
Balanced and efficient interconnects
for Exascale supercomputers

Pablo Fuentes Sáez

supervised by
Dr. Ramón BEIVIDE and Dr. Enrique VALLEJO

Doctor of Philosophy
Departamento de Ingenierı́a Informática y Electrónica

Universidad de Cantabria
April 2017





3

Abstract

The need for more accurate or complete scientific results demands an increase in
computing power to achieve Exascale machines, capable of performing 1018 floating
point operations per second. One of the approaches to tackle Exascale computing is to
increase the number of nodes in the machine, placing stronger demands in the system
interconnect. The impact of the interconnection in HPC systems increases further with
the surge of BigData applications, which have high network communication demands
and different behavior than traditional HPC workloads, with a higher volume of com-
munications and a more even distribution. Performance limitations can be reasonably
expected to scale up with the network size, and some of them are likely to translate
from system networks to the networks-on-chip within high-performance nodes.

This thesis introduces a synthetic traffic model of the communications in the
Graph500 benchmark for BigData applications. The use of this traffic model simplifies
the evaluation of data-intensive applications and their needs, and permits to predict the
behavior in larger machines than currently available. An analysis of the benchmark
communications shows a higher dependency with the network throughput than in tra-
ditional HPC applications.

Both BigData and HPC workloads can be significantly affected for the fairness in
the network usage. This work conducts an analysis of the throughput fairness and eval-
uates the impact of different implicit and explicit fairness mechanisms. The fairness
analysis and the evaluation of two proposed mechanisms have been performed through
several synthetic traffic simulations in a 2-level hierarchical Dragonfly network with
more than 15,000 nodes. Dragonflies are one of the high-radix, low-diameter network
topologies proposed for Exascale system interconnects, and so far the only to have
been implemented in a commercial system. A novel adversarial-consecutive traffic
pattern is introduced for the evaluation of the throughput fairness, which particularly
stresses the links in one of the routers of each group in the Dragonfly.

Results with the synthetic traffic model prove a significant constraint from the net-
work throughput. They also evidence the existence of different communication dis-
tributions depending on the number of processes and their mapping to the network
nodes. Throughput unfairness can limit average performance figures and even lead to
starvation at those routers that become a bottleneck under adversarial traffic scenarios.
Prioritizing in-transit traffic over new injections favours network drainage and reduces
network congestion but is disadvantageous with adaptive routing, because it prevents
injection from bottleneck routers and aggravates throughput unfairness.

Two mechanisms are proposed to improve network performance and simplify the
router implementation. The first mechanism is the improvement in the detection of
adversarial traffic patterns through contention information, using a metric based on
contention counters. Four different implementations relying in this metric are evalu-
ated. Evaluation results show that the use of contention counters provides competitive
performance and much faster adaption to traffic changes, avoiding routing oscillations
typical of congestion-based adaptive routing mechanisms.



4

The second proposal is a novel mechanism denoted FlexVC, which relaxes virtual
channel restrictions in the deadlock avoidance mechanism. FlexVC reduces the num-
ber of buffers required, and provides a more balanced use. It also allows to employ
more resources than strictly required by the routing and deadlock avoidance mecha-
nisms, in order to provide higher performance. FlexVC improves performance with
all routing mechanisms under each of the traffic patterns evaluated. Simulation re-
sults indicate that the performance benefits of FlexVC remain similar or improve when
adaptive routing is used instead of oblivious routing, and FlexVC saves more resources
with adaptive routing than with oblivious routing. FlexVC can be combined with
contention counters to improve the identification of traffic scenarios with in-transit
adaptive routing, achieving the best overall performance while halving the number of
buffers required in the router.



5

Acknowledgment

This thesis represents a long journey, one that I could not have started were it not for
my advisors, Mon and Enrique. Mon, you gave me the chance to enter this research
group and over the years you have been supportive and friendly, always willing to
orient me and to share your knowledge. Enrique, you have worked with me hand in
hand every time, ensuring the works came to fruition; I hope your meticulousness and
effort have paid off with this work. To both of you, a sincere thank you; this thesis is
as yours as mine, and I am really lucky for having had you as advisors.

I also have to thank the help of Cyriel, José Luis and Mitch as mentors in some of
the different works included here. Cyriel, many thanks for the incredible opportunity
that you gave me (not only once, but twice) to come to Zurich and be a part of the
amazing IBM ZRL family, where I have had some of the best moments of my life.
José Luis, thank you for your patience and calm facing my countless questions and
doubts, and your willingness to explore uncharted territories. Mitch, thank you for
agreeing to mentor me and for your guidance and suggestions; unfortunately, some of
them could not be included here, but I hope to explore them in a near future. I also
have to thank Mateo for being the spark that ignited many of the works here included.

I want to thank German and Zuzana for opening us their doors and being the best
hosts we could think of. Danke schön, ihr seid wunderschön und ich wünsche euch der
Beste!

I would like to thank as well all the incredible people I have had the chance to meet
across my time in the University of Cantabria and my stays in the Zürich Research
Lab. Emilio, Marina, Cristóbal, Miguel, Iván, Borja, Mariano and Raúl, the talks
in the office and the shared coffees made my day every single time. The same goes
for Ana, Gilles, Hoisun, Rihards, Adela, Toke, Tobias, Hazar, Oliver, Benoit, Frank,
Alessandro, Matteo, Radu, Stefan, Michael, Jonas, Angelo, and I am sure that I have
missed someone (sorry!). Thanks to the rest of my great coworkers, Carmen, Esteban,
Fernando, Rafa, Chus. Thanks to my former colleagues, Andreea, Bogdan, Georgios,
Nikolaos, Freddy, and specially to Wolfgang for his always amusing after-lunch dis-
cussions. Thanks to Sandra and her cheerful welcomes. Thanks to the wonderful
friends from ACACES. During the thesis I have not had many possibilities of meeting
my old gang, but Eusebio, Alma, Fernando and Paula, you are always in my mind.

Quiero dar las gracias a mi familia, mis padres, mi hermana, mis abuelos, por haber
estado siempre ahı́, escuchándome incluso cuando os contaba mis batallitas de trabajo.
También a ”mis niños”: Iker, Jana, os quiero inmensamente.

Y por último, pero no menos importante, quiero darles las gracias a Lorena, por
apoyarme siempre, por estar dispuesta a hacer la maleta y acompañarme a donde ha
hecho falta. Gracias, mi vida, porque a menudo has tenido más fé en mı́ que yo mismo.
Sin ti esta tesis no habrı́a sido posible.

To all those who are still around, I am glad to have you. And to all of you that are
far away, as the song says, I had to leave you and go away / but I think about you every
day / ... / I wish that I could see you soon!



6

This work has been supported by the Spanish Ministry of Education (FPU grant
FPU13/00337), a Collaboration Grant from the HiPEAC Network of Excellence, the
Spanish Science and Technology Commission (CICYT) under contracts TIN2010-
21291-C02-02, TIN2012-34557 and TIN2013-46957-C2-2-P, the Spanish Ministry of
Economy, Industry and Competitiveness under contract TIN2015-65316, the Spanish
Research Agency (AEI/FEDER, UE - TIN2016-76635-C2-2-R), the JSA no. 2013-119
as part of the IBM/BSC Technology Center for Supercomputing agreement, the Euro-
pean Union FP7 programme (RoMoL ERC Advanced Grant GA 321253), and by the
Mont-Blanc project. The Mont-Blanc project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
671697.



7

Para Lorena





Resumen

El uso de máquinas con mayor capacidad computacional tales como los supercomputa-
dores Exascale, capaces de realizar 1018 operaciones de punto flotante por segundo, es
fundamental para obtener resultados cientı́ficos más precisos o completos. Una de las
estrategias para desarrollar este tipo de máquinas es aumentar el número de nodos que
las componen, incrementando los requisitos de la red de interconexión que los une.
Para cumplir con dichas necesidades se apuesta por el uso de topologı́as de red de bajo
diámetro empleando routers de alto grado.

El impacto de la red en sistemas de computación de altas prestaciones (HPC) crece
con el aumento de la importancia de las aplicaciones BigData, cuyo patrón de com-
portamiento difiere de las cargas de trabajo tradicionales en HPC y presenta un mayor
número de comunicaciones con una distribución más uniforme. Es razonable suponer
que los lı́mites impuestos por la red al rendimiento alcanzado aumenten de forma pro-
porcional al tamaño de la red, y que algunos de estos lı́mites también se propaguen a
las redes-en-chip dentro de los nodos de alto rendimiento.

Esta tesis presenta un modelo de tráfico sintético que emula el patrón de comu-
nicaciones de Graph500, un benchmark para evaluar el rendimiento de los sistemas
bajo aplicaciones BigData. El uso de este modelo de tráfico simplifica la evaluación
de aplicaciones intensivas en datos y de sus necesidades. Asimismo, permite predecir
el comportamiento del benchmark en máquinas de mayor tamaño que las disponibles
actualmente. Al analizar las comunicaciones del benchmark se observa que existe una
mayor dependencia con la métrica de throughput que en aplicaciones propias de HPC,
tradicionalmente limitadas por la latencia de la red. En ambos casos, existe un impacto
significativo si el uso de los recursos de red no es equitativo entre los nodos.

Esta tesis realiza un análisis del troughput y la equitatividad entre nodos y evalúa
el impacto de diversos mecanismos de equitatividad, implı́citos o explı́citos. También
propone dos mecanismos para mejorar el rendimiento de la red y simplificar la imple-
mentación de los routers. El primero de ellos es una mejora en la detección de patrones
de tráfico adversos mediante el uso de una métrica basada en contadores de contención
de la cual se proponen cuatro implementaciones. La segunda propuesta es un mecan-
ismo llamado FlexVC que relaja las restricciones en el uso de canales virtuales para
evitar la aparición de deadlock. FlexVC reduce el número de buffers necesario para
evitar deadlock, y los usa de forma más balanceada. También permite emplear canales
virtuales adicionales más allá de los estrictamente requeridos, de modo que mejore el
rendimiento.

9



10 RESUMEN

El análisis de la equitatividad en el uso de la red y la evaluación de los mecanismos
propuestos se han realizado mediante múltiples simulaciones con tráfico sintético. Se
ha simulado una red Dragonfly con más de 15000 nodos. Las redes Dragonfly son
una topologı́a de red jerárquica con dos niveles, propuesta para los subsistemas de
interconexión de máquinas Exascale; hasta la fecha, es la única topologı́a propuesta
para supercomputadores Exascale que ha sido implementada en un sistema comercial.

En el Capı́tulo 2 se detalla el desarrollo del modelo de tráfico sintético basado en las
comunicaciones del benchmark Graph500. Debido al volumen de comunicaciones y a
la cantidad de memoria empleada durante la ejecución del benchmark, no es factible
emplear otros métodos de simulación tales como el modelado del sistema completo
o el uso de trazas. El modelo de tráfico presentado proporciona un nivel de detalle
sobre el impacto de la red que no puede alcanzarse con otros métodos de evaluación.
A lo largo del capı́tulo se realiza un análisis en profundidad de las comunicaciones
del benchmark, haciendo hincapié en la naturaleza ası́ncrona de las comunicaciones
y la uniformidad entre procesos del número de mensajes enviados. Las comunica-
ciones están estructuradas en varios bloques durante los cuales el envı́o de mensajes
es uniforme. Como parte del análisis también se evalúa el impacto de la agregación
de mensajes sobre el tiempo de ejecución total de la aplicación. El modelo propuesto
predice el número de mensajes que envı́a cada nodo de la red durante cada bloque de
comunicaciones, a partir de los parámetros de entrada del benchmark y de una esti-
mación de la capacidad de cómputo de los nodos de red.

El desarrollo del modelo incluye una implementación realizada sobre un simulador
de red. Los resultados de la ejecución del modelo en una red Dragonfly evidencian
varios escenarios en los que la red de interconexión es el cuello de botella. Estos
escenarios están ligados al mecanismo de encaminamiento, y al número de procesos
simulados y su mapeado sobre los nodos de red. Aunque colectivamente el tráfico se
asemeja a un patrón uniforme aleatorio, la ejecución sobre un subconjunto del total de
nodos de la red se aproxima más a tráfico de tipo adverso.

A partir de los resultados con el patrón de tráfico sintético se observa una degradación
de rendimiento debida a desigualdades en el uso de la red. Como se explica en
el Capı́tulo 3, las desigualdades de throughput occurren cuando los nodos de la red
reciben distintas proporciones del uso de recursos. Esto puede limitar el rendimiento
e incluso provocar casos de inanición en aquellos routers que suponen un cuello de
botella bajo patrones de tráfico adversos. Para comprobar la equitatividad del uso de
recursos se introduce un nuevo patrón de tráfico adverso-consecutivo (ADVc). ADVc
sobrecarga de forma patológica los enlaces entre grupos de una red Dragonfly, provo-
cando desigualdad con mecanismos de encaminamiento adaptativos.

El análisis determina el impacto de varios factores: prioridad de tráfico en tránsito,
polı́tica de encaminamiento no mı́nimo global, y polı́tica de arbitrio. La red se drena
más rápidamente si se prioriza el tráfico en tránsito sobre la inyección de nuevos paque-
tes a la red, y se reduce la congestión; no obstante, priorizar el tráfico en tránsito es per-
judicial bajo encaminamiento adaptativo porque impide la inyección desde los routers
que forman cuellos de botella y agudiza la desigualdad en el throughput. La imple-



RESUMEN 11

mentación del encaminamiento adaptativo en origen presenta una incapacidad inher-
ente para identificar correctamente el tráfico ADVc como adverso, que paradójicamente
se agrava cuando se elimina la prioridad de tráfico en tránsito. Bajo el patrón ADVc se
hace necesario un mecanismo explı́cito para garantizar la igualdad de uso de recursos;
en esta tesis se ha empleado una polı́tica de arbitrio basada en la edad de los paquetes.
No obstante, conlleva una implementación más compleja, por lo que en el resto de la
tesis se ha empleado una polı́tica de arbitrio Round-Robin, más simple, sin priorizar el
tráfico en tránsito.

En el Capı́tulo 4 se introduce el uso de información de contención en la decisión de
encaminamiento no mı́nimo para mecanismos adaptativos. Dicha decisión, que elige
entre una ruta mı́nima y otra no mı́nima, está tı́picamente basada en una estimación
de la congestión del router vecino a partir del número de huecos disponible en las co-
las de entrada. Sin embargo, las métricas de congestión propician una dependencia
con el tamaño de los buffers, oscilaciones en la decisión de encaminamiento, y una
adaptación lenta a los cambios en el patrón de comunicaciones. La dependencia con
el tamaño de las colas provoca un compromiso entre elegir colas de tamaño reducido,
que reducen la granularidad de la decisión de encaminamiento, y buffers de mayor lon-
gitud, que tardan más tiempo en llenarse o vaciarse y aumentan el tiempo de respuesta
a los cambios de tráfico. Las oscilaciones en el enrutamiento se deben a que el uso
de caminos mı́nimos permite drenar la red, lo que lleva a la aparición de un lazo de
realimentación entre la decisión y la métrica en que se sustenta.

Una métrica de contención, como la propuesta en el Capı́tulo 4, elimina estas lim-
itaciones y monitoriza la causa de la congestión (contención entre recursos) en lugar
de sus resultados (falta de huecos en las colas del router vecino). El mecanismo prop-
uesto utiliza una métrica basada en un contador de contención para cada salida del
router, registrando la demanda de los paquetes en cabeza de los buffers de las entradas.
Sólo se contabiliza la salida correspondiente al camino mı́nimo de cada paquete, para
favorecer la identificación del patrón de tráfico. Se emplean cuatro implementaciones
diferentes del mecanismo, todas ellas con un rendimiento competitivo y una rápida
adaptación a los cambios de tráfico. Las variantes hı́brida y ECtN son las más atrac-
tivas porque superan el rendimiento del encaminamiento adaptativo en tránsito basado
en métricas de congestión, pero conllevan un coste de implementación superior: la
implementación hı́brida combina las estadı́sticas de contención con información de
congestión, y ECtN difunde dentro de cada grupo de la red las métricas de contención
para los enlaces intergrupales.

La aparición de dependencias cı́clicas puede provocar interbloqueos en la red (también
llamados deadlocks), y para redes con bajo diámetro se suele prevenir mediante un
mecanismo basado en canales virtuales (VCs) en el que cada salto del camino im-
plica incrementar el ı́ndice del canal virtual. Cada canal virtual supone un buffer in-
dependiente por cada puerto de entrada e incrementa los costes de implementación
del router. Este tipo de mecanismos impide un uso eficiente de las colas de entrada,
y une el número de recursos necesarios a la longitud del camino no-mı́nimo más
largo. Teóricamente, estas limitaciones se pueden evitar compartiendo la memoria



12 RESUMEN

entre canales virtuales de un mismo puerto, mediante colas con asignación dinámica
(DAMQs). Sin embargo, en redes de bajo diámetro se requiere que una parte sig-
nificativa de la memoria se asigne de forma estática (negando sus beneficios), y su
implementación es más costosa y con mayor retardo de acceso. En el Capı́tulo 5 se
presenta una nueva gestión de los canales virtuales denominada FlexVC, que relaja las
restricciones en el uso de los canales virtuales y depende sólo de colas particionadas
estáticamente y de encaminamiento oportunista. La idea principal tras FlexVC es que
para que un camino esté libre de deadlock basta con que exista una secuencia incre-
mental de ı́ndices de canal virtual hasta el destino, aunque no se emplee. Por cada
salto se pueden emplear todos aquellos canales virtuales con un ı́ndice inferior al cor-
respondiente en el camino libre de deadlock. También se pueden añadir canales vir-
tuales adicionales, que se pueden utilizar en todos los saltos de la ruta para mejorar el
rendimiento. FlexVC es particularmente útil cuando se considera tráfico con depen-
dencias entre clases de tráfico (por ejemplo, entre peticiones y respuestas), ya que se
pueden reutilizar canales virtuales de las peticiones para las respuestas.

FlexVC aumenta el rendimiento bajo todos los mecanismos de enrutamiento con
cada uno de los patrones de tráfico empleados. La mejora en rendimiento con FlexVC
se mantiene o aumenta cuando se emplea encaminamiento adaptativo, ası́ como el
ahorro en el número de recursos necesarios. El reuso de canales virtuales en FlexVC
complica la identificación del tráfico adverso en encaminamiento adaptativo en origen;
para recuperar dicha capacidad se puede emplear un grupo adicional de contadores
para registrar exclusivamente la congestión debida a paquetes que están avanzando por
su ruta mı́nima. Esta estrategia no es suficiente para identificar el tráfico adverso con
encaminamiento adaptativo en tránsito, pero se puede combinar FlexVC con el uso de
los contadores de contención detallados en el Capı́tulo 4; este último caso proporciona
el mejor rendimiento en general a la vez que reduce a la mitad el número de recursos
necesarios.



Contents

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Introduction 27
1.1 Router architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2 Topologies for Exascale system networks . . . . . . . . . . . . . . . 34

1.2.1 Dragonfly networks . . . . . . . . . . . . . . . . . . . . . . . 35
1.3 Deadlock-avoidance mechanisms . . . . . . . . . . . . . . . . . . . . 37
1.4 Routing mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.1 Oblivious routing . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.2 Adaptive routing . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.3 Global misrouting policy . . . . . . . . . . . . . . . . . . . . 44

1.5 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.1 Unfairness metrics . . . . . . . . . . . . . . . . . . . . . . . 46

1.6 Network simulation tools . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.1 Synthetic traffic patterns . . . . . . . . . . . . . . . . . . . . 48
1.6.2 Request-reply Traffic . . . . . . . . . . . . . . . . . . . . . . 53
1.6.3 FOGSim Network Simulator . . . . . . . . . . . . . . . . . . 53
1.6.4 Simulation configuration . . . . . . . . . . . . . . . . . . . . 57

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Graph500 Synthetic Traffic Model 61
2.1 Analysis of the communications in the Graph500 benchmark . . . . . 62
2.2 Synthetic Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.1 Equations of the model . . . . . . . . . . . . . . . . . . . . . 71
2.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.1 Validation of the model equations . . . . . . . . . . . . . . . 75
2.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 77

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Throughput unfairness 87
3.1 Throughput unfairness in Dragonflies . . . . . . . . . . . . . . . . . 88

3.1.1 Global misrouting policy . . . . . . . . . . . . . . . . . . . . 88

13



14 CONTENTS

3.1.2 In-transit traffic priority . . . . . . . . . . . . . . . . . . . . 88
3.1.3 Traffic pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Fairness mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2.1 Age Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Results with Round-Robin arbitration and in-transit priority . 92
3.3.2 Performance issues with source-adaptive routing . . . . . . . 99
3.3.3 Results with Round-Robin arbitration without in-transit priority 100
3.3.4 Results with Age arbitration . . . . . . . . . . . . . . . . . . 104

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Contention counters 111
4.1 Limitations of credit-based congestion decision. . . . . . . . . . . . . 111

4.1.1 Granularity of the congestion detection . . . . . . . . . . . . 111
4.1.2 Oscillations of routing . . . . . . . . . . . . . . . . . . . . . 112
4.1.3 Uncertainty when using output credits . . . . . . . . . . . . . 112
4.1.4 Reaction time on traffic changes and slow-lane traffic . . . . . 113

4.2 Contention counters . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.2 Threshold selection . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Implementation costs . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Steady-state results . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Transient results . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Flexible VC management 127
5.1 Limitations of deadlock avoidance mechanisms based on VCs . . . . 128

5.1.1 Routing or link-type restrictions . . . . . . . . . . . . . . . . 128
5.1.2 Buffer organization and cost . . . . . . . . . . . . . . . . . . 129

5.2 FlexVC mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Base FlexVC . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2 FlexVC considering protocol deadlock . . . . . . . . . . . . 133
5.2.3 FlexVC with link restrictions . . . . . . . . . . . . . . . . . . 134
5.2.4 Detection of adversarial patterns in source-adaptive routing

with FlexVC . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.5 Implementation costs . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.1 Impact of reserved space in DAMQs . . . . . . . . . . . . . . 138
5.3.2 Results with oblivious routing . . . . . . . . . . . . . . . . . 139
5.3.3 Results with source-adaptive routing . . . . . . . . . . . . . . 142
5.3.4 Results with in-transit adaptive routing . . . . . . . . . . . . 150
5.3.5 Simulation results without internal speedup . . . . . . . . . . 150
5.3.6 Evaluation of the VC allocation policy . . . . . . . . . . . . . 152



CONTENTS 15

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Related Work 155
6.1 Graph500 and simulation tools for network architects . . . . . . . . . 155
6.2 Network topologies and routing mechanisms . . . . . . . . . . . . . . 156
6.3 Throughput unfairness . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4 Congestion detection and contention counters . . . . . . . . . . . . . 158
6.5 Deadlock avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Buffer sizing and organization . . . . . . . . . . . . . . . . . . . . . 161

7 Conclusions and future work 163
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 169





List of Figures

1.1 Architecture of a router with input and output buffering. . . . . . . . . 28
1.2 Buffered flow control mechanisms. Orange line highlights the traversal

of the marked packet (also in orange). Note that in VCT the packet can
only advance if there is enough space in the next buffer to wholly host
it, whereas in WH the packet can be spread across multiple buffers in
different routers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Credit-based flow control. Each output has a credit counter tracking
the number of available slots in the next buffer: a packet dispatch from
router A decrements the credit counter for the output linking to B, and
a dispatch from the input queue in B triggers the delivery of a credit
back to A, reporting the availability of one additional slot. . . . . . . 30

1.4 Grant-based flow control. Output ports with available space in the
neighbor router are marked in green, and the red mark implies the lack
of available space. When the input buffer in router B becomes full, it
sends a signal to router A to stop the transmission through that link.
When packets are advanced and new slots become available, another
signal is transmitted to notify that the communication can be restarted. 30

1.5 Different buffering configurations in a router. . . . . . . . . . . . . . 31
1.6 Input-first separable allocator. The allocation is performed in two stages:

first the input arbiters select one virtual channel ii j to access the cross-
bar, triggering the xik signal for the k port. Next, the output arbiters
grant the output port to one of the contending inputs. The figure shows
a successful request i00 at the first input, which wins at the input ar-
biter (triggering the x02 signal) and at the output arbiter, being granted
access to the crossbar and to the output port 2. . . . . . . . . . . . . . 32

1.7 Pipeline of a router. Each packet goes through 4 steps: routing (RO),
input allocation (IA), output allocation (OA) and crossbar traversal
(XT). At each cycle, the router can be processing multiple packets,
each at a different stage. . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 Router with an input/output speedup of 2. Note that the router with
input speedup has 2 ingress points to the crossbar for every input port,
whereas the router with output speedup has two egress points from the
crossbar to each output port. . . . . . . . . . . . . . . . . . . . . . . 33

17



18 LIST OF FIGURES

1.9 Logical organization of static vs dynamic buffer management with
three VCs. In DAMQs a buffer pool is shared between VCs. Head
and tail pointers are used to access data from each VC, and allocate
free memory (black pointers). . . . . . . . . . . . . . . . . . . . . . . 34

1.10 Sample Dragonfly network with h = 2 global links per router, p = 2
compute nodes per router and a = 4 routers per group. Two different
arrangements of the global links are considered, palm-tree and consec-
utive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.11 Cyclic dependency between packets at the head of the buffer in differ-
ent routers. Each arrow represents the intended path of a packet at the
head of the queue. In the upper figure, none of the packets can advance
because there are not any available slots in the next queue, and none
of the queues can drain, leading to a deadlock. In the lower figure, vir-
tual channels are employed to break the cyclic dependency and allow
queues to drain eventually. . . . . . . . . . . . . . . . . . . . . . . . 37

1.12 Example of protocol deadlock in a generic diameter-2 network with 2
VCs. There is a cyclic dependency between the replies from A, the
requests from A, the replies from B and the request from B. Since the
buffers are filled up with requests, there is not sufficient space to inject
replies, and the consumption of requests stalls. . . . . . . . . . . . . . 38

1.13 Example of oblivious routing mechanisms in a Dragonfly network.
Dashed red line signals the source and destination of a packet. MIN
routing is shown in black, VAL routing in orange, and VAL-group in
grey. VAL and VAL-node paths overlap except for the extra jump to
the VAL node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.14 Example of in-transit adaptive routing in a Dragonfly network. Dashed
red line signals the source and destination of a packet. MIN routing is
shown in black, VAL paths in orange (misrouting at injection) and blue
(misrouting in-transit). Escape paths in dark grey revert to MIN paths
from the current hop of the path. When the VAL router is reached, a
minimal route is followed towards the destiantion. . . . . . . . . . . . 43

