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Resumen

El presente documento forma parte del último curso del Grado en Físicas. El objetivo general de
este trabajo es reforzar algunos conocimientos adquiridos durante el grado.

El objetivo específico de este trabajo era estudiar tres mecanismos de transición metal a
aislante: la transición de Mott a través del hamiltoniano de Hubbard, la transición de Peierls
debida a dimerización y deformaciones elásticas de átomos y la transición de Anderson, causada
por impurezas en los materiales. Solo se ha podido estudiar la transición de Mott debido a que
se han obtenido resultados inesperados dependiendo de la dimensionalidad del problema. En
principio, se esperaba obtener una transición de Mott independientemente de si el sistema de
estudio era 1D, 2D o 3D, sin embargo esta transición no se obtiene para problemas 1D que son los
estudiados en este trabajo. Finalmente, se han reproducido dos cadenas lineales, una ferromagnética
y otra antiferromagnética, con estados 1s en cada sitio de red, dando información detallada de las
bandas electrónicas y las densidades de estado. Después, ambas cadenas se han caracterizado bajo
diferentes condiciones iniciales. Las simulaciones se han realizado a través de un código basado en
segundos principios según el modelo de enlace fuerte.

Además, se ha incluido en el presente trabajo otra transición llamada localización dinámica.
Esta modificación en el proyecto es debida a la concesión de una beca para realizar una estancia en
la Universidad de Brown. El trabajo relizado durante la estancia debía ser incluido en el trabajo de
fin de grado. La transición debida a localización dinámica aparece cuando se reproduce el modelo
de enlace fuerte con campo eléctrico dependiente del tiempo. Dependiendo de cuales sean los
valores de intensidad y frecuencia del campo eléctrico, se puede obtener un material aislante.





Abstract

This document is part from the last course of the degree in Physics. The general aim of this work is
to reinforce the knowledges acquired during the degree.

The specific goal of this work was to study three mechanism for transitions metal-to-insulator:
the Mott transition through the Hubbard hamiltonian, the Peierls transition due to dimerization of
atoms and elastic deformations and the Anderson transition caused by the presence of impurities.
Only the Mott transition has been reproduced due to the unexpected results in relation with the
dimensionality of the problem. Initially, a Mott transition was expected independently of having
a 1D, 2D or 3D systems, but this transition is not observed in 1D problems which are solved
here. This behavior has been analyzed in depth so it took more time than firstly planned. Finally,
simulations of a ferromagnetic and antiferromagnetic linear chains with only a 1s state per lattice
site have been done giving a detailed information of the shape of its electronic bands and density of
states. Then, both systems have been characterized under different initial conditions. Simulations
have been solved with a simple second-principle method based on tight-binding model.

Moreover, other transition was added to this document called dynamical localization. Such
modification in this project arise from the concession of a scholarship to spend two moths at Brown
University. The work done in this stance should be part of this undergraduate thesis. Dynamical
localization transition is caused by the introduction of a time-dependent electric field into a tight-
binding model. An insulator emerges for certain values of the intensity and frequency of the electric
field.

Keywords: tight-binding model, Hubbard model, Mott transition, second-principle methods,
time-dependent electric-field, dynamical localization.
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Chapter 1

Introduction

Nowadays many properties of materials are directly obtained from the fundamental equations to
provide new insights into real problems in physics, chemistry and material science. Electronic
structure calculations are becoming tools used by both experimentals an theorists to understand
characteristic properties of matter. These calculations could be solved with different computational
methods which include some approaches, e.g. the Born-Oppenheimer approximation, in order to
be able to solve huge equations with a reasonable computational cost. A first-principles method
is one which does not make assumptions or use empirical model or parameter fitting to solve the
fundamental equations. A first-principles-based, or second-principles, is a method that permits
large-scale materials simulations with a modest computational cost because some approximations
or parameter fitting are done. This methods are usually iterative methods where the density of
electrons of each level of energy is guessed in the first step.

1.1 First-principle methods

Although in this work no first-principle methods are used, it is convenient and useful to know
which schemes these methods are based on and which are their limitations.

Let’s start from the Schrödinguer equation. If one wants to reproduce the electronic structure of
a system where nucleus and electrons are involved, for a non-relativistic scheme, the Schrödinguer
equation must be solved. However, this equation is very difficult and it can only solved ana-
lytically for a two particle system, the H2 molecule. Far from N = 2, for a very few particles,
could be solved numerically. For systems where many particles are enrolled, a set of "accepted"
approximations should be done, keeping the method as first-principles. Typical approaches are the
Born-Oppenheimer approximation for decoupling the movement of the electrons and nucleus, the
density functional theory to treat the electron-electron interactions, pseudopotentials to treat the
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nuclei + core electrons, basis set to expand the eigenstates of the hamiltonian and supercells to deal
with periodic systems.

However, sometimes, these approximations are not enough to reproduce experiments, for
example, because are reproduced at ambient temperature, under applied time-dependent external
field, out of equilibrium, etc. These conditions cause the system not to be under periodic conditions
so, to be able to reproduce its behavior, many particles should be included explicitly in the calculus
and, even computationally, its extremely cost. In this case, second-principle methods must be used.

1.2 Second-principle methods

In this work, a second-principles method is used to solve two widely known problems: the tight-
binding model and the Hubbard model. For the simulations of this first two chapters, a code called
SCALE-UP was used.

The aim of second-principles methods is to parametrize some difficult interactions between
electrons given by huge integrals in first-principles methods. Through parametrization, bigger
systems can be reproduced with second-principles methods. The procedure followed in a real work
should include a simulation of the material with some method based in first-principles from where
the values of these integrals are obtained. Then these values are translated to second-principles.

In this work different systems under different values of two parameters have been studied, so
they are not given by first-principles. These two parameters are the hopping integral, g , and the
coulomb interaction, U . Moreover the density of states, ns

l with l a given lattice site and s each
spin flavor, is also changed. The value of ns

l does not come from first-principles but is calculated
on each step of iteration. In Appendix B, a more detailed description of the iteration steps can be
consulted.

1.3 Structure of this work

This work include three main chapters:

1. In Chapter 2 a tight binding model is reproduced for three different systems: a 1D, 2D and 3D
systems with only a s state in each lattice site. Here, only the hopping parameter g appears,
so it is shown how are the characteristics of electronic bands and density of states depending
on this value.

2. In Chapter 3 Hubbard model is applied to a linear chain. The hamiltonian which governs this
model depends not only on the hopping parameter g but also on the Coulomb parameter U .
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Both parameters are studied under different filled of the bands, i.e. changing the number of
density of electrons on each orbital of the unit cell.

3. Finally, in Chapter 4 a tight-binding model is performed with an electric field. In this case,
no study of different values of g is done, but a transition from metal to an insulator material
is reproduced depending on the values of the intensity of the electric field. In this chapter non
first-principles neither second-principles codes have been needed, but an analytic formula
accomplished.





Chapter 2

Tight-binding model

Tight-binding model is a theory developed by Bloch [3] in 1928, and possibly was the first theory
that described the behavior of electrons in a crystal. The term "tight-binding" refers to highly
localized atomic states, whereas it has taken different meanings [2.3]. There are some cases where
tight-binding model has relevant role in electronic structure:

1. Of all the methods, perhaps tight-binding model provides the simplest understanding of the
fundamental features of electronic bands.

2. Empirical tight-binding methods can provide accurate, useful descriptions of electronic bands
and total energies. In this approach, one assumes a form for the hamiltonian and overlap
matrix elements without specifying anything of the orbitals except their symmetry.

3. Local orbitals can be used as a basis to carry out a full self-consistent solution of independent-
particle equations.

So with a simple tight-binding method we are able to study electronic bands, total energies and
density of states for any system. In order to accomplish this objective it is necessary to solve the
time-independent Schrödinger equation

Ĥy j~k(~r) = e j(~k)y j~k(~r), (2.1)

where j is a discrete index that labels the different bands and~k is a vector of the reciprocal lattice
in the first Brillouin zone and both characterizes the wavefunction y j~k(~r).

Therefore, it is necessary to define the characteristics of the wavefunction y j~k(~r). From now on,
let us assume that we will deal with crystalline solids, understanding by that a periodic and ordered
structure that can be characterized by a periodic, infinite repetition of a given unit cell in the three
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dimensions of real space, according to the prescription given by three lattice vectors. In this kind
of systems, the Bloch theorem applies: the eigenfunctions y j~k of a Hamiltonian that is periodic can
be written as the product of a plane wave times a function with the periodicity of the lattice

y j~k(~r) = ei~k·~ru j~k(~r) / u j~k(~r+~T ) = u j~k(~r), (2.2)

where ~T is the translation vector which reproduces the periodicity of the lattice.

As u j~k(~r) is periodic in the lattice, it has to be defined following the Fourier series for periodic
functions

u j~k(~r) = Â
~g

c j~k~gei~g·~r, (2.3)

where~g are wavevectors of the reciprocal lattice. Replacing the Eq. (2.3) in Eq. (2.2) it is easy to
see that

y j~k(~r) = Â
~g

c j~k~gei(~g+~k)·~r. (2.4)

As a corolary of this theorem, it sets how the y j~k functions transform under translations given
by the translation vector ~T

y j~k(~r+~T ) = ei~k·~T y j~k(~r). (2.5)

2.1 The secular equation

Let’s us consider a periodic crystal made up of a periodic repetition of atoms of a given unit cell.
The atoms in a unit cell are localized at positions~tk,i, where~tk,i is the position of the i = 1, . . . ,nk

atoms of the atomic species k (see Fig. 2.1a). In the solid, an atom is localized in position ~RI

where I runs over all positions of the atoms. This periodic repetition allows to refer the atoms to
the equivalent in the unit cell plus a translation vector (see Fig. 2.1b).

We try to obtain the crystal eigenstates of a hamiltonian in a periodic potential using a set of
local orbital basis fa(~r�~RI), each associated with each atom of the unit cell. It is important to
highlight that a might run over all the atomic orbitals for each atom of the unit cell (1s, 2s, 2p,
3d,. . .) (see Fig. 2.1c) but in practice we only include in the simulations the atomic orbitals that
participate in the description of the states at the energy window of interest. For this purpose, an
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assumption of the tight-binding model is done: close to each lattice point, the crystal Hamiltonian
Ĥ can be approximated by the Hamiltonian of a single atom Ĥat , so Eq.(2.6) is transformed into

Ĥaty j~k(~r) = e j(~k)y j~k(~r), (2.6)

In order to simplify the notation, we will let µ denote both a and the site I, so that µ runs
from 1 to Nbasis, where Nbasis is the total number of atomic orbitals retained in the basis set in a
unit cell. With this new notation, the atomic orbital can also be written as fµ(~r�~Rµ). Taking into
account that the periodic repetition of the unit cell lets us to represent any position of the solid
just referring it as the position of the atom in the unit cell translated a vector ~T , the composite
index {k, i,a ! µ} allows the entire basis to be specified by fµ

h
~r�

⇣
~tµ +~T

⌘i
. The change of

notation is clarified in Fig. 2.1d. The same atomic orbital fµ
h
~r�

⇣
~tµ +~T

⌘i
is defined for every

atom of the same type in the periodically repeated material and is localized on it but very small
a few lattice spacing away. Since the eigenfunctions must comply with the Bloch theorem, it is
sensible to define a basis set that comply also with the bloch theorem. For a given~k-point in the
first Brillouin zone, it is defined

fµ~k(~r) = Aµ~k Â
~T

ei~k·~T fµ(~r�~tµ �~T ), (2.7)

where~tµ is the position of the atom within the unit cell to which orbital fµ belongs, and Aµ~k is a
normalization factor which is demonstrated to be equal to 1p

N
on appendix A.2.

