CAPÍTULO 6. NOMENCLATURA

- a parámetro de ajuste definido por la ecuación (1.4)
- a_p área superficial externa por unidad de volumen de la partícula (m²/m³)
- A constante de equilibrio para el caso de isotermas lineales
- b parámetro de ajuste definido por la ecuación (1.4)
- (Bi)_m número de Biot para la transferencia de materia
- c parámetro de ajuste definido por la ecuación (2.5)
- C concentración de adsorbato en el líquido (mg/kg)
- C* concentración de adsorbato en el líquido en el equilibrio (mg/kg)
- C_i concentración de cada adsorbato en el líquido (mg/kg)
- C_{i,poro} concentración de soluto en los poros (kg/m³)
- C_{i,poro} valor medio de concentración de soluto en los poros (kg/m³)
- C₀ concentración inicial de adsorbato en el líquido (mg/kg)
- C_{exp} concentración experimental de adsorbato en el líquido (mg/kg)
- C_{sim} concentración simulada de adsorbato en el líquido (mg/kg)
- C_s concentración de saturación del adsorbato
- d_p diámetro de partícula (m)
- D coeficiente de difusión del soluto (m²/s)
- D_{mp} difusividad molecular eficaz (m²/s)
- D_p difusividad en los poros (m²/s)
- E coeficiente de dispersión axial (m²/s)
- FS1 parámetro de ajuste de la ecuación de Fritz y Schluender (1.6)

- FS2 parámetro de ajuste de la ecuación de Fritz y Schluender (1.6)
- g aceleración de la gravedad (m²/s)
- G caudal másico superficial (G = Q ρ_f / área) (kg/m²s)
- J_D factor de transferencia de materia
- k_s parámetro de ajuste de la ecuación de Fritz y Schluender (1.6)
- k_w parámetro de ajuste de la ecuación de Fritz y Schluender (1.6)
- K_a constante de equilibrio de la ecuación de Langmuir
- K_{di} fracción de volumen accesible entre las partículas del lecho
- K_f coeficiente de transferencia de materia en la película (m/s)
- K_m coeficiente global de transferencia de materia (m/s)
- K_s coeficiente de difusión superficial
- L longitud (m)
- m masa (kg)
- M peso molecular
- n parámetro de ajuste de la isoterma de Freundlich
- n número de puntos experimentales en la ecuación (2.8)
- p presión (Pa)
- q relación entre la cantidad de soluto adsorbido y la cantidad de sólido (kg/kg)
- q* relación entre la cantidad de soluto adsorbido y la cantidad de sólido en el equilibrio (kg/kg)
- qi relación entre la cantidad de un soluto adsorbido y la cantidad de sólido (kg/kg)

- q valor medio de la relación entre la cantidad de soluto adsorbido y la cantidad de sólido (kg/kg)
- q_{max} relación máxima entre la cantidad de soluto adsorbido y la cantidad de sólido (kg/kg)
- Q caudal (m³/s)
- r posición radial
- Re número de Reynolds
- Re' número de Reynolds definido como (Re' = $(d_p \cdot G) / (\mu \cdot \epsilon)$)
- R_p radio de la partícula (m)
- S Desviación estándar, expresada según la ecuación (2.8)
- Sc número de Schmidt
- Se superficie específica (m²/g)
- Sh número de Sherwood
- t tiempo (s)
- T temperatura (°C)
- u velocidad (m/s)
- u_s velocidad superficial (m/s)
- v componente de la velocidad paralela al eje y (m/s)
- V volumen (I)
- w componente de la velocidad paralela al eje z (m/s)
- x_m capacidad de la monocapa en la ecuación BET (2.5)
- z posición axial en el lecho (m)

Letras griegas

- α parámetro de ajuste de la ecuación BET (1.7)
- ϵ_{p} porosidad interna
- ϵ_{e} porosidad externa
- μ viscosidad (kg/ms)
- ρ densidad del fluido (kg/m³)
- ρ_b densidad *bulk* (kg/m³)
- ρ_p densidad de partícula (kg/m³)
- ρ_s densidad del sólido (kg/m³)
- σ tensión superficial del mercurio en la ecuación de Washburn (2.3)
- θ ángulo de contacto del mercurio en la ecuación de Washburn (2.3)
- τ tortuosidad
- ψ parámetro de asociación para el disolvente