1.15 VC index set used in PAR and OLM routing. Shorter paths follow the
required subset of hops, in the same order. Hops are gathered by the
group in which they occur (source, intermediate, destination). . . . . . 43

1.16 Global misrouting policies for source routing. The red arrow repre-
sents the global link in the minimal path. . . . . . . . . . . . . . . . . 44

1.17 MM global misrouting policy for in-transit adaptive routing. . . . . . 45
1.18 Example of adversarial traffic patterns in a Dragonfly network of size

h = 2. Highlighted local links correspond to the outgoing traffic from
one of the groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.19 Bottleneck at the intermediate group in ADV+h traffic, where the h
global input and output links are joined by only one local link. . . . . 50

1.20 State diagram of the Bursty-UN traffic pattern. . . . . . . . . . . . . . 51



LIST OF FIGURES 19

1.21 Example of request-reply traffic in a Dragonfly network of size h =
2. When the upper highlighted node receives a request message, it
generates a reply towards the source of the petition. . . . . . . . . . . 53

2.1 Pseudocode of the BFS, pointing the placement of the communications. 63
2.2 Outline of the communications in each BFS phase. . . . . . . . . . . 63
2.3 Trace of an actual execution with 16 processes. Scale s = 22 and edge-

factor fe = 16. Blue blocks represent computation, pink blocks rep-
resent the dispatch of a message, and black vertical lines mark the
all-reduce collectives. . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Number of messages sent per process during BFS, for an execution
with 128 processes of a graph with scale s= 25 and edgefactor fe = 16.
Bar value represents average value, errorbar shows standard deviation
between processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Communication matrix for point-to-point exchanges across processes,
for a graph of scale s = 20 and edgefactor fe = 16. Three ranges of
values are distinguished. Spaces in white correspond to the absence of
self-messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Histogram of the vertex degree of the graph, truncated to 150. Graph
scale is s = 17, edgefactor is fe = 16. . . . . . . . . . . . . . . . . . 67

2.7 Histogram of the number of explored edges in the third tree level, with
different root degree dr. Graph with scale s = 17 and edgefactor fe = 16. 68

2.8 Average number of explored edges per root degree, broken down per
tree level. Values come from the same graph as in Figure 2.7. Note
that the Y-axis is in logarithmic scale for the right figure. . . . . . . . 69

2.9 Standard deviation of the number of explored edges per root degree for
each tree level. Values come from the same graph as in Figure 2.7. . . 70

2.10 Example of a fitting curve for the third tree level upon graphs of scale
s = 17 and edgefactor fe = 16. Points correspond with the average
number of new edges explored per degree at the root. Line represents
the fitting curve responding to a linear combination of the natural log-
arithm of the root vertex degree. . . . . . . . . . . . . . . . . . . . . 70

2.11 Flowchart describing the behavior of the Graph500 simulation model. 74
2.12 Validation of the model. Points correspond to measured average and

standard deviation values from a real execution, averaging multiple
graphs with scale s = 22 and edgefactor fe = 16. Lines correspond to
the fittings from the model. . . . . . . . . . . . . . . . . . . . . . . . 76

2.13 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Dragon-
fly network of size h = 2 employing MIN routing. . . . . . . . . . . . 78

2.14 Network use per node computation capability, under different link band-
widths, for a graph of scale 26 and edgefactor 16. Dragonfly network
of size h = 2 with MIN routing. . . . . . . . . . . . . . . . . . . . . 78



20 LIST OF FIGURES

2.15 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Dragon-
fly network of size h = 2 employing VAL routing. . . . . . . . . . . . 79

2.16 Network usage per node computation capability, under different link
bandwidths. Results for a graph of scale 26 and edgefactor 16, running
over a Dragonfly network of size h = 2 with VAL routing. . . . . . . 80

2.17 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Execu-
tion with 64 processes spread in 2 groups of a Dragonfly network of
size h = 4, employing MIN routing. . . . . . . . . . . . . . . . . . . 81

2.18 Network usage per node computation capability, under different link
bandwidths. Results for a graph of scale 26 and edgefactor 16, running
over 64 processes spread in 2 groups of a Dragonfly network of size
h = 4 with MIN routing. . . . . . . . . . . . . . . . . . . . . . . . . 81

2.19 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Execu-
tion with 64 processes spread in 2 groups of a Dragonfly network of
size h = 4, employing VAL routing. . . . . . . . . . . . . . . . . . . 82

2.20 Network usage per node computation capability, under different link
bandwidths. Results for a graph of scale 26 and edgefactor 16, running
over 64 processes spread in 2 groups of a Dragonfly network of size
h = 4 with VAL routing. . . . . . . . . . . . . . . . . . . . . . . . . 82

2.21 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Execu-
tion with 160 processes spread in 5 groups of a Dragonfly network of
size h = 4, employing MIN routing. . . . . . . . . . . . . . . . . . . 83

2.22 Network usage per node computation capability, under different link
bandwidths. Results for a graph of scale 26 and edgefactor 16, running
over 160 processes spread in 5 groups of a Dragonfly network of size
h = 4 with MIN routing. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.23 Execution time for a sweep in node computation capability and link
bandwidth (BW), with a graph of scale 26 and edgefactor 16. Execu-
tion with 160 processes spread in 5 groups of a Dragonfly network of
size h = 4, employing VAL routing. . . . . . . . . . . . . . . . . . . 84

2.24 Network usage per node computation capability, under different link
bandwidths. Results for a graph of scale 26 and edgefactor 16, running
over 160 processes spread in 5 groups of a Dragonfly network of size
h = 4 with VAL routing. . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1 Adversarial-consecutive (ADVc) traffic pattern in a Dragonfly with h=
2. Traffic from each source group i targets the next h = 2 consecutive
groups (i+1, i+2). Right picture shows a closer view of the source and
destination groups. Highlighted router Rout connects to the minimal
global link towards those destination groups. . . . . . . . . . . . . . . 90



LIST OF FIGURES 21

3.2 Latency and throughput under uniform (UN) and adversarial (ADV+1,
ADVc) traffic patterns, using Round-Robin arbitration and prioritizing
transit over injection. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Latency and throughput under adversarial traffic patterns, using Round-
Robin arbitration and prioritizing transit over injection. Injection queues
of 1000 phits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Breakdown of latency components for in-transit adaptive routing with
MM global misrouting policy under ADVc traffic. Round-robin arbi-
tration policy. Transit is prioritized over injection. . . . . . . . . . . . 96

3.5 Injected load per router in group 0, under ADVc traffic with applied
load 0.4 phits/node/cycle. Round-robin arbitration with transit-over-
injection priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Example of router with similar congestion in all the queues. The value
in the credit counter is similarly low for all the output ports, making
difficult to discern if it is a general case of congestion (e.g., high UN
traffic load) or pathological saturation in the router links (e.g., ADVc
in the bottleneck router). . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Latency and throughput under uniform (UN) and adversarial (ADV+1,
ADVc) traffic patterns, using Round-Robin arbitration, without priori-
tizing transit over injection. . . . . . . . . . . . . . . . . . . . . . . . 101

3.8 Latency and throughput under adversarial (ADV+1, ADVc) traffic pat-
terns, using Round-Robin arbitration without priority of transit over
injection. Longer injection queues of 1000phits. . . . . . . . . . . . . 102

3.9 Injected load per router in group 0, under ADVc traffic with applied
load 0.4 phits/node/cycle. Round-robin arbitration without transit-over-
injection priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.10 Evolution of the fairness metrics with the network size, under an ADVc
traffic load of 0.4 phits/(node·cycle), with RR arbitration without in-
transit-over-injection priority. . . . . . . . . . . . . . . . . . . . . . . 105

3.11 Latency and throughput under uniform (UN) and adversarial (ADV+1,
ADVc) traffic patterns, employing age-based arbitration. . . . . . . . 106

3.12 Injected load per router in group 0, under ADVc traffic with 0.4 phits/node/cycle
of applied load. Age-based arbitration. . . . . . . . . . . . . . . . . . 107

3.13 Evolution of the fairness metrics with the network size, under an ADVc
traffic load of 0.4 phits/(node·cycle), with age-based arbitration. . . . 109

4.1 Uncertainty in the use of credits with small buffers. The continuous
transmission in the upper figure is indistinguishable from a full queue
in the lower one, because all packets and credits are in-flight. . . . . . 112



22 LIST OF FIGURES

4.2 Reaction time on traffic changes and slow-lane traffic. In the upper
figure, the traffic pattern changes and multiple input ports compete for
the same minimal output with low occupancy. In the lower figure, the
queue in the minimal output has got full enough and traffic is diverted
nonminimally, but all the input queues have become full and need a
long time to drain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Base contention-detection mechanism. Output port P2 is marked as
having contention, since its counter exceeds the threshold th = 3. . . . 115

4.4 Obtention of a combined counter as a sum of received and own partial
counters in the ECtN implementation. . . . . . . . . . . . . . . . . . 117

4.5 Sensitivity of Base to the misrouting threshold. . . . . . . . . . . . . 118
4.6 Latency and throughput under UN and adversarial traffic (ADV+1,

ADV+h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7 Latency under a load of 0.35 phits/(node·cycle) with a mixed traffic

pattern, split between ADV+1 (left) and UN (right). . . . . . . . . . . 122
4.8 Evolution of latency and misrouting when the traffic pattern changes

from UN to ADV+1, with a load of 0.2 phits/(node·cycle). . . . . . . 123
4.9 Zoom-out of the evolution of latency when the traffic pattern changes

from UN to ADV+1, with a load of 0.2 phits/(node·cycle), considering
only PB and ECtN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.10 Evolution of latency when the traffic pattern changes from UN to ADV+1,
with a load of 0.2 phits/(node·cycle), employing large buffers of 256
and 2048 phits per VC for local and global ports, respectively. . . . . 124

5.1 Distance-based deadlock avoidance with MIN/VAL routing in a generic
diameter-2 network with 4 VCs. Traffic is sent from source S to des-
tination D. Only the shaded buffers at each router of the paths are al-
lowed for those hops. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Sample FlexVC usage in a generic diameter-2 network. Allowed VCs
in each hop are shaded. . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Example of protocol deadlock avoidance in a generic diameter-2 net-
work with 3+2 = 5 VCs using FlexVC. . . . . . . . . . . . . . . . . 134

5.4 Zoom of a source group under ADV+1 traffic. The minimal global link
is highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Router with minCred misrouting decision. Each output port has a reg-
ular counter tracking the total number of occupied slots in the next
buffer, and a counter to track only the occupancy for minimally routed
packets. Link-level flow control relies on the first counter, but the mis-
routing decision is taken based on the second counter. . . . . . . . . . 136

5.6 Throughput under UN traffic with MIN routing, using DAMQ buffers
with different buffer reservation per VC. . . . . . . . . . . . . . . . . 138

5.7 Latency and throughput under uniform (UN), uniform with bursts of
traffic (BURSTY-UN) and adversarial (ADV+1) traffic with oblivious
routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



LIST OF FIGURES 23

5.8 Absolute and relative maximum throughput under uniform and adver-
sarial traffic with oblivious routing. . . . . . . . . . . . . . . . . . . . 141

5.9 Latency and throughput under uniform (UN, BURSTY-UN) and ad-
versarial (ADV+1) traffic patterns with oblivious routing, modeling
request-reply dependencies. . . . . . . . . . . . . . . . . . . . . . . . 143

5.10 Latency and throughput under uniform (UN, BURSTY-UN) and ad-
versarial (ADV+1) traffic patterns with source-adaptive routing. MIN
is the oblivious routing reference for uniform traffic, and VAL for the
adversarial pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.11 Latency and throughput under request-reply uniform (UN, BURSTY-
UN) and adversarial (ADV+1) traffic patterns with source-adaptive
routing. MIN and VAL are the oblivious routing reference for uniform
and adversarial traffic, respectively. 4/2+4/2 VCs are used in baseline
PB and VAL, 4/2+2/1 in FlexVC PB and 2/1+2/1 in MIN. . . . . . . . 146

5.12 Sample group of a Dragonfly network, suffering a pathological case of
congestion with oblivious/source-adaptive nonminimal routing under
ADV traffic. Black lines represent MIN paths, red lines correspond to
VAL paths. Note that the path overlap prevents any of the routes from
being followed except at a very slow pace. . . . . . . . . . . . . . . . 147

5.13 Throughput under request-reply ADV+1 traffic with VAL and source-
adaptive routing, with/without recalculation of the VAL router. . . . . 148

5.14 Latency and throughput under request-reply uniform (UN, BURSTY-
UN) and adversarial (ADV+1) traffic patterns with in-transit adaptive
routing. MIN and VAL are the oblivious routing reference for uniform
and adversarial traffic, respectively. . . . . . . . . . . . . . . . . . . . 149

5.15 Absolute and relative maximum throughput under uniform and adver-
sarial traffic with oblivious routing without router speedup. . . . . . . 151

5.16 Throughput under UN request-reply traffic at 100% load, with multiple
VC selection functions and amount of VCs. MIN routing. . . . . . . . 152





List of Tables

1.1 List of abbreviations for the Dragonfly network. . . . . . . . . . . . . 35
1.2 List of parameters employed in the simulations. . . . . . . . . . . . . 57

2.1 List of abbreviations employed in the equations. . . . . . . . . . . . . 66
2.2 List of abbreviations employed in the model implementation. . . . . . 73
2.3 List of query computation time for different node architectures. . . . . 74
2.4 Simulation parameters for the Graph500 synthetic traffic model evalu-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Fairness metrics for all routing and global misrouting policy combina-
tions under ADVc traffic, with traffic in the transit queues given pri-
ority over traffic in the injection queues. Values are specified for two
different traffic loads per combination, one below and one above the
average saturation point. . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2 Fairness metrics for all routing and global misrouting policy combina-
tions under ADVc traffic, without transit-over-injection priority. Val-
ues are specified for two different traffic loads per combination, one
below and one above the average saturation point. . . . . . . . . . . . 104

3.3 Fairness metrics for all routing and global misrouting policy combina-
tions under ADVc traffic with age-based arbitration. Values are speci-
fied for two different traffic loads per combination, one below and one
above the average saturation point. . . . . . . . . . . . . . . . . . . . 108

5.1 Allowed paths using FlexVC in a generic diameter-2 network. . . . . 132
5.2 Allowed paths using FlexVC and considering protocol deadlock in a

generic diameter-2 network. . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Allowed paths using FlexVC in a diameter-3 Dragonfly network fol-

lowing local/global links in topology-determined order. . . . . . . . . 134
5.4 Allowed paths with FlexVC considering protocol deadlock in a diameter-

3 Dragonfly network. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

25





Chapter 1

Introduction

The computational needs of high-demanding applications have exceeded for decades
the capabilities of the most performant CPUs, requiring the aggregation of several
computing nodes in order to achieve sufficient computational power to meet those
needs. Typically, the communications between the application processes are performed
through a message-passing library such as MPI [146]. One of the key components of
large High-Performance Computing (HPC) systems is the interconnection subsystem;
an interconnect is composed by a set of routers (which forward packets towards their
destinations) and the cables to link them. The importance of the network role has
increased with the next Exascale frontier targeted by forthcoming HPC systems (ma-
chines able to perform 1018 floating point operations per second), and by the surge of
data-intensive applications in which the performance bottleneck is feeding data to the
processors. These data feed bottlenecks come mainly from physical limits in memory
bandwidth, but are also related to the network bandwidth of the interconnection. Fur-
thermore, many of the design challenges of current system networks are expected to
translate into the design of future processors as its interconnect evolves into networks-
on-chip (NoCs).

The target of this work is to analyze the impact of the network interconnect under
traction-gaining BigData applications, which are more limited by the network through-
put than the typically latency-bounded HPC applications. To that effect, this work
presents a synthetic traffic model of a representative BigData application and analyzes
the fairness of the network and its impact in the applications performance. This work
also introduces two architectural advantages that improve performance and reduce the
number of resources needed, one to improve the detection of adversarial traffic scenar-
ios and another to relax the routing and hardware restrictions of the network.

This introduction delves into the fundamentals of interconnection networks, going
from the router components to the network topology. It also explores the use of sim-
ulation tools for the evaluation of the network performance, defining the performance
metrics and focusing on the particular simulator employed in the rest of this work.
Finally, it concludes itemizing the most significant contributions of this work.

27



28 Chapter 1. Introduction

CrossbarCrossbar

m
u

x
m

u
x

d
e

m
u

x
d

e
m

u
x

m
u

x

d
e

m
u

x

m
u

x
m

u
x

d
e

m
u

x
d

e
m

u
x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

m
u

x

d
e

m
u

x

Routing and 
allocation 

units

Routing and 
allocation 

units

Figure 1.1: Architecture of a router with input and output buffering.

1.1 Router architecture

The architecture of a router is organized around the routing fabric, which handles the
interconnection of the input and output ports. Router size is expressed as the router
radix, the number of ports in the router. The routing fabric can be implemented with
a monolithic crossbar [37, 105, 150, 26, 48] or through more complex solutions: for
example, a buffered crossbar [127, 4, 83] or a multi-staged fabric composed of smaller
crossbars [130, 1]. Figure 1.1 portrays an example of router architecture. It is com-
posed by a series of buffers at the input and output ports, a switching fabric and the
routing and allocation units that manage which packets are forwarded every cycle, and
through which output port.

The architecture of the router is tied to the type of flow control employed. Flow
control establishes how the network resources are allocated to the packets traversing
the network, and can be buffered or bufferless. Bufferless flow control requires a path
to be established between a pair of nodes before the traffic flow between them can be
injected into the network. Buffered flow control strategies can allocate the use of the
switching fabric on demand, at the expense of devoting some area to memories that
store incoming data when a connection between a pair of router input and output is not
available, before it can be forwarded to another router or its destination. Buffered flow
control mechanisms differ in the granularity at which they perform resource alloca-
tion; most common mechanisms are Virtual Cut-Through (VCT, [85]) and WormHole



1.1. Router architecture 29

(a) Virtual Cut-Through switching.

(b) WormHole switching.

Figure 1.2: Buffered flow control mechanisms. Orange line highlights the traversal of
the marked packet (also in orange). Note that in VCT the packet can only advance if
there is enough space in the next buffer to wholly host it, whereas in WH the packet can
be spread across multiple buffers in different routers.

(WH, [45]).
VCT manages the buffering in units of packets, requesting space in the next buffer

to host a whole packet before forwarding it. In memory-constrained networks such as
Networks-on-Chip (NoCs) wormhole flow control is employed, where buffering is per-
formed at a finer granularity of flits, smaller than a packet. WH reduces the buffer size
but allows packets to be spread across multiple buffers at any given time, increasing the
complexity of the flow control mechanism and/or reducing the flexibility of the rout-
ing function. In recent design proposals of optical interconnect routers flow control is
performed at a virtual circuit level, using a given path for several packets before recon-
figuring it [128, 94, 119]. This design alleviates the impact of reconfiguration delays,
which are orders of magnitude higher than commutation times for optical circuitry, and
can either be bufferless or employ much smaller buffers. In traditional electronic in-
terconnects, however, the penalty for establishing a new path is much more negligible
and a buffered flow control is used. This work will hereon focus on the analysis of
networks with VCT flow control, although some of the proposals can also be applied
to WH flow control.

Buffered flow control mechanisms require updates of the buffer occupancy from
neighboring routers to ensure the availability of space to host the packet at the input
buffer of the next router. This can be performed through different strategies; the most
common are credit-, grant-, or rate-based. A detailed description of different flow
control mechanisms and their implementation can be found in [107].

Flow control based on credits sends updates to the neighbor router at each input port
to acknowledge the removal of a packet from the input queue. This increases a counter



30 Chapter 1. Introduction

BBAA credits
0

0

0

0

3

0

2

4

+1

credits

Figure 1.3: Credit-based flow control. Each output has a credit counter tracking the
number of available slots in the next buffer: a packet dispatch from router A decrements
the credit counter for the output linking to B, and a dispatch from the input queue in B
triggers the delivery of a credit back to A, reporting the availability of one additional slot.

BBAA

X

X

X

stop

Figure 1.4: Grant-based flow control. Output ports with available space in the neighbor
router are marked in green, and the red mark implies the lack of available space. When
the input buffer in router B becomes full, it sends a signal to router A to stop the trans-
mission through that link. When packets are advanced and new slots become available,
another signal is transmitted to notify that the communication can be restarted.

of credits (available slots on the input buffer); whenever a packet is sent towards that
input buffer, the credit count is decreased. Figure 1.3 illustrates the functioning of
credits on a transmission between two routers, A and B. Once the credit count reaches
zero, transmission towards that queue is halted until new credits are received. Credits
can be either absolute or relative; absolute credits report the total number of free slots in
the neighbor queue, whereas relative credits are incremental and represent the number
of slots that have become free. The latter is more common at a link level, because
absolute credits need the packet sequence to be numbered.

Grant-based flow control substitutes credit updates for two signals to inform when
the router can start or must stop the communication. This diminishes the amount of
control messages to be sent (particularly for large buffers) but significantly reduces
the granularity of buffer management, only being able to ascertain the lack of avail-
able space in the next queue after it is full. This constitutes a significant restriction
for adaptive routing mechanisms where the route selection typically depends on buffer
occupancy. Figure 1.4 represents the delivery of a stop signal because the input buffer
in router B has filled up. Finally, rate-based flow control throttles the transmission:
the neighbor router hosting the input queue sends messages to increase or decrease the
transfer speed of the link. This work focuses on credit-based flow control, since it is



1.1. Router architecture 31

(a) Input-queued router. (b) Output-queued router.

(c) CIOQ router. (d) Central-buffered router.

Figure 1.5: Different buffering configurations in a router.

the most usual implementation in system networks such as Infiniband [76], Intel Om-
niPath [26], Bull BXI [48], Cray Cascade [56], Cray Seastar [6] or IBM PERCS [16].
The flow control credits employed are relative, only sending incremental updates to
the credit list.

In routers with buffered flow control, the buffers are typically First-In, First-Out
(FIFO) queues where only the packet at the head of the buffer can advance out of the
queue. Multiple buffering strategies exist: a central pool of buffers (linked both to input
and output ports), input-connected buffers, output-placed buffers and buffers both at in-
put and outputs (known as Combined Input/Output-Queued, CIOQ [121]). Figure 1.5
shows a scheme of routers with different configurations. Each buffering strategy has
associated shortcomings [75, 70, 112]. Routers with input-buffering suffer from Head-
of-Line Blocking (HoLB), where a packet at the head of the buffer cannot advance and
blocks the forwarding of another packet further in the queue. Furthermore, they cannot
exploit the benefits of crossbar frequency speedups, where the crossbar commutes at a
faster rate than the network links. Output-buffering removes HoLB but reduces the po-
tential for adaptive routing, since the routing decision cannot be re-evaluated. Central
buffering and CIOQ keep routing flexibility while mitigating HoLB, but require more
buffer area and power consumption. This work considers networks with CIOQ routers
as the one depicted in Figure 1.1.

The routing units determine which output will be used for any given packet. Rout-
ing mechanisms can be oblivious or adaptive. Oblivious routing assigns a fixed path
based on the destination of the packet, whereas adaptive routing takes into account the
status of the network and selects between multiple paths.

The allocation units assign the router resources, matching input buffers to the out-



32 Chapter 1. Introduction

Arb

Arb

Arb

o10

o13

o12

o11

Arb
o03

o02

o01

o20

o23

o22

o21

Arb

o30

o32

o31

Arb
i30

x30

x32

x31

Arb
i20

x20

x23

x22

x21

Arb
i10

x10

x13

x12

x11

i00

x03

x02

x01

Input arbitration Output arbitrationInput arbitration Output arbitration

Figure 1.6: Input-first separable allocator. The allocation is performed in two stages:
first the input arbiters select one virtual channel ii j to access the crossbar, triggering
the xik signal for the k port. Next, the output arbiters grant the output port to one of
the contending inputs. The figure shows a successful request i00 at the first input,
which wins at the input arbiter (triggering the x02 signal) and at the output arbiter, being
granted access to the crossbar and to the output port 2.

puts requested after the routing is performed. There are several allocation algorithms;
this work considers solely separable allocators [46, 20], which consist of two stages
of arbitration, across the input and the output ports. In each input port there are several
buffers, one per every virtual channel (VC); the purpose of VCs will be introduced in
Section 1.3. Input arbitration assigns the use of the input port to the crossbar to one of
the VCs, and places a request for the output that the packet at the selected VC will em-
ploy. Output arbitration matches the output port to an input that has requested it. Each
arbiter follows an arbitration policy to establish the order in which the demanding ports
or buffers will be attended. Figure 1.6 illustrates a sample 2x4 input-first separable al-
locator. The arbitration policy needs to ensure a fair attendance to avoid starvation at
certain inputs or VCs. A well-known policy is Round-Robin (RR), in which the list
of priorities for the ports is rotated every time the arbitration is performed. Separable
allocators do not guarantee an optimal arrangement but are easier to implement and
perform a faster matching, specially for large radix routers. The modelled router in
this work employs an input-first separable allocator, employing RR in each arbiter but
only shifting the priority list of ports when the resource is granted.

Most modern routers split their functionality into multiple pipelined steps that can
be performed concurrently for different packets [46], in order to reduce the duration
of the clock cycle and increase performance. In a typical virtual channel router, these
steps are the computation of the routing, the allocation of a virtual channel for every
input port, the allocation of an input for every output port, and the traversal of the



1.1. Router architecture 33

RO IA OA XT

RO IA OA XT

RO IA OA XT

1 2 3 4 5 6Cycle

Pkt 0

Pkt 1

Pkt 2

Figure 1.7: Pipeline of a router. Each packet goes through 4 steps: routing (RO), input
allocation (IA), output allocation (OA) and crossbar traversal (XT). At each cycle, the
router can be processing multiple packets, each at a different stage.

(a) Input speedup. (b) Output speedup.

Figure 1.8: Router with an input/output speedup of 2. Note that the router with input
speedup has 2 ingress points to the crossbar for every input port, whereas the router
with output speedup has two egress points from the crossbar to each output port.

router crossbar. Figure 1.7 shows the pipelining of those functions for three different
packets during 6 cycles of the router.