As it is known, a good approximation of the Bloch eigenfunctions is provided by a linear
combination of atomic orbitals so

y j~k(~r)⇡ Fµ~k(~r) = Â
µ

c jµ(~k)fµ~k(~r). (2.8)

Due to this expansion, in many textbooks the tight-binding approach is known as the linear
combination of atomic orbitals (LCAO) approach. So the problem is now to solve the coefficients
of expansion c jµ(~k) and the energies e j(~k).

Replacing the expansion of the eigenfunction in the one-particle Schrödinger equation, it arrives
to

Â
µ

c jµ(~k)Ĥfµ~k(~r) = e j(~k)Â
µ

c jµ(~k)fµ~k(~r). (2.9)

Multiplying at the left by f⇤
µ~k
(~r) and integrating all over the space

Â
µ

c jµ(~k)
Z

allspace
f⇤

µ~k(~r)Ĥfµ~k(~r)d~r = e j(~k)Â
µ

c jµ(~k)
Z

allspace
f⇤

µ~k(~r)fµ~k(~r)d~r, (2.10)
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(a) Nomenclature to refer to the position of the atoms in the unit cell.

(b) Nomenclature to refer to the position any atom in the solid.

(c) Nomenclature to refer to the atomic orbitals of any atom.

(d) Nomenclature with composite index.

Fig. 2.1 Nomenclature to refer to the position of the atoms in a unit cell (a), in any position of the
crystal (b), o the orbitals of any atom in the solid (c) and with the composite index which allows the
entire basis to be referred with only one index (d). The example is done for 2 types of atoms called
"a" and "b", with one atom of type "a" and two of type "b", supposing only one orbital per atom.
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This expression can be rewritten as

Â
µ

c jµ(~k)Hn ,µ(~k) = e j(~k)Â
µ

c jµ(~k)Sn ,µ(~k). (2.11)

Transposing all the terms to the left hand side in Eq. (2.11),

Â
µ

⇣
Hn ,µ(~k)� e j(~k)Sn ,µ(~k)

⌘
c jµ(~k) = 0. (2.12)

Where Hn ,µ are the so called hamiltonian matrix elements and Sn ,µ are the overlap matrix
elements in a basis of~k-dependent Bloch functions. This equation corresponds to Eq. (14.7) of Ref.
[12] and it is know as the secular equation.

In the next section it is specified how to obtain the hamiltonian and overlap matrix.

2.2 Hamiltonian and overlap matrix elements

2.2.1 Hamiltonian matrix elements

The matrix elements of the hamiltonian with basis functions fµ~k(~r) and fn~k0 (~r) are given by

hfµ~k(~r)|H|fn~k0 (~r)i= A⇤
µ~k Â

~T

e�i~k·~T
Z

all space
d~rf⇤

µ(~r�~tµ �~T )H

 
An~k0 Â

~T 0
ei~k

0 ·~T 0
fn(~r�~tn �~T

0
)

!

= A⇤
µ~kAn~k0 Â

~T

 

Â
~T 0

ei
⇣
~k
0 ·~T 0�~k·~T

⌘ Z

all space
d~rf⇤

µ(~r�~tµ �~T )Hfn(~r�~tn �~T
0
)

!

(2.13)

In the sum in brackets, the translation vector ~T is fixed. We can therefore make the following
change of variables in the integral~r

0
=~r�~T ,

hfµ~k(~r)|H|fn~k0 (~r)i= A⇤
µ~kAn~k0 Â

~T

 

Â
~T 0

ei
⇣
~k
0 ·~T 0�~k·~T

⌘ Z

all space
d~r

0
f⇤

µ(~r
0
+~T �~tµ �~T )Hfn(~r

0
+~T �~tn �~T

0
)

!

= A⇤
µ~kAn~k0 Â

~T

 

Â
~T 0

ei
⇣
~k
0 ·~T 0�~k·~T

⌘ Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)Hfn

h
~r
0 �~tn �

⇣
~T

0 �~T
⌘i!

(2.14)
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Now, making the change in variables ~T 0 �~T = ~T
00
,

hfµ~k(~r)|H|fn~k0 (~r)i= A⇤
µ~kAn~k0 Â

~T

 

Â
~T 00

ei
⇣
~k
0 ·
⇣
~T
00
+~T
⌘
�~k·~T

⌘ Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)Hfn(~r

0 �~tn �~T
00
)

!

= A⇤
µ~kAn~k0

"

Â
~T

ei
⇣
~k
0�~k
⌘
·~T
# 

Â
~T 00

ei~k
0 ·~T 00 Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)Hfn(~r

0 �~tn �~T
00
)

!

= Nd~k,~k0A
⇤
µ~kAn~k0

 

Â
~T 00

ei~k
0 ·~T 00 Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)Hfn(~r

0 �~tn �~T
00
)

!
,

(2.15)

where we have used Eq. (2.16) [see Ref. [2], Eq. (F.4)]

Â
~T

ei~k·~T = Nd~k,~0, (2.16)

where ~T runs through the N sites of the Bravais lattice in Eq. (2.16).

Now, denoting the matrix element of the hamiltonian of a orbital µ in the unit cell at the origin
and an orbital n in the cell labeled by translation vector ~T

00
,

Hµ,n(~T
00
) =

Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)Hfn(~r

0 �~tn �~T
00
), (2.17)

Eq. (2.15) transforms into

hfµ(~k)|H|fn(~k
0
)i= Nd~k,~k0A

⇤
µ~kAn~k0

 

Â
~T 00

ei~k
0 ·~T 00

Hµ,n(~T
00
)

!
(2.18)

Finally, assuming that the normalization factors of the Bloch orbitals are 1p
N

, we finally arrive to

Hµ,n(~k) = hfµ(~k)|H|fn(~k)i= Â
~T

ei~k·~T Hµ,n(~T ), (2.19)

that corresponds to Eq. (14.4) of Ref. [12].

2.2.2 Overlap matrix elements

By analogy, the matrix elements of the overlap matrix between Bloch basis orbitals fµ(~k) and
fn(~k

0
) are also diagonal in~k and equals
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Sµ,n(~k) = hfµ(~k)|fn(~k)i= Â
~T

ei~k·~T Sµ,n(~T ). (2.20)

This corresponds with Eq. (14.5) of Ref. [12].

2.3 Tight-binding bands

As an example of the calculations which can be carried out with the analysis presented along this
chapter, the most simple lattices 1D, that represents a linear chain; 2D, that represents a square
lattice; and 3D, that represents a cubic crystal, have been studied. For them, it is supposed to have
only one s orbital per atom in the unit cell each on site I in Bravais lattice, with no overlaps between
them, with only one electron per atom, identical atoms in each node and interaction only with first
neighbors.

All of this simplifications means that we will obtain only one band corresponding to s band
half-occupied, with the Fermi energy EF at the middle of the bands.The simplification of taking into
account only the first neighbors lead us to have non-zero hamiltonian matrix elements hI|Ĥ|I 0 i ⌘�g
only if I and I

0
are nearest neighbors. Moreover, it has been supposed that the on-site term can be

chosen to be zero, h0|Ĥ|0i= 0. The fact of consider zero overlapping between orbitals make the
term Sµ,n(~k) to be zero except when having µ equal to n , that is Sn ,n(~k) = 1. With this conditions
transform Eq. (2.12) into

e(~k) = Hn ,µ(~k) =�g Â
~T

ei~k·~T (2.21)

The only difference between the simulated 1D, 2D and 3D cases is in the number of addends in
Eq. (2.21). For the most complex one, the 3D case, this equation is equal to

e(~k) =�2g[cos(~kxa)+ cos(~kya)+ cos(~kza)] (2.22)

where a is the parameter of the lattice.

The bands obtained for each lattice are illustrated in Fig. 2.2.
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(a) 1D bands (b) 2D bands (c) 3D bands

Fig. 2.2 Tight-binding bands in one (a), two (b) and three (c) dimensional lattice with only an s
state on each site and first neighbors interactions. The figures shows the bands with~k along the
lines between the high-symmetry points.

These simple examples leads to useful insights. In particular, as it can be observed in Fig. 2.2,
the bands are symmetric about e(~k) = 0. In order to clarify this symmetry in Fig. 2.3 the bands in
the 2D case are represented along both directions~kx and~ky against the energy of each state.

Fig. 2.3 Three dimensional tight-binding band in a square lattice with only a s state on each site
and first neighbors interactions.

The same arguments could be applied to the linear chain and the crystal case. As it can be
derived from Eq. (2.22), the bands for the one dimensional problem is a simple cosine bands. The
width of the bands can be found analytically through Eq. (2.22) obtaining a value of 4g .
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This parameter g is the main parameter that characterizes the bands. A larger value of g is
associate with wider bands, larger hopping and then, metallic states. Opposite situation is found for
smaller values of g which means flatter bands and shorter hopping, typical of insulating states.

The density of states (dos) for each case are illustrated in Fig. 2.4.

(a) 1D dos (b) 2D dos (c) 3D dos

Fig. 2.4 Tight-binding bands in one (a), two (b) and three (c) dimensional lattice with only an s
state on each site and first neighbors interactions. The figures shows the bands with~k along the
lines between the high-symmetry points.

These figures highlight the fact that the density of states shows a peak in the energies corre-
sponding to regions of flat bands. Because of that, in Fig. 2.4a appear two peaks corresponding
to the maximum and minimum energies, and in Fig. 2.4b only appear one, corresponding to the
high-symmetry point M. This point has a special property. Since the bands on it curve upward and
downward in different directions, the density of states have a mathematics logarithmic divergence
at e(~k) = 0, although it has been drown with a maximum. This behavior is because in this simply
case we are only considering first neighbors interactions but for second neighbors interactions,
the symmetry of the bands is broken and the divergence disappears (Ref. [12]). For the first case,
shown in Fig. (2.4a), it can be seen that in this two maximums the DOS function decreases out
of the limits of the bands (out of~k =�p

a and~k = p
a ). This is owing to the mathematical way of

representing the density of states but obviously the are no states out of the limits of~k.

Later on, it has been discussed some examples where two atoms per unit cell are needed. In
Fig. 2.5 is shown the electronic s-band for a 1D lattice. As it can be observed, the band is folding
around Bragg planes in k =�p

a and k =�p
a , so it means the double the cell in real space is the

half the cell in reciprocal space, as is widely known.
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Fig. 2.5 One dimensional tight-binding band for a chain lattice with only a s state on each site and
first neighbors interactions and two atoms per unit cell.

2.4 Conclusions

In this introductory chapter the tight-binding model is studied. This simply model reproduces the
structure of the electronic bands of systems only taking into consideration the g parameter which is
related with the kinetic energy of the electrons in a unit cell. It has been shown that for a larger
values of g , metallic states are reproduced, while for shorter values of g the band width is reduced
so an insulating state is approached.

This model is very useful in many cases but combined with some other models it reproduces a
wide variety of solids giving better results.



Chapter 3

The Hubbard model

In the Chapter 2 a simple tight-binding model was studied. This model doesn’t take into account
the spin of the electrons. In this chapter as the spin of the electrons is introduced, the halmiltonian
of the system is the one behind the Hubbard model.

The Hubbard model was independently conceived by Martin Gutzwiller [6], Junjiro Kanamori
[10] and John Hubbard [9] in 1963. The main motivation was the need for a way to tackle
the behavior of correlated electrons in solids. Initially, the model was introduced to provide an
explanation for the itinerant ferromagnetism of transition metals but its relevance go far beyond
that original context.

Technically, the Hubbard model is an extension of the tight-binding model where, as explained
in Chapter 2, the electrons can hop between lattice sites with a probability given by the hopping g .
The movement of these electrons is characterized by their kinetic energy, represented by hopping g .
Hubbard’s hamiltonian features an additional term, introducing an energy amount U for each pair
of electrons occupying the same lattice site representing Coulomb repulsion. Hubbard found the
model to be the simplest that produces both a metallic and an insulating state, depending on the
value of U . For one electron per lattice site, the Mott transition is reproduced. This is a type of
metal-insulator transition that could not be understood in terms of conventional band theory and
the first one discussed in this thesis.

