigate the 

hyperlocomotion induced by this drug in animals subjected to a novel environment 
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(Brocco et al., 2002). In relation to the effect on the development of morphine 

tolerance when administered in combination with citalopram, the significance found 

in the ANOVA when considering the interaction between both variables, i.e. 

treatment and time, indicates that the slope of the tolerance curve corresponding to 

morphine plus citalopram treatment is distinct from the equivalent one obtained when 

using morphine alone. This result suggests that citalopram, in addition of delaying the 

appearance of tolerance to morphine thermal antinociceptive effect, promotes a 

different mechanism of morphine tolerance development when concurrently used. 

Equivalent results were reported in thermal nociception experiments conducted with 

rats concomitantly treated with morphine plus fenfluramine and evaluated by tail flick 

test (Arends et al., 1998). With this respect, simultaneous acute administration of 

morphine and fenfluramine significantly enhanced the antinociceptive effect of the 

opiate by shifting morphine dose-response curves to the left. Additionally, in chronic 

treatments a delay of tolerance development was also observed when combining both 

drugs in a similar manner as described herein in mice exposed to hot plate test and 

treated with morphine plus citalopram. Pharmacokinetics determinations in this same 

study ruled out the possibility that the attenuation of morphine tolerance development 

facilitated by fenfluramine were due to a higher concentration accompanied by a more 

sustained presence of morphine and/or its active metabolites during the chronic 

treatment suggesting, therefore, that inhibition of morphine tolerance would occur 

mainly due to an interference with the pharmacological mechanism underlying the 

development of tolerance to this opiate (Arends et al., 1998). More recent reports 

have also confirmed this delay of tolerance development to the morphine thermal 

antinociceptive effects in rats co-treated either with amitriptyline, venlafaxine or 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

19 
 

fluoxetine and assessed with tail flick and hot plate tests (Ozdemir et al., 2011, 

Ozdemir et al., 2012). The biological basis underlying this enhancement of morphine 

antinociceptive potency along with the delay of tolerance development by serotonin 

reuptake inhibition is an issue that remains to be elucidated. Previous results excluded 

any direct effect promoted by SSRIs that may influence the affinity of morphine for 

opioid receptors (Hynes et al., 1985) or the functional properties of mu opioid 

receptors evaluated by [
35

S]GTPγS binding autoradiography upon DAMGO 

stimulation in rat brain (Hesketh et al. , 2008). Other investigations consisting in the 

inhibition of the enhancement of morphine effects by using antagonist compounds, 

i.e. mianserin and methysergide, suggested the participation of 5-HT2 receptor 

subtypes in these processes (Gatch et al., 1998, Lee et al., 2012). At this respect, we 

have previously described an augmentation of morphine potency in [
35

S]GTPγS 

binding assays using membranes from cells heterologously co-expressing human mu 

opioid (MOP) and 5-HT2A receptors when cells were pretreated with serotonin 

(Lopez-Gimenez et al. , 2008); intriguingly, this enhancement of morphine EC50 was 

not paralleled by DAMGO in equivalent experiments. Morphine is not capable to 

induce MOP receptor internalization upon its activation in several heterologous and 

native tissues at difference of what is observed with other agonist compounds (for a 

review on this topic see (Lopez-Gimenez and Milligan, 2010)). It has been largely 

hypothesized that morphine functional deficiency in terms of MOP receptor 

endocytosis might be involved in the molecular basis of the development of tolerance 

after sustained treatments (Berger and Whistler, 2010, Whistler, 2012). Moreover, we 

also described in these same cells that co-activation of 5-HT2A receptors facilitated the 

endocytosis of MOP receptors upon morphine treatment similarly as we later 
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described in an analogous experimental model expressing 5-HT2C receptors instead 

(Campa et al., 2015, Lopez-Gimenez et al., 2008). Although rather speculative in 

terms of translating in vitro results obtained from heterologous systems to native or 

physiological models, these results may suggest future approaches to further explore 

the biological mechanisms implicated in the improvement of morphine analgesia by 

enhancing serotonergic neurotransmission. Furthermore and according to a recent 

publication (Brenchat et al., 2011), additional possibilities should be taken into 

account in terms of considering other serotonin receptor subtypes, such as 5-HT7, that 

could mediate the action of the serotonin remaining in the synaptic cleft resulting 

from SSRI treatment. 

The open field test is a behavioral paradigm widely used to evaluate locomotor 

activity and anxiety levels in rodents. When mice are exposed to this new and 

challenging environment they are naturally inclined to thigmotaxis which is 

evidenced as the movement of the animal away from the center and towards the 

peripheral zone of the open field and closer to the limiting walls. In this sense, such 

behavior has been considered as an index of timidity (Walsh and Cummins, 1976), 

and it is assumed to be an indicator of animal fear/anxiety state. Contrarily, those 

animals that spent more time in the central region of the field are considered as less 

fearful or anxious than those ones that prefer the perimeter area (Stanford, 2007). 