In order to increase the router performance and improve the allocation of the re-
sources the router may have speedup, provisioning more resources than ideally re-
quired. Different implementations can be considered, such as input, output and in-
ternal speedup. In input speedup, the router crossbar has several input ports for each
router ingress point, allowing more than VC of a router input port to advance concur-
rently. Similarly, in output speedup the router crossbar has multiple output ports for
each router egress point. Figure 1.8 illustrates routers with input and output speedup.
Both input and output speedup increase the effective crossbar transfer rate (multiple
packets can advance from/to the same port) and help to mitigate the impact of sub-
optimal allocations. Their implementation is necessarily costly, because it requires
a switching fabric with at least twice the input/output ports of the router, and scales
poorly. This work will focus in an internal speedup where the router stages (routing,
input and output arbitration, and crossbar traversal) work at a higher frequency than
the network links.

Different buffer implementations can be employed depending on the buffer alloca-
tion, as displayed in Figure 1.9. Statically partitioned buffers assign a fixed amount of



34 Chapter 1. Introduction

(a) Statically partitioned buffers.

(b) Dynamically Allocated Multi-Queue (DAMQ).

(c) DAMQ with statically allocated buffering for
each VC.

Figure 1.9: Logical organization of static vs dynamic buffer management with three
VCs. In DAMQs a buffer pool is shared between VCs. Head and tail pointers are used
to access data from each VC, and allocate free memory (black pointers).

memory per VC, whereas dynamically allocated buffers (such as Dynamically Allo-
cated Multi-Queues, DAMQs) [138] share a single memory buffer across all the VCs
within a port and allocate memory dynamically to each VC on demand. Intermediate
approaches employ a shared pool combined with statically allocated buffering for each
VC.

1.2 Topologies for Exascale system networks

Besides the router architecture, a key characteristic of system networks is the topology
in which they are arranged. Ideally, the topology shall meet the performance needs of
the applications at the minimum attainable cost. Some of the most common topologies
exploited in HPC systems have been k-ary n-cubes [43] and folded-Clos networks [42]
(also called fat trees [99]). These topologies have high path diversity between pairs of
nodes, which allows them to be non-blocking and to cope with faulty cables without
isolating nodes. k-ary n-cubes have been traditionally based on low-radix routers with
a reduced number of ports and low bandwidth, and benefit the execution of applica-
tions with near-neighbor communications. As the technology has improved, routers
have achieved higher bandwidths, which are better exploited through a higher router
radix [92] [130]. This has fueled the popularity of fat-trees [130, 152] which have high
radix and achieve better performance at a lower cost, when compared to k-ary n-cubes.

However, they face packaging issues when larger network sizes are considered in
order to achieve Exascale machines. In this context, highly-scalable high-radix topolo-



1.2. Topologies for Exascale system networks 35

Table 1.1: List of abbreviations for the Dragonfly network.

Abbr. Parameter
N Number of nodes in the network.
p Number of nodes per router.
h Number of inter-group (global) links per router.
a Number of routers per group.
r Router radix (number of ports).
d Network diameter.
l Local hop (traversal of a local link).
g Global hop (traversal of a global link).

gies have been proposed, such as the Flattened Butterfly [90], the Dragonfly [91], the
SlimFly [24] and the Projective Networks [32]. One of the features of these topologies
is that they are direct networks, where all the routers are directly connected to one
or more nodes; this decreases the switch to node ratio and helps to diminish costs, as
well as reaching higher network sizes for the same router radix. Out of these topolo-
gies, the Dragonfly is particularly interesting because it has been the only to have been
implemented in an HPC system so far.

1.2.1 Dragonfly networks

The Dragonfly topology was first introduced by Kim et al. in [91]. It is a low-diameter
cost-efficient network topology based on high-radix routers and suitable for Exascale
systems. This topology has been used in the Cray Cascade [56] and IBM Power
775 [16].

In a Dragonfly, network routers are arranged into groups following a 2-level hi-
erarchy. It is a direct network with one or more compute nodes connected to every
router. The size of the network is described through three parameters: the number of
compute nodes per router (p), the number of routers per group (a) and the number of
inter-group links per router (h). Thus, the number of ports per router (router radix) is
r = p+a−1+h. Table 1.1 summarizes the abbreviations for the network parameters
and variables.

The maximum size that can be achieved in a Dragonfly is Nmax = ap(ah+1), when
there is only one inter-group link between every pair of groups. To ensure a balanced
use of the links under a uniform workload, the p, a and h parameters follow the relation
a = 2p = 2h [91]. These guarantees the number of global links departing from any
group to be the same as the number of injectors in the group, and the number of local
links to be twice that amount, because the longest path in a minimal route between
two nodes employs two local links but only one global link. Figure 1.10 displays a
Dragonfly network of size h = 2 with 72 compute nodes and 36 8-port switches. The
size of this Dragonfly is maximum for the router radix k = 8 of the routers.

In the base version of the Dragonfly, both the topology within each group and



36 Chapter 1. Introduction

global link

local link

router

node

group

Group 0

R0 R1 R2 R3

(a) Palm-tree arrangement.

global link

local link

router

node

group

Group 0

R0 R1 R2 R3

(b) Consecutive arrangement.

Figure 1.10: Sample Dragonfly network with h = 2 global links per router, p = 2 com-
pute nodes per router and a = 4 routers per group. Two different arrangements of the
global links are considered, palm-tree and consecutive.

between groups are complete graphs; if the size of the network is maximum (N =
ap(ah+1)), only one minimal path connects any pair of given nodes. The diameter
of the network is then d = 3, corresponding to the longest path between two given
routers, which occurs when the routers are in different groups and none of them is
directly attached to the link joining the groups. Other variations of the Dragonfly
increase the connectivity between neighboring routers at the expense of losing full
connectivity between routers of the same group, and increasing the network diameter.
Such variations are considered in this work.

Typically the links between groups (also called global links) are much longer than
those within a group (or local links) and employ optical cables instead of electrical
wires. The arrangement of the global links among the routers in a group can follow
different layouts [33]. As will be explained in further sections, certain combinations
of link layout and traffic workload can lead to an unbalanced use of the network and
translate into undesired behaviors. However, the layout only changes the specifics of
the workload needed to present such behavior and does not undermine the need for
mechanisms to alleviate it. The arrangement implicitly shown in [91] is consecutive,
mapping the global links in the group to the groups in the network in an incremental
sequence, starting always from group 0 and omitting those links that would connect to
the current group. The Dragonfly in Figure 1.10b employs a consecutive arrangement
of global links, with the first global link in every group connecting to group 0 (except at
group 0). The Dragonfly networks employed in this work follow a palm tree layout in
which the links in the group connect to precedent groups following a modulo sequence
that joins to other groups consecutively, starting by the h previous groups that are
always reached through the global links of the first router of the group, and ending
with the h following groups connected to the last router of the group. The global links



1.3. Deadlock-avoidance mechanisms 37

(a) With deadlock.

(b) Without deadlock.

Figure 1.11: Cyclic dependency between packets at the head of the buffer in different
routers. Each arrow represents the intended path of a packet at the head of the queue.
In the upper figure, none of the packets can advance because there are not any avail-
able slots in the next queue, and none of the queues can drain, leading to a deadlock.
In the lower figure, virtual channels are employed to break the cyclic dependency and
allow queues to drain eventually.

in the Dragonfly of Figure 1.10a follow a palm tree layout.

1.3 Deadlock-avoidance mechanisms

Almost all network topologies are susceptible to present cyclic dependencies between
packets and are prone to inter-lock those packets. Lossless networks such as those
used in HPC systems do not drop packets in such scenarios, and can eventually halt
the whole network in what is known as a deadlock; Figure 1.11a shows an example of
cyclic dependency.

To prevent the network halt, either a deadlock avoidance or a deadlock recovery
mechanism is used. Deadlock avoidance guarantees that deadlock conditions are not



38 Chapter 1. Introduction

BBAA

Requests

Reply

Reply

Figure 1.12: Example of protocol deadlock in a generic diameter-2 network with 2 VCs.
There is a cyclic dependency between the replies from A, the requests from A, the
replies from B and the request from B. Since the buffers are filled up with requests,
there is not sufficient space to inject replies, and the consumption of requests stalls.

met, whereas with deadlock recovery a deadlock can potentially happen, and the mech-
anism is responsible of detecting and correcting it [120].

There are multiple techniques to avoid deadlock. One is to impose routing restric-
tions that ensure the absence of cyclic dependencies, as is done in DOR routing [46],
O1TURN [132], or in different proposals for routing in Dragonflies [64, 33]. An-
other method is to apply injection or flow control restrictions, as is done in the Bubble
router [123], the BlueGene/L [27] and the Flit Bubble flow control [102]. A third tech-
nique to break the cycles is to split a physical channel into multiple Virtual Channels
(VCs), placing multiple buffers for a single link [44, 52, 69]; this work only focuses on
avoiding deadlock through the use of VCs. Certain deadlock avoidance mechanisms
rely on virtual networks which combine certain routing restrictions with the use of
VCs, such as SSSP [72], DF-SSSP [50] or NUE routing [49].

Figure 1.11b shows the same head-of-buffer packets as in Figure 1.11a, but the
use of multiple buffers in each port breaks the cyclic dependency and allows network
drainage. VC buffers are connected to the same link port through a demultiplexer, and
to a crossbar input through a multiplexer. This is the case of the router in Figure 1.1;
notice that the output ports employ a single buffer instead of one per VC because all
the packets at a given output require the same outgoing link and do not suffer HoLB,
since the crossbar is only traversed if there is enough space at the buffer in the next
router.

There are multiple deadlock avoidance mechanisms based on the use of VCs. In
the mechanism proposed by Günther [69], packets at each hop of the path are hosted in
a different VC (buffer) and do not block other packets at a different stage of their path,
breaking the cyclic dependency and allowing network drainage. The original proposal
for deadlock avoidance in the Dragonfly [91] uses a similar approach and increases the
VC index for each hop of the path, but distinguishes between local and global links.
As shown in Section 5.1.1 the local and global hops can only follow a given sequence,
and the number of VCs needed is not determined by the highest index value but by the
amount of indices within each set. VCs are also used to mitigate HoLB, what increases
the router performance.

Deadlock can also appear at the protocol level [46], when there is a cyclic de-
pendency between different packet classes that reuse the same channels. Figure 1.12
presents a sample cyclic dependency between two nodes, where the delivery of a re-
sponse is halted for the sending of a request. The typical solution to prevent protocol



1.4. Routing mechanisms 39

global linkglobal link

local linklocal link

routerrouter

nodenode

groupgroup

MINMIN

VALVAL

VAL-groupVAL-group

VAL routerVAL router

Figure 1.13: Example of oblivious routing mechanisms in a Dragonfly network. Dashed
red line signals the source and destination of a packet. MIN routing is shown in black,
VAL routing in orange, and VAL-group in grey. VAL and VAL-node paths overlap except
for the extra jump to the VAL node.

deadlock is to employ separate virtual networks to handle each class of traffic, as in
Cascade [56].

1.4 Routing mechanisms

The routing function determines the path that a packet will follow to reach its destina-
tion. These functions are typically classified into oblivious or adaptive depending on
whether they set the path independently of the state of the network or not.

1.4.1 Oblivious routing

1.4.1.1 Minimal routing (MIN)

Minimal routing (MIN) employs the shortest path between the source and destination
of a packet. In a balanced Dragonfly network with a = 2p = 2h this results in only one
possible path of 3 or less hops: up to one local hop in the source group, one global
hop between source and destination groups, and one local hop in the destination group
(l−g− l). The local hop in the source group is employed when the destination is in a
different router in the same group, or when the destination is in a group connected to
a different router of the group. The local hop in the destination group occurs when the
global link is not connected to the same router as the destination node. An example of
MIN routing is presented in Figure 1.13.

MIN provides sufficient throughput and minimal latency under balanced traffic
loads with spatial and temporal uniformity, where it represents an ideal target. How-



40 Chapter 1. Introduction

ever, other workloads stress non-uniformly the network links and reduce performance,
enforcing the need for alternative routing mechanisms. A nonminimal routing mecha-
nism such as a Valiant routing exploits longer random paths to regain uniformity in the
use of the network resources.

1.4.1.2 Valiant routing (VAL)

Valiant routing (VAL) is an oblivious nonminimal routing mechanism proposed by
Valiant in [143]. Under VAL, packets are first minimally routed to a randomly selected
router and then minimally towards the destination. This effectively makes the traffic
workload uniform and balances the use of the links at the cost of doubling the length of
the path. Giving the balance between links and nodes, the maximum performance that
can be achieved with VAL is 50% of the maximum allowed by the network. This gives
an advantage over MIN under non-uniform traffic loads, but trades off performance
when the communications are uniformly distributed.

In [91], Kim et al. employ a variant of VAL which selects a random intermediate
group instead of a node, to save a local hop in the intermediate group and reduce the
path length. This allows a performance increase under adversarial traffic patterns such
as those described in Section 1.6.1.2; however, it provokes a pathological bottleneck
in the local links of the intermediate group under other adversarial patterns, as it was
first observed by Garcı́a et al. in [63]. In this work, we will refer such variant of VAL
routing as VAL-group. A sample of the paths in both versions of VAL routing is drawn
in Figure 1.13. It must be noted that, if VCs are employed as deadlock avoidance
mechanism, VAL requires an additional VC over VAL-group, corresponding with the
additional local hop in the path. The relation between the length of the longest possible
path and the number of VCs required to avoid deadlock is described in more depth in
Chapter 5.

1.4.2 Adaptive routing

The previous oblivious routing mechanisms constitute a good point of reference for
the performance targets under concrete scenarios (i.e., MIN when the communications
are uniform) but are not well suited to match the needs of ongoing transmissions with
other communication patterns. Adaptive routing takes into account the state and usage
of the links to choose between multiple paths in order to provide a better service. In
the context of Dragonfly networks (particularly if they are of maximum size) adap-
tive routing switches between MIN and VAL routing for every packet. The election
between minimal and nonminimal paths relies on a misrouting decision which can be
based on different metrics of the links and occur at different points of the route. Adap-
tive routing mechanisms can be split into two categories: source-adaptive and in-transit
adaptive routing.



1.4. Routing mechanisms 41

1.4.2.1 Source-adaptive routing

Source-adaptive routing mechanisms perform the misrouting decision only at the injec-
tion of a new packet into the network. They can be simpler to implement than in-transit
adaptive routing, since the misrouting decision is only performed once per packet in-
stead of at multiple points of the path. The misrouting decision typically relies on
information about the saturation of the queues and is performed through a comparison
of available credits (empty space in the next buffer) per output. The selection of the
intermediate node is similar to VAL, and a VAL-group variant can be employed.

In [82], Jiang et al. describe a simplified implementation of the Universal Globally-
Adaptive Load-balanced routing (UGAL, [134]) for Dragonfly networks. It tracks
the occupancy of the router buffers, and routes minimally if the following relation is
accomplished:

QMIN ≤ 2QVAL +T (1.1)

where QMIN and QVAL represent the queue occupancy in the first hop of the MIN
and VAL paths, and T is a routing threshold that can be adjusted to prevent excessive
misrouting under low traffic loads. The 2× factor represents that, in average, VAL
paths are twice as long as MIN paths, and therefore if the occupancy in the VAL queue
is more than half of the MIN buffer, the nonminimal route is counterproductive. In
this work, a generalized version of this decision is employed, where the 2× value is
replaced by a tunable factor F ; Equation 1.2 defines this generalized version.

QMIN ≤ F×QVAL +T (1.2)

The original proposal does not specify if the decision is based on credits per-port
or per-VC. In the first case, credit count gathers the credits for all the buffers (VCs) in
each port, whereas in the comparison per VC the credit count is the number of empty
slots in the buffer to be used. Unless otherwise stated, in this work the comparison is
performed per VC. Section 5.2.4 discusses the impact of each approach and justifies
the use of a per-VC comparison.

Since the misrouting decision is only performed at injection and the path cannot be
altered afterwards, local saturation information may be insufficient under adversarial
traffic. This can be circumvented with the exchange of link saturation status between
routers, as done in PiggyBack routing.

1.4.2.1.1 PiggyBack PiggyBack routing (PB) is a source-adaptive routing mecha-
nism proposed by Jiang et al. in [82] for Dragonfly networks, extending UGAL with a
mechanism to detect saturated global channels. All the routers perform periodically the
misrouting decision on each of its global links compared against their average global
link saturation, and mark as saturated those that exceed it. This is decision is sum-
marized in Equation 1.3, where SGC is the bit that signals wether a global channel is
saturated or not, QGC is the occupancy of the global channel, Q̄ is the average occu-
pancy and T is a threshold to avoid excessive misrouting under low traffic loads; the



42 Chapter 1. Introduction

original version of PB in [82] employs a fixed 2× factor but here it is again generalized
through a tunable misrouting factor F .

SGC = QGC > F× Q̄+T (1.3)

The saturation status of the global links is then broadcast within the group through
piggybacking, attaching it to the header of regular packets exchanged in the group.
Packets attempting to take a route with a global port marked as saturated (bit S = 1) or
with a queue occupancy in the next hop that does not fulfill Equation 1.2 are re-routed
nonminimally through a different path.

1.4.2.2 In-transit adaptive routing

In-transit adaptive routing mechanisms reevaluate the misrouting decision at multiple
hops of the path, deciding between the minimal path towards the destination and a
nonminimal path through an intermediate node. This gives more flexibility in path
usage and allows to react during the network traversal to local situations of conges-
tion, reducing latency in exchange for higher router complexity. However, being able
to perform the misrouting decision permits to adapt to adversarial traffic relying only
on local saturation information and erases the need to broadcast the saturation sta-
tus. The misrouting decision is typically based on the occupancy of the queues, as
in source-adaptive routing mechanisms. Note that adaptive routing focuses on avoid-
ing in-network congestion, where traffic flows compete for the same network resources
across their paths. Adaptive routing can not avert end-point congestion, where network
destinations suffer contention from multiple traffic flows, what propagates saturation
back to the network. This work does not evaluate end-point congestion avoidance.

Figure 1.14 depicts a case of in-transit adaptive routing in a Dragonfly network.
A nonminimal path can be selected at injection, after a minimal hop in the source
group and within the intermediate group. The only case where a nonminimal route is
enforced regardless of link saturation status is when two local hops have been made
at the source group. Such situation can only occur when the minimal is selected at
injection, and a nonminimal local hop is performed because the minimal global link is
saturated. In that case, a nonminimal global hop is performed to avoid a packet getting
stuck at its source group and originating a livelock in which the packet never stops
transiting but never reaches its destination.

Progressive Adaptive Routing (PAR) was proposed by Jiang et al. in [82] as an in-
transit adaptive routing for Dragonfly networks. The misrouting decision is performed
as described for UGAL in Equation 1.1. The main drawbacks of PAR in comparison
to a source-adaptive routing as PB are the higher implementation complexity and the
higher number of VCs required to prevent deadlock, which implies an extra buffer for
every router port. To alleviate the latter constraint, Garcı́a et al. proposed in [64] a new
in-transit adaptive routing called Opportunistic Local Misrouting.



1.4. Routing mechanisms 43

global linkglobal link

local linklocal link

routerrouter

nodenode

groupgroup

MIN pathMIN path

VAL pathVAL path

VAL escape pathVAL escape path

VAL routerVAL router

In-transit change 
to a Valiant path
In-transit change 
to a Valiant path

Figure 1.14: Example of in-transit adaptive routing in a Dragonfly network. Dashed red
line signals the source and destination of a packet. MIN routing is shown in black, VAL
paths in orange (misrouting at injection) and blue (misrouting in-transit). Escape paths
in dark grey revert to MIN paths from the current hop of the path. When the VAL router
is reached, a minimal route is followed towards the destiantion.

PAR VC set : l0− l1−g2 − l3− l4−g5 − l6
OLM VC set : l0− l0−g1 − l0− l2−g3 − l4

Figure 1.15: VC index set used in PAR and OLM routing. Shorter paths follow the
required subset of hops, in the same order. Hops are gathered by the group in which
they occur (source, intermediate, destination).

1.4.2.2.1 Opportunistic Local Misrouting A safe escape path is a deadlock-free
route, where cyclic dependencies are prevented.

The Opportunistic Local Misrouting (OLM) mechanism [64] performs a similar
misrouting decision as in PAR, but saves resources through the use of opportunistic
hops which do not require to reserve an additional VC. A hop is considered as oppor-
tunistic when it is open to cyclic dependencies, reusing the VCs from the previous path
hop. In order to ensure deadlock freedom, opportunistic hops require the existence of
a safe escape path from the next buffer. Escape paths are deadlock-free routes; in the
case of OLM, the escape paths resort to an increasing VC index along the route to
prevent cyclic dependencies. OLM exploits opportunistic routing for the nonminimal
local hops, allowing paths of equal length to PAR (and similar performance) with two
fewer buffers in each local port, significantly reducing allocation complexity and the
power and area associated to the buffers. For the sake of clarity, a comparison of the
selected VC in each hop of the path in OLM vs PAR is provided in Figure 1.15.



44 Chapter 1. Introduction

CRG

MIN

RRG

NRG

Rsource Rout_min

NRG

Figure 1.16: Global misrouting policies for source routing. The red arrow represents
the global link in the minimal path.

1.4.3 Global misrouting policy

Nonminimal routing in Dragonfly networks implies the traversal of an intermediate
group to balance the use of global links, which are more prone to become a bottle-
neck; this is discussed more comprehensively in Section 1.6.1 and Chapter 3. The
global misrouting policy defines the set of inter-group links that can be used to send
nonminimal traffic to avoid a congested link. This policy determines the intermediate
group that will be traversed in a nonminimal path, depending whether it is directly or
indirectly connected from the current router. When the remote group is directly linked
to the current router, only one global link needs to be traversed to reach it. Arriving
to an indirectly linked group implies traversing another router in the current group,
requiring two hops: one local link from the current router to the neighbor router which
is connected to the destination group, and one global link between the two groups (lg).
An in-depth analysis of different global misrouting policies and their impact can be
found in [60].

The global misrouting policy is independent of the implementation of the misrout-
ing decision, but depends on whether it is only performed at injection (source-adaptive
routing) or at any hop of the path (in-transit adaptive routing). In general, three differ-
ent global misrouting policies can be considered for source-based adaptive routing:

• Random-router Global, (RRG): the intermediate group is selected randomly
across the network, regardless of its distance from the current router. This is
the policy that matches the original description of Valiant routing [143].

• Current-router Global, (CRG): only those groups that are directly linked to the
current (source) router are candidates for the nonminimal path. In this case,
there is always a 1 hop distance towards the intermediate group, skipping the
first nonminimal local hop.

• Neighbor-router Global, (NRG): in nonminimal paths, traffic is diverted to a
group connected to a different router in the source group. Packets traverse 2
links (lg) before reaching the intermediate group.



1.5. Performance metrics 45

h global links

2h
-1

 lo
ca

l 
lin

ks

NRG

h injection nodes

CRG

Figure 1.17: MM global misrouting policy for in-transit adaptive routing.

Any of these policies can be used on each hop with in-transit adaptive routing.
Alternatively, different policies can be applied depending on whether the misrouting
decision is taken at injection or after one or more local hops. The Mixed-mode (MM)
mechanism implements such differentiated policy for in-transit adaptive routing:

• MM employs a CRG policy when attempting misrouting at the source router,
and a NRG policy for traffic which is in-transit.

Figure 1.16 depicts these three global misrouting policies. RRG balances evenly
the nonminimal traffic load between all the global links in the network, whereas CRG
reduces the length of nonminimal paths. NRG has the longest average nonminimal
path and reduces performance under uniform traffic. The MM policy is depicted in
Figure 1.17. It tries to balance traffic at injection evenly across all the global links
in the network and mitigate unfairness compared to the RRG and CRG policies which
stress more heavily the minimal links in routers directly linked to the destination group.
The impact of the global misrouting policy in throughput unfairness is analyzed in
Section 3.1.1.

1.5 Performance metrics

To determine the fitness of the network to the system needs, a set of goals needs to be
established. In terms of performance, the typical goal is to reduce the total execution
time of the applications. However, in many cases it is of high interest to evaluate the
network performance in a steady state where there is a constant flow of messages. This
allows to characterize the network in a typical scenario where multiple applications are
running concurrently. The most common metrics in a steady-state characterization are
the latency and the throughput.

The latency measures the amount of time passed between the generation of a packet
and its delivery to its destination. This provides a reference of how fast or slow the



46 Chapter 1. Introduction

network is in dispatching messages. Traditional workloads in high-performance com-
puting consist of long phases of computation interleaved with bursts of communication
during which the execution is halted. These workloads are therefore limited by the la-
tency of the network, because a high latency value prevents them from resuming their
computation.

Throughput, also known as effective bandwidth, is the sustained data transfer rate
that is effectively achieved. Under a synthetic traffic load with a sustained injection
rate, the ideal throughput target is to match the injection rate. That is an unfeasible
scenario in any realistic network without full all-to-all connectivity across the whole
network, due to contention for the network resources. Certain real-world applications
are more constrained for the network throughput than for its latency, as it will demon-
strated in Section 2.

Reaction time measures the amount of time required to adapt to a change in the traf-
fic pattern, when an adaptive routing mechanism is employed. In the case of Dragonfly
networks, this can generally be observed as the interval for a change in the proportion
of minimal and nonminimal path usage, after the (non-)uniformity of the traffic alters.

1.5.1 Unfairness metrics

Systems can suffer different types of throughput unfairness, such as per-node through-
put unfairness, where the source nodes receive a different service level from the net-
work, being able to send different amounts of traffic. There exist multiple indicators
to quantify the presence of throughput unfairness in a system. Some of the most fre-
quently used are:

• Number of injected packets per router (or number of bytes per router, if packets
with variable size are considered). This metric gives the traffic load at each
router of the network, calculated as the number of packets injected by nodes
directly linked to it. This allows to determine the difference in network resources
allocation to the nodes at each different router, and detect the existence of a
router whose nodes receive lower throughput or even suffer starvation.

• Minimal injected load (Min inj. load). It states the lowest number of packets in-
jected per router in the network. This allows to detect a case of unfairness across
the whole network. This value represents a combined metric of performance and
fairness, since it can be constructed as the product of average throughput and
the quotient between lowest injected throughput and average throughput. As it
is discussed in Section 1.5, the average throughput is a performance metric; the
quotient constitutes a metric of fairness itself.

min in j.=
thputmin

thputavg
× thputavg



1.6. Network simulation tools 47

For a case of throughput unfairness, the minimal injected load does not identify
if it is an isolated anomaly or a common behavior for multiple routers in the
network.

• Max-to-min ratio (Max/Min). It is the quotient between the highest and lowest
number of injections per router in the network. This metric highlights both the
cases of allocation of too many or too few resources to a given router compared
to the rest of the network.