The simplicity of the Hubbard model when written down is deceptive: an exact solution has so
far obtained for the one-dimensional case [4]. Because of that, in this chapter it is only discussed
that one-dimensional case.
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3.1 The Hubbard Hamiltonian

Let’s consider a periodic lattice of atoms in a solid whose positions are fixed and on which the
electrons move. For the sake of simplicity, it is assumed that the atoms do have only an s-symmetry
state on each site of the Bravais lattice. The Hubbard Hamiltonian is formed by two terms. The
first term is the one described by the tight-binding model and is related with the hopping of the
electrons from one site of the lattice to the neighbors. Following the notation of Chapter 2, the
hopping is referred to as g . As g is determined by the overlap of the wavefunctions of a pair of
atoms and they decrease exponentially, it has been only considered the hopping between the first
neighbors.

As Pauli’s Principle indicates and in a model with only one state per site, the maximum number
of electrons per atom is two and they must have different spin. The electrons with opposite spins of
a given state would repeal each other via electrostatic forces. This forces can be quantified by a
Coulomb parameter usually referred to as U , defined as the energy ... to put two electrons opposite
spin in the same atom site. The model doesn’t consider interaction between electrons on different
sites.

Let’s now formalize the construction. Written in second quantization notation, the Hubbard
hamiltonian is given by

H =�g Â
hl,mi,s

c†
ls cms +U Â

l
nl"nl# (3.1)

The first term is the so called hopping integral and it represents the kinetic energy of an electron
of spin s hopping between atoms on site l and m. So c†

l,s is the creation term and represents the
creation of an electron on site l coming from m represented by the annihilation term, cm,s , both of
them with spin s . The notation of hl,mi remarks that hopping is only allowed on adjacent sites.
This hopping will be determined by the overlap of the two wavefunctions. Since the wavefunctions
die off exponentially, the simplification of consider only the first neighbors is reasonable. The
second term is the interaction energy which goes through all sites and adds an energy U if it finds
that the site is doubly occupied. So the term nl" refers to the number of electrons with spin up on
site l, and analogously, nl# refers to the number of electrons with spin down on the same site l. As
it can be deduced, both density of electrons will run from 0 to 1.

Whereas the hopping matrix elements can usually be determined accurately in the framework of
density-functional theory, the effective interaction parameter U is much more difficult to estimate
and is perhaps best fixed by comparing theoretical predictions to experimental results.

Now a more difficult hamiltonian should be studied. The goal of this chapter is to find what is
the state that minimizes the energy given by the hamiltonian of the Eq. (3.1). That state is going to
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be characterized by three parameters: the hopping parameter g , the Hubbard-U and the occupation
nl" and nl#, which is related with the doping with impurities in an experimental set up.

Some hand-waving considerations

Let’s see some hand-waving considerations about each parameter:

1. First of all, as shown in Chapter 2, the larger the g , the larger the hopping, the broader the
band width. In other words, a metallic phase is favored.

2. Secondly, the U penalize the occupation of a site with electrons of different spin. If a given
atom is already occupied with a given density of electrons of a given spin, the electrons
with different spin will feel a repulsion to hop there. Therefore the U inhibits somehow the
hopping and favors localized states.

3. Finally, the effect of having a repulsion strongly depends on the occupation. If the occupation
is lower than half-filled limit, the system could accommodate the electrons in a way that
results in a metallic state. However, if the occupation is greater than the half filled limit, each
site is going to be occupied by density of electrons of both spins, so the final configuration is
governed by the later two parameters.

In conclusion, not only the value of U is important but its relation with the value of g would
determine the equilibrium of the system. Moreover, these two parameters become more significant
depending on the occupation. Half-filling limit seems to be important because a transition from
metal to insulator could emerge. In principle, when U << g a metallic state should be obtained
whereas when U >> g it is expected to have an insulator material as the system approaches the
atomic limit.

Along this chapter, a ferromagnetic and antiferromagnetic linear chains are studied varying
the initial conditions trying many values of U/g , not only for the half-filled limit but for some
other occupations. Further on it is demonstrated that not all systems are stable under some specific
conditions imposed, but some configurations usually have less energy so the system tends to them.

3.2 Shape of the electronic bands and density of states

The first point to take into account is that now the spins up and down could be not degenerated.
This will be reflected both in the electronic bands and density of states. In this section, some aspects
are clarified for a good interpretation of this bands in the examples made in this chapter.
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In the quest for the ground state of the Hubbard hamiltonian described in Eq. (3.1), three
different physical scenarios are considered: a diamagnetic, a ferromagnetic and an antiferromagnetic
configurations.

Diamagnetic configuration

It occurs when the occupation for the up and down state is the same on every site, (Fig. 3.4a). Due
to this symmetry, both the band structure and DOS must be the same for both spin components,
(Fig. 3.1b, Fig. 3.1c). Their shape is the same as in the tight-binding model (Fig. 2.2a, Fig. 2.4a),
but shifted towards more plus energy, due to the Coulomb term Unl"nl#.

Ferromagnetic configuration

It occurs when the occupation for one of the spin channel (majority spin) is larger than the other
(minority spin). The majority spin channel is the same for all the lattice sites, (Fig. 3.1d) up, which
means all the lattice sites are equivalent. Clearly, the introduction of an U is going to add a term
in the energy expression. For the majority spin, the on-site hamiltonian matrix elements in real
space, related with the center of mass of the band, changes from a (with U = 0) to a �2Udn as is
demonstrated on Appendix B (Eq. B.32), calling D"

aa = dn. The same downwards shift is observed
for all the lattice sites. Therefore, the corresponding hamiltonian in reciprocal space for a given
k-point in a linear chain and for the spin up channel, following Appendix B, Eq. B.39, is

h"ab(k) =

 
a �2Udn g(1+ e�i2ka)

g(1+ ei2ka) a �2Udn

!
.

In order to have non-trivial solutions, the determinant | h"ab(k)�E"
n(k) | must be equal to zero,

and this happens when

E"
n(k) = (a �2Udn)±2g cos(ka) (3.2)

For the minority spin the same reasoning holds, with the exception that the center of mass of
the bands moves upwards in energy a quantity a +2Udn as is demonstrated on Appendix B (Eq.
B.40). Then, the energy of the bands for down spin is given by

E#
n(k) = (a +2Udn)±2g cos(ka) (3.3)

in coincidence with the bands drawn in Fig. 3.1e and DOS plotted in Fig. 3.1f.

Looking at Eq. (3.5) and Eq. (3.3) some conclusions can be extracted:
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1. Both spin channel bands moves a rigid shift in relation with the diamagnetic configuration.
In other words, the bands have the same shape but are centered downwards, for majority spin,
and upwards, for minority spin, the same absolute quantity 2Udn. An sketch of the energy
levels is drawn in Fig. 3.1d down.

2. As this shift only depends on the value of U , bands for each spin channel the relative move
between bands is equal to 4Udn.

3. The width of the bands is independent of the value of U but equal to the width of the bands in
a simply tight-binding model. That is, the width is 4g and is the same for both spin channels.

4. Paying attention to the picture of Fig. 3.1d down, as the energy of the majority spin of one
lattice site is the same than the energy of the majority spin of its first neighbors, a metallic
material is expected provided the occupation nl is less than 1. Obviously, the same occurs
for minority spin.

Antiferromagnetic configuration

It is produced when the occupation for the majority spinis the same than the occupation for the
minority spin having not equivalent lattice sites, but opposite situations as in (Fig. 3.1g) up.
Proceeding the same way as in ferromagnetic configuration, the corresponding hamiltonian in
reciprocal space for a given k-point in a linear chain for the spin up channel is

h"ab(k) =

 
a +2Udn g(1+ e�i2ka)

g(1+ ei2ka) a �2Udn

!
,

where the terms are taken from Eq. B.41 of Appendix B. Solving the same determinant than in the
previous case, the energies obtained are given by the expression

E"
n(k) = a ±2g

s

cos2(ka)+
U2dn2

g2 (3.4)

For the minority spin the same steps are followed, but the on-site terms of the hamiltonian in
real space changes to

h#ab(k) =

 
a �2Udn g(1+ e�i2ka)

g(1+ ei2ka) a +2Udn

!

according to Eq. B.42 of Appendix B. Despite having different signs, the symmetry of the
hamiltonian makes the solution to be the same than for spin up. So
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E#
n(k) = a ±2g

s

cos2(ka)+
U2dn2

g2 (3.5)

is also the energy of the band for the minority spin.

Some important characteristics come to light:

1. The energy for the bands of spin up is equal to the bands obtained for spin down. That’s it,
bands are degenerated.

2. There is no a rigid shift. Instead, another shape of the bands is obtained.

3. If the energy is evaluated in the Bragg planes, meaning k = �p
2a and k = p

2a , for both spins is
Es

n = a ± Udn
g , so a gap of energy 2Udn

g is opened in the limits of first Brillouin zone, which
is in agreement with Fig. 3.1h and Fig. 3.1i.

4. The width of the bands depends on U , and for the upper bands, is of the form:

w = 2g

s

1+
U2dn2

g2 �2Udn (3.6)

For the lower bands, this expression only changes its sign, but the absolute value of the width
is obviously the same.

In the view of the fact that the width is proportional to U , one could think that the higher U
the wider the bands, but is exactly the opposite because the first term of Eq. (3.6) increases,
for low values of U , slower than the second term; and for high values of U , at the same
rhythm. Even more the term 2Udn is an asymptote of the function 2g

q
1+ U2dn2

g2 . In Fig.
3.2 a graphical representation of both terms is done. So for a given U , the band width is
exactly the difference between the two drawn lines.

This conclusion is very important as is in agreement with the fact that the higher the repulsion
term, the flatter the bands, the more localized the electrons on its sites and, as a result, the
more insulator material.

5. Paying attention to the picture of Fig. 3.1g down, now the energy of the majority spin of one
lattice site is less than the energy of the majority spin of its first neighbors so, depending on
this penalty in energy, an insulator material is expected independently of the occupation nl .
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(a) Sketch diamagnetic. (b) Bands diamagnetic. (c) DOS diamagnetic.

(d) Sketch ferromagnetic. (e) Bands ferromagnetic. (f) DOS ferromagnetic.

(g) Sketch antiferromagnetic. (h) Bands antiferromagnetic. (i) DOS antiferromagnetic.

Fig. 3.1 Plots of the sketch, bands and DOS for each configuration considered. The first row
belongs to a diamagnetic material, second row to a ferromagnetic material and third row to an
antiferromagnetic material.
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Fig. 3.2 Width of an s state for an antiferromagnetic linear chain. Blue line corresponds to the
first term of Eq. (3.6), and green line with the second term of the same equation. The width is the
difference between the value given by the blue line minus the one of the green line for a given U .

3.3 Ferromagnetic chain

In this section results obtained from the simulation of a ferromagnetic linear chain under different
conditions is summarized. As the importance of the parameters U and g falls to its relation, a
fixed value of g is chosen and is the value of U which has been changed. In this section, only the
half-filling limit is studied.

If a linear chain of equal atoms, only taking into account their s orbital, with electrons with its
spins pointing up is simulated, actually a totally polarized ferromagnetic material is performed. A
simply sketch of the simulated chain appears in Fig. 3.3 and represents the half-filled limit because
there are just enough electrons to have one in each lattice site.

Fig. 3.3 Totally polarized ferromagnetic linear chain for half-filling limit and only a 1s state per
each lattice site

At this point some concept explained before has to be remarked. The Hubbard model reproduces
a repulsive interaction given by U if exists electrons of opposite spin in the same site. When a
1s orbital is studied, a maximum of one entire electron with spin up could stay in each atom and
the same occurs for a spin down electron. Nevertheless, the range for nls , with s =" or #, is
maintained between 0 and 1. A fraction of nls could be interpreted as a fraction of electron is
occupying the atom. When this occurs, one fraction of electron could jump to its neighbor if the
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sum of both fraction of electrons were 1 or less, and no U will be added due to the fact that it is
understood it will complete the rest of the electron until achieve an entire spin.