Results obtained with mice treated with SSRI in anxiety behavioral tests present a 

dual component, i.e., acute administration of some SSRI induces anxiogenic effects 

(Birkett et al., 2011, Mombereau et al., 2010) whereas repeated treatment leads to an 

anxiolytic response dependent on CREB function (Mombereau et al., 2010). In the 

present study, conducted with C57BL/6J mice and regarding central activity in the 
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open field tests, we do not observe any of these effects either in acute as in subchronic 

citalopram treatments. However, we detected an anxiolytic response upon sustained 

citalopram and morphine co-treatment that may be explained due to an additive effect 

of both drugs in terms of augmentation of serotonergic transmission. In this sense, 

previous neurochemical studies demonstrated an increase of extracellular serotonin in 

rodent brain after morphine administration (Tao and Auerbach, 1994). These 

anxiolytic-like properties observed after sustained citalopram and morphine co-

treatment may hold clinical significance since chronic pain is usually associated with 

depression and anxiety disorders (Huyser and Parker, 1999, McWilliams et al., 2003). 

Early investigations already described an excitatory effect elicited by morphine in rats 

that was not affected by tolerance development after chronic treatment (Babbini and 

Davis, 1972). Further studies conducted with mice characterized other behavioral 

traits in response to morphine such as Straub sign, i.e. contraction of the sacro-

coccygeus dorsalis muscle with protrusion of the perineum and elevation of the tail, 

extension rigidity of the hind legs accompanied by increased motor activity and 

animal running in circles in their cages (Shuster et al., 1975). An equivalent sterotypia 

was detected in mice from our study submitted to morphine treatment (See 

Supplemental Video). In particular, mouse strain C57BL/6 presents a considerably 

higher running response when compared to other strains (Oliverio and Castellano, 

1974, Shuster et al., 1975) and, at difference to what happens in relation to tolerance 

to the analgesic effects of morphine, this locomotion response presented sensitization 

after sustained treatment. Although the negative correlation between running and 

analgesia has been reproduced in different laboratories and mouse strains, some 

discrepancies appeared in terms of development of sensitization or tolerance to the 
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running response (Oliverio and Castellano, 1974). In the present study morphine 

administration the first day of treatment evoked a locomotor response significantly 

higher than animals treated either with vehicle or citalopram. That hyperlocomotion 

remained at equivalent levels after 7 days of treatment, excluding any episode of 

sensitization or development of tolerance to this response in our case. As previously 

described (Popik, 1999), citalopram presented no effects on locomotor activity in 

mice. However, a significant potentiation of the hyperlocomotion effect caused by 

morphine was observed when both drugs were concurrently administered either on 

day 1 as on day 7 of treatment. A possible explanation to the augmentation of 

locomotion upon morphine treatment, that considers a neurochemical mechanism 

mediated by the enhancement of dopamine neurotransmission, was proposed after 

microdialysis studies in rats (Di Chiara and Imperato, 1988). However, later 

investigations on the relationship between morphine induced changes in locomotor 

activity and mesolimbic dopamine release conducted with three different mouse 

strains, including C57BL/6, found no correlation between these two variables, i.e. 

locomotion and dopamine release, in any of the considered strains (Murphy et al., 

2001). Previous results concerning the effect of drugs facilitating serotonergic 

transmission on the locomotion enhancement promoted by morphine treatment are 

also in contradiction with our present observations.  In this sense, chronic treatments 

combining fluoxetine and morphine in rats resulted in attenuation of the locomotor 

stimulating effects of morphine (Sills and Fletcher, 1997). Similarly, fluvoxamine 

reduced morphine-induced hyperlocomotion in mice in a dose dependent manner in 

parallel to the potentiation of its antinociceptive effects (Ise et al., 2001). This 

disparity on locomotion effects could be due to the different chemical nature of the 
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SSRIs used in the different studies. Further investigations in the future should 

elucidate the reason for these discrepancies. 

In conclusion, in the present work we have fully characterized the interaction between 

citalopram and morphine in terms of functional response in a thermal nociception test 

and on behavioral responses. Citalopram enhanced the antinociceptive effects of 

morphine when concurrently administered in mice in two ways, i.e. by increasing its 

pharmacological potency and by attenuating the development of tolerance in 

sustained treatments. Additionally, hyperlocomotion induced by morphine is also 

potentiated by citalopram although no signs of tolerance or sensitization were 

observed in relation to this behavior. Interestingly, we firstly described that the 

combination of both drugs promotes an anxiolytic effect that is clearly evidenced in 

central activity measurements in the open field test after subchronic treatments. 

Future investigations on this pharmacological interaction, such as the possible 

translational research in clinics, might have consequences in future strategies for the 

therapeutic management of pain.  
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