• Coefficient of variation (CoV). This metric equals the quotient between the vari-
ance and the average number of injections per router:

COV =
σ

µ

It allows to discriminate between two different cases which may perform simi-
larly in every other stated metric:

One router has an isolated situation of starvation and another router is given
an abnormally high number of resources.

Half of the routers starve and the other half benefit from an unfairly high
number of allocated resources. From the point of view of the applications, both
of these situations are obviously undesirable, but the latter will arguably have a
more negative impact on application performance, or affect a larger number of
system users.

1.6 Network simulation tools

Network architects need tools for the design and evaluation of new systems. The devel-
opment and manufacturing of router prototypes requires time and is costly. Network
simulators constitute one of the most useful tools, specially at early design stages.
They fall commonly on one of three different categories: full-system simulators, trace-
driven execution, and synthetic traffic patterns-based.

Full system simulators are commonly used because they give a picture of the whole
system execution, and generally allow to tune the detail granularity of each subsystem,
providing a reliable analysis of the system behavior. Some of the best known examples
include the Gem5 [25] and Simics [103] simulators. However, full system simulators
are computing and memory intensive and require long execution times to complete
a simulation. An alternative to diminish such requirements is to replace the applica-
tion running over the simulated system by a skeleton restricted to the most relevant
sections for the network evaluation. This approach has been employed in the SST sim-
ulator [126]. However, it is not a feasible option when the region of interest of the
application presents memory and/or execution time constraints.

Trace-driven simulators replace the system simulation by a trace with the com-
munications of an application executed on a real system. The events in the trace are



48 Chapter 1. Introduction

translated into communications in the simulated network. These simulators constitute a
mid-way to evaluate the performance with real application workloads with constrained
computation and memory requirements closer to synthetic traffic patterns. However,
they require the obtention of a trace over a real system. These traces have a substantial
size, specially for network-intensive applications, and become unmanageable when
more than a few hundreds of processes are used. The number of nodes employed in
the trace must match (or be similar to) the number of nodes in the simulated system.
Scaling the communications for a different size broadens the usage of the trace but
reduces the accuracy of the results. Finally, for systems with nodes dissimilar to those
simulated, traces fail to accurately represent the execution dependencies.

Synthetic traffic models offer less granularity and accuracy than full system sim-
ulations in exchange for lower computational and memory requirements. For many
evaluations, they provide enough insight about the network performance and the most
likely use cases. They typically consist of permutations to determine the destination
for a message from a given node, as described in Section 1.6.1. This is the case for the
network-only simulation mode of the Garnet module [8] from the Gem5 simulator, or
the BookSim simulator [79]. There are nevertheless simulators that employ synthetic
traffic patterns which preserve the characteristics (temporality, destinations, volume,
etc) from executions of a real application, such as SynFull [17]. SynFull employs
Markov Chains to model the memory accesses and their associated coherence traffic
for the different phases of an application, and is focused on Networks-on-Chip (NoCs).

Simulation can be either time-driven or event-driven. Time-driven simulators con-
duct the procedures of the simulation actors (in this case, the network nodes and routers
and their submodules) following the increases in the time cycle counter, regardless any
given actor may not have any effective outcome at certain cycles. In event-driven sim-
ulations the events spawn further events to be performed, and the steps of an actor are
only performed when there is an event requiring them instead of every cycle. For ex-
ample, the routing and arbitration of a packet at the header of a queue is only simulated
when the queue has finished transmitting any previous packets. Time-driven simula-
tions are typically easier to model, and event-driven simulators have faster execution
times, particularly under low level workloads.

1.6.1 Synthetic traffic patterns

The performance of a system network varies significantly depending on the workload
characteristics. In the analysis and development of a system network, a network ar-
chitect needs to ensure an adequate level of performance in a wide range of traffic
workloads. A typical approach is to characterize the performance for an array of syn-
thetic traffic patterns in which each node sends packets at a given injection rate and the
destination of the packets follows a spatial distribution (either uniform, or a function
of the source node ID) [57].

This work focuses on three different traffic patterns. Under two of them (random
uniform and adversarial), nodes generate packets at a steady injection rate following



1.6. Network simulation tools 49

global link

local link

router

node

group

(a) ADV+1.

global link

local link

router

node

group

(b) ADV+h.

Figure 1.18: Example of adversarial traffic patterns in a Dragonfly network of size h= 2.
Highlighted local links correspond to the outgoing traffic from one of the groups.

a Bernoulli process. The other pattern models the existence of traffic bursts. The
uniform and bursty uniform patterns represent a general case of use and characterize
the behavior in a best case scenario for a Dragonfly network, whereas the adversarial
traffic tests the behavior in a particular corner case for the Dragonfly topology.

1.6.1.1 Random Uniform Traffic (UN)

In the random uniform (UN) traffic, nodes send packets following a Bernoulli process
in which the probability of generating a new message depends on the injection rate.
The destination of each message is randomly selected across all the nodes in the net-
work. This traffic pattern is benign for the network and is commonly employed in
the evaluation of interconnects to provide a performance estimation in a best-case sce-
nario, since it balances the use of the network links [46]. It also appears in real-world
applications, as will be demonstrated in Chapter 2. Under UN traffic, MIN represents
the optimal routing mechanism because the workload already has spatial and temporal
uniformity, and using the shortest path achieves optimal latency.

1.6.1.2 Adversarial Traffic (ADV)

The adversarial traffic pattern constitutes the worst-case scenario for a network, stress-
ing certain links to become bottlenecks and providing a lower bound for the network
performance. In the particular case of a Dragonfly network, all nodes in a given group
send their traffic to nodes in consecutive groups. Which consecutive group is selected
depends on the concrete variant of adversarial traffic, ranging from ADV+1 (the traf-
fic goes to the following group) to ADV+h (the traffic goes to the h groups away
from current). The main consequence is that all minimally routed traffic between two



50 Chapter 1. Introduction

h global links h global links

RoutRin

Figure 1.19: Bottleneck at the intermediate group in ADV+h traffic, where the h global
input and output links are joined by only one local link.

groups employs a single global link, which becomes a bottleneck and hinders perfor-
mance restricting throughput to 1

ap

(
= 1

2h2

)
if the network is balanced. This limit

is extremely low and lowers linearly with the network size, enforcing the need for
alternative routing, such as the oblivious VAL and the different adaptive routing mech-
anisms. Figure 1.18 illustrates the case of ADV+1 and ADV+h traffic patterns in a
sample Dragonfly network of size h = 2.

Adversarial traffic in Dragonfly networks has been widely used in previous works
such as [91, 88, 82, 122, 61, 87]. ADV+1 is the most common variant employed;
however, ADV+h adds further knowledge about unfairness and performance degra-
dation due to an unbalanced use of the local links which is particularly harmful in
many non-minimal routing mechanisms, as was first observed in [63]. It is frequent
that the minimal local hop in the intermediate group can be avoided with VAL-group
routing (skipping the second local link from the l− g − l− g− l route proposed
in [91]), because the global links are connected to the same router in the intermediate
group. However, in ADV+h the incoming and outgoing global links are in two separate
routers only linked by one local link which saturates and becomes a bottleneck, as it is
highlighted in Figure 1.19. This traffic pattern requires a nonminimal local hop in the
intermediate group to improve performance. Figure 1.19 highlights the bottleneck at
the local minimal hop in the intermediate group.

In this work, an additional variant of the adversarial traffic pattern is proposed,
named adversarial consecutive (ADVc). This pattern sends its traffic not only to a sin-
gle group but to multiple consecutive groups attached to the same router in the current
group. As it will be comprehensively explained in Section 3, this traffic presents a
challenge in terms of throughput unfairness and can lead to starvation at certain nodes.

1.6.1.3 Bursty Uniform Traffic (Bursty-UN)

UN traffic provides an scenario where the communications display spatial and temporal
uniformity, but it does not take into consideration the temporal non-uniformities that
can appear as a result of traffic bursts in the applications. The bursty uniform traffic
emulates such case, presenting temporal uniformity only if a long enough period of
time is considered. This traffic is modelled through a Markov chain with two ON and
OFF states; nodes only attempt message generation when they are at the ON state.



1.6. Network simulation tools 51

ON OFF

poff2on

pon2off

1-poff2on1-pon2off

Figure 1.20: State diagram of the Bursty-UN traffic pattern.

Figure 1.20 shows the state diagram of the model. The destination of the messages
is randomly selected across the network nodes when transiting to the ON state, and
remains unchanged while the node stays at the ON state. In the employed model,
nodes can transit from ON to OFF state and back to ON within the same cycle, to
allow non-fixed destination traffic bursts while keeping full injection rate. This pattern
is statistically similar to the traffic bursts approach for the evaluation of LAN switching
networks described in the Requests For Comments 2544 [29] and 2889 [104].

The probabilities of being at a certain state (PON and POFF) are defined in Equa-
tions 1.4- 1.5 and depend on the injection rate and the size of the messages. The
probability of transiting from the ON to the OFF state (pon2off ) is the inverse of the
average length of the bursts (in messages), expressed in Equation 1.6. The probability
of transiting from the OFF to the ON state, poff2on, is defined in steady state by Equa-
tion 1.7 as a function of the probability of being at either state. Steady state implies
that the probability of being in either state is independent of the time, and requires the
Markov chain to be regular.

PON =
in jectionrate

packetsize
(1.4)

POFF = 1−PON (1.5)

pon2off =
1
B

(1.6)

poff2on =
PON

B+PON (1−B)
(1.7)

1.6.1.3.1 Obtention of the BURSTY-UN model The probability of being at state
ON is set by the average injection rate at which nodes operate, because a node at state
ON tries to inject one packet per cycle. In a Markov chain, the sum of state probabilities
needs to be 1, and therefore establishes the probability of the OFF state. Transiting
from ON to OFF state depends only on the average length of a burst.

The probability of being in state ON is a function of the transit probabilities:

PON (t= i) =
(
1− pon2off

)
·PON (t= i−1)

+ pon2off · poff2on ·PON (t= i−1)
+ poff2on ·POFF (t= i−1)



52 Chapter 1. Introduction

If the Markov chain is regular, the probability of being in either state is independent
of the time and the equation can be solved as follows:

PON =
(
1− pon2off + pon2off · poff2on

)
·PON

+ poff2on ·POFF

=
poff2on

pon2off + poff2on− pon2off · poff2on

which, replacing PON and pon2off by their definitions in Equations 1.4 and 1.6, leads
to the definition of poff2on in Equation 1.7.

1.6.1.3.2 Proof of Markov chain regularity A Markov chain is said to be regular
if its transition matrix A has a power Ai for which all transition probabilities are strictly
greater than 0. The transition model for the Bursty-UN traffic is defined by the matrix
in Equation 1.8, where first column and row correspond with state ON and the second
row and column to OFF. Transitions from ON state (first column) take into consider-
ation that a transition from ON to OFF can trigger another transition within the same
cycle.

A =

[
P(ON→ ON) P(OFF→ ON)

P(ON→ OFF) P(OFF→ OFF)

]
=

[
1− pon2off + pon2off · poff2on poff2on

pon2off ·
(
1− poff2on

) (
1− poff2on

) ] (1.8)

Replacing the transition probabilities with Equations 1.6 and 1.7 verifies that for
any finite burst size (B),

B≥ 1,B 6= ∞⇒ pon2off > 0

As for poff2on, it is strictly greater than zero except for the extreme PON values:

0 < PON < 1⇒ poff2on > 0

In the extreme values (PON = 0, PON = 1) the Markov chain is absorbing, as it
immediately reaches an absorbing state which never leaves (ON state if PON = 1, OFF
if PON = 0):

PON = 1→ poff2on = 1→ A =

[
1 1
0 0

]
PON = 0→ poff2on = 0→ A =

[
1− pon2off 0

pon2off 1

]



1.6. Network simulation tools 53

global link

local link

router

node

group

source node 
(request)

destination node 
(request)

destination node 
(request)

Request

Reply

Figure 1.21: Example of request-reply traffic in a Dragonfly network of size h= 2. When
the upper highlighted node receives a request message, it generates a reply towards
the source of the petition.

1.6.2 Request-reply Traffic

The previous traffic patterns consider an asymmetrical traffic exchange where message
generation is independent of message reception. However, many applications have a
reactive nature where the reception of a message triggers a response towards the source
of the request. Figure 1.21 shows an example of this exchange in a Dragonfly network.
Applications with such reactive nature can lead to protocol deadlock, as described in
Section 1.3.

This work employs request-reply traffic where request messages are generated fol-
lowing one of the previously described traffic patterns: random uniform, bursty uni-
form and adversarial. Upon the reception of a request, the destination sends a reply
message back to the source of the request. Since the injection of a request eventually
generates two messages (request and reply) the injection rate of the request messages
needs to be half of the injection rate in non request-reply patterns. Request-reply traffic
allows to evaluate the behavior and performance with a protocol deadlock avoidance
mechanism.

1.6.3 FOGSim Network Simulator

The results presented in this work have been obtained through the execution of the
FOGSim network simulator. FOGSim [61] is a modular time-driven, synthetic traffic
pattern-based network simulator developed by the Department of Computer Science
and Electronics at the University of Cantabria. It has been employed in previous works
by Garcı́a [63, 64, 60, 62] and Benito [22, 23].

FOGSim supports Dragonfly network topologies of different size under a range of
varied synthetic traffic patterns, plus traces of parallel applications following the for-
mat of Dimemas [95]. Several routing mechanisms are implemented, either oblivious



54 Chapter 1. Introduction

or adaptive (relying on information about the status of the network), according to the
descriptions in Section 1.4. Deadlock is prevented following a distance-based dead-
lock avoidance mechanism that uses different VCs for packets at different steps of their
paths, in a similar fashion as the proposal from Günther [69].

Simulated network routers employ VCT switching and can either be input-buffered
or input-output-buffered; the latter is required when the router crossbar operates at
faster paces than the network links, because the output buffer decouples the crossbar
and link speeds. Router resources are assigned through an input-first separable alloca-
tor following a two-stage arbitration, one stage for the competing VCs at every input
and one for the competing inputs at every output. Output arbiters only receive up to
one request per input, corresponding to the VC granted by the input arbiter. At each
stage, multiple arbitration policies can be implemented; default behavior is a Round
Robin policy in which the first port to serve is the follow-up to the last port to receive a
grant. The simulation is cycle-accurate and is performed at a phit-level, modelling the
advance of the data transfer unit per clock cycle of the router.

1.6.3.1 Input parameters

Typical input of the simulator includes the size of the network and router characteris-
tics. Input parameters can either be specified through a mandatory parameters file or
via the command prompt as execution arguments. The sole exception is the name of
the parameters file, which must always be input as the first argument of the simulator
executable. Some of the input parameters are:

• Size of the network (h, a and p).

• Buffer sizing. Routing can be input-buffered or input-output-queued. User can
set the size of the buffers, distinguishing between injection, local link inputs,
global link inputs and outputs.

• Internal speedup, sets the crossbar traversing rate compared to link data rate.
Speedups greater than 1x require output buffering to act as a cache for the link.
The router can also employ input speedup, specifying the number of concurrent
accesses to the crossbar per input port of the router.

• Link delay. Number of cycles employed to traverse a link, distinguishing be-
tween local (intra-group) and global (inter-group) links.

• Crossbar delay. Number of cycles employed to traverse the crossbar.

• Number of VCs, distinguishing between injection, local and global input ports.
The number of VCs for local and global ports is normally tied to the deadlock
avoidance mechanism; in this work different combinations of routing and dead-
lock prevention mechanism are used, with each one having different require-
ments for the number of VCs. Injection VCs mitigate HoLB and increase per-
formance, and they are completely unrelated to the deadlock avoidance purpose



1.6. Network simulation tools 55

of local and global VCs. Users can configure the VC selection policy used at
injection, choosing between random, destination-dependent and JSQ (Jump to
the Shortest Queue) policies.

• Global links arrangement, can either follow a palm tree configuration or a con-
secutive order starting by the first group connected to the first global link of the
group.

• Arbitration policy. This is separately defined for the input and output arbitration
phases of the allocation procedure. Arbitration policy can be Round-Robin (RR),
Least-Recently Served (LRS) or Age-based. Round-robin serves first the port
following the last one that has been granted the resource. LRS always checks
first those port that have spent longest time without being granted the resource.
It must be noted that the input and output arbitrations are handled separately:
for a VC to be considered as attended, it only needs to place a request for an
output, regardless it is granted or not. Age-based gives priority to oldest pack-
ets. Output ports arbitration can be selected to give priority to packets coming
from transit inputs over new injections, in a similar procedure to the in-network
priority fraction of the BlueGene/L interconnection network [7]. The in-transit
priority allows a higher network drainage and greater performance at a cost of
unfairness and node starvation, as is analyzed in Chapter 3.

• Traffic pattern, can either be one of several synthetic traffic patterns or a trace.
In the former case, it can be random uniform, adversarial, or a mix of them.
The mix can either be concurrent, where nodes follow a uniform or adversar-
ial pattern depending on the specified proportion between them; or consecutive.
Consecutive mixes permit to observe the transition between patterns and the ve-
locity of the network to adapt to them. Uniform and adversarial traffic patterns
can also be of request-reply type, where request messages are generated at a con-
stant rate through a stochastic process, and the arrival of a request triggers the
generation of a reply towards the source of the request.

• Routing mechanism, which can be oblivious (MIN, VAL) or adaptive. Adap-
tive routing mechanisms receive as input parameters the threshold values for the
misrouting decision.

• Number of simulated cycles. This consists of two parameters, one for the total
duration of the simulation, and one for the number of cycles devoted to warm-
ing up the network. This increases the statistics accuracy, since it captures the
network behavior in a steady use. If warmup is not specified, it is assigned the
same duration as the statistics-tracking execution, effectively doubling the sim-
ulation time. Statistics are only obtained once the warmup has finished and up
to the end of the execution. The length of the simulation can be overridden for
certain configurations, such as when a fixed number of sent packets is set and
the simulation finishes once they are all delivered to their destinations.



56 Chapter 1. Introduction

• Injection probability, sets the injection rate of the network nodes in percentage
of maximum theoretical injection rate allowed by the network; an injection prob-
ability of 100% corresponds with a rate of 1 injected phit per node and cycle.

• Seed for the pseudo-random values, favours reproducibility of the experiments.
For a given seed and network configuration, the output remains unchanged. Av-
eraging multiple executions with different seeds is necessary to eliminate the
inherent variability between simulations of the same configuration.

1.6.3.2 Simulator output

During the execution, the simulation prints temporal statistics of the number of injected
and delivered packets at regular intervals. Statistics obtained during network warmup
are discarded and reset after the warmup is completed. When the execution is finalized,
the simulator prints a set of statistics and the configuration parameters to an output file.
Some of the most relevant statistics are:

• Throughput, defined as the number of received phits divided by the number of
cycles and the number of nodes. Total number of packets received (and sent)
is additionally provided. In the case of request-reply traffic, throughput is also
separately reported by traffic flow (request or reply).

• Latency, given as a total, minimum, maximum and average per packet. The latter
is broken down to network and injection latency.

• Number of misrouted packets received. These are also discriminated by the
misrouting category they fall into (through a local link, through a global link,
through a global link after a nonminimal local hop) and the group at which the
misrouting is performed (source, destination or intermediate group).

• Number of performed hops (links traversed). This figure is given as a total and
as a per-packet average distance. In the latter case, it is broken into local and
global hops.

• Port and VC usage, averaged from all the network routers.

• Average input and output buffer occupancy, segregating per input port and VC
(in the case of input port buffers; at the output ports, packets are not stored in
different queues per VC).

• Average allocation rate, providing petitions performed from the input to the out-
put arbiters and their attendance rate.

• Unfairness metrics: minimum and maximum injections from any network router,
unbalance quotient and coefficient of variation (CoV).



1.7. Contributions 57

Table 1.2: List of parameters employed in the simulations.

Parameter Value
Router size 31 ports (h=8 global, p=8 injection, 15 local)
Group size 16 routers, 128 computing nodes
System size 129 groups, 16,512 computing nodes

Router buffering Combined Input-Output-Queued (CIOQ)
Router latency 5 cycles

Crossbar frequency speedup 2×
Crossbar latency 3 cycles

Global link arrangement Palm tree [33]
Link latency 10 (local), 100 (global) cycles
Switching Virtual Cut-Through
Packet size 8 phits
Buffer size 32 (output buffer, local input buffer per VC),

(phits) 256 (global input buffer per VC)
256 (injection input buffer per VC)

Virtual Channels 2 (global ports), 3 (local and injection ports),
(VCs) 4 (local ports when VAL or PB routing is used)

Simulation length 60,000 cycles (warmup) + 60,000 cycles (tracking
statistics)

Number of simulations 5 per point

1.6.4 Simulation configuration

Unless otherwise stated, the results presented in this work have been obtained through
the FOGSim simulator employing the configuration detailed in Table 1.2, with a net-
work of 2064 routers and 16512 compute nodes.

This configuration emulates the behavior of 2- and 20-meter wires for the local and
global cables, as in the evaluation performed by Jiang et al. in [82]. This corresponds
to a router working at 1 GHz and a transmission speed of 10GB/s (which translates
into a phit size of 10 bytes). A packet size of 8 phits equals 80 bytes and should allow
for a 64-byte payload as occurs in the Cray Cascade network [56].

1.7 Contributions

The main contributions of this work are:

• The development and implementation of a synthetic traffic model of the commu-
nications in the Graph500 benchmark. This model allows to predict the perfor-
mance of a system running this data-intensive benchmark without the memory
constraints associated with the use of traces or full system simulations, and is
the first of its kind as far as the author is concerned. Its development includes



58 Chapter 1. Introduction

a thorough analysis of the communications, which exposes the significance of
message aggregation in the execution of the benchmark.

• An analysis of the communications behavior over a large Dragonfly network
when only a reduced set of nodes is employed, leading to a pathological un-
fairness effect. This analysis rejects the use of an in-transit traffic priority for
fairness reasons.

• The proposal of a synthetic traffic pattern that reproduces such pathological be-
havior, and an analysis of the explicit mechanisms required to prevent the asso-
ciated throughput unfairness.

• A novel misrouting decision based on contention counters that decouples mis-
routing from buffer occupancy and provides faster adaption to traffic changes.
This misrouting decision improves performance by reacting to the roots of net-
work congestion rather than its consequences, and does not entail a high imple-
mentation cost. Multiple variants of the mechanism are also proposed, evaluat-
ing their performance benefits and the trade-off in implementation complexity.

• A new buffer management mechanism denoted FlexVC that permits a more flex-
ible use of VCs through opportunistic routing and a relaxed distance-based dead-
lock avoidance policy. It partially decouples the amount of VCs from the dead-
lock avoidance mechanism and provides finer granularity in the selection of the
number of buffers to be used. Furthermore, FlexVC allows to reduce up to 50%
the memory requirements of the router while preserving or improving the per-
formance of the network, at a minimal implementation expense which is more
than compensated by the reduction in the number of buffers needed.

This work starts evaluating the impact of the system network on the performance
of a data intensive application in Chapter 2. This analysis is conducted through a
novel synthetic traffic model of the Graph500 benchmark, which is intended to con-
stitute a representative workload of BigData applications. Chapter 2 also provides an
implementation of the traffic model in the FOGSim simulator. Results upon a Drag-
onfly network validate the importance of the network and unveil a pathological case
of unfairness when less than the whole system is devoted to the execution of a single
application. Chapter 3 explores the severity of this unfairness in resource allocation
depending on the routing mechanism and the traffic pattern, and the solutions needed
to mitigate the associated performance degradation. It also presents a new adversarial
traffic pattern linked to a certain distribution of concurrent applications, and links it to
the Graph500 synthetic traffic pattern. This adversarial traffic motivates a pathological
case of unfairness and requires specific fairness mechanisms to mitigate it.

After assessing the need for high-performant interconnects, this work proposes
two novel paradigms to improve the proficiency of the network. Chapter 4 introduces
the use of contention information to perform the misrouting decision in nonminimal



1.7. Contributions 59

adaptive routing, instead of relying on traditional credit-based queue occupancy sta-
tus. This allows to decouple the misrouting decision from the size of the buffers, and
overcome the limitations of congestion-based adaptive routing: slow adaption to traf-
fic changes, dependency on buffer sizes and oscillations in routing. This proposal is
especially beneficial in high-radix routers like those targeted for Exascale system net-
works. Chapter 5 presents FlexVC, an innovative buffer management mechanism that
allows a more flexible use of the virtual channels and reduces the number of resources
needed in adaptive routing. FlexVC outperforms traditional buffer management when
an otherwise identical router is considered. FlexVC also achieves similar performance
to traditional buffer management with a smaller set of buffers. Furthermore, it provides
higher granularity in the trade-off between performance and the number of resources
employed.

Chapter 6 outlines related works to the proposals presented on this work and dis-
cusses their merits. Finally, Chapter 7 summarizes the contributions of this work and
provides a set of conclusions and a series of future research lines.





Chapter 2

Graph500 Synthetic Traffic Model

This chapter presents a synthetic traffic model of the communications in the Graph500
benchmark, and provides an implementation in an open-source network simulator.
This model eases the evaluation of the network interconnect and its impact under Big-
Data applications.

Network architects employ simulators as a tool to analyze and predict the behavior
and performance of a given system under different scenarios, as it has been discussed
in Section 1.6. Synthetic traffic patterns constitute the fastest method to perform a char-
acterization and allow to focus on different cases or certain network features. However,
they sometimes fail to accurately represent the workloads the system will be subject
to.

Benchmarks attempt to characterize a system under a workload representative of
a set of real world applications. For decades, High Performance Computing (HPC)
systems have been ranked through the Linpack benchmark [51]. This benchmark per-
forms like an archetypical HPC application following the Bulk-Synchronous Parallel
execution model (BSP) [144], [145], where long bursts of computation are interleaved
with phases of network communication to synchronize the processes.

In the last few years, the preponderance of HPC applications have been overshad-
owed by the need for BigData applications that analyze and try to extract knowledge
from large sets of data, such as the MapReduce [47] or Spark [154] frameworks. Big-
Data applications differ significantly from typical HPC workloads and are mainly con-
strained by memory and IO requirements. The Graph500 benchmark [2] appears in
2010 with the aim to reproduce the characteristics of BigData applications and steer
the design of new systems to match their needs.