So for a given starting point of having a 1D ferromagnetic system, now is wanted to know if
this system is stable. A hopping g = 0.5 eV and a value of Hubbard-U of 0.1 eV is written down
in the input file of the SCALE-UP software. After some convergence steps the result is that the
system converges to the one shown in Fig. 3.4a which electronic bands and density of states are
drawn in Fig. 3.4b and Fig. 3.4c, respectively. This figures are essentially the same to the ones that
appear in Fig. 3.1b and Fig. 3.1c, but where the Fermi energy indicates that the material has each
lattice site occupied by n"l = 0.5 and n#l = 0.5.

(a) Sketch diamagnetic. (b) Bands diamagnetic. (c) DOS diamagnetic.

Fig. 3.4 Plots of the sketch, bands and DOS of the most stable system under hopping g = 0.5 EV, U
= 0.1 eV and half-filling limit. Dotted line indicates where Fermi energy is localized.

Taking into consideration the concepts explain on the last section, the electrons could jump
freely. This means that even though a repulsion is acting between electrons in each atom, it is not
enough to overcome the kinetic energy so an antiparallel configuration of spins is favored until half
electron has its spin pointing up and half electron has its spin pointing down.

Some important conclusion is derived from this simulation. For a initial ferromagnetic chain
under hopping and Hubbard-U parameters equals to 0.5 eV and 0.1 eV respectively, it will end up
with a non-magnetic metallic material. So no stable system could be achieved for a ferromagnetic
chain under this specific conditions.

Some other values of U were tried, changing the relation U/g . To achieve this objective, a
value of g = 0.5 remains fixed. On Table 3.1 are summarized different cases simulated.
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Case U /eV g /eV U/g DE = E �E0 /eV Material
1 0.0 0.5 0.0 -1.27308 Diamagnetic
2 0.1 0.5 0.2 -1.27308 Diamagnetic
2 0.2 0.5 0.4 -1.27324 Antiferromagnetic
2 0.5 0.5 1.0 -1.28258 Antiferromagnetic
3 0.6 0.5 1.2 -1.29934 Antiferromagnetic
5 0.8 0.5 1.6 -1.36559 Antiferromagnetic
6 0.9 0.5 1.8 -1.41342 Antiferromagnetic
7 1.0 0.5 2.0 -1.46910 Antiferromagnetic
10 1.5 0.5 3.0 -1.50000 Ferromagnetic insulator
11 2.0 0.5 4.0 -2.00000 Ferromagnetic insulator
12 3.0 0.5 6.0 -3.00000 Ferromagnetic insulator

Table 3.1 Values of U/g simulated for a ferromagnetic chain with one electron per lattice site.

So at U/g = 0.2 eV a transition emerges: from a metallic material to an insulator antiferro-
magnetic material. This transition is the so called Mott transition. This results are partially in
agreement with Ref. [11]. On this reference the same study were done and the conclusion is that
no Mott transition appears for U 6= 0.

Paying attention to the last three converged systems of the table, a so called ferromagnetic
insulator appears. In this case, the U (compared with g) is larger enough to make the electrons
be completely localized that the simulation could not move it to try another configuration less
energetic so all the spins remains up making the linear chain be totally polarized. The electronic
bands, Fig. 3.5a, and DOS, Fig. 3.5b, for each spin flavor are completely separated and a gap
appears. The Fermi energy is located somewhere in the middle of the gap.

(a) Bands FM insulator. (b) DOS FM insulator.

Fig. 3.5 Plots of the sketch, bands and DOS the most stable system under hopping g = 0.5 EV, U =
0.1 eV and half-filling limit. Dotted line indicates where Fermi energy is localized.
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With the next example, this transition obtained with U/g = 3.0 eV is clarified.

3.4 Antiferromagnetic chain

Not only a ferromagnetic linear chain was studied but a totally polarized antiferromagnetic linear
chain also. For this case, each electron with spin up is surrounded by two with spin down and so
on. The same occupation cases are studied for this example. In Fig. 3.6 a sketch of the system to
simulate is drawn, that serves as first step for the self-consistent cycle.

Fig. 3.6 Totally polarized antferromagnetic linear chain for half-filling limit and only a 1s state per
each lattice site.

After running the simulation, the same result as the previous one is obtained: the system will
end up in a diamagnetic system (Fig. 3.5a and Fig. 3.5b). Other values tried with this configuration
are shown on Table 3.2 where are summarized.

Case U /eV g /eV U/g DE = E �E0 /eV Material
1 0.0 0.5 0.0 -1.27308 Diamagnetic
2 0.1 0.5 0.2 -1.27308 Diamagnetic
2 0.2 0.5 0.4 -1.27324 Antiferromagnetic
2 0.5 0.5 1.0 -1.28258 Antiferromagnetic
3 0.6 0.5 1.2 -1.29934 Antiferromagnetic
5 0.8 0.5 1.6 -1.36559 Antiferromagnetic
6 0.9 0.5 1.8 -1.41342 Antiferromagnetic
7 1.0 0.5 2.0 -1.46910 Antiferromagnetic

10 1.5 0.5 3.0 -1.82409 Antiferromagnetic
11 2.0 0.5 4.0 -2.24609 Antiferromagnetic
12 3.0 0.5 6.0 -3.16551 Antiferromagnetic

Table 3.2 Values of U/g simulated for an antiferromagnetic chain.

In Fig. 3.7 values of the energy on Table 3.1 and Table 3.2 are compared. It could be noticed
that the energy is the same up to U/g = 1 eV and then decreases faster for an antiferromagnetic
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linear chain. This is the reason why there is no transition from antiferromagnetic to a ferromagnetic
insulator when a 1D system is simulated: an antiferromagnetic configuration has always less energy
so the nature will tend to this state.

Fig. 3.7 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for ns

l = 0.5.

The conclusion that could be derived from this study is that for half-filling limit, no Mott
transition is found for a 1D system. The reason of this result might be explained from the DOS.
Density of states of 1D systems, shows a divergence in two k-points corresponding with flat bands.
This divergence disappears for 3D systems, as shown in Chapter 1 (Fig. 2.4c)

3.5 Transition diagrams

On the last section a study for two different linear chains in the half-filled limit have been done.
If the same study is repeated for some other occupations trying different values of U/g for each
case, a transition phase diagram can be mapped. In order to be able to draw a diagram with the
converged systems for simulations with 1D ferro and antiferromagnetic linear chains, energies
should be compared for each occupation as was done some lines above. With the comparison of
this representations, one can discern which system is more stable. Analogous representations to
Fig. 3.7 for many other occupations can be consulted in Appendix C.

In Fig. 3.8 is represented the transition phase diagram when starting with a ferromagnetic linear
chain.
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Fig. 3.8 Phase diagram for a simulation started with a totally polarized ferromagnetic linear chain.
D = diamagnetic, AFM = antiferromagnetic and FM TP = ferromagnetic totally polarized.

In Fig. 3.9 is represented the transition phase diagram when starting with an antiferromagnetic
linear chain.

Fig. 3.9 Phase diagram for a simulation started with a totally polarized antiferromagnetic linear
chain. D = diamagnetic, AFM = antiferromagnetic and FM TP = ferromagnetic totally polarized.

Finally, in Fig. 3.10 the transition phase diagram for a linear chain with a 1s orbital in each
lattice site, is mapped.

Something which is very interesting is that for occupations less than ns
l = 0.5, a linear chain

never converges to a ferromagnetic metallic system, but instead, it does to a half-spin metal. All
the converged system labeled with FM TP are systems where the Fermi level crosses only the
majority spin electronic band, below the bottom of the minority spin electronic band. An example
that shows this behavior is represented on Fig. 3.11. However, a Mott transition is achieved for
other configurations different of ns

l = 0.5. The transition emerges where the separation line of the
areas of diamagnetic and antiferromagnetic is allocated. Then, results do not agree with Ref. [4]
where it is said that this transition is typical of the half-filled limit.
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Fig. 3.10 Final phase diagram for a linear chain with only a 1s state per lattice site. D = diamagnetic,
AFM = antiferromagnetic and FM TP = ferromagnetic totally polarized.

Fig. 3.11 Electronic bands for a ferromagnetic totally polarized insulator linear chain with a 1s
state per lattice site. Fermi energy only crosses the majority spin band, making the linear chain to
be a so called half-spin metal.

3.6 Conclusions

In this chapter has been tried to reproduce the Mott transition in a 1D system and essentially
obtaining that this kind of systems do not shows this behavior over values of U/g = 0.1. Transition
diagrams here obtained, might change if a 3D system was studied. Usually, a Mott transition
emerges for nls = 0.5 and 3D systems with partially filled d or f shells (Ref. [1]).



Chapter 4

Tight-binding model under an external
electric field

The study of systems out of equilibrium in condensed matter physics has been highly developed in
last years because it provides rich new insights not available in equilibrium. In equilibrium, strong
electronic correlations bring about a variety of phenomena such as the metal to Mott insulator
transition that studied in Chapter 3. If such system is driven out of equilibrium, physics arises
which remains poorly understood.

The present chapter discuses a tight-binding model under an applied electric field reviewed
together with other systems out of equilibrium by Aoki et. al (Ref. [8]). A theoretical approach to
study strongly correlated many-body systems is called the non-equilibrium dynamical mean-field
theory (DMFT). This technique can be applied to a wide range of problems including arbitrary
electromagnetic driving fields, dissipative and nondissipative systems. Here, a nondissipative
system is studied.

4.1 Time-dependent electric fields

4.1.1 Time-dependent Hamiltonian

The general lattice hamiltonian for non-dissipative models is given by

H(t) =� Â
hl,mi

glm(t)c
†
ls cms +Â

l
H(l)

loc (4.1)

where l and m denote sites and s denote spin labels. The first term is essentially the same as the
tight binding hamiltonian but where the hopping is time dependent. This hopping can include
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time-dependent electromagnetic fields. The second term is a sum of local interactions and single
particle terms, that changes depending on which model is used. For example, for the Hubbard
hamiltonian given by Eq.(3.1), this term corresponds to U Âl nl"nl#.