Unfortunately, the intensive use of memory and network of BigData applications
restricts significantly its evaluation on network simulators, both with full-system simu-
lations and traces. In order to alleviate such limitations, this work provides a synthetic
traffic pattern that exemplifies the network usage of the Graph500 benchmark but has
low memory requirements. In-depth analyses of the benchmark communications can
be found in the works of Anghel et al. in [14] and [15].

In this chapter a comprehensive description of the proposed traffic pattern is pro-
vided, with an outline of the process followed for its development. A sketch of its

61



62 Chapter 2. Graph500 Synthetic Traffic Model

implementation on the FOGSim simulator is also included; this implementation is pub-
licly available and can be handily adapted to other simulators.

2.1 Analysis of the communications in the Graph500
benchmark

The Graph500 [109] benchmark is based on the execution of a Breadth-First Search
(BFS) over an undirected graph. BFS is a strategy to traverse a graph organizing all
its nodes (or vertices) in a tree, starting by a given root vertex. Vertices are connected
through links denoted as edges, and the number of edges per vertex is referred as
vertex degree. The search of the tree is conducted in multiple stages or ‘graph levels’,
traversing all the edges connected to vertices visited in the previous level. The vertices
are analyzed in a FIFO-queue fashion. All the vertices in the graph are therefore visited
in order of their distance from the root vertex. One of BFS uses is to find the path which
traverses the lowest number of edges between two specific vertices in a graph. More
details about BFS and some alternative implementations are given in [131].

The benchmark consists of two kernels: one to generate the graph and the BFS
itself. Both kernels are timed, but the benchmark metrics only account for the time in-
vested in the BFS execution. The benchmark provides four different implementations
of the BFS. Both the analysis of the communications in the benchmark and the pro-
posed traffic model focus only on the BFS in its most scalable simple implementation.
A thorough comparison of the different implementations can be found in [141].

The benchmark receives two parameters, scale and edgefactor. Scale is the base
two logarithm of the number of vertices in the graph. Edgefactor is the proportion of
edges to vertices in the graph, which equals the half of the average number of edges
per graph vertex. The size of the graph is fully determined with the values of scale and
edgefactor. The benchmark returns the time employed for the BFS execution and a
performance metric called Traversed Edges Per Second (TEPS). The number of TEPS
is calculated as the quotient between of the number of edges traversed in the graph
(which depends on the input parameters) and the execution time for the BFS.

A pseudocode of the BFS is given in Figure 2.1. The benchmark is run with several
processes executing in multiple nodes and communicating through MPI routines. The
graph is evenly split into the processes, with each process hosting a fair subset of the
vertices. Coupled with the random nature of the graph, this provides a more or less
random distribution of the communications across the benchmark execution, similar
between different processes. Communications along the BFS execution are tied to the
levels of the resulting tree. In each level, processes search the neighbors of the current
frontier of the tree and mark them to visit in the following level. If the neighbor vertex
is allocated to a different process a query is generated, corresponding to a petition to
determine if the vertex has already been visited or not. These queries translate into
point-to-point messages.

From the pseudocode it can be observed that the communications consist of two



2.1. Analysis of the communications in the Graph500 benchmark 63

1: visited = current = /0

2: next = {root}
3: repeat
4: current = next
5: for all vertex in current do
6: for all neigh in Neighbors(vertex) do
7: if neigh hosted in another process then
8: MPI Isend [vertex,neigh] to host process
9: while not MPI Test (outgoing messages completed) do

10: if outgoing message completed then
11: clear sending buffer
12: if MPI Test (incoming messages) then
13: [vertex,neigh] = receive()
14: if neigh not in visited then
15: visit neigh and add it to visited and next
16: else
17: if neigh not in visited then
18: visit neigh and add it to visited and next
19: for all process do
20: MPI Isend (this process has stopped sending)
21: repeat
22: if MPI Test (incoming messages) then
23: [vertex,neigh] = receive()
24: if neigh not in visited then
25: visit neigh and add it to visited and next
26: until rest of processes have stopped sending
27: MPI Allreduce(next)
28: until next is empty

Figure 2.1: Pseudocode of the BFS, pointing the placement of the communications.

Synchronization (All-reduce)

Point-to-point messages

(with multiple queries each)
Notifications of 

phase end

Figure 2.2: Outline of the communications in each BFS phase.



64 Chapter 2. Graph500 Synthetic Traffic Model

Figure 2.3: Trace of an actual execution with 16 processes. Scale s= 22 and edgefactor
fe = 16. Blue blocks represent computation, pink blocks represent the dispatch of a
message, and black vertical lines mark the all-reduce collectives.

asynchronous send calls (lines 8 and 20) whose reception is polled at the receiver
(lines 9,12 and 22), and an all-reduce collective operation (line 27) which acts as a
synchronization point and also distributes the number of new visited vertices in the
stage. Figure 2.2 portrays an outline of the communications within a single phase of
the BFS, depicting the dispatch of messages through arrows. From a network per-
spective, each tree level consists of a batch of point-to-point messages succeeded by
a final notification to all other processes, to signal the end of the level within the pro-
cess. Processes deliver a number of point-to-point messages through the send call in
line 8. Once a process has finished dispatching messages at the current phase, it broad-
casts a phase end notification (line 20 of the pseudocode). The end of each phase is
marked by the all-reduce (line 27), which comprises a reduction and a broadcast. Be-
tween the dispatch of the notification of phase end and the beginning of the all-reduce
(shown in light blue), processes only perform the associated computation of the incom-
ing messages. The length of this block is determined by the slowest process to enter
the all-reduce.

Figure 2.3 presents a trace of a BFS taken from the execution of the Graph500
benchmark over a graph of scale 22 and edgefactor 16, employing 16 processes. Blue
blocks represent computation, and pink blocks correspond to the dispatch of a mes-
sage. Black vertical lines point the all-reduce collectives. It can be appreciated that
communications are interspersed with computation along the execution, with message
shipment uniformly distributed across the execution.

The number of messages is evenly distributed across each stage but varies sig-
nificantly between tree levels, with two big levels typically comprising the majority.
The impact of the point-to-point messages to notify the end of a tree level is negligi-
ble, because the number of messages sent is several orders of magnitude lower than
the point-to-point queries between processes. Figure 2.4 displays the total number
of point-to-point messages sent during an execution of the BFS, with a number of
end-of-message-dispatching notifications 30 times lower than the point-to-point query



2.1. Analysis of the communications in the Graph500 benchmark 65

0

5000

10000

15000

20000

25000

30000

35000

40000

Query
messages

End-of-dispatch
messages

N
um

be
r 

of
 m

es
sa

ge
s 

/ p
ro

ce
ss 32824

1016

Figure 2.4: Number of messages sent per process during BFS, for an execution with
128 processes of a graph with scale s = 25 and edgefactor fe = 16. Bar value repre-
sents average value, errorbar shows standard deviation between processes.

15500

16000

16500

Number of 
messages sent

Destination Process

S
o

u
rc

e
 P

ro
ce

ss

0

31
0 31

Figure 2.5: Communication matrix for point-to-point exchanges across processes, for a
graph of scale s= 20 and edgefactor fe = 16. Three ranges of values are distinguished.
Spaces in white correspond to the absence of self-messages.

exchanges. The all-reduce call is also infrequent, and is only important because it
synchronizes the generation of new messages.

From a network perspective the major communications are the point-to-point ex-
changes, which are highly homogenous spatially following the even distribution of
the graph across the processes. Figure 2.5 represents the communication matrix for
said messages for a sample BFS execution with 16 processes. Rows correspond to the
message source processes, and columns to destinations. The values are very similar
among all the source-destination process tuples, with less than 8% difference between
maximum and minimum values. Moreover, there is a clear symmetry in the matrix,
with a similar amount of messages sent in both directions in any process tuple. This
symmetry comes as a result of the undirect nature of the graph, which forces all edges
to be traversed twice during the search - once per each way.

Graph500 exploits message aggregation in these point-to-point messages to reduce



66 Chapter 2. Graph500 Synthetic Traffic Model

Table 2.1: List of abbreviations employed in the equations.

Abbr. Parameter Description
s Scale Base 2 log of the number of vertices in the graph.
fe Edgefactor Half of the average vertex degree.
cs Coalescing size Amount of explored edges aggregated per message.
n Number of nodes Number of nodes (processes) employed in the

benchmark execution.

n′ Number of destination nodes Number of nodes (processes) which actually receive a
message in a given level.

∑ q Number of queries Number of queries sent from each process across the
whole BFS execution.

q Number of queries per process Number of queries sent from each process per tree level.
m Messages per process Number of messages sent from each process per tree

level.
El Edges per tree level Total number of edges explored within each stage of the

BFS.
dr Degree of the root Number of edges connected to the root vertex.
l Tree level Stage of the tree in the BFS execution, starting at 0.

network traffic, with every message grouping multiple queries up to a value named
coalescing size. Incomplete messages smaller than the coalescing size correspond to
the last queries from a process that has completed the traversal of a tree level. The de-
fault coalescing size value is 256 queries per message, which compels 4KB messages
(each query has a size of 16 bytes). The coalescing size is not an input parameter to
the benchmark, but it can be easily tuned to better fit the network characteristics and
improve performance.

Table 2.1 provides a summary of the abbreviations that are employed in the equa-
tions of the model, with a brief description of each parameter. The scale, edgefactor
and coalescing size are input parameters of the benchmark, and the number of nodes
n is directly tied to the benchmark execution; the rest of the variables in the table are
employed internally in the benchmark.

The total number of queries sent by a process during the BFS, described in Equa-
tion 2.1, is determined by the number of explored edges connecting to vertices in an-
other process. The equation considers the total number of edges in the graph (2s · fe)
traversed in both ways, uniformly distributed between processes (1/n), subtracting
those edges hosted within the sender process because they do not generate a query
((n− 1)/n). It must be noted that applying this equation to the parameters of Fig-
ure 2.4 and considering a coalescing size of 256 results in a total of 32512 messages
per process, which is only 1% less than the observed value. The divergence is a result
of incomplete messages, as the total number of queries to be generated is divided into



2.2. Synthetic Traffic Model 67

Edges per vertex

F
re

qu
en

cy

0 50 100 150

0
10

00
00

25
00

00

Figure 2.6: Histogram of the vertex degree of the graph, truncated to 150. Graph scale
is s = 17, edgefactor is fe = 16.

multiple tree levels and destinations.

∑ q = 2s+1 · fe ·
n−1

n2 . (2.1)

Graphs in the benchmark are generated through a Kronecker matrix product similar
to the Recursive MATrix (R-MAT) scale-free graph generation algorithm [34]. Graphs
generated by R-MAT emulate the behavior of small-world phenomena, where a small
fraction of the vertices have a significantly large number of direct connections with
other vertices, and a large proportion of the vertices have a low vertex degree [149].

Figure 2.6 displays a histogram of the vertex degree measured for a graph gen-
erated in the benchmark. A reduced set of sparse higher degree values (up to around
30,000 edges) has been truncated from the figure for ease of visualization. It can be ap-
preciated that the distribution is heavily condensed in low degree values, with a trend
of tails that favor some high degree values over others. The distribution of the ver-
tex degree in Kronecker matrix product-generated graphs such as the one used in the
Graph500 benchmark is most accurately described as a series expansion from normal
distributions [68], but it can be characterized through a combination of a lognormal
and an exponential [133] or simply with a lognormal [93] without losing significant
accuracy.

2.2 Synthetic Traffic Model

The Graph500 synthetic traffic model replicates the staged structure of the benchmark
introduced in the previous section, with large batches of uniformly distributed point-
to-point messages ending in a collective all-reduce operation. The number of messages
for each stage cannot be defined as a fixed value, because it is highly dependent on the
size of the graph in the benchmark, and it varies significantly depending on the degree
of the vertex selected as root. Instead, the number of messages per stage is generated
through a Gaussian distribution whose mean and standard deviation are a function of
the input parameters of Graph500. The equations for the mean and standard deviation



68 Chapter 2. Graph500 Synthetic Traffic Model

Number of explored edges at third tree level

F
re

qu
en

cy

0e+00 1e+06 2e+06 3e+06

0
20

00
0

40
00

0

(a) Aggregated for all possible dr.
Number of explored edges at third tree level

F
re

qu
en

cy
0

20
00

0
40

00
0

0e+00 1e+06 2e+06 3e+06

(b) Roots with dr = 1.

Number of explored edges at third tree level

F
re

qu
en

cy
0

10
00

0
25

00
0

0e+00 1e+06 2e+06 3e+06

(c) Roots with 10≤ dr ≤ 20.
Number of explored edges at third tree level

F
re

qu
en

cy
0

20
40

60
80

0e+00 1e+06 2e+06 3e+06

(d) Roots with dr ≥ 104.

Figure 2.7: Histogram of the number of explored edges in the third tree level, with
different root degree dr. Graph with scale s = 17 and edgefactor fe = 16.

of these distributions are obtained empirically in Section 2.2.1 from a characterization
of several benchmark executions with different input parameters.

From the network perspective, the most significant part of the benchmark execu-
tion for any nontrivial graph size will be the point-to-point communications, since the
messages will significantly outnumber those during the all-reduce. Point-to-point mes-
sage generation rate depends fundamentally on the node computation capabilities, and
constitutes an input parameter to the model. Heterogenous systems can be modelled
by tuning specific sets of nodes to under- or out-perform the rest of the system.

The number of messages depends directly on the amount of queries sent by each
process, which varies by tree level. Message destination is selected randomly among
all the other processes in the application, following the uniform distribution of the
vertices observed in the analysis of the communications. The allocation of the number
of explored edges per process among tree levels varies heavily, even though the total
across the whole BFS execution is almost constant for graphs of the same size.

Figure 2.7a depicts the histogram of the number of new edges traversed in a graph
during the third tree level (l = 2), which gathers most of the point-to-point commu-
nications across the whole execution. This histogram has been obtained by running a
BFS for every root in the graph, masking the actual nature of the distribution by aver-
aging multiple executions. It shows multiple peaks of similar impact, not presenting a
distinctively clear distribution.

This is not the case if the histogram is restricted to only BFS executions for roots
with the same or similar vertex degree. Figures 2.7b-2.7d display the average distri-
bution of the number of explored edges in the third tree level for the same graph in



2.2. Synthetic Traffic Model 69

1 10 100 1000 10000

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Average Total New Edges (Breakdown per tree level)

Root vertex degree

(a) Stacked values.

Tree level

0
1
2
3
4
5
6
7
8

1 10 100 1000 10000

1e
+
00

1e
+
02

1e
+
04

1e
+
06

Average Total New Edges Per Tree Level

Root vertex degree

(b) Curves.

Figure 2.8: Average number of explored edges per root degree, broken down per tree
level. Values come from the same graph as in Figure 2.7. Note that the Y-axis is in
logarithmic scale for the right figure.

Figure 2.7a, with three different ranges of root degree: roots with only one neighbour
(Figure 2.7b), roots with 10 to 20 neighbors (Figure 2.7c) and roots with a high root
degree of 10,000 neighbors or more (Figure 2.7d). It can be observed that for each
histogram there is only one predominant peak, as there is a heavy dependence of the
distribution on the root degree. Roots with low vertex degree originate a low amount of
communications at the first tree levels, shifting the biggest part of the graph traversal
further into the BFS execution, whereas roots with high degree will rapidly explore the
majority of the graph and present low (or nonexistent) communication at higher levels.
Therefore, the traffic model depends on the vertex degree of the root, what conditions
the equations for each case.

The approach followed is to characterize empirically the mean and standard devia-
tion of the number of edges explored in each tree level for each possible vertex degree
of the root. Figures 2.8 and 2.9 depict the mean and standard deviation per tree level
upon the root vertex degree. Results come from the same graph used to obtain the
histograms in Figure 2.7. X-axis is displayed in logarithmic scale. Note that Y-axis in
Figure 2.8b is also in logarithmic scale.

In Figure 2.8a, the three blocks circled in red correspond with the average num-
ber of explored edges in the third tree level whose distribution was presented in Fig-
ures 2.7b-2.7d. Some values in Figure 2.8 are interpolated, as not all the vertex degrees
are present in a graph. This translates into the gaps in the curves of the standard de-
viation (Figure 2.9). The aggregated amount of edges in Figure 2.8a remains almost
constant; since the size of the graph is independent of the vertex selected as root, the
amount of edges to traverse during the BFS is similar. However, the distribution of



70 Chapter 2. Graph500 Synthetic Traffic Model

1 10 100 1000 10000

1e
−

01
1e

+
01

1e
+

03
1e

+
05

Standard Deviation of Total New Edges (Breakdown per tree level)

Root vertex degree

Tree level

0
1
2
3
4
5
6
7
8

Figure 2.9: Standard deviation of the number of explored edges per root degree for
each tree level. Values come from the same graph as in Figure 2.7.

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●

●
●●●

●●●
●●●●

●●●●●
●●●●●

●●●●●●●●
●●●●●●●●●

●●●●
●●●●●

●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●●●●

●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●●
●
●●●●●●●

●●●●●●

1 10 1000 10000

Average number of traversed edges in third level

100

Root vertex degree

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

Figure 2.10: Example of a fitting curve for the third tree level upon graphs of scale
s = 17 and edgefactor fe = 16. Points correspond with the average number of new
edges explored per degree at the root. Line represents the fitting curve responding to
a linear combination of the natural logarithm of the root vertex degree.

those edges among the tree levels varies significantly depending of the vertex degree
at the tree root.

The number of edges in the first tree level (l = 0) is the vertex degree of the tree
root. The distribution of the mean for other levels in Figure 2.8b can be approximated
through a polynomial of degree 2, where the variable is the natural logarithm of the
vertex degree of the tree root. For each tree level, the coefficients of the polynomial in
the fitting curve have been obtained through a model fitting tool based on the function
described by Chambers in [35]. Figure 2.10 shows an example of a fitting curve for the
mean of the number of explored edges in the third tree level in graphs of scale s = 17
and edgefactor fe = 16.

A similar analysis is performed for the standard deviation in Figure 2.9, although in
this case the approximation function changes significantly between tree levels. Lower



2.2. Synthetic Traffic Model 71

levels can be described through an exponential of a polynomial like the one used for
the average, whereas higher levels fit better into an exponential of an inverse func-
tion. Interestingly, the second and third tree levels present a dual nature; in the second
level there are two zones with different trends, and the second zone follows the curve
from the first level. Something similar happens for the third tree level, in which the
first points equal those of the fourth level and the remaining match the values of the
second level; this third case cannot be properly spotted in this figure, but has been ob-
served with higher scale sizes. In both cases, this is equivalent to taking the maximum
between the crossing curves.

The analyses of the fitting curves of mean and standard deviation have been per-
formed for several combinations of scales s = 16,17,18,19,20,23,25 and edgefactors
fe = 16,20,32,45,64. The empirical values come from the measurement of the num-
ber of explored edges per level across all processes in the BFS, running a tree search
for every vertex in the graph, and multiple graphs for each graph size. These measure-
ments are oblivious to the infrastructure employed, so they can be extrapolated to any
other system. The collected coefficients of those linear combinations are generalized
to a set of equations that follows their variations with the input parameters in the next
section.

2.2.1 Equations of the model

In every level the number of messages sent for each process is determined following
Equations 2.2- 2.4.

q =
El

n
· n−1

n
(2.2)

n′ = n ·
(

1−
(

1− 1
n

)q)
(2.3)

m =

⌈
q
cs
· 1

n′

⌉
·n′ (2.4)

Equation 2.2 determines the number of queries q per node and tree level, which
equals the number of explored edges minus those edges hosted within the sender pro-
cess, which do not span any network communication.

Equation 2.3 defines the actual number of destinations (n′) as a Bernoulli experi-
ment [114] with as many trials as queries sent and a uniform probability of selecting
a given node as destination for a query. If q→ ∞, the number of effective destination
equals the number of nodes in the network, n.

The number of messages given in 2.4 equals the quotient of the number of queries
sent per tuple of source-destination processes and the coalescing size (cs), times the
number of destinations. The quotient is rounded up to account for incomplete messages
that carry less than cs queries.



72 Chapter 2. Graph500 Synthetic Traffic Model

The number of explored edges in the first tree level is trivially determined as the
root degree. All the point-to-point communications in this first level are originated at
only one node, the one hosting the tree root.

The number of queries per node and tree level is modelled through a Gaussian
distribution; this method has the benefit of adjusting reasonably well to the observed
behavior while remaining low-demanding computer-wise. The Gaussian distribution is
defined by the mean and standard deviation obtained in the characterization described
at the beginning of this section. Both mean and standard deviation are calculated as a
function of the root degree dr, the graph size (scale s and edgefactor fe) and the tree
level l. The notation for the tree level l spans from l = 0.

The evolution of the mean per tree level (as shown in Figure 2.8b) is estimated
through a polynomial of degree 2 of the natural logarithm of the root degree, described
in Equations 2.5- 2.8. The mean of the Gaussian distribution is truncated when the
number of edges explored through the whole execution reaches the limit of twice the
number of edges in the graph.

ln
(
El
)
≈ A · ln2 (dr)+B · ln(dr)+C, l ≥ 1 (2.5)

A =−0.133+0.0046 · s+ e0.01257· fe−0.1829·s−e1.75−0.7·l
(2.6)

B = 2− l · (0.91+0.002 · fe−0.012 · s) (2.7)

C = e1+(1+0.004· fe)·(−0.81+0.8411·ln(s))·e−
(l−2.8)2

30 (2.8)

Equation 2.17 refers the model for the standard deviation, where tree levels with in-
dex l > 3 are approximated through the exponential of an inverse and second and third
levels are the maximum of two curves, as described in the model approach. Functions
f1 (l,dr) and f2 (l,dr) are determined by the formulas in Equations 2.9 - 2.16. These
equations reflect a high divergence for roots with low degree, which have a much larger
number of samples in the graph. High degree roots are much sparser, reducing the de-
viation between samples.

f1 (l,dr) = D · ln(dr)
2 +F · ln(dr)+G (2.9)

f2 (l,dr) =
K

dr
H + J (2.10)

D = 0.002 · s−0.14− (0.015 · s−0.285)(0.56+0.033 · fe)(l−1) (2.11)
F = 0.97− (l−1)(4.438−0.168 · s)(0.83+0.01 · fe) (2.12)

G = ((2.1+ l)(5.35+0.093 · s)−13.625)
(

1.23− 2.9+0.69 · l
fe

)
(2.13)

H = 2l · (0.011+0.00012 · fe) · e1.7− s
10 (2.14)

J = 1− e(1−0.012· fe)·(9.55−1.3·l−s·(0.6−0.1·l)) (2.15)
K = 13 · (0.062 · s−0.046) · (2−0.24 · l)− J (2.16)



2.2. Synthetic Traffic Model 73

Table 2.2: List of abbreviations employed in the model implementation.

Abbr. Parameter Description
pin j Injection probability Probability of injecting a phit in a given cycle.
ps Packet size Size of the packet, in phits. A phit is the number of bytes sent per

simulation cycle.
tq Query time Number of cycles of computation associated with processing a

query.
tc Cycle time Length of a simulation cycle, in seconds.

ln(σEl)≈


f1(l,dr) l = 1,
max( f1 (1,dr) , f1 (2,dr)) l = 2,
max( f1 (2,dr) , f2 (4,dr)) l = 3,
f2(l,dr) l > 3.

(2.17)

The vertex degree of the tree root depends on the scale of the graph and is approxi-
mated via a lognormal distribution characterized by its mean and standard deviation in
Equations 2.18-2.19, per Kim and Leskovec [93].

d = ln((0.3604)s)+1.0661704 · s (2.18)
σd = 0.079313065 · s (2.19)

2.2.2 Implementation

The proposed Graph500 synthetic traffic model has been implemented in the FOGSim
network simulator. This implementation is publicly available and can be adapted to
other network simulators in order to evaluate the impact of the Graph500 traffic work-
load on different networks. The model implementation receives as input parameters the
scale of the graph s, the edgefactor fe and the coalescing size cs to set the amount of
point-to-point messages that will be transmitted during the execution. It also requires
the computation time associated to an incoming query (or query computation time) tq
to compute the injection rate of the point-to-point messages. Table 2.2 presents a list
of abbreviations used in the implementation of the model.

As opposed to the regular fixed-length executions of FOGSim described in Sec-
tion 1.6.3, the Graph500 synthetic traffic model finishes only when one BFS is com-
pleted. The most significant performance metric in this case is therefore the execution
time, which omits graph generation as it is not evaluated in the performance figures of
the benchmark.

The time invested in the computation of a query must be input in numbers of cycles.
The injection probability of the point-to-point messages is expressed as a percentage
of the maximum traffic load that can be delivered by the network. For a given node



74 Chapter 2. Graph500 Synthetic Traffic Model

Table 2.3: List of query computation time for different node architectures.

Node tq
Altamira supercomputer - IBM iDataplex dx360m4, Intel Xeon E5-2670 @2.6GHz, 1.5ns
64GB RAM @1.6GHz
Intel Core i5-5200U @2.2GHz, 8 GB RAM @1.6GHz 2.25ns
Intel Xeon E5-2620 @2GHz 2.4ns
Mont-Blanc prototype [124] - Samsung Exynos 5, ARM Cortex A15 @ 1.7GHz 15ns

Level start
Message 

generation

Send 
point2point 

signal

Send 
point2point

message

Message 
consumption

More
messages to 

send?

Level end
Graph fully 
traversed?

START

END

YES

NO

YES
NOAll-reduce

Figure 2.11: Flowchart describing the behavior of the Graph500 simulation model.

architecture, Equation 2.20 determines the corresponding injection probability at the
simulator as a function of the query execution time and the length of a simulation cycle.

pin j =
ps · tc
tq · cs

(2.20)

Query computation time is highly related to the performance of the simulated ma-
chine. In order to ease model usability, Table 2.3 provides a reference of the per-query
computation times measured under different node architectures. Provided values cor-
respond to the characterization of the computation time in a conventional HPC cluster,
a regular desktop CPU and a novel ARM-based cluster prototype. Should a user de-
mand more precise values, an instrumentalized version of the Graph500 benchmark
can be run to quantify tq.

The variation between tq in different architectures is not very significant in absolute
terms; query processing is not compute-intensive and is mainly bounded by memory
accesses. The best performer in the list is Altamira, an HPC cluster located at the Uni-
versity of Cantabria. However, a laptop chip such as the Core i5 performs only a 30%
slower. The highest computation time corresponds to the Mont-Blanc prototype [124],
an ARM low-power cluster. This prototype has been built as part of the Mont-Blanc
project, an EU-funded program that targets energy-efficient computation through large
ARM-based systems. A high execution time is consequently expected due to the low-
power nature of the processors, and acts as a lower bound for the performance across
the list.

Figure 2.11 portrays a flowchart with the states followed by the Graph500 synthetic
traffic generator. Simulation starts by determining the number of point-to-point com-



2.3. Validation 75

munications that will be delivered within the current stage or tree level. Each node of
the network corresponds to a process in the benchmark; for the first stage, one node
is selected as host of the root vertex and begins the generation and dispatch of the
point-to-point messages, being the lone sender for this level.

The amount of messages responds to the Gaussian distribution defined by the equa-
tions in Section 2.2.1, and depends on the number of edges explored per tree level El .
In the first phase or tree level the Gaussian distribution is not used, as El trivially equals
the degree of the root vertex and is defined by a lognormal distribution described in the
same section.

Whenever a node generates a point-to-point message, it attempts to insert it in the
injection buffer of the directly-linked router. Following the simple implementation of
the benchmark, the node does not generate new messages until all received messages
have been consumed. New message generation is halted while a incoming message is
being consumed or an outgoing message cannot be injected into the network (due to
lack of space, or buffer in use).

After a node has delivered all the messages for the current stage, it dispatches
a signal to all other nodes in the network. When all nodes have finished sending and
receiving messages, they enter an all-reduce phase comprising a reduce (all nodes send
to one) and a broadcast (one node sends to the rest). The host node for the root vertex
acts as receiver for the messages in the reduce and as transmitter during the broadcast.

Following the end of the all-reduce, the simulator determines if the graph has been
wholly traversed. Fully traversal of the graph implies that all the queries have been
sent, upper bounded by twice the number of edges in the graph. If the condition is not
met, nodes re-enter the level start phase and proceed with another stage; otherwise, the
execution ends.

2.3 Validation

The validity of the Graph500 synthetic traffic model is confirmed in a two-phase ap-
proach. First, the prediction from the equations in Section 2.2.1 is crosschecked against
empirical values for different graph sizes from those employed for their obtention.
Then, an analysis of the results from FOGSim with the synthetic traffic model is per-
formed with different input configurations.

2.3.1 Validation of the model equations

This validation concentrates on the accuracy of the prediction for the mean El and
standard deviation σEl that characterize the distribution of the number of explored
edges per tree level upon the root degree, since the impact of message aggregation
is clearly defined by Equation 2.4. Both predictions for mean and standard deviation
are compared against measured values from a set of BFS executions with parameters
different than those employed to obtain the equations.



76 Chapter 2. Graph500 Synthetic Traffic Model

1 100 10000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

Average Total New Edges (Breakdown per tree level)

Root vertex degree

(a) Mean.

Tree level

0
1
2
3
4
5
6
7
8

1 10 100 1000 10000

1e
−

01
1e

+
01

1e
+

03
1e

+
05

1e
+

07

Stddev of Total New Edges (Breakdown per tree level)

Root vertex degree

(b) Standard Deviation.

Figure 2.12: Validation of the model. Points correspond to measured average and
standard deviation values from a real execution, averaging multiple graphs with scale
s = 22 and edgefactor fe = 16. Lines correspond to the fittings from the model.

Figure 2.12a displays the average number of explored edges El for all possible root
vertices in a set of graphs with scale s = 22 and edgefactor fe = 16. Points correspond
to the measured values, whereas lines are the fittings obtained through the model. The
fitting curves approximate clearly the observed behavior, following the same trends as
the measurements for every stage of the execution. The model reproduces the staged
behavior and replicates the dependence on the root degree, observing a similar propor-
tion between the impact of each stage in the total amount of explored edges. Model
results from the second level l = 1 and upwards are truncated for large root degrees
when the maximum number of edges in the graph are explored.

The dynamic range of the observed values is very large due to its logarithmic na-
ture; this implies that any deviation in the prediction will incur in a very large absolute
error. Still, the relative error of the model for this second tree level is lower than 18%
in more than 90% of the cases. For the third tree level, which amounts the largest
amount of communications for most root degrees, the model is still able to reproduce
the same behavior with an average relative error of 12.5%. Total number of explored
edges across the graph presents a relative error below 12%, which is corrected when
the maximum value is reached and the edges in the last levels are truncated.

Figure 2.12b depicts in a similar fashion the measured points and fittings for the
standard deviation. Deviation between the measured points and the model prediction
is larger in this case: the dispersion for large root degrees is so large that any fitting
must necessarily incur in substantial errors. The model curves nevertheless resemble
the trend of the samples.

A similar analysis has been conducted for the mean and standard deviation upon
graphs of scale s = 18 and edgefactor fe = 40, with analogous results.



2.3. Validation 77

Table 2.4: Simulation parameters for the Graph500 synthetic traffic model evaluation.

Parameter Value
Router size 7 ports (h=2 global, p=2 injection, 3 local)
Group size 4 routers, 8 computing nodes
System size 9 groups, 72 computing nodes

Latency 50/500 cycles (local/global links), 200 cycles (router)
Buffer size 16kB (local input per VC, output),

128kB (injection and global input per VC)
Packet size 4kB

2.3.2 Simulation results

The accuracy of the model as a whole and its implementation is evaluated through a
battery of simulations with FOGSim. The configuration is similar to that described in
Section 1.6.4 but with a smaller network size to reduce execution time and considering
the specifications of the 40Gbps QDR/FDR10 InfiniBand (IB) switch in the Altamira
supercomputer. Table 2.4 describes the values of the redefined parameters. All results
represent the average of 5 different executions with different root degree.

Each execution of the simulator requires less than 100MB of memory in a single
process; as a reference point, the capture of the behavior for a scale s = 23 (8 times
smaller than the scale s = 26 employed for these results) and 64 processes involves
a trace of 600MB. Furthermore, trace size scales almost linearly with the size of the
graph and the number of processes, making unfeasible to evaluate larger cases. By
contrast, the synthetic traffic model only requires a longer execution to perform the
analysis of greater graph sizes.

Figure 2.13 illustrates the impact of the node computation capabilities (which de-
termine the processing time associated to every query) and the link bandwidth (BW)
on the execution time of one BFS execution, in a graph of scale s = 26 and edgefactor
fe = 16, with a coalescing size of cs = 256. The simulation considers an execution
with 72 processes sequentially distributed across a Dragonfly network of size h = 2,
and minimal (MIN) routing.

Figure 2.13a depicts the execution time in seconds for a sweep in the query com-
putation time (tq), for different link bandwidths. The curves present two distinctively
different behaviors. For long query times, the execution time grows with the query
computation time. This zone corresponds to CPU-bounded execution, where the node
computational capabilities act as the bottleneck for the performance of the benchmark.
However, for short query computation times the execution time stales, and the network
becomes a bottleneck for the system performance. The frontier between these zones
represents a balanced system. Interestingly, for a system with the characteristics of
the Altamira supercomputer (query time tq = 1.5ns and 40Gbps of link bandwidth)
the execution time is already hindered by the network limitations. Network impact is
restricted to bandwidth (and not latency) characteristics; simulations employing links



78 Chapter 2. Graph500 Synthetic Traffic Model

0

0.5

1

1.5

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 100 200

E
xe

cu
tio

n 
tim

e 
(s

)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.13: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Dragonfly network of size h= 2
employing MIN routing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.14: Network use per node computation capability, under different link band-
widths, for a graph of scale 26 and edgefactor 16. Dragonfly network of size h = 2 with
MIN routing.

with a 10x increase in delay (omitted for the sake of brevity) rendered negligible dif-
ferences from the displayed curves. This behavior is related to the nature of the com-
munications of the benchmark, which do not present any interdependencies between
messages within the same tree level and therefore favour higher message dispatch rates
over lower latencies.

Figure 2.13b represents the same conduct from the opposite perspective: it renders
the execution time in seconds upon the link bandwidth, for different query computation
times. For a node with a query computation time tq = 15ns (similar to the ARM CPU of
the Mont-Blanc prototype) an increase in link BW beyond 40Gbps is close to ineffec-
tive, but for a query time below 1.5ns an improvement from 40Gbps to 100Gbps halves



2.3. Validation 79

0

0.5

1

1.5

2

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 100 200

E
xe

cu
tio

n 
tim

e 
(s

)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.15: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Dragonfly network of size h= 2
employing VAL routing.

the execution time. Performance in the zone limited by the network is not completely
proportional to the link BW, because the model does not only consider the point-to-
point communications but also the synchronization phases (through the end-of-level
signals and the all-reduce operation).

Figure 2.14 portrays the average network usage for the same curves in Figure 2.13.
For all link bandwidths the curves saturate below 0.7 phits/(node·cycle) (70% of the
maximum) due to performance limitations of the Dragonfly network and the half-
duplex nature of the program, where nodes cannot generate new messages when they
are consuming an incoming packet (however, they may take longer to inject than to
consume due to performance limitations of the router). Out of the saturation region,
the query time determines the message injection rate; for a given query computation
time, a higher bandwidth gives a lower execution time and less utilization of the net-
work bandwidth. Although the most important target from a performance perspective
is a lower execution time of the application, working under the bandwidth limits of the
network implies an under-use of resources or that the application experiments frequent
peaks of high-utilization interleaved with low network usage.

Figures 2.15 and 2.16 repeat the same performance and network usage metrics
for the same network and graph parameters combinations, but employing oblivious
nonminimal routing (VAL). Performance in this case is significatively worse, with ex-
ecution times almost doubling those for minimal routing. This occurs because VAL
routing caps sustained network performance at 0.5 phits/(node·cycle), 50% of the max-
imum network performance, as presented in Section 1.4.1.2. The network usage graph
in Figure 2.16 is below that limit, at 0.4 phits/(node·cycle) because part of the execu-
tion time is dedicated to process synchronization and network is not fully exploited in
such phases.



80 Chapter 2. Graph500 Synthetic Traffic Model

0

0.1

0.2

0.3

0.4

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.16: Network usage per node computation capability, under different link band-
widths. Results for a graph of scale 26 and edgefactor 16, running over a Dragonfly
network of size h = 2 with VAL routing.

Previous results have considered fully exploiting a small system of 72 computing
nodes. However, in HPC systems shared among several users applications are usually
assigned a subset of the system nodes, and the simplest approach for the job scheduler
is a consecutive allocation of groups. Figures 2.17 and 2.18 repeat the same evaluation
of Figures 2.13 and 2.14 with a similar number of processes (64 processes instead of
72) but using two groups of a larger Dragonfly network of size h = 4. To simplify the
evaluation, the rest of the network sits idle during the execution; in a typical system
these nodes would run applications from other users, interfering in the network access
and degrading the performance.

The use of MIN routing is detrimental for the observed performance; since the spa-
tial distribution of the model communications is uniform, half of the communications
must advance through a single global link between the two groups and are capped to
the 1

2h2 explained in Section 1.6.1.2. The theoretical maximum throughput of the net-
work is then 2 1

2h2 = 0.0625 phits/(node·cycle). This constitutes an adversarial case
similar to the ADV+1 traffic described in Section 1.6.1.2, and increases the execution
time an order of magnitude compared to the uniform layout in a Dragonfly of size h= 2
observed in Figure 2.13. Moreover, the impact of the query time in the duration of the
execution becomes negligible, negating the benefits of a node with greater computation
capabilities.

VAL routing allows to exploit link diversity and improve performance significantly.
Figures 2.19 and 2.20 refer the execution time and network usage of the Graph500
traffic model running over 2 groups of a Dragonfly network of size h = 4 with obliv-
ious nonminimal VAL routing. Both the execution time and the network usage are at
an intermediate point between those of MIN and VAL routing with the whole h = 2
Dragonfly. These results are optimistic since the rest of the network is idle and the
nonminimal traffic does not contend with traffic from other applications in the system,
but provide a reference for comparison against MIN routing.



2.3. Validation 81

0

2

4

6

8

10

12

14

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

2

4

6

8

10

12

14

20 40 100 200
E

xe
cu

tio
n 

tim
e 

(s
)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.17: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Execution with 64 processes
spread in 2 groups of a Dragonfly network of size h = 4, employing MIN routing.

0

0.02

0.04

0.06

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.18: Network usage per node computation capability, under different link band-
widths. Results for a graph of scale 26 and edgefactor 16, running over 64 processes
spread in 2 groups of a Dragonfly network of size h = 4 with MIN routing.



82 Chapter 2. Graph500 Synthetic Traffic Model

0

0.5

1

1.5

2

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

0.2

0.4

0.6

0.8

1

1.2

20 40 100 200
E

xe
cu

tio
n 

tim
e 

(s
)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.19: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Execution with 64 processes
spread in 2 groups of a Dragonfly network of size h = 4, employing VAL routing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.20: Network usage per node computation capability, under different link band-
widths. Results for a graph of scale 26 and edgefactor 16, running over 64 processes
spread in 2 groups of a Dragonfly network of size h = 4 with VAL routing.



2.3. Validation 83

0

0.5

1

1.5

2

2.5

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

0.2

0.4

0.6

0.8

1

20 40 100 200
E

xe
cu

tio
n 

tim
e 

(s
)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.21: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Execution with 160 processes
spread in 5 groups of a Dragonfly network of size h = 4, employing MIN routing.

0

0.05

0.1

0.15

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.22: Network usage per node computation capability, under different link band-
widths. Results for a graph of scale 26 and edgefactor 16, running over 160 processes
spread in 5 groups of a Dragonfly network of size h = 4 with MIN routing.



84 Chapter 2. Graph500 Synthetic Traffic Model

0

0.25

0.5

0.75

0.5 1 2 4 8 16 32

E
xe

cu
tio

n 
tim

e 
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

(a) Node capability sweep.

0

0.1

0.2

0.3

0.4

0.5

20 40 100 200
E

xe
cu

tio
n 

tim
e 

(s
)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 10.0ns

Query time 12.0ns

Query time 15.0ns

(b) BW sweep.

Figure 2.23: Execution time for a sweep in node computation capability and link band-
width (BW), with a graph of scale 26 and edgefactor 16. Execution with 160 processes
spread in 5 groups of a Dragonfly network of size h = 4, employing VAL routing.

0

0.1

0.2

0.3

0.4

0.5

0.5 1 2 4 8 16 32

A
pp

lie
d 

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

200Gbps

Figure 2.24: Network usage per node computation capability, under different link band-
widths. Results for a graph of scale 26 and edgefactor 16, running over 160 processes
spread in 5 groups of a Dragonfly network of size h = 4 with VAL routing.



2.4. Conclusions 85

Figures 2.21- 2.24 expand the synthetic model to 5 consecutive groups, increas-
ing the number of processes up to 160. Using only MIN routing, it can be observed
that 80% of the traffic in every group is concentrated in 4 global links. In the case
of the first group, those global links are attached to the same router; this traffic in-
troduces a problem of unfairness that is analyzed in Chapter 3. Execution times are
now comparable to the figures from the first case, where the number of processes was
only 72 (less than a half of the nodes used here). With VAL routing, results are better
than their counterpart in the h = 2-sized network because more than 80% of the nodes
are idle; in a real system the network usage would be likely upper bounded around
0.5 phits/(node·cycle) and the execution would last approximately 0.25 seconds for a
40Gb network BW and a query time below 4ns.

2.4 Conclusions

Previous evaluations of BigData workloads consist mostly of full-system simulations
of the real applications, or rely on the use of traces. Both options limit severely the
size and detail of the network that can be investigated via simulation - which confers
observability otherwise unattainable. This is a strong limitation for network architects,
since data-intensive applications gather a strong interest and place a particular stress in
the network subsystem of large HPC supercomputers.

This chapter introduces a novel computationally non-intensive synthetic model of
the communications of Graph500. This traffic model emulates the communications
workload of the most scalable implementation of the benchmark. In order to develop
this model, an analysis of the communications is performed; messages are distributed
in stages, with the volume per stage being related to the number of explored edges per
tree level. Furthermore, it has been identified a strong connection to the degree of the
vertex selected as root of the tree.

This synthetic traffic models the benchmark behavior as a set of stages of point-to-
point messages separated by all-reduce collective operations. The number of messages
is defined as a function of the benchmark parameters (scale and edgefactor) for each
stage within the BFS computation (which equals the level of the outcoming tree). This
function is characterized as a normal distribution which calculates the number of edges
per tree level for any given degree of the root vertex. Both metrics are defined through
a set of equations inferred from an empirical characterization of actual benchmark exe-
cutions for different graph parameters. The degree of the root vertex used in the model
equations is randomly decided following a lognormal distribution, which constitutes
a simple yet accurate approximation of the degree distribution in Kronecker matrix-
product graph generators.

This work also provides an implementation of the model for the FOGSim network
simulator, which can be handily adapted for other network simulators. This imple-
mentation features high scalability with the size of the graph and the number of nodes
employed. Node computation and memory characteristics are assessed in the model
through a query computation time parameter; its value can be measured at a target



86 Chapter 2. Graph500 Synthetic Traffic Model

architecture, and short list of the associated computation time for different system ar-
chitectures is provided as a reference value.

Following the network parameters in the simulator that correspond to a reference
InfiniBand router architecture, a set of simulations is performed and a figure is provided
with the model execution time for different node capabilities and link bandwidths. Re-
sults demonstrate that the execution time of the model presents two distinct behaviors:
a CPU-bounded region where execution time grows with query computation time, and
a flat region when the node computation capability exceeds the maximum injection
rate of the network. Maximum performance when the network becomes the bottleneck
does not only account for the point-to-point communications but also the synchroniza-
tion phases.

Results also account for the task mapping over the simulated system, considering
the use of a whole dedicated system and two comparable subsets of a larger network.
Interestingly, the near-uniform nature of the benchmark communications mimics the
behavior of adversarial traffic in a Dragonfly network when a subset with multiple
groups is employed.



Chapter 3

Throughput unfairness

The previous chapter has presented a synthetic traffic model of the communications in
the Graph500 benchmark, and the results from its implementation in the FOGSim net-
work simulator prove the existence of adverse traffic patterns for executions allocated
to multiple groups of the Dragonfly network. Adverse traffic patterns require nonmin-
imal adaptive routing to exploit nonminimal paths and increase the performance. This
chapter delves into the unfairness issues on the use of the network resources due to ad-
verse traffic patterns combined with certain global misrouting and traffic prioritization
policies.

In a fair situation, all processes running in the system receive the same service level
regardless of their location. The lower performance (longer execution time) observed
with the Graph500 traffic model for certain task mappings corresponds to per-node
throughput unfairness, where the source nodes receive a different service level from
the network, being able to send different amounts of traffic. The causes of throughput
unfairness are diverse, and can depend among others on the network topology (if it
presents asymmetries), the traffic pattern, or network faults. The impact of unfairness
depends on the structure of the application; in the worst case of typical HPC applica-
tions that follow a fork-join nature, the system can slow to the speed determined by
the worst-serviced node. If the unfairness leads to a quasi-starvation situation, perfor-
mance of the applications running on affected nodes will degrade severely.

Although throughput unfairness may lead to significant performance degradation
in real applications, considering the whole system performance under synthetic traffic
patterns can mask the effects of the unfairness and even lead to better average through-
put and latency results. If the traffic load is not penalized for slowing a given node
the unfairness can improve performance, as it benefits the injection rate of outperform-
ing nodes more than it slows down that of starving nodes. Synthetic traffic notwith-
standing, if several applications are running concurrently on the system, throughput
unfairness will be detrimental to users who are allocated the affected nodes. Unfair-
ness metrics are therefore required to estimate the degree of throughput unfairness and
establish the effectiveness of each mechanism at mitigating it.

This chapter analyzes some of the causes of throughput unfairness in Dragonfly
networks, and evaluates the impact of different implicit and explicit fairness mecha-

87



88 Chapter 3. Throughput unfairness

nisms for different traffic patterns. It also introduces the adversarial-consecutive traf-
fic, a synthetic traffic pattern that is particularly harmful for the throughput fairness,
and under which a pathological case of degraded performance can be observed with
source-adaptive routing.

3.1 Throughput unfairness in Dragonflies

Dragonfly networks presents a balanced use of resources under uniform traffic, but suf-
fer from throughput unfairness under nonuniform traffic patterns. This work reviews
the impact of three aspects which have been identified to decrease fairness in Dragonfly
networks: global misrouting policy, prioritization to in-transit traffic, and adversarial
traffic patterns.

3.1.1 Global misrouting policy

It has been discussed in Section 1.4 that systems require adaptive routing mechanisms
to achieve good performance under uniform and nonuniform traffic patterns, the latter
of which do not fully exploit link diversity through the use of minimal paths. Non-
minimal adaptive routing in Dragonfly networks typically implies the traversal of an
intermediate group to balance the use of global links, which constitute the bottleneck
in most adversarial traffic patterns. The global misrouting policy, which determines
which inter-group links to employ in nonminimal routing, has been introduced in Sec-
tion 1.4.3.

This work only considers the RRG and CRG policies for oblivious and source-
adaptive routing. NRG has the longest average nonminimal path and reduces perfor-
mance under uniform traffic, and it is not evaluated in this work. Under adversarial
traffic, the MM policy attempts to reduce the impact of nonminimal traffic over those
global links which are heavily congested due to minimally routed traffic. This im-
proves performance and mitigates throughput unfairness compared to the RRG and
CRG policies which stress more heavily the minimal links in routers directly linked to
the destination group.

In spite of the benefits of the MM policy, it is yet unable to avoid unfairness un-
der certain adversarial traffic patterns, as it is observed in Section 3.3.1. In such case,
explicit fairness mechanisms are required to ensure a balanced assignment of the re-
sources to each router.

3.1.2 In-transit traffic priority

Many systems employ prioritization of in-transit traffic, a switch arbitration policy
which always selects an in-transit packet rather than one in the injection queues when
both compete for an output port. A well-known example of system with this pol-
icy is the whole line of BlueGene supercomputers [7, 39]. In-transit traffic priority



3.1. Throughput unfairness in Dragonflies 89

favours draining the network rather than injecting more traffic, reducing network con-
gestion and eventually leading to better performance. This policy has a downside, it
significantly aggravates unfairness for nonuniform traffic patterns. This effect is later
evaluated in Section 3.3.

3.1.3 Traffic pattern

The traffic pattern is a significant contributor to throughput unfairness in the network.
Nonuniform traffic patterns introduce an uneven distribution of traffic on the network,
generating unfairness in the areas which process more traffic.

Under adversarial traffic, one single router in each group of the Dragonfly network
concentrates all the ongoing traffic originated in the group if the minimal path is em-
ployed. This router, denoted Rout in Figure 3.1, hosts the minimal outputs for all the
traffic originated in the group. Nodes connected to this router will have more difficulty
to inject traffic and, therefore, receive a worse service from the network. Under adap-
tive nonminimal routing, the situation is not completely fair: the routing mechanism
actually requires a certain level of congestion in Rout in order to select a nonminimal
path.

Multiple variants of adversarial traffic can be defined. Section 1.6.1.2 introduced
the ADV+1 and ADV+h traffic patterns, which represent the worst case scenario in
terms of performance. Out of these two, this chapter employs solely the ADV+1 traffic
in the evaluation. This section presents another variant named adversarial-consecutive
which, although not as restrictive in terms of performance, generates more through-
put unfairness. An adversarial-consecutive communications pattern can easily appear
during the execution of an application when the network is partitioned in a natural,
consecutive sequence.

3.1.3.1 ADVc traffic

In the adversarial-consecutive (ADVc) traffic pattern, messages are sent randomly to
destinations in the h groups connected to the Rout router. With the palmtree arrange-
ment of the global links discussed in Section , these destinations are the h consecutive
groups (+1,+2, ...,+h) after the source group. Figure 3.1 illustrates this traffic pattern
with a Dragonfly network with h = 2, highlighting the Rout which hosts all the mini-
mal global outputs and the Rin router hosting all the minimal global inputs. For other
arrangements, the ADVc pattern is determined by selecting all the destination groups
which are connected to a given router Rout .

As briefly observed in Section 2.3.2, this traffic pattern is similar to the workload
observed when an application with a uniform spatial distribution of the communica-
tions is spread over not the whole system but a subset with multiple groups (in this
case, (h+1) groups), which is a typical scenario in an HPC system. If an application
is allocated (h+ 1) groups, even uniform traffic between its processes translates into
ADVc traffic in the network, at least for one of the involved groups. Alternative alloca-
tion schemes which avoid consecutive group allocation can also inadvertently generate



90 Chapter 3. Throughput unfairness

global link

local link

router

node

group

(a) ADVc traffic.

source group

destination 
groups

Rin RoutRin Rout

destination group

source 
groups

Rin RoutRin Rout

(b) View of a source and a destination
group.

Figure 3.1: Adversarial-consecutive (ADVc) traffic pattern in a Dragonfly with h = 2.
Traffic from each source group i targets the next h = 2 consecutive groups (i+1, i+2).
Right picture shows a closer view of the source and destination groups. Highlighted
router Rout connects to the minimal global link towards those destination groups.

this traffic pattern, with a different bottleneck router in one of the groups of the system,
especially for large h or for different global link arrangements.

ADVc traffic is not as adversarial in terms of throughput as ADV, since the traffic
going minimally from any group is distributed across h global links instead of one.
However, it constitutes a challenge for throughput fairness, because the global links of
the bottleneck router at each group are likely to get congested due to minimally-routed
traffic from neighbor routers within the group. This is analyzed in further detail in
Section 3.3.

Throughput unfairness under ADVc traffic exacerbates with the CRG global mis-
routing policy, since the allowed nonminimal global paths for nodes in the bottleneck
router Rout coincide with the minimal global links for traffic flows from other routers,
which are probably congested.

Additionally, ADVc traffic saturates all the output links in Rout , what interferes with
the congestion notification mechanism employed in PiggyBack. As it was observed in
Section 1.4.2.1.1, PB is one of the best performing source adaptive routing mechanisms
proposed for Dragonfly networks.

A topology-aware system batch scheduler could take into account this scenario,
and consider the layout of the network nodes for their allocation to system jobs. Such
scheduler should check all pre-selected groups to validate that they are not connected
via a single output router at any of them. However, since allocation is a dynamic
process which occurs as new jobs arrive, a practical policy which completely avoids



3.2. Fairness mechanisms 91

this traffic would be complex and probably would reduce the throughput of the system.
An alternative approach is to modify the network topology through global trunking,
which employs two or more global links between pairs of groups in smaller networks to
provide full bisection bandwidth. Networks with global trunking can employ disjoint
pairs of routers for each parallel link between groups, avoiding the concentration of
traffic in a single output router. Such design would divide the output load between two
or more output routers; to minimize the concentration of traffic, parallel global links to
different destination groups should connect to different routers. As far as the author is
aware, avoiding the collision of sets of parallel links in the same routers has not been
considered before for the design of a Dragonfly topology.