The model studied and developed introducing an electric field is a tight binding model, which
was studied with constant hopping in Chapter 1. For this case, Eq. (4.1) transforms into

H(t) =� Â
hl,mi

glm(t)c
†
ls cms (4.2)

which corresponds with Eq. (2.21) obtained in Sec. 2.3, but written in second quantization form.
For a single-band model, which also was studied in this work, the Peierls substitution introduces
the vector potential ~A(~r, t) as a phase factor in the hopping matrix elements

gl,m(t) = gl,me
� ie

h̄

~RmR

~Rl

d~r·~A(~r,t)
. (4.3)

Usually the applied field varies only slowly on the atomic scale, so the~r dependence of ~A can
be neglected. For that cases, Eq. (4.3) is transformed into

gl,m(t) = gl,me�
iea
h̄
~A(t) (4.4)

where a is the lattice spacing. So it is easily seen that the hopping is modulated by a phase.
Introducing this result into Eq. (4.2) the Hamiltonian for a tight-binding model in the presence of
an electric field is given by

H(t) =� Â
hl,mi

glme�
iea
h̄
~A(t)c†

ls cms . (4.5)

In order to follow the same notation as the used along this work, it is convenient to transform
operators to momentum space by defining

cis =
1p
N Â

~k

ei~k~Ric~ks (4.6)

where i = l,m for one-dimensional lattice of N sites, kn = 2pn/N for periodic boundary conditions.
For simplicity, a = 1 is assumed and then, Eq. (4.5) is converted into
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H(t) =
�g
N Â

hl,mi
Â
k,k0

(e�
ie
h̄ A(t)e�iklc†

ks eik0mck0s + e
ie
h̄ A(t)e�ik0mc†

k0s eiklcks )

=
�g
N Â

l,s
Â
k,k0

(e�il(k�k0)ei(k0� e
h̄ A(t))c†

ks ck0s + e�il(k0�k)e�i(k0� e
h̄ A(t))c†

k0s cks ). (4.7)

Using the fact that

1
N Â

l
e�il(k�k0) = dk,k0 (4.8)

we end up with

H(t) =�g Â
s

Â
k
(ei(k� e

h̄ A(t))c†
ks cks + e�i(k� e

h̄ A(t))c†
ks cks )

=�g Â
s ,k

c†
ks cks (ei(k� e

h̄ A(t)) + e�i(k� e
h̄ A(t))). (4.9)

This leads to

H(t) = Â
sk

ek(t)nks (4.10)

and

ek(t) =�2g cos(k� e
h̄

A(t)) (4.11)

is the time-dependent dispersion which, for one-dimensional systems, has the form

ek(t) = e(ka� ea
h̄

A(t)) (4.12)

where e(k) is the dispersion for zero field and a is the lattice spacing which was assumed to have a
value of 1 in Eq (4.11), as Aoki et al. has obtained in Eq. (86) of Ref. [8]. Moreover, the quantity
nks is the occupation number for a wavevector k and spin s .
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4.1.2 Floquet matrix

When a quantum system is continuously driven by a time-periodic external force, it may enter
a nonequilibrium steady state in which the overall time dependence of the system is periodic.
A theoretical approach to treat periodically driven states is the Floquet method, originated from
Floquet’s theorem and a temporal analog of Bloch’s theorem for a spatially periodic system.
The advantage of using this method is that, because of the periodicity of external fields, the
time-dependent problem can be converted onto a time-independent eigenvalue problem.

Floquet’s theorem is a mathematical statement about the solution of an ordinary differential
equation of type dx(t)/dt =C(t)x(t) where C(t) are periodic coefficients. Here, this theorem is
applied to the time-dependent Schrödinger equation

i
d
dt

Y(t) = H(t)Y(t) (4.13)

where H(t) is the time-dependent hamiltonian given by Eq. (4.10) and is assumed to be periodic
in time with period T , so dispersion relation given by Eq. (4.11) should also comply. Floquet’s
theorem states that there exists a solution of Eq. (4.13) of the form

Ya(t) = e�ieatua(t) (4.14)

where ua(t) = ua(t +T ) is a periodic function of t, and the real number ea is called the quasienergy
and is unique up to integer multiples of W = 2p/T . If one Fourier expand ua(t) as ua(t) =

Ân e�inWtun
a, with each value un

a called the n-Floquet mode of the Ya(t) state, it is obtained the so
called Floquet matrix whose eigenvalues gives the quasienergy ea. To prove this, solution given by
Eq. (4.14) is introduced into Eq. (4.13)

i[�ieae�ieatua(t)+ e�ieat d
dt

ua(t)] = H(t)e�ieatua(t)

eaua(t)+ i
d
dt

ua(t) = H(t)ua(t). (4.15)

Introducing the Fourier expansion of the periodic function ua(t) and deriving

ea Â
n

e�inWtun
a + i

d
dt Â

n
e�inWtun

a = H(t)Â
n

e�inWtun
a

ea Â
n

e�inWtun
a +Â

n
nWe�inWtun

a = H(t)Â
n

e�inWtun
a. (4.16)

Multiplying both sides by 1
T
R T

0 dteimWt Eq.(4.16) is transformed into
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1
T

Z T

0
dtea Â

n
ei(m�n)Wtun

a +
1
T

Z T

0
dt Â

n
nWei(m�n)Wtun

a =
1
T

Z T

0
dtH(t)Â

n
ei(m�n)Wtun

a

Â
n

eaun
a

1
T

Z T

0
dtei(m�n)Wt +Â

n
nWun

a
1
T

Z T

0
dtei(m�n)Wt = Â

n
un

a
1
T

Z T

0
dtei(m�n)WtH(t). (4.17)

Assuming that
1
T

Z T

0
ei(m�n)Wtdt = dmn

and both substituting into Eq. (4.17)

Â
n

eaun
admn +Â

n
nWun

admn = Â
n

un
aHmn

Â
n
(Hmn �nWdmn)un

a = Â
n

eaun
admn. (4.18)

Rewriting Eq. (4.18) to follow the same notation as in Ref. [8]

Â
n
(Hmn �nWdmn)un

a = eaum
a (4.19)

that corresponds to Eq. (177) of Ref. [8] and where

Hmn =
1
T

Z T

0
ei(m�n)WtH(t) (4.20)

is the Floquet matrix form of the Hamiltonian. Thus the quasienergies ea are the eigenvalues of
the infinite-dimensional Floquet matrix Hmn �nWdmn. To avoid degeneration of ea, the condition
�W/2  ea  W/2 is imposed and, analogously to the first Brillouin zone, this is the so called
first Floquet zone. Thus, as a consequence of the Floquet theorem, the time-dependent differential
equation is transformed into a time-independent problem.

4.2 Tight-binding model in a time-periodic electric field

To solve the problem, only A(t) needs to be defined. On Ref. [8] some results of various problems
are both analyzed from a theoretical and experimental point of view. One of the theoretical studies,
is the effect of time-dependent AC electric fields in correlated systems. The system reproduced in
this chapter is a closed system, in which the total energy and the number of particles are conserved.
The effect of AC fields has been theoretically studied for a noninteracting tight-binding model



34 Tight-binding model under an external electric field

(Dunlap and Kenkre, 1986; Holthaus, 1992) in a time-periodic electric field E(t) = E cos(Wt), for
a one-dimensional problem. Having a vector potential of

A(t) =�E/WsinWt. (4.21)

The model can be reproduced within the Floquet theory exposed on Sec. 4.1. Introducing Eq.
(4.21) on Eq. (4.10) the time-dependent hamiltonian for a 1D system is defined as

H(t) =�2g Â
ks

cos [ka+E/Wsin(Wt)]c†
ks cks . (4.22)

Therefore, the terms of Floquet matrix are given by the solution of

Hmn �nWdmn =
1
T

Z T

0
ei(m�n)Wt(�2g Â

ks
cos [ka+E/Wsin(Wt)]c†

ks cks )�nWdmn. (4.23)

Assuming T = 1 s and a unit for the lattice constant a, written in matrix form, the elements are

Hmn �nWdmn =

0

BBBB@

�2gJ0(A)cosk 2giJ1(A)sink �2gJ2(A)cosk ...

�2giJ1(A)sink �2gJ0(A)cosk�W 2giJ1(A)sink ...

�2gJ2(A)cosk �2giJ1(A)sink �2gJ0(A)cosk�2W ...
...

...
... . . .

1

CCCCA

which was solved in detail in Appendix A.4 and where A = E
W . If we deal with 2D or 3D systems

then, cosk has to be substituted by Âa coska with a = x,y,z. Since n = 0,±1,±2, ... and, hence,
m = 0,±1,±2, ..., could take negative values, it is convenient to express the Floquet matrix in a
symmetric way

Hmn �nWdmn =

0

BBBBBB@

... ... ... ... ...

... �2gJ0(A)cosk�W 2giJ1(A)sink �2gJ2(A)cosk ...

... �2giJ1(A)sink �2gJ0(A)cosk 2giJ1(A)sink ...

... �2gJ2(A)cosk �2giJ1(A)sink �2gJ0(A)cosk+W ...

... ... ... ... ...

1

CCCCCCA
.

It is easy to see that hopping for zeroth-order Bessel function is renormalized by the periodic
driving to an effective hopping that is

ge f f = J0(A)g (4.24)
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in agreement with Eq. (228) of Ref. [8] and where g is the hopping of the tight-binding model.
Since J0 is an oscillating function, the effective hopping vanishes at the so called Bessel zeros.

4.3 Results

Solving Eq. (4.19) an spectrum of quasienergies ea is obtained. Each diagonal element of the
matrix represents the static system with energies moved an absolute value of nW. The n-Floquet
mode is a replica which represents the static system excited because n photons absorbed (if n > 0)
or emitted (if n < 0). The diagonalization of the hamiltonian was done numerically with the help of
the Mathematica software.

As done in some of the examples presented in this work, a value of g = 0.5 is studied. The
values introduced for the electric field was E = 1 N/C and T = 1 s so w = 2p/T = 2p rad/s. This
values are arbitrary so many other values can be tried. In Fig. 4.1 the spectrum of quasienergies for
a three-dimensional Floquet-matrix are plotted so three bands appear. As it can be observed they
have the same cosine shape as in the tight-binding model but, little further on, it is demonstrated
that is modulated by the zeroth-order Bessel function. This figure is in agreement with those of
Ref. [8].

Fig. 4.1 Floquet bands of energy for a system under a periodic electric field which absorbs one
photon, blue line; no photon is absorbed or emitted, green line; and emits one photon, red line.
These bands are made keeping three Floquet modes.

This bands corresponds to energies given by the eigenvalues of the problem. The values of this
matrix were obtained computationally but no analytic expression for this quasienergies has been
derived from the calculus because of its difficulty. However, it seems to depend on more terms than
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J0(A), as the 3 order Floquet matrix depends also on J2(A). That assumption is not in agreement
with Ref. [8], which it is said the quasienergies are exactly

ea(k) =

0

BBBBBBBBBBB@

...

�2gJ0(A)cosk�2W
�2gJ0(A)cosk�W
�2gJ0(A)cosk

�2gJ0(A)cosk+W
�2gJ0(A)cosk+2W

...

1

CCCCCCCCCCCA

. (4.25)

If the first orders of Bessel functions are drawn like in Fig. 4.2, it is easily seen that making
bigger the value of A, an interesting point is coming. That is the first zero of the zeroth-order Bessel
function.

Fig. 4.2 First five Bessel functions.

On that point, J0(A) = 0 but J2(A) has a not negligible value. If it is correctly the assumption
of Ref. [8], and terms belonging other Bessel functions don’t take part in the energy of the system,
the quasienergies vector for 3 Floquet sectors should be given by

ea =

0

B@
�W

0
W

1

CA (4.26)

where the dependence of ea with k is then lost and which means the effective hopping exactly
vanishes for zero Floquet mode making the electrons completely localized on the atoms and then,
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obtaining a transition from metal to insulator material with completely flat bands for that conditions.
As the first zero of the general J0(x) is produced at x = 2.40483, this implies that for E = 1 V/m,
the electric field should have a period of T = 15.11 s. For this values, W = 0.4158 rad/s so the
quasienergies should be

ea =

0

B@
�0.4158

0
0.4158

1

CA . (4.27)

However, software mathematica and also matlab gives the following result

ea =

0

B@
�0.4198

0
0.4198

1

CA (4.28)

values which are a bit larger than expected so it seems to have more contributions than a simple
J0(A). If a more Floquet modes are introduced in the calculus, for example, a 7 order hamiltonian
matrix, the eigenvalues are

ea =

0

BBBBBBBBBBB@

�1.2515
�0.8355
�0.4159

0
0.4159
0.8355
1.2515

1

CCCCCCCCCCCA

(4.29)

where it can be noticed, the values for the first Floquet modes approximates better to the solution
±nW. Many orders were tried and was observed that for orders of Floquet matrix greater than 9,
solution is achieved with an absolute difference with the theoretic value of ±0.000031, which is
not significant. So the larger the Floquet matrix, the more accurate solution and terms like J2(A)
and others, are progressively canceled. Thus, it is feasible to say that quasienergies complies Eq.
(4.25).