3.2 Fairness mechanisms

This chapter evaluates different mechanisms to mitigate or remove throughput unfair-
ness under adversarial traffic patterns in a Dragonfly network. Fairness mechanisms
can be either explicit (such as Age Arbitration [46] or SAT [77]) or implicitly coupled
with another network mechanism like the congestion control (as done in TCP [13]),
the routing mechanism (such as the use of the MM global misrouting policy under in-
transit adaptive routing evaluated in Section 3.1.3) or the the arbiter policy (such as
the removal of in-transit traffic priority, also evaluated in Section 3.1.3). The fairness
mechanism can act locally in the router (as is the case for Age Arbitration) or through
injection throttling in the nodes (e.g., in SAT and TCP).

The implicit fairness mechanisms evaluated in this work are insufficient to prevent
throughput unfairness under ADVc traffic, as will be demonstrated with the results in
Section 3.3.1. To deal with the challenges imposed by ADVc it is required an explicit
fairness mechanism. Section 3.3.4 evaluates the effectiveness of age arbitration which
is, as far as the author knows, the only fairness mechanism that has been implemented
in commercial HPC systems [5]. This work does not consider the use of any global
congestion mechanisms (e.g., the injection throttling employed by TCP).

3.2.1 Age Arbitration

Age-based arbitration [5] is a variant of the arbitration policy which takes packet age
into account. Each packet has an associated age, defined as the elapsed time since
it was generated. When two packets contend for the same output port, the arbiter
compares their age and always selects the oldest. This policy favors latency fairness
by equalizing the delay of competing flows, and also provides throughput fairness.

The complexity of this mechanism relies on tracking the age of the network pack-
ets. A perfect globally synchronized network clock is not feasible, so actual imple-
mentations rely on increasing the packet age by the amount of time travelling through
network links and waiting in buffers. The age of a packet is stored in a field of the
packet header. Different implementations of age-based arbitration mechanisms are
discussed in Section 6.3.



92 Chapter 3. Throughput unfairness

3.3 Results

This section presents a series of performance and throughput unfairness metrics for
different arbitration policies. Unless otherwise noticed, the network configuration cor-
responds to the description in Section 1.6.4. Four different routing mechanisms have
been employed: MIN and VAL represent the reference oblivious routing under UN and
adversarial traffic patterns, respectively. Source-adaptive routing (Src) selects between
minimal and nonminimal paths at injection and broadcasts the congestion status of the
global links within each group following the implementation of PB described in Sec-
tion 1.4.2.1. In-transit adaptive routing adheres to the implementation of OLM detailed
in Section 1.4.2.2; the terms source-adaptive and in-transit adaptive are employed in-
stead of PB and OLM because their original definition only considers one concrete
global misrouting policy, RRG for PB and MM for OLM. This section considers the
combination with the RRG, CRG and, only in the case of in-transit adaptive routing,
the MM global misrouting policies.

Sections 3.3.1 and 3.3.3 analyze the behavior using the Round-Robin (RR) arbi-
tration described in Section 1.1, first giving priority to transit over injection (Sec-
tion 3.3.1), and later without prioritizing any traffic flow (Section 3.3.3). Removing
transit priority over new injections mitigates significantly the throughput unfairness
(specially for in-transit adaptive routing) at the expense of a drop in performance; how-
ever, it is insufficient in the case of ADVc traffic. Section 3.3.4 studies the capability
of Age-based arbitration to avoid throughput unfairness under all traffic scenarios.

3.3.1 Results with Round-Robin arbitration and in-transit priority

In order to distinguish the impact of the different routing mechanisms, the evaluation of
the results with in-transit priority is split in two sections; first, the performance metrics
(throughput and latency) are analyzed, and then the throughput fairness is scrutinized.

3.3.1.1 Network performance with RR arbitration and in-transit priority

Figure 3.2 shows average throughput and latency under UN and adversarial traffic
employing RR arbitration with priority of transit over injection traffic. Performance
under UN traffic (Figure 3.2a) is good for all the routing mechanisms. Latency with
the CRG and MM global misrouting policies for source-adaptive and in-transit adap-
tive routing is close to the minimal marked by MIN routing. Since MIN routing does
not employ nonminimal paths, the impact of the global misrouting policy with obliv-
ious routing under UN traffic is not explored. Source adaptive routing mechanisms
perform misrouting only at injection. Since the traffic pattern is already uniform, ide-
ally the percentage of misrouted traffic should be close to 0% and a higher percentage
should degrade performance. However, the traffic pattern may present temporal non-
uniformities during the execution, and the higher number of VCs employed by adap-
tive routing mechanisms alleviates HoLB and outperforms the degradation associated
to misrouting in the case of Src-CRG and all the in-transit routing mechanisms. The



3.3. Results 93

MIN Src-RRG Src-CRG In-Trns-RRG In-Trns-CRG In-Trns-MM

100

150

200

250

300

350

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN traffic.

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADV+1 traffic.

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0

0.1

0.2

0.3

0.4

0.5

 0  0.2  0.4  0.6  0.8  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADVc traffic.

Figure 3.2: Latency and throughput under uniform (UN) and adversarial (ADV+1, ADVc)
traffic patterns, using Round-Robin arbitration and prioritizing transit over injection.



94 Chapter 3. Throughput unfairness

amount of misrouting decreases slightly at high traffic loads, because the minimally
routed traffic already exploits most of the maximum utilization of the network links.
The use of a RRG policy is detrimental in the case of UN traffic because it increases
latency and has a negative effect in throughput.

The impact of the global misrouting policy is more significant under adversarial
traffic patterns ADV+1 (Figure 3.2b) and ADVc (Figure 3.2c) where oblivious Valiant
routing constitutes the reference. All the adaptive routing variants enroute more than
97% of the packets nonminimally to prevent the performance bottleneck of the min-
imal global links. Under ADV+1 traffic, CRG achieves the highest saturation point
within each routing mechanism and also provides better throughput under oblivious
and source-adaptive routing; the impact on throughput for in-transit adaptive routing
is hidden by the theoretical performance bound of 0.5 phits/(node·cycle) discussed in
Section 1.4.1.2. The spike in latency for In-Trns-CRG is discussed in Section 3.3.1.2.

RRG reduces performance under adversarial traffic, because it employs longer
paths than CRG in average due to the extra local hop in the source group. Moreover,
it does not alleviate the unbalance because it exploits uniformly the global links for
the nonminimal communications. This implies fewer available resources for injection
at the bottleneck router of the group which, combined with the priority of transit over
injection, prevent those nodes in the bottleneck router from injecting at the same rate
as the rest. The highest throughput under UN and ADV traffic is achieved by in-transit
adaptive routing with the MM policy, since it combines the most beneficial selection
at injection (CRG) and during network traversal (NRG).

All the routing mechanisms fail to perform well in both performance metrics under
ADVc traffic. Oblivious and source-adaptive routing mechanisms have lower latency
below the saturation point than in-transit adaptive routing and do not display latency
peaks due to throughput unfairness, but achieve lower throughput. The implementa-
tion of source-adaptive routing is unable to properly identify ADVc as an adversarial
traffic pattern and degrades significantly the performance; this effect is analyzed in
Section 3.3.2. In-transit adaptive routing achieves the highest throughput but clearly
suffers from throughput unfairness, what can be appreciated in a lower throughput
than the offered load before reaching the saturation point. This is delved into in Sec-
tion 3.3.1.2.

Overall, CRG is the most suitable policy for oblivious nonminimal routing under
adversarial traffic. However, it performs poorly in source-adaptive routing with ADVc
traffic. This effect is discussed in Section 3.3.2.

3.3.1.2 Throughput unfairness with RR arbitration and in-transit priority

The severity of latency peaks due to throughput unfairness aggravates with longer in-
jection queues. Figure 3.3 displays the throughput and latency under adversarial traffic
patterns when the length of injection buffers is increased to 1000 phits from the de-
fault value of 256 phits presented in Table 1.2. Throughput remains unchanged, but
latency peaks of in-transit adaptive routing below the saturation point are more pro-
nounced. The peak in latency occurs when the bottleneck router in each group starts to



3.3. Results 95

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) ADV+1 traffic.

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0

0.1

0.2

0.3

0.4

0.5

 0  0.2  0.4  0.6  0.8  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADVc traffic.

Figure 3.3: Latency and throughput under adversarial traffic patterns, using Round-
Robin arbitration and prioritizing transit over injection. Injection queues of 1000 phits.



96 Chapter 3. Throughput unfairness

 0

 100

 200

 300

 400

 500

 600

 700

0.01
0.05

0.10
0.15

0.20
0.25

0.30
0.35

0.40
0.45

0.50
0.55

0.60
0.65

0.70
0.75

0.80
0.85

0.90
0.95

1

La
te

nc
y 

(c
yc

le
s)

Injection rate (phits/(node*cycle))

Base latency
Misrouting
Congestion (Dgfly Local Queues)

Congestion (Dgfly Global Queues)
Injection Queues

Figure 3.4: Breakdown of latency components for in-transit adaptive routing with MM
global misrouting policy under ADVc traffic. Round-robin arbitration policy. Transit is
prioritized over injection.

suffer starvation at low loads, because in-transit traffic received from neighbor routers
is given precedence in the arbitration. The accepted load of starved routers remains
low thereafter, forcing the accepted load to be lower than the offered traffic load be-
fore reaching saturation. However, the high latency of those packets coming from the
starved router is hidden when averaging with the remaining routers in the group, which
are not saturated and inject a higher load. When the starvation becomes severe, the
number of delivered packets from the starved routers decreases significantly and the
average latency gets lower, although the maximal latency is very high. With the CRG
global misrouting policy, this behavior occurs at an extremely low load. The impact
with RRG and MM is more subtle and at higher traffic loads, but it can be observed
with longer injection queues.

Figure 3.4 displays the latency breakdown for in-transit adaptive routing with the
MM policy under ADVc traffic. Five different components are considered: link traver-
sal through the minimal and nonminimal paths, waiting time in local and global link
queues, and waiting time at injection. Misrouting latency is caused by the traversal
of additional nonminimal links and increases with the injection rate until it stabilizes
at the saturation point, at 0.5 phits/(node·cycle). Congestion, both in local and global
links, also rises until reaching the saturation point and has a relatively low impact on
the total latency under all traffic loads.

The latency component which increases the most with the offered load is the wait-
ing time at injection queues. It is also the source of the latency peak below saturation
point: it grows before reaching a peak around 0.1 phits/(node·cycle) and then steadily
diminishes until reaching saturation. As it has been discussed, this latency comes
mostly from starved packets at the bottleneck routers. The use of deeper buffers (Fig-
ure 3.3) aggravates the effect, because a larger set of packets is waiting to be sent and



3.3. Results 97

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

(a) Injection per router.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R0 R1-14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

(b) Injection per router, grouping into 3 sets.

Figure 3.5: Injected load per router in group 0, under ADVc traffic with applied load 0.4
phits/node/cycle. Round-robin arbitration with transit-over-injection priority.

accumulating more delays.
Figure 3.5 helps to quantify the unfairness in the network, portraying the injected

load for nodes connected to every router of one group under a 0.4 phits/(node·cycle)
ADVc traffic load. Under this traffic pattern, R0 and R15 behave respectively as the
Rin and Rout routers depicted in Figure 3.1. As it can be seen in Figure 3.5a, for every
combination of routing and global misrouting policy the values for middle routers 1-14
are very similar. Figure 3.5b replicates the same data as in Figure 3.5a but averaging
the results for routers 1-14 for the sake of clarity.

Oblivious nonminimal routing does not suffer from throughput unfairness, and all
the routers of the groups inject a similar amount of traffic regardless of the global mis-
routing policy. Adaptive routing mechanisms have nevertheless a completely different
conduct. Source-adaptive routing tends to favor some routers in detriment of others:
with the RRG policy, router R0 injects significantly less packets than the rest of the
group, whereas router R15 injects more than the average; with the CRG policy, those
two routers inject less than the others. In-transit adaptive routing is particularly harm-
ful for the injection at the bottleneck router R15, which is several orders of magnitude
lower than in the other routers of the group with any of the three global misrouting



98 Chapter 3. Throughput unfairness

Table 3.1: Fairness metrics for all routing and global misrouting policy combinations
under ADVc traffic, with traffic in the transit queues given priority over traffic in the
injection queues. Values are specified for two different traffic loads per combination,
one below and one above the average saturation point.

Avg sat. load Offered load Min inj. load Max/Min COV

MIN 0.05 0.03 0.0275 (91.7%) 1.180 0.0236
0.55 0.0100 (1.82%) 43.81 0.4106

Obl-RRG 0.40 0.35 0.3416 (97.6%) 1.048 0.0069
0.55 0.3522 (64.0%) 1.309 0.0345

Obl-CRG 0.43 0.40 0.3913 (97.8%) 1.045 0.0063
0.55 0.3833 (69.7%) 1.321 0.0533

Src-RRG 0.33 0.30 0.1589 (52.9%) 1.925 0.0483
0.55 0.1739 (31.6%) 3.138 0.1569

Src-CRG 0.12 0.10 0.0571 (57.1%) 1.829 0.0857
0.55 0.0528 (9.59%) 8.832 0.2251

In-Trns-RRG 0.47 0.40 0.0066 (1.64%) 62.79 0.2435
0.55 0.0039 (0.71%) 145.29 0.2820

In-Trns-CRG 0.49 0.40 0.0042 (1.06%) 97.90 0.2450
0.55 0.0032 (0.58%) 172.89 0.2525

In-Trns-MM 0.49 0.40 0.0053 (1.32%) 79.74 0.2442
0.55 0.0051 (0.92%) 112.56 0.2519

policies despite achieving the best throughput and latency results in almost all cases in
Figure 3.2.

Table 3.1 presents the fairness results from the metrics described in Section 1.5.1
(minimum injection, max/min ratio, and coefficient of variation) under ADVc traffic.
Since the level of unfairness typically increases after saturation, two values of each
metric are given for every routing mechanism: one for a traffic load below the satu-
ration point, and one above. Results with MIN routing are included as a reference.
MIN achieves extremely low throughput under all adversarial traffic patterns and for
ADVc it saturates at 0.05 phits/(node·cycle). However, it achieves reasonably good
fairness metrics before reaching saturation, with a lower Max/Min than all adaptive
routing mechanisms. It presents higher unfairness than nonminimal oblivious routing,
specially for traffic loads above the saturation point, because the severity of the con-
gestion is much higher and thus limits the amount of injection that can be achieved at
the router directly connected to the destination group.

The second column presents the average injected traffic load from the router with
lowest injection in the network. For fair mechanisms such as Obl-RRG it corresponds
before saturation roughly to 97% of the offered load. This percentage obviously re-
duces after saturation, but the Max/Min ratio also typically increases, evidencing that
some nodes inject more than others. All in-transit adaptive configurations are signif-
icantly less fair than oblivious and source-adaptive routing, with at least one router
injecting much less traffic than the rest. The Max/Min metric adds further information,
with all the routing mechanisms achieving the same order of magnitude before satura-
tion for the different global misrouting policies: around 1.1 for oblivious, around 2 for



3.3. Results 99

2

1

0

1

Credit counter

Figure 3.6: Example of router with similar congestion in all the queues. The value in the
credit counter is similarly low for all the output ports, making difficult to discern if it is a
general case of congestion (e.g., high UN traffic load) or pathological saturation in the
router links (e.g., ADVc in the bottleneck router).

source-adaptive, and around 60-100 for in-transit adaptive. CoV is also high, implying
that the unfairness is not constrained to a few isolated cases.

3.3.2 Performance issues with source-adaptive routing

Results in Section 3.3.1.1 have shown that source-adaptive routing is not competitive
under ADVc traffic due to unfairness and degraded average performance. This is spe-
cially concerning as source adaptive routing is considered one of the most suitable
mechanisms due to its performance and easiness of implementation [82]. The use of
PB [82] for source-adaptive routing relies on the saturation status of the global link
in the minimal path to choose between minimal and nonminimal routes at injection.
Global links are marked as saturated when their occupancy exceeds twice the average
of the global links within the same router; information about the status of other links
in the group is broadcasted through Explicit-Congestion Notification (ECN) messages.
Under ADVc traffic all the minimal global links at every group are connected to the
same bottleneck router Rout and have a similar level of congestion, preventing the
router from detecting the saturation properly. In particular, the Rout router cannot dis-
cern between a high load uniform case and a scenario in which all its output links are
congested, as is the case with ADVc. Figure 3.6 shows an example of said uncertainty.

The remaining routers in the network revert consequently to employing solely the
credits at their own ports, incurring in an excessively low load of misrouted traffic.
When the priority of in-transit traffic over new injections is employed, Src-RRG sends
minimally between 15 and 20% of the traffic, whereas the desired behavior would be
to employ mostly nonminimal paths. With the CRG policy the number of available
misrouting ports is much lower (h versus ah), and the amount of minimally sent traffic
rises to 40%. In a Dragonfly of size h = 8 (16,512 computing nodes), only 1/(2h) =



100 Chapter 3. Throughput unfairness

0.0625 phits/(node·cycle) can be delivered minimally.
As it is observed later in Section 3.3.4.2, unfairness under ADVc traffic with source-

adaptive routing remains even employing an explicit fairness mechanism such as age-
based arbitration, because the imbalance is originated due to an excessively low amount
of misrouting at injection and the inability to divert in-transit packets to nonminimal
paths. Moreover, since the amount of contending injection ports in Rout is higher than
the amount of incoming traffic from any other single router, and age-based arbitration
ensures that every input port receives a fair amount of local resources, injection at Rout
is higher compared to other routers in the group. Relying on absolute saturation levels
as the congestion metric would help in this case but trigger misrouting in excess under
high loads of UN traffic and degrade performance. To adequately address this issue, a
different congestion sensing mechanism is required.

3.3.3 Results with Round-Robin arbitration without in-transit pri-
ority

Results in Section 3.3.1 show sizable unfairness and poor performance with adaptive
routing mechanisms. The results in this section evaluate the impact of removing the
priority of in-transit traffic over new injections, to diminish the starvation of those
nodes linked to the bottleneck routers.

3.3.3.1 Network performance with RR arbitration, without in-transit priority

Figure 3.7 replicates the same results from Figure 3.2 but removing the priority of
transit traffic respect to new injections. This increments the congestion level of the
network, and can reduce throughput. However, in this evaluation the reduction is min-
imal: throughput with MIN routing under UN traffic decreases around a 3% and the
behavior with source-adaptive routing is likewise similar as with priority. Latency
peaks due to unfairness seemingly disappear; although they are heavily reduced, re-
peating the evaluation with 1000-phit injection buffers allows to still appreciate their
presence at higher traffic loads, as evidenced in Figure 3.8.

3.3.3.2 Throughput unfairness with RR arbitration, without in-transit priority

Figure 3.9 presents the injected load at the nodes of each router in a group under
ADVc traffic with a load of 0.4 phits/(node·cycle), without in-transit-over-injection
priority. Compared to Figure 3.5, oblivious routing mechanisms maintain the same
throughput fairness between routers. Src-CRG displays a significatively higher load at
the bottleneck router R15, not only higher than with priority but also around 3× higher
than the load in other routers of the same group. This occurs because the bottleneck
router is directly attached to the minimal global links and detects their availability
earlier than the rest of the group, taking more advantage of the shorter minimal paths.

Injection at the bottleneck router with in-transit adaptive routing improves signifi-
cantly with the absence of in-transit priority. The improvement is similar with any of



3.3. Results 101

MIN Src-RRG Src-CRG In-Trns-RRG In-Trns-CRG In-Trns-MM

100

150

200

250

300

350

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN traffic.

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADV+1 traffic.

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0

0.1

0.2

0.3

0.4

0.5

 0  0.2  0.4  0.6  0.8  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADVc traffic.

Figure 3.7: Latency and throughput under uniform (UN) and adversarial (ADV+1, ADVc)
traffic patterns, using Round-Robin arbitration, without prioritizing transit over injection.



102 Chapter 3. Throughput unfairness

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) ADV+1 traffic.

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0

0.1

0.2

0.3

0.4

0.5

 0  0.2  0.4  0.6  0.8  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADVc traffic.

Figure 3.8: Latency and throughput under adversarial (ADV+1, ADVc) traffic patterns,
using Round-Robin arbitration without priority of transit over injection. Longer injection
queues of 1000phits.



3.3. Results 103

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

(a) Injection per router.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R0 R1-14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

(b) Injection per router, grouping into 3 sets.

Figure 3.9: Injected load per router in group 0, under ADVc traffic with applied load 0.4
phits/node/cycle. Round-robin arbitration without transit-over-injection priority.

the policies but, unfortunately, not sufficient to consider the use of the global links as
fair, since the injection at R15 is approximately 30% less than at the other routers.

Values in Table 3.2 quantify the unfairness level with this configuration. Interest-
ingly, MIN achieves the same results as with priority before reaching saturation, but
for higher traffic loads the unfairness aggravates with respect to Table 3.1. This occurs
because, by removing the priority of in-transit over injection, each node at the bottle-
neck router of each group has the same share of the global output links as all the nodes
in a different router combined. Nonetheless, MIN achieves extremely low performance
under adversarial traffic and is not representative.

The most significant change relative to the numbers in Table 3.1 occurs for in-
transit adaptive routing. The starvation problem in Rout is avoided, so their Max/Min
ratio is reduced to reasonable values around 1.5 before saturation. According to this
metric, in-transit adaptive mechanisms present now better fairness than source-adaptive
after saturation. In any case, all the adaptive routing mechanisms are unfair compared
to their oblivious counterparts.

Figure 3.10 studies the evolution of these performance and fairness metrics with
the network size, ranging up to more than 40,000 nodes and using routers of up to



104 Chapter 3. Throughput unfairness

Table 3.2: Fairness metrics for all routing and global misrouting policy combinations
under ADVc traffic, without transit-over-injection priority. Values are specified for two
different traffic loads per combination, one below and one above the average saturation
point.

Avg sat. load Offered load Min inj. load Max/Min COV

MIN 0.05 0.03 0.0275 (91.7%) 1.180 0.0236
0.55 0.0056 (1.02%) 91.16 1.3382

Obl-RRG 0.38 0.35 0.3424 (97.8%) 1.047 0.0068
0.55 0.3237 (58.9%) 1.364 0.0427

Obl-CRG 0.40 0.35 0.3421 (97.7%) 1.049 0.0068
0.55 0.3477 (63.2%) 1.354 0.0394

Src-RRG 0.32 0.30 0.1388 (46.3%) 2.207 0.0668
0.55 0.1409 (25.6%) 3.954 0.2216

Src-CRG 0.12 0.10 0.0560 (56.0%) 1.868 0.0339
0.55 0.0419 (7.62%) 13.14 0.5937

In-Trns-RRG 0.45 0.40 0.2729 (68.2%) 1.496 0.0701
0.55 0.3092 (56.2%) 1.781 0.1032

In-Trns-CRG 0.46 0.40 0.2683 (67.1%) 1.523 0.0740
0.55 0.2814 (51.2%) 1.874 0.1080

In-Trns-MM 0.46 0.40 0.2634 (65.8%) 1.551 0.0741
0.55 0.2829 (51.4%) 1.857 0.1078

40 ports (h = 10). Values for the network size employed so far appear in the middle
of the graphs, at 16,512 nodes. In general, the problems of unfairness remain simi-
lar or become more critical as the network size grows. Average throughput remains
similar with oblivious and in-transit adaptive routing, whereas it decreases slightly
when using source adaptive routing. This confirms that source adaptive routing mech-
anisms become less able to accurately determine the presence of congestion under
bigger network sizes, reducing the achieved performance. Likewise, the severity of
the unfairness observed in Figures 3.10b and 3.10c remains unchanged with bigger
network sizes for both oblivious and in-transit adaptive routing mechanisms regardless
of the global misrouting policy, whereas it exacerbates with source-adaptive routing
(specially combined with the CRG policy).

These results evidence that the prioritization of in-transit traffic for adaptive routing
is disadvantageous in general: source adaptive routing presents relative low through-
put, and in-transit adaptive routing suffers severe starvation under adversarial traffic
patterns. Removing the in-transit priority does not alter significantly the performance
metrics, but mitigates the throughput unfairness and its consequences (latency peaks
and average throughput below offered load before saturation).

3.3.4 Results with Age arbitration

Results in Section 3.3.3 have demonstrated the inability of implicit fairness mecha-
nisms (such as removing the in-transit-over-injection priority, or the use of the MM
global misrouting policy with in-transit adaptive routing) to avoid unfairness under



3.3. Results 105

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

0

0.1

0.2

0.3

0.4

0.5

 0  10000  20000  30000  40000A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Number of network nodes

(a) Avg. Throughput

0

0.1

0.2

0.3

0.4

0.5

 0  10000  20000  30000  40000

M
in

 n
od

e 
in

j. 
lo

ad
 (

ph
its

/c
yc

le
)

Number of network nodes

(b) Minimal injection

1
2
3
4
5
6
7
8
9

10

 0  10000  20000  30000  40000

M
ax

/M
in

Number of network nodes

(c) Max/Min throughput ratio

Figure 3.10: Evolution of the fairness metrics with the network size, under an ADVc
traffic load of 0.4 phits/(node·cycle), with RR arbitration without in-transit-over-injection
priority.

adversarial traffic patterns, specially ADVc. This section analyzes the impact of an
explicit fairness mechanism, repeating the same results using age-based arbitration in
the allocation process instead of the default RR arbitration. Early results combining
age-based arbitration with the priority of transit traffic over injection present similar
pathologies to those observed in Section 3.3.1, and are omitted for brevity.

3.3.4.1 Network performance with Age arbitration

Figure 3.11 features the latency and throughput results for all the combinations of
routing and global misrouting policy, using age-based arbitration. The most remark-
able characteristic is the absence of fairness pathologies such as the latency spikes
observed in the previous configurations. Under UN traffic, the RRG policy is detri-
mental because it employs longer paths, increasing average latency and diminishing
average throughput. CRG and MM save the first local hop in most cases and both have
similar performance with in-transit adaptive routing. Source-based adaptive mecha-



106 Chapter 3. Throughput unfairness

MIN Src-RRG Src-CRG In-Trns-RRG In-Trns-CRG In-Trns-MM

100

150

200

250

300

350

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN traffic.

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADV+1 traffic.