This point could also be achieved with a period of T = 1 s but E = 15.11 V/m. In that case, the
value of W2 is the main contribution to the energies of the Floquet modes as W = 2p rad/s whereas
J2(2.40483) will maintain the same low value. So for this case, are again the Floquet’s modes with
bands moved an absolute value of nW the ones which governs the energy of the system, and less
Floquet sectors are needed to reach the solution. In fact, the 3 order Floquet matrix directly gives
the real solution. In this case, the quasienergies are
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ea =

0

B@
�6.3420

0
6.3420

1

CA . (4.30)

So it has been proven that for the first zero of J0(A) a metal to insulator transition emerges
caused by an electric field dependent on time. This effect is known as dynamical localization.

4.4 Conclusions

In this chapter, a simply tight-binding model including an electric field has been studied. When
this electric field is time-dependent, the energies of the system are governed by the Floquet’s
modes. Each Floquet mode corresponds to a photon absorbed or emitted in the process. If a system
emits n photons, then its band energy will be ea = �2gJ0(A)cosk�nW plus some terms which
is demonstrated are contributors that will be canceled, so it is governed by the hopping of the
tight-binding model modulated by the J0(A) Bessel function.

It was also shown how hopping vanishes at some frequencies and intensities of the electric
field. That means, if one simulates a linear chain under the conditions of one of the Bessel zeros,
an insulator material (dynamical localization) will emerge.



Conclusions

To conclude this project, general lines of the observed behavior of the systems studied are here
summarized.

In Chapter 2 a simple tight-binding model was studied. In relation with the hopping parameter
it has been shown its relation with the band width: the more g the wider bands, the metallic states
are favored. Opposite, a low value of g results in flatter bands, typical of insulator materials. The
electronic bands simulated belongs to a 1s state so a cosine shape is reproduced. The analytic
formula for the energies has been obtained and with very simply simulations this shape was
corroborate. At the end of this chapter, simulations with two atoms per unit cell are included and
typical folded bands were drawn.

In Chapter 3 more difficult hamiltonian governs the energy of the system. The dependence of
the ground state of a linear chain with three parameters have been analyzed. This three parameters
are the so called hopping g , Hubbard U and density of states of each spin, n"l and n#l . As the
final system is linked with the relation U/g , various values of this relation were reproduced for
many different occupations. The conclusion of this study is that for half-filling limit and values
of U/g > 0.2, no Mott transition is observed. However, Mott transition is observed for other
occupations and higher vañues of U/g .

In Chapter 4 a similar hamiltonian than in Chapter 1 is used, with the difference of having a
time-dependent hopping, g(t). An analytic expression of the energy for a linear chain was obtained.
The energy of the system is characterized by a hopping modulated by the zero-th order Bessel
function an a series of Floquet modes come out which electronic bands are allocated at energies
moved upwards and downwards a quantity of ±nW where n is the n-th Floquet mode. This modes
responds to energy of excited states where n photons are absorbed (+nW) or emitted (�nW).

Finally, it should be highlighted the fact that this project has been a multidisciplinary work.
Concepts belonging to the quantum physics of solids studied in the degree has been firmed up. This
work also serves as introduction to real computational methods and its approximations, required
to be able to reproduce real materials. As part of this dissertation, Chapter 4 was developed
in collaboration with the Brown University. The concepts learned with the study of the tight-
binding model under an external electric field includes second-quantization formalism widely used
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in quantum mechanics, the usage of Mathemathica software and some mathematical concepts
including Floquet’s theorem. This stance was also full of enriching experiences apart from this
work.
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Appendix A

Demonstrations

A.1 Proof that the basis functions defined in Eq.(2.7) verify the
Bloch theorem

Here it is verified that the basis function defined in Eq. (2.7) complies the property for Bloch
functions shown in Eq. (2.2). With this objective the translation vector ~T in Eq. (2.7) is now called
~T

0
and ~T is the one added to verify the Bloch theorem. With this new notation we are proving the

Bloch theorem in a cell translated ~T
0
from the unit cell.

fµ~k(~r+~T ) = Aµ~k Â
~T 0

ei~k·~T 0
fµ(~r+~T �~tµ �~T

0
)

= Aµ~k Â
~T 0

ei~k·~T 0
fµ
⇣
~r�~tµ � (~T

0 �~T )
⌘
. (A.1)

Now, making the change ~T
00
= ~T

0 �~T (so ~T
0
= ~T

00
+~T ),

fµ~k(~r+~T ) = Aµ~k Â
~T 0

ei~k·~T 0
fµ
⇣
~r�~tµ � (~T

0 �~T )
⌘

(A.2)

= Aµ~k Â
~T 00

ei~k·
⇣
~T
00
+~T
⌘

fµ(~r�~tµ �~T
00
)

= ei~k·~T Aµ~k Â
~T 00

ei~k·~T 00
fµ(~r�~tµ �~T

00
)

= ei~k·~T fµ~k(~r). (A.3)
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A.2 Derivation the factor Aµ~k required for the Bloch basis states
fµ~k(~r) to be normalized.

If we want the Bloch basis states to be normalized, must be comply

hfµ~k(~r)|fµ~k(~r)i= 1, (A.4)

where

hfµ~k(~r)|fµ~k(~r)i=
Z

all space
d~r f⇤

µ~k(~r)fµ~k(~r)

=
Z

all space
d~r

"
A⇤

µ~k Â
~T

e�i~k·~T f⇤
µ(~r�~tµ �~T )

#"
Aµ~k Â

~T 0

ei~k·~T 0
fµ(~r�~tµ �~T 0)

#

= A⇤
µ~kAµ~k Â

~T
Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fµ(~r�~tµ �~T 0). (A.5)

Now, we can distinguish between two different cases:

• If the functions fµ(~r�~tµ �~T ) are orthonormal, Eq. (A.5) transforms into

hfµ~k(~r)|fµ~k(~r)i= A⇤
µ~kAµ~k Â

~T
Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fµ(~r�~tµ �~T 0)

=
���Aµ~k

���
2
Â
~T

Â
~T 0

ei~k·(~T 0�~T )d~T ,~T 0

=
���Aµ~k

���
2
Â
~T

1

=
���Aµ~k

���
2

N = 1, (A.6)

and, therefore
Aµ~k =

1p
N
. (A.7)
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• In the general case, with non orthonormal atomic orbitals, Eq. (A.5) transforms into

hfµ~k(~r)|fµ~k(~r)i= A⇤
µ~kAµ~k Â

~T
Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fµ(~r�~tµ �~T 0)

=
���Aµ~k

���
2
Â
~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fµ(~r�~tµ �~T 0)

!

(A.8)

In the sum in brackets, the translation vector ~T is fixed. We can therefore make the following
change of variables in the integral~r

0
=~r�~T ,

hfµ~k(~r)|fµ~k(~r)i=
���Aµ~k

���
2
Â
~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~r

0
f⇤

µ(~r
0
+~T �~tµ �~T )fµ(~r

0
+~T �~tµ �~T 0)

!

=
���Aµ~k

���
2
Â
~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fµ

h
~r
0 �~tµ �

⇣
~T 0 �~T

⌘i!

(A.9)

Now, making the change in variables ~T 0 �~T = ~T 00,

hfµ~k(~r)|fµ~k(~r)i=
���Aµ~k

���
2
Â
~T

Â
~T 00

ei~k·~T 00
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fµ(~r

0 �~tµ �~T 00)

=
���Aµ~k

���
2

N Â
~T 00

ei~k·~T 00
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fµ(~r

0 �~tµ �~T 00)

=
���Aµ~k

���
2

NSµµ(~k) = 1, (A.10)

where, according to Eq. (14.5) and Eq. (14.2) in Ref. [12], Sµµ(~k) is defined as

Sµµ(~k) = Â
~T

ei~k·~T Sµµ(~T )

= Â
~T

ei~k·~T
Z

all space
d~rf⇤

µ(~r�~tµ)fµ(~r�~tµ �~T ). (A.11)

Therefore, in the general case

Aµ~k =
1

p
N
q

Sµµ(~k)
. (A.12)

Many authors use the tight-binding model under the assumption of an orthogonal basis set, for
instance:
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• Grosso and Pastore Parravicini (page 17 of Ref. [5]): “For simplicity, we assume or-
thonormality of orbitals centered on different atoms; in this case, the Bloch sums are also
orthonormal”.

• Harrison (page 5 of Ref. [7]): “We shall assume that the basis states are orthogonal... In the
interest of conceptual simplicity, overlaps are omitted in the main text, though their effect is
indicated at the few places where they are of consequence".

That is why those authors use 1p
N

as the normalization factor, as can be seen in Eq. (36) of Ref.
[5], or Eq. (3-19) of Ref. [7].

A.3 Proof that the Bloch basis functions are orthonormal if the
orbitals centered in different atoms are orthonormal

If we assume that the orbitals centered in different atoms, given by fµ(~k) and fn(~k) are orthonormal,
the normalization factor of the Bloch basis functions is 1p

N
, as we have seen in Sec. A.2

hfµ~k(~r)|fn~k(~r)i=
1
N Â

~T
Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fn(~r�~tn �~T 0)

=
1
N Â

~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~rf⇤

µ(~r�~tµ �~T )fn(~r�~tn �~T 0)

!
(A.13)

In the sum in brackets, the translation vector ~T is fixed. We can therefore make the following
change of variables in the integral~r

0
=~r�~T ,

hfµ~k(~r)|fn~k(~r)i=
1
N Â

~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~r

0
f⇤

µ(~r
0
+~T �~tµ �~T )fn(~r

0
+~T �~tn �~T 0)

!

=
1
N Â

~T

 

Â
~T 0

ei~k·(~T 0�~T )
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fn

h
~r
0 �~tn �

⇣
~T 0 �~T

⌘i!
(A.14)
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Now, making the change in variables ~T 0 �~T = ~T 00,

hfµ~k(~r)|fn~k(~r)i=
1
N Â

~T
Â
~T 00

ei~k·~T 00
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fn(~r

0 �~tn �~T 00)

=
1
N

N Â
~T 00

ei~k·~T 00
Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fn(~r

0 �~tn �~T 00)

= Â
~T 00

ei~k·~T 00
dµnd~T 000

= dµn , (A.15)

where we have used that the atomic orbitals centered different atoms are orthonormal,

Z

all space
d~r

0
f⇤

µ(~r
0 �~tµ)fn(~r

0 �~tn �~T 00) = dµnd~T 000 (A.16)

A.4 Demonstration of the Floquet matrix Hmn�nWdmn

The Hamiltonian written in terms of Floquet matrix is

Hmn =
1
T

Z T

0
dtei(m�n)Wt(�2g Â

ks
cos [ka+E/Wsin(Wt)]c†

ks cks )

=
�2g

T Â
ks

c†
ks cks

Z T

0
dtei(m�n)Wt cos [ka+E/Wsin(Wt)] (A.17)

Using Euler’s formula for cosine

Hmn =
�g
T Â

ks
c†

ks cks

Z T

0
dtei(m�n)Wt(ei[ka+E/Wsin(Wt)] + e�i[ka+E/Wsin(Wt)])

=
�g
T Â

ks
c†

ks cks

Z T

0
dt(ei[(m�n)Wt+E/Wsin(Wt)]eika + ei[(m�n)Wt�E/Wsin(Wt)]e�ika) (A.18)

Essentially, is the integral which has to be solved, so using Euler’s formula for exponentials
and calling A = E

W , that integral is

I =
Z T

0
dt(ei[(m�n)Wt+Asin(Wt)](cosk+ isink)+ ei[(m�n)Wt�Asin(Wt)](cosk� isink)) (A.19)
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Making a change in variables of the form

Wt = t +p

dt =
1
W

dt

t = 0 ! t =�p
t = T ! t = p

the integral is transformed into

I =
Z p

�p
dt(ei[(m�n)(t+p)+Asin(t+p)](cosk+ isink)+ ei[(m�n)(t+p)�Asin(t+p)](cosk� isink))

=
Z p

�p
dt(ei[(m�n)(t+p)�Asin(t)](cosk+ isink)+ ei[(m�n)(t+p)+Asin(t)](cosk� isink))

=
Z p

�p
dt(ei[(m�n)(t)�Asin(t)]eip(m�n)(cosk+ isink)+ ei[(m�n)(t)+Asin(t)]eip(m�n)(cosk� isink))

=
Z p

�p
dt(ei[(m�n)(t)�Asin(t)]eip(m�n)(cosk+ isink)+ ei[(n�m)(�t)�Asin(�t)]eip(m�n)(cosk� isink))

(A.20)

where in the second step of Eq. (A.20) a change is made due to trigonometrical properties of
the sine, sin(t +p) =�sin(t), and in fourth step the relation sin(t) =�sin(�t) is also used.

As
R p
�p dtei[(n�m)(�t)�Asin(�t)]=

R p
�p dtei[(n�m)(t)�Asin(t)] and Bessel functions are defined as

Jn(x) =
Z p

�p
dte(nt�xsin(t))

it can be concluded that Eq. (A.20) can be expressed as

I = Jm�n(A)eip(m�n)(cosk+ isink)+ Jn�m(A)eip(m�n)(cosk� isink) (A.21)

taking into account the property of Bessel functions Jn�m(A) = (�1)m�nJm�n(A), Eq. (A.21)
can be simplified into

I = Jm�n(A)eip(m�n)[(cosk+ isink)+(�1)m�n(cosk� isink)] (A.22)

Thus Floquet form of the hamiltonian is

Hmn =
�g
T

Jm�n(A)eip(m�n)[(cosk+ isink)+(�1)m�n(cosk� isink)] (A.23)
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where for simplicity creation and annihilation operators have been eliminated, but when sum to
all k is done, it will accomplish the energy of a system.

Then elements of Floquet matrix are given by

Hmn�nWdmn =
�g
T

Jm�n(A)eip(m�n)[(cosk+ isink)+(�1)m�n(cosk� isink)]�nWdmn (A.24)

Finally, depending on the value of m�n Eq. (A.25) could be reduced and expressed into pieces
as

Hmn �nWdmn =
�2g

T
J0(A)cosk�nW i f m = n

Hmn �nWdmn =
�2g

T
J|m�n|(A)cosk i f m�n even

Hmn �nWdmn =
�2g

T
i J|m�n|(A)sink i f m�n > 0 odd

Hmn �nWdmn =
2g
T

i J|m�n|(A)sink i f m�n < 0 odd (A.25)

Taking for simplicity values of g = 1 and T = 1, the matrix form of the Floquet matrix is

Hmn �nWdmn =

0

BBBB@

�2J0(A)cosk�W 2iJ1(A)sink �2J2(A)cosk ...

�2iJ1(A)sink �2J0(A)cosk�2W 2iJ1(A)sink ...

�2J2(A)cosk �2iJ1(A)sink �2J0(A)cosk�3W ...
...

...
... . . .

1

CCCCA





Appendix B

Computational equations

B.1 Tight-binding equations

The simulations with SCALE UP to calculate the energy of the system have been made following a
method described entirely on Ref. [13]. This article is quite difficult so in this section theory and
equations have been summarized and simplified as much as possible to explain only the problems
studied in this work. As in this section both theory and equations have been extracted from Ref.
[13], this article is not referenced again.

Let’s start with an introduction of the notation and some concepts used to describe the energy.
On one side, the method relies on two key concepts: the reference atomic geometry (RAG) and
the reference electronic density (RED). The first one is referred to the geometry of the nuclei of
atoms and the second one is referred to electron density. The election of the RAG and the RED
has no restrictions but some advice should be taken into account to better application of the model.
For the RAG, it is usually convenient to employ the ground state structure or a high-symmetry
configuration. For the RED, one might adopt a non-magnetic configuration. The system to simulate
is then defined to be equal to the reference plus a small deformation. To clarify this concept, in Fig.
B.1 it is shown, for a real problem which was not simulated in this work, the concept of the RED.
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Fig. B.1 Schematic cartoon that represents the reference atomic structure and the reference and
deformation electronic densities. Green balls and its green clouds represent the position of atoms
and charge densities respectively. Fig. (a) represents the system to simulate while Fig. (b) and (c)
represent the reference and deformation systems which when they are summed up, they form the
system to simulate. In Fig. (d), (e) and (f), levels of energy are also drawn for each system. E, E(0),
E(1) and E(2) are explained forward.

As the problems simulated in this work are very simple, the definition of the RED is not
difficult.

On the other side, in order to allow for a more compact notation, to describe the atomic
configuration, a cell/atom pair will be presented by a lowercase bold subindex, e.g. an atom a in a
unit cell labeled with ~R is denoted as a.

Previously to see in depth which the equations to calculate the energy are, lets overview which
are the steps of the self-consistent cycle that provides the energy of the final system obtained:

1. For the initial system, the one is wanted to know its energy under some specific condi-
tions, self-consistent equation (see Sec. B.3) is solved, so eigenvalues and eigenvectors are
calculated.

2. The eigenstates are filled from lower to high energies with the number of electrons of the
initial system, so the occupation of each orbital is obtained.

3. The occupation provides the system for an effective potential which is calculated.

4. The effective potential is introduced into hamiltonian and again self-consistent equation (see
Sec. B.3) is solved and eigenvalues and eigenvectors are calculated and, repeating step 2,
occupation is again calculated.
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5. The occupation of the initial system and output system given by step 4 are compared. If its
difference is less than a tolerance, the self-consistence of the system is achieved. Otherwise,
the cycle starts again with the new system obtained in step 4.

When self-consistence is achieved, its energy is calculated. So lets now see the equations which
describe that energy. Following Eq.(5), the total energy of an atomic geometry is

EDFT ' E = E(0) +E(1) +E(2) (B.1)

where the first term, E(0), is the energy of the RED, the second term, E(1), is the one-electron
excitation given by the tight-binding model in which the kinetic energy of the electrons is involved,
and the third term, E(2), is the two-electron contribution and for magnetic systems, it captures
the effects related with the spin polarization. In this chapter only the first and second terms are
considered because are the ones related to the tight-binding model. This term is defined on Ec. (21)
as

E = E(0) +Â
ab
(D"

ab +D#
ab)gab (B.2)

where a and b are composite indexes for atoms a and b into unit cell labeled with ~R, in case of
having more than one atom in the unit cell, Dab is the so called deformation occupation matrix,
so D"

ab is that one for electrons with spin up and D#
ab is the one for electrons with spin down. In

general, the deformation occupation matrix, and this for each spin channel, are defined as

Dab = dab �d(0)
ab (B.3)

D"
ab = d"

ab �
1
2

d(0)
ab (B.4)

D#
ab = d#

ab �
1
2

d(0)
ab (B.5)

corresponding with Ec. (19), Ec. (30) and Ec. (31), respectively. The term dab is the density
matrix and is referred in literature to as the occupation matrix, and d(0)

ab is that of the system of
reference. The expressions for this two matrix are

dab = Â
j~k

o j~kc⇤
ja~k

c jb~kei~k(~R�~R
0
) (B.6)

d(0)
ab = Â

j~k

o(0)
j~k

c(0)
ja~k

⇤
c(0)

jb~k
ei~k(~R�~R

0
) (B.7)

in coincidence with Eq. (17) and Eq. (77). The term o j~k is the occupation of a band j for each
value of wavevector~k and it is obtained from the self-consistent cycle; c⇤

ja~k
, c jb~k are the coefficients



54 Computational equations

of the Bloch wavefunctions, demonstrated forwards, of electrons moving between atoms a and b
on cells labeled by ~R and ~R

0
respectively; and finally, those with a (0) upper index are referred to

the system of reference.

It is very important to see that all the energies are calculated as a difference of energies between
the converged system and that who is the reference. So the energies obtained in the simulation
are not absolute but an increase or decrease respect to the system of reference, that is, the small
deformation named before.

In the next two epigraphs coefficients of the Bloch wavefunctions have been obtained for one
and two atoms per unit cell since both cases are the ones treated in this work.

Normalization of the wavefuntion with one atom per unit cell

The general form of the wavefuntion is obtained from Ec. (15)

| y j~k >= Â
a

c ja~kei~k~R | ~Ra > (B.8)

where a is the composite index explained before that group all the atoms a into a unit cell ~R.

If only one atom per unit cell is considered Eq.B.8 transforms into

| y j~k >= Â
~R

c j~kei~k~R | ~R > (B.9)

To comply the fact that the wavefunction has to be normalized, it should be demonstrated that

< y j~k | y j~k >= 1 (B.10)

So,

< y j~k | y j~k >= c j~kc⇤
j~k Â
~R0~R

ei~k(~R�~R
0
) < ~R | ~R0

>

= c j~kc⇤j~K Â
~R~R0

ei~k(~R�~R
0
)d~R~R0

= c j~kc⇤j~K Â
~R~R0

1

= | c j~k |
2N (B.11)
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Finally,

| c j~K |2N = 1

c j~k =
1p
N

(B.12)

Where N is the number of unit cells that forms the solid.

Normalization of the wavefuntion with two atom per unit cell

It is interesting to see which are the coefficients of the wavefunction to be normalized as the
problem solved in the next chapter is required to have two atoms per cell, as will be shown later.
Based on Eq. (B.8), if atoms a and b are located in the same unit cell labeled by ~R, the wavefunction
is

| y j~k >= Â
~R

c ja~kei~k~R | ~Ra >+c jb~kei~k~R | ~Rb >

= c j~k Â
~R

ei~k~R(| ~Ra >+ | ~Rb >) (B.13)

where it has been assumed that c ja~K = c jb~K as its represents coefficients of linear combination
of functions. To normalize the wavefunction given by Eq. (B.13) it has to comply the same
condition as in Eq. (B.10). So

< y j~k | y j~k >= c j~kc⇤j~K Â
~R~R0

ei~k(~R�~R
0
)(< ~R

0
a |+< ~R

0
b |)(| ~Ra >+ | ~Rb >)

= c j~kc⇤j~K Â
~R~R0

ei~k(~R�~R
0
)(< ~R

0
a | ~Ra >+< ~R

0
b | ~Ra >+< ~R

0
a | ~Rb >+< ~R

0
b | ~Rb >)

= c j~kc⇤
j~k Â
~R~R0

ei~k(~R�~R
0
)(< ~R

0
a | ~Ra >+< ~R

0
b | ~Rb >)

= c j~kc⇤
j~k Â
~R~R0

ei~k(~R�~R
0
)(d~R~R0 +d~R~R0 )

= 2c j~kc⇤
j~k Â
~R~R0

1

= | c j~k |
22N (B.14)
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Finally,

| c j~K |22N = 1

c j~K =
1p
2N

(B.15)

B.1.1 One atom per unit cell

The notation when one atom per unit cell is considered, is drawn in Fig. B.2.

Fig. B.2 Sketch of the notation followed to solve the energy of a linear chain with one electron per
atom and one atom per unit cell. The interaction between electrons is through the hopping g from a
atom in cell ~R and its first neighbors a

0
in cells ~R

0

And the distance between atoms is also a.

Detailed steps to calculate the energy for the converged system are done in this section.

The consideration of having a hopping between first neighbors leads to a hopping matrix that
only has non-zero elements on the crossing terms

gaa = 0 / gaa0 = g / ga0a = g / gbb = 0

that means only electrons which are jumping between atoms has one-electron energy. With this
data and following Eq. (B.2) the one-electron energy is

E(1) = Â
ab
(D"

ab +D#
ab)gab = Â

ab
Dabgab

= [Daagaa]
onsite +[Daa0gaa0]

rightcell +[Da0aga0a]
le f tcell (B.16)

because the electrons have no spin polarization. As in this problem gaa = 0, Daa0 = Da0a and
gaa0 = ga0a Eq. (B.16) transforms into

E(1) = 2Daa0gaa0 (B.17)

Moreover, based on Eq. (B.3), it is easily obtained the deformation density term

Daa0 = daa0 �d(0)
aa0 (B.18)
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B.1.2 Two atoms per unit cell

The notation when two atoms per unit cell are considered, is drawn in Fig. B.3.

Fig. B.3 Sketch of the notation followed to solve the energy of a linear chain with one electron per
atom and two atoms per unit cell. The interaction between electrons is through the hopping g from
a atom in cell ~R and its first neighbors, b in the same cell and b

0
in cell ~R

0
to the left. It should be

summed up also the interaction between atom b in cell ~R to its first neighbors, a in the same cell
and a

0
in cell ~R

0
to the right.

And the distance between atoms is again a, so the width of the cell becomes 2a.

Similarly to the previous case, the one-electron energy is calculated with a configuration of two
atoms per unit cell. Based again on Eq. (B.2), this energy is transformed into

E(1) = Â
ab
(D"

ab +D#
ab)gab = Â

ab
Dabgab

= [Daagaa]
onsite +[Dabgab]

onsite +[Dbagba]
onsite +[Dbbgbb]

onsite

+[Dbagba]
rightcell

+[Dabgab]
le f tcell (B.19)

where, although all the atoms are equal, the so called b is related to the second atom into the
unit cell and located on the right of atom labeled a as shown in Fig. B.3 for easy understanding.

As the problem is the same than the one-electron per unit cell developed a few lines up,
Dab = Dba independently of the cell and the same hopping is acting. Therefore, Eq. (B.19) is
simplified into

E(1) = 4Dabgab (B.20)

solution which is essentially the same as obtained on the example done before but multiplied
by two because of the same reason than explained before.
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B.2 Hubbard model equations

As done in Sec.B.1 lets now see the equations which describe the energy when the Hubbard model
wants to be reproduced in a solid with spin polarization.

Just remembering which terms are heeding on the total energy of a system, lets rewrite Eq. (5)

EDFT ' E = E(0) +E(1) +E(2) (B.21)

In this chapter is the third term, the two-electron contribution for magnetic systems E(2), the
one added to the total energy saw in previous chapter. Taking into account Eq. (39) the total energy
of a system considering the Hubbard interaction is defined on Ec.(66) that is

E = E(0) +Â
ab
(D"

ab +D#
ab)gab

+
1
2 Â

a b
Â
a0b0

(D"
ab +D#

ab)(D
"
a0b0+D#

ab)Uaba0b0 � (D"
ab �D#

ab)(D
"
a0b0 �D#

ab)Iaba0b0 (B.22)

where a0 and b0 indicates two atoms in a sublattice, in the case of having more than one grid and
more than one atom in the unit cell. Moreover, the value of Uaba0b0 and Iaba0b0 are the two-electron
interaction constants and, when a Hubbard model is performed, they are related with the Hubbard
U through the expression

U =Uaba0b0 = Iaba0b0 (B.23)

Da0b0, D"
a0b0 and D#

a0b0 has the same meaning as explained on Sec. B.1 on Eq. (B.2). Although
the one-electron energy, E(1), do not capture any effect related with the spin polarization for a
non-magnetic RED, it should be rewritten as a sum of spin-dependent deformation density matrix
to consider magnetic RED.

For a system with zero overlapping between orbitals, zero on-site term and hopping given by
the matrix

gaa = 0 / gab = g / gba = g / gbb = 0
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So only hopping with first neighbors is consider. With this data and following Eq. (B.22) the
one-electron energy is

E(1) =Â
ab
(D"

ab +D#
ba)gab

= [(D"
aa +D#

aa)gaa]
onsite +[(D"

ab +D#
ab)gab]

onsite

+[(D"
ba +D#

ba)gba]
onsite +[(D"

bb +D#
bb)gbb]

onsite

+[(D"
ba +D#

ba)gba]
rightcell

+[(D"
ab +D#

ab)gab]
le f tcell (B.24)

For the case here simulated Eq. (B.24) can be reduced to only one term in view of the fact that
D"

ba= D"
ab and also equal independently on which cell are located a and b atoms. The same happens

for spin down deformation density matrix. Taking this into account and replacing the values of the
matrix of hopping, Eq. (B.24) transforms into

E(1) = Â
ab
(D"

ab +D#
ba)gab = 4(D"

ab +D#
ab)gab (B.25)

Similarly, the two-electron energy is calculated. Based again on Eq. B.22, this energy is
transformed into

E(2) =
1
2 Â

ab
[(D"

ab +D#
ab)(D

"
ab +D#

ab)Uabab � (D"
ab �D#

ab)(D
"
ab �D#

ab)Iabab] (B.26)

because there is only one lattice. As Hubbard U is only considered if both electrons are in the
same atom. As in our chain exists two atoms, Eq. (B.27) is

E(2) =
1
2
[(D"

aa +D#
aa)(D

"
aa +D#

aa)Uaaaa � (D"
aa �D#

aa)(D
"
aa �D#

aa)Iaaaa]

+
1
2
[(D"

bb +D#
bb)(D

"
bb +D#

bb)Ubbbb � (D"
bb �D#

bb)(D
"
bb �D#

bb)Ibbbb] (B.27)

Knowing that Hubbard-U is related with the parameters Ubbbb and Ibbbb as in Eq. (B.23), the
energy of having two electrons on the same atom is given by

E(2) = 2(D"
aaD#

aa)U +2(D"
bbD#

bb)U (B.28)

Where it can be observed that this two-electron energy only counts if both electrons are located
in the same atom as Hubbard model requires.
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B.3 Self-consistent equations

The self-consistent conditions used in the second-principles method of the article are analogous to
the Kohn-Sham equations

Â
b

hs
ab,~k

cs
jb,~k

= es
j~k

cs
ja,~k

, (B.29)

where es
j~k

, is the j-th band energy at wavevector~k for the spin channel s. The corresponding
Hamiltonian matrix, hs

ab,~k
, is

hs
ab,~k

= Â
~RB�~RA

ei~k(~RB�~RA)hs
ab, (B.30)

where hs
ab is the real space hamiltonian.

As it was shown, total energy depends on the deformation occupation matrix Ds
ab for each

spin channel s. This matrix is guessed in a first step of a self-consistent cycle to compute the
corresponding real space Hamiltonian hs

ab, and from the diagonalization of this matrix, a new
deformation occupation matrix is used as input of the next iteration step. For each spin channel, the
hamiltonian in real space is

hs
ab = gab + Â

a’b’
[(Ds

ab +D�s
a’b’)Uaba’b’ � (Ds

ab �D�s
a’b’)Iaba’b’] (B.31)

Then, taking into account the same assumptions as before, the on-site matrix element for the up
spin channel is

h"aa = gab + Â
a’b’

[(D"
ab +D#

a’b’)Udabda’b’dbb’ � (D"
ab �D#

a’b’)Udabda’b’dbb’]

= a +(D"
aa +D#

aa)U � (D"
aa �D#

aa)U

= a � [D"
aa � (�D"

aa)]U

= a �2D"
aaU (B.32)

Considering that a value of a is chosen to be zero in Chapter 2, the hamiltonian diagonal
elements are

h"aa =�2D"
aaU (B.33)
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Analogously

h#aa =�2D#
aaU (B.34)

If the same process is followed for the down spin channel,

h"bb =�2D"
bbU (B.35)

and

h#bb =�2D#
bbU (B.36)

For crossing terms, the hamiltonian in real space is easily obtained as no U counts, so

h"ab = h"ba = gab = g (B.37)

and

h#ab = h#ba = gab = g (B.38)

Ferromagnetic systems

Because all the sites are analogous, D"
aa = D"

bb and D#
aa = D#

bb. Moreover, due to conservation
energy, it must comply D"

aa =�D#
aa, as the increases of the density of one spin, should accompany

the same quantity of a decrease of the other spin. So, the hamiltonian in real space for the up spin,
according to Eq.(B.33), Eq. (B.35) and Eq.(B.37) is formed by

h"aa =�2D"
aaU / h"bb =�2D"

aaU / h"ba = g (B.39)

and, for the down spin channel, according to Eq.(B.34), Eq. (B.36) and Eq.(B.38) is

h#aa = 2D"
aaU / h#bb = 2D"

aaU / h#ba = g (B.40)
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Antiferromagnetic systems

Now not all the sites are analogous, but some similarities could be established. According to
the sketch of an antiferromagnetic system (Fig. 3.1g), D"

aa = D#
bb and D#

aa = D"
bb. Again, due to

conservation energy, it must comply D"
aa =�D#

aa, as the increases of the density of one spin, should
accompany the same quantity of a decrease of the other spin. Same occurs for the opposite spin.
So, the hamiltonian in real space for the up spin can be rewritted in terms of D"

aa that, according to
(B.33), Eq. (B.35) and Eq.(B.37), is formed by

h"aa =�2D"
aaU / h"bb = 2D"

aaU / h"ba = g (B.41)

and, for the down spin channel, according to Eq.(B.34), Eq. (B.36) and Eq.(B.38) is

h#aa = 2D"
aaU / h#bb =�2D"

aaU / h#ba = g (B.42)
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Comparison of the energies for converged
systems with occupation ns

l 6= 0.5

In Chapter 3 a transition diagram for a linear chain with different occupations has been mapped. In
order to be able to do it, for each occupation, energies of a simulation of a ferromagnetic linear
chain should be compared to those of the antiferromagnetic linear chains.

In Fig. C.1, energies of a density of n"l = 0.1 and n#l = 0.1 states of the majority spin and
minority spin respectively, are plotted. In this case, both energies coincide for almost all the values
of U/g . In fact, if transition diagram for both magnetic linear chains is consulted (Fig. 3.8 and
Fig. 3.9), one can realized that both systems converges to the same ferromagnetic totally polarized
configuration.

Fig. C.1 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.1.
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In Fig. C.2, energies of a density of n"l = 0.2 and n#l = 0.2 states of the majority spin and
minority spin respectively, are plotted. In this example, energies for antiferromagnetic linear chain
suffer an unexpected hop to highest energies. This estrange behavior could have it origin in many
reasons, e.g. a too larger value of the threshold for low values of U/g . Anyway this break on the
energies is not important in the final result as the energy for the antiferromagnetic linear chain is
larger than the ferromagnetic one, so this last controls the resulting state.

Fig. C.2 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.2.

In Fig. C.3, energies of a density of n"l = 0.3 and n#l = 0.3 states of the majority spin and minority
spin respectively, are plotted. For this case, clearly the energies coming from the simulations of a
ferromagnetic linear chain are less than for an antiferromagnetic linear chain. Because of that, the
converged systems are considered to be the ones of the transition phase diagram for a ferromagnetic
linear chain (Fig. 3.8).
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Fig. C.3 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.3.

In Fig. C.4, energies of a density of n"l = 0.35 and n#l = 0.35 states of the majority spin and
minority spin respectively, are plotted. A small peak more energetic seems to appear for a small
range of energies of a ferromagnetic linear chain. Until achieve the cross point between the two
energy lines an antiferromagnetic linear chain governs the energy of the converged system. It is
important to highlight that this point is not exactly obtained.

Fig. C.4 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.35.

The same holds for energies of a density of n"l = 0.4 and n#l = 0.4 states and also for n"l = 0.45
and n#l = 0.45, where it is clearly seen that this point is moved to high values of U/g when
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increasing the occupation. In fact, as is plotted in Chapter 3 (Fig. 3.7), low energies for an
antiferromagnetic linear chain simulations are achieved in all the range of U/g simulated.

Fig. C.5 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.4.

Fig. C.6 Comparison between the energy of the converged system in a ferromagnetic and antiferro-
magnetic linear chain simulations for nl = 0.45.