100

200

300

400

500

600

700

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0

0.1

0.2

0.3

0.4

0.5

 0  0.2  0.4  0.6  0.8  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADVc traffic.

Figure 3.11: Latency and throughput under uniform (UN) and adversarial (ADV+1,
ADVc) traffic patterns, employing age-based arbitration.



3.3. Results 107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

(a) Injection per router.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R0 R1-14 R15

P
ac

ke
ts

 in
je

ct
ed

 p
er

 r
ou

te
r

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

(b) Injection per router, grouping into 3 sets.

Figure 3.12: Injected load per router in group 0, under ADVc traffic with 0.4
phits/node/cycle of applied load. Age-based arbitration.

nisms obtain remarkably low throughput under adversarial traffic, particularly ADVc.
This limitation comes from an inability to properly detect adversarial traffic, which is
discussed in Section 3.3.2 and cannot be avoided through the use of age-based arbitra-
tion.

Under adversarial consecutive traffic the use of age-based arbitration introduces a
problem of congestion, which slightly reduces throughput after saturation; this effect
is less noticeable with in-transit adaptive routing. Interestingly, under ADVc traffic the
throughput results for source adaptive are inverted, and RRG clearly presents the best
result.

3.3.4.2 Throughput unfairness with Age arbitration

The injection per router of a group is reported in Figure 3.12, with router R0 again
receiving the traffic from other groups and R15 processing all the outgoing traffic from
the group under minimal routing. Figure 3.12b collapses the results of the rest of the
routers in the group into a single set of bars for the sake of simplicity. There are
two very significant changes from the results without age-based arbitration. First, all
the in-transit adaptive routing mechanisms obtain a fair result, which is a expected



108 Chapter 3. Throughput unfairness

Table 3.3: Fairness metrics for all routing and global misrouting policy combinations
under ADVc traffic with age-based arbitration. Values are specified for two different
traffic loads per combination, one below and one above the average saturation point.

Avg sat. load Offered load Min inj. load Max/Min COV

MIN 0.05 0.03 0.0275 (91.7%) 1.180 0.0236
0.55 0.0156 (1.56%) 29.54 0.5676

Obl-RRG 0.40 0.35 0.3422 (97.8%) 1.046 0.0068
0.55 0.3794 (68.9%) 1.212 0.0317

Obl-CRG 0.43 0.40 0.3919 (97.9%) 1.043 0.0063
0.55 0.3797 (69.0%) 1.359 0.0632

Src-RRG 0.28 0.25 0.2428 (97.1%) 1.060 0.0081
0.55 0.1961 (35.6%) 2.802 0.2190

Src-CRG 0.12 0.10 0.0956 (95.6%) 1.092 0.0128
0.55 0.0782 (14.2%) 4.167 0.1830

In-Trns-RRG 0.50 0.40 0.3784 (94.6%) 1.082 0.0103
0.55 0.2582 (46.9%) 2.069 0.1033

In-Trns-CRG 0.49 0.40 0.3883 (97.1%) 1.052 0.0067
0.55 0.2701 (49.1%) 2.044 0.0979

In-Trns-MM 0.49 0.40 0.3896 (97.4%) 1.050 0.0068
0.55 0.2735 (49.7%) 2.020 0.0973

behavior because age-based arbitration provides global fairness between all competing
flows. The other interesting part is that source-adaptive routing fails to obtain fairness
even with age-based arbitration, as analyzed in Section 3.3.2. For Src-RRG there is
a significant variation between traffic in R0, R15 and the rest of the routers, with R15
(the congested router) receiving the best injection rate. With Src-CRG the variation is
reduced, but the throughput is so low that the mechanism is not competitive.

Table 3.3 quantifies the fairness results of each configuration with age-based rout-
ing. Even with the explicit fairness mechanism of age-based arbitration, all the con-
figurations present a given level of unfairness after saturation, specially Src-CRG. Be-
fore saturation, in-transit adaptive mechanisms perform as fair as the oblivious ones
using any of the global misrouting policies, as observed in the injection results of Fig-
ure 3.12. Results with source-adaptive routing are again constrained by their poor av-
erage throughput, particularly with CRG. The reference MIN performs notably worse
than the other mechanisms since the amount of congestion is extremely high due to a
poor balance of the link usage.

Finally, Figure 3.13 reproduces the evolution of the fairness with the network size
when age-based arbitration is employed. Figures 3.13b and 3.13c demonstrate the
inability of age arbitration to avoid the pathological unfairness effect with source-
adaptive routing (and its growth with the number of network nodes), although it di-
minishes significantly compared to the use of a RR arbitration policy in Figure 3.10.
Moreover, the results validate the efficacy of age arbitration to eradicate unfairness
with in-transit adaptive routing.



3.3. Results 109

Obl-RRG
Obl-CRG

Src-RRG
Src-CRG

In-Trns-RRG
In-Trns-CRG

In-Trns-MM

0

0.1

0.2

0.3

0.4

0.5

 0  10000  20000  30000  40000A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Number of network nodes

(a) Avg. Throughput

0

0.1

0.2

0.3

0.4

0.5

 0  10000  20000  30000  40000

M
in

 n
od

e 
in

j. 
lo

ad
 (

ph
its

/c
yc

le
)

Number of network nodes

(b) Minimal injection

1

1.5

2

2.5

3

3.5

4

4.5

5

 0  10000  20000  30000  40000

M
ax

/M
in

Number of network nodes

(c) Max/Min throughput ratio

Figure 3.13: Evolution of the fairness metrics with the network size, under an ADVc
traffic load of 0.4 phits/(node·cycle), with age-based arbitration.



110 Chapter 3. Throughput unfairness

3.4 Conclusions

This chapter has evaluated the throughput unfairness in Dragonfly networks due to
certain routing/traffic pattern combinations. This includes the adversarial-consecutive
traffic pattern, which is particularly harmful for throughput fairness. Throughput un-
fairness can severely limit the execution performance of an application, since syn-
chronous communications are bounded by the last message to be received.

Prioritization of in-transit traffic provides minimal benefits in terms of average
throughput, but presents a high amount of throughput unfairness. Under ADVc traffic
this unfairness can lead to starvation of nodes linked to the bottleneck router of every
group when in-transit adaptive routing is used. The consequences of this effect can be
better appreciated with longer injection queues. Without prioritizing in-transit traffic,
in-transit adaptive routing provides the best results, particularly with the MM global
misrouting policy which avoids concentrating traffic in the congested minimal router.
However, throughput unfairness is not completely eradicated.

Age-based arbitration is evaluated as an explicit fairness mechanism to avoid through-
put unfairness. With age-based arbitration, in-transit adaptive routing provides the best
performance among all the routing mechanisms and achieves complete fairness, at the
expense of a more complex arbitration policy. It requires a comparator of the age of
the packets in the router arbiters, plus additional router hardware to increase the age
of the packets. Combined with this policy, source adaptive routing provides relatively
poor performance and provides a less fair distribution of the network resources. These
fail to properly detect congested links under ADVc traffic, regardless of the arbitration
policy.

A pathological case of unfairness and degraded performance is observed with source-
adaptive routing under ADVc traffic, independently from the global misrouting policy
employed. This effect occurs because the adaptive decision is only taken at injection,
and the availability of saturation information is dissimilar for the bottleneck router, as
analyzed in Section 3.3.2.

In the rest of the thesis only one global misrouting policy per nonminimal rout-
ing mechanism is considered, the one that provides the best overall performance and
lowest throughput unfairness: RRG with oblivious nonminimal and source-adaptive
routing, and MM with in-transit adaptive routing. In each case, the global misrouting
policy selected also matches the closest behavior to the original definition of the rout-
ing in which their implementation is based; Valiant routing in the case of oblivious,
PB for source-adaptive, and OLM for in-transit adaptive. For the sake of brevity, in
the following chapters only the VAL, PB and OLM notations will be used. It has been
observed that the use of age arbitration can be beneficial in certain adversarial traffic
patterns such as ADVc; the evaluations in Chapters 4 and 5 do not consider ADVc traf-
fic and employ Round-Robin arbitration to analyze each proposal in isolation, without
interference from an explicit fairness mechanism.



Chapter 4

Contention counters

The adaptive routing mechanisms employed for the evaluation of the throughput un-
fairness in the previous chapter employ a misrouting decision to select between the
preferred minimal path and one longer nonminimal path. This misrouting decision,
also called misrouting trigger, is typically based on the congestion status of the net-
work links. The congestion of a link is estimated through the occupancy of the asso-
ciated router buffers, which is measured through the credits from the link-level flow
control. Different variants of such mechanisms are used or have been proposed in Cray
Cascade[56], UGAL [134], OFAR [63] and many other works.

Congestion-based misrouting triggers have significant shortcomings that limit their
effectiveness; among those can be included a strong dependency on the buffer size,
uncertainty in the estimation, a slow adaption to traffic changes, and the appearance of
traffic oscillations due to feedback loops.

One fundamental flaw of a congestion-based misrouting decision is that the adap-
tivity in the routing comes when the network has already started to saturate; this erro-
neously identifies congestion as a reason to trigger the use of alternative paths, instead
of the consequence of previous suboptimal routing decisions.

4.1 Limitations of credit-based congestion decision.

This work identifies some of the limitations of congestion-based misrouting triggers.
It must be noted that, whereas some of these limitations can be individually mitigated,
such mitigation is counter-productive for the others. The most clear case is the buffer
length: employing small buffers affects the granularity of the decision, but large buffers
exacerbate potential routing oscillations.

4.1.1 Granularity of the congestion detection

The granularity at which the level of queue occupancy can be measured is imposed
by the size of the packets, the phits and the router buffers, along with the credit man-
agement mechanism. Virtual Cut-Through (VCT) switching with fixed-size packets

111



112 Chapter 4. Contention counters

data

ACKs
data

credits
0

A B

UncertaintyUncertainty

(a) Continuous transmission.

credits
0

A B

Uncertainty

(b) Full queue.

Figure 4.1: Uncertainty in the use of credits with small buffers. The continuous transmis-
sion in the upper figure is indistinguishable from a full queue in the lower one, because
all packets and credits are in-flight.

exhibiting coarser granularity, or routers with small buffers, can compromise the ef-
fectiveness of the detection mechanism.

4.1.2 Oscillations of routing

Occupancy-based congestion detection is prone to oscillations between different paths
(in the case of the Dragonfly, minimal and nonminimal) due to the existence of a feed-
back loop. When the buffers in the minimal path saturate, traffic is diverted to the
nonminimal routes; reducing the minimally-sent load lets buffers in the minimal route
drain their packets, reverting traffic dispatch back to the minimal paths. This cycle
provokes an oscillation of the network throughput, which aggravates with longer buffer
sizes due to a longer time required to fill up and empty the buffers in the minimal path.

Such oscillations are especially important when the routing decision is not taken
using local information, but rather relies on remote notifications of congestion (similar
to ECN messages); this is the case of PB, as discussed in Section 1.4.2.1.1.

4.1.3 Uncertainty when using output credits

Credit-based flow control mechanisms employ a counter of the estimated empty space
at the buffer in the neighbor router. The initial value of the counter is the buffer size
of the receiver, of which the sender is aware. The credit count is decremented when
a packet is sent, an incremented upon the reception of an acknowledgement packet
(ACK). ACKs are sent from the receivers when the packets are forwarded from their
input buffers. The bandwidth-delay product sets the minimum buffer length needed at
the receiver to establish a reliable continuous transmission.

Estimations of remaining empty buffer space in neighbor nodes upon the credit
count carry an inherent uncertainty due to in-flight data packets and ACKs on the link.
Figure 4.1 illustrates two different situations for a pair of consecutive routers A and B



4.2. Contention counters 113

which have almost the minimum capacity dictated by the link round-trip time (RTT).
The credit count for the output port in router A is 0 in both cases. In the upper case
there is no network congestion, and router B forwards all packets as soon as they
arrive; credit count in A still reaches zero because packets and credits are in flight. In
the lower figure, credit count in A is also zero because the buffer in router B is full due
to congestion.

A sender cannot distinguish between both situations (which demand a completely
different response from the routing function) because it is not aware of in-flight pack-
ets and credits. To support a credit-based misrouting trigger, buffer sizes need to be
significantly larger than the lower limit imposed by the RTT. An alternative is to track
the rate at which credits are returned, but it would be accepted likewise from changes
in the traffic pattern. Any of these solutions increases the complexity of router imple-
mentation, and its associated area and power requirements.

4.1.4 Reaction time on traffic changes and slow-lane traffic

Credit-based congestion detection mechanisms require a high occupancy in the buffers
of the preferred path to trigger the use of alternative routes. Transitions of the traffic
pattern to an adversarial case generate network hotspots and should prompt an imme-
diate turn to alternative nonminimal paths, but take a significant amount of time to
fill the buffers and trigger the congestion detection. Furthermore, traffic in congested
paths is condemned to suffer a high latency before reaching its destination.

Figure 4.2 showcases this problem. After a change in the traffic pattern, packets
from input ports P1−P4 in router A target P9 as their minimal output port, but might
advance nonminimally through one of P5−P8 output ports. Since multiple input ports
are competing for the same output, nonminimal routing is desirable to sustain perfor-
mance. However, nonminimal routing is not triggered until the input queue in router
B reaches a significant population count, as is the case in the lower figure. At this
point the input queues in router A will typically be quite populated, forcing packets in
the minimal path to endure high latency due to queue drainage on top of the high la-
tency required to detect the adversarial traffic scenario. Such overhead is unavoidable
because congestion can only be detected if part of the traffic goes through the slow,
congested path. Furthermore, as it occurs with the oscillations of routing, this effect
magnifies with large buffers.

4.2 Contention counters

In order to prevent the associated shortcomings of relying on congestion indicators
(such as the buffer occupancy) to trigger adaptive routing, this work explores the use of
a network contention metric. A contention-based misrouting trigger chooses between
a preferred (minimal in the case of the Dragonfly) path and one or more alternative
paths based on the contention level of each port.



114 Chapter 4. Contention counters

P5

P6

P5

P6

P8

P7

P8

P7

threshold

AA BB

minimal
path

minimal
path

P4P4

P3P3

P2P2

P1P1

P9

P5

P6

P5

P6

P8

P7

P8

P7

threshold

AA BB

minimal
path

minimal
path

P4

P3

P2

P1

P9

Figure 4.2: Reaction time on traffic changes and slow-lane traffic. In the upper figure,
the traffic pattern changes and multiple input ports compete for the same minimal output
with low occupancy. In the lower figure, the queue in the minimal output has got full
enough and traffic is diverted nonminimally, but all the input queues have become full
and need a long time to drain.

In this work, a set of contention counters estimates the contention of each output
port, based on the demand of each output port as the egress in the minimal path of
the packets at the input buffers. The idea behind this mechanism is that an output port
suffers contention when multiple packets want to use it simultaneously. In such case,
packets will be diverted to alternative paths using nonminimal routing without requir-
ing the queues to be full. Hence, the mechanism decouples the buffer capacity from
the misrouting trigger mechanism and permits an early detection of adverse network
situations before performance degrades due to fully populated buffers.

4.2.1 Implementations

Multiple variations of the general idea of contention counters can be devised. This
work evaluates four different variants; three of them are topology-agnostic and rely on
local information, whereas the fourth is specifically designed for a Dragonfly network
and distributes contention information across the network.

4.2.1.1 Base

The Base implementation of the mechanism employs one contention counter per out-
put, as shown in Figure 4.3. When the header of a packet reaches the head of an input



4.2. Contention counters 115

0

4

1

0

1

0

Threshold 
th=3P2

P2

P2

P2

P3

P5

P1

P2

P3

P4

P5

P6

Input buffers Contention counters

Minimal output port

Figure 4.3: Base contention-detection mechanism. Output port P2 is marked as having
contention, since its counter exceeds the threshold th = 3.

buffer, the routing function determines its minimal path and increases the contention
counter for the corresponding output port. Alternative routing is only triggered when
the counter for the minimal output port has exceeded a given threshold th. Counters are
only decreased when a packet is completely forwarded, i.e., when its tail is removed
from the input buffer. Counters only track the packets for which they are the minimal
egress, even if those packets are diverted to other paths and sent through a different
port.

Only the packets at the head of input buffers are accounted to prevent a single flow
from one input port to trigger misrouting when long buffers are used; this decouples
the mechanism from the buffer length. Similarly, counters are not decreased until the
packet tail has been forwarded through the output port, which may be different from
the preferred port. Doing otherwise would lead counter values to be excessively low
to provide statistical significance, since packet headers would likely be received in
different cycles.

Base is adequate for high-radix routers where several input ports contribute to the
contention detection, and the counters provide enough statistical significance. It must
be noted that virtual channels from a single input port can concurrently increment as-
sociated contention counters, even if they cannot advance concurrently to the crossbar.

4.2.1.2 Filtered

Base is prone to suffering high variability in contention estimation when multiple short
flows cross the same router. Moreover, considering contention only from head-of-
buffer packets arguably fails to properly reflect the contention of all short flows in the
router.

The Filtered mechanism is a refinement over the Base implementation, employ-



116 Chapter 4. Contention counters

ing an exponential averaging to smooth variations in the contention counters. Instead
of the current contention counter value, the misrouting trigger relies in an estimation
contention|t that depends on the estimation in previous cycles, following the expo-
nential average in Equation 4.1. Other averages can be used instead, but they would
require more storage. Counter|t represents the counter value as calculated in Base,
initial contention is contention|t=0 = 0 and α is a tunable parameter that regulates the
importance of the historic vs. the current value of the contention counter. As in Base,
misrouting is triggered when the metric exceeds a fixes threshold.

contention|t = α · contention|t−1 +(1−α) · counter|t (4.1)

4.2.1.3 Hybrid

The Hybrid implementations combines an estimation of the contention (same as in
Base) with the traditional evaluation of the congestion, measuring queue occupancy.
Two separate thresholds are considered, one for the contention counters and one for
the number of output credits. Traffic is nonminimally routed whenever any of these
two thresholds is exceeded. Since any individual threshold can act as trigger, both
thresholds can be higher to prevent excessive misrouting without losing accuracy. This
mechanism is designed to be effective to detect adversarial traffic patterns when the
routers radix is too small and the counters fail to achieve enough significance.

4.2.1.4 Explicit Contention Notification (ECtN)

The Explicit Contention Notification mechanism (ECtN) applies to contention counters
the idea of explicit congestion notifications employed in PB that was discussed in
Section 1.4.2.1.1. ECtN distributes contention information among the routers in the
same group of a Dragonfly network to ensure a more accurate routing decision, in
addition to the per-port counters. Every router maintains two arrays of contention
counters for the global links, denoted as partial and combined. Each of these arrays
has as many counters as remote groups are in the network, considering that only one
link joins every pair of groups. Counters in the partial array track information per
destination group instead of per minimal output port. They compute only those packets
that target a remote group and are being injected into the current group, coming from
either a compute node or a global link. As with regular per-port counters, they are
updated from the packets at the head of the router input queues and decremented only
when packets leave the input queues.

Routers in each group broadcast periodically their partial arrays. The combined
array is calculated adding the values from the counters of all the partial arrays within
the same group. Upon reception of a partial array, routers update their combined
arrays, as depicted in Figure 4.4. When traffic is injected to a group and the combined
counter associated to the destination group of the packet exceeds a threshold, it is
misrouted.



4.2. Contention counters 117

combined counters

partial counters

combined counters

partial counters

Figure 4.4: Obtention of a combined counter as a sum of received and own partial
counters in the ECtN implementation.

Additionally, routers also maintain one local counter per output port as in the Base
or Hybrid implementations. These counters provide contention information for its own
outputs and allow for in-transit hop-by-hop routing decisions.

ECtN allows routers to have contention information for all the global ports in the
group. This idea can be extended to other low-diameter networks where the broadcast
of contention information is feasible in a timely manner.

4.2.2 Threshold selection

All the discussed implementations of contention counters trigger misrouting when the
employed contention metric exceeds a threshold. As it occurs with congestion-based
misrouting triggers, threshold selection imposes a tradeoff between performance un-
der uniform and adversarial traffic patterns. Low threshold values penalize UN traffic,
enforcing an unnecessarily high level of misrouting and increasing packet latency. The
threshold needs to be high enough to prevent false triggers under saturation, to reduce
the frequency at which misrouting appears. Under saturation it is safe to assume that
all input VCs will have at least one packet, increasing the value of a given counter; as-
suming uniform distribution, the average value of the counters will equal the average
number of VCs per input port. However, this is an average and there will be a num-
ber of ports with higher contention. A threshold doubling that average establishes a
safeguard range to avoid the feedback loop that can originate with frequent misrouting
under UN traffic; such a threshold is sufficient to prevent a performance decrease.

On the other hand, high threshold values promote minimal routing and penalize
ADV traffic. In this case, packets in all p injection ports of every router target the same
minimal output port, typically a local link to other neighbor router directly connected
to the destination group. A threshold th ≤ p ensures that misrouting is applied at the
injection ports and improves performance under adversarial workloads.

Figure 4.5 provides an evaluation of the impact of the threshold value over the per-
formance under UN and ADV traffic for the network size presented in Section 1.6.4



118 Chapter 4. Contention counters

140

160

180

200

220

240

260

280

300

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

th=3
th=4
th=5
th=6
th=7
th=8
MIN

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN

250

300

350

400

450

500

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

th=6
th=7
th=8
th=9

th=10
th=11
th=12

VAL

0.10

0.20

0.30

0.40

0.50

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADV+1

Figure 4.5: Sensitivity of Base to the misrouting threshold.

that is used in the performance evaluation of the mechanisms. As expected, higher
threshold values provide better response under uniform traffic, and lower values im-
prove throughput and latency under adversarial traffic. In this case, the average number
of VCs per port with in-transit adaptive routing is 2.75, and the lower threshold bound
accomplishes th ≥ 6, as can be observed in Figure 4.5a. Theoretically, the threshold
needs to be lower than the number of injection ports per router th≤ p = 8 to guarantee
misrouting under adversarial traffic. In practice, the bottleneck router of every group
easily detects the adversarial pattern and performs misrouting. This increases the aver-
age traffic in local and global input ports, and softens the change in performance with
higher thresholds, as can be seen in Figure 4.5b.

Within the valid range, 6 ≤ th ≤ 8 in this case, a low threshold should be selected
to favor low latency under adversarial traffic. Therefore a threshold value th = 6 has
been selected. Interestingly, routers with a larger radix expand the range of threshold
values that do not compromise performance under uniform or adversarial traffic.

A similar study was applied to select the combined threshold thc = 10 in ECtN. In
the case of the hybrid variant, the contention threshold is raised (to th = 8) to prevent
excessive misrouting, since the use of nonminimal paths can be triggered either by
congestion or contention information.



4.3. Results 119

4.2.3 Implementation costs

All the implemented models employ a fixed misrouting threshold. Under heavy adver-
sarial traffic, this might lead to all of the traffic being diverted nonminimally because
the contention counters are high, while the minimal path remains completely empty. In
a real system this would typically not happen because not all traffic can be sent adap-
tively (e.g. in Cascade [56] minimal routing is used for packets that need to preserve in-
order delivery). A statistical misrouting trigger can be alternatively considered, where
a contention counter exceeding a threshold increases the probability of routing non-
minimally. This allows the minimal path to still be used in a certain proportion. The
use of statistical misrouting trigger has not been explored in this work.

The complexity of the use of contention counters in most of the implementations
is very low, requiring a set of parallel counters [137] updated and compared with every
packet sent in a similar fashion to credit-based routing mechanisms. The filtered im-
plementation increases the costs by requiring an additional set of registers to store the
previous value of the counters, plus the arithmetical logic to compute the contention
metric. These registers can be implemented through latches, as the value is directly
taken from the contention counters before they are updated. The update of the con-
tention counters can be placed outside of the critical path if needed, at the expense of
slightly less accurate misrouting decisions.

By contrast, the cost of ECtN is not negligible: it requires two additional large
sets of counters, partial and combined, plus the required memory to hold the partial
values received from other routers. This implementation also adds further stress to
the network due to the delivery of the full partial counters. The evaluations in this
work assume a spread of these counters every 100 cycles, without simulating the cor-
responding overhead. For a Dragonfly network of size h = 8, the partial arrays contain
128 counters (one for every global link in the group). Each counter has 4 bits to host
the misrouting threshold (10≤ 24). With the 10-byte phits discussed in Section 1.6.4,
it would require around 6 phits to broadcast the partial counters, incurring in a 6%
overhead in the communications. This traffic overhead can be diminished by simpli-
fying the counter information exchanged. Simply limiting communications to only
nonempty values provides a very similar overhead: the updated counters require a 7-
bit identifier (128 ≤ 27) and the number of active counters at a time can be as high as
40, if all the injection and global queues in the router target different outputs. A better
approach is to combine it with incremental updates added to the current array values,
reducing the size of each counter update. Another option is the use of asynchronous
updates with a larger dissemination period, only sending immediately those counters
that change abruptly.

4.3 Results

This section lays out the simulation results with the evaluation of the contention coun-
ters. Unless otherwise noticed, the network configuration follows the one described in



120 Chapter 4. Contention counters

Section 1.6.4. Results include steady-state and transient experiments, where the traffic
pattern changes during the simulation to observe the routing ability to recognize the
new workload and adapt to it. In both cases, the measurements are performed after
60,000 cycles of network warm-up, as described in Table 1.2.

4.3.1 Steady-state results

Figure 4.6 displays the latency and throughput obtained under steady state experi-
ments. In Figure 4.6a, the oblivious MIN routing sets the optimal latency achievable
under UN traffic, because it never misroutes traffic. Both adaptive mechanisms based
on credits (PB and OLM) exhibit higher latency, since they occasionally send traffic
nonminimally based on the measured buffer occupancy. By contrast, the base, filtered
and ECtN variants of the contention-based in-transit adaptive routing match perfectly
the latency of MIN before congestion, which is arguably the most frequent region of
operation of the network. The hybrid version can send traffic nonminimally based on
the credit count and occasionally does under low loads, pushing its latency to identical
values as OLM.

Throughput under UN traffic in Figure 4.6a shows that in-transit adaptive mecha-
nisms perform a better job than MIN, occasionally sending traffic nonminimally under
high loads to exploit all available outputs. Credit-based OLM is the second best per-
former in terms of throughput. Contention-based implementations fall slightly below
OLM because they attempt less misrouting, since network contention is far less fre-
quent than network congestion under UN traffic; they only exception is the hybrid vari-
ant, that thanks to the combination of network congestion and contention information
is able to match (and slighlty outperform) credit-based OLM. None of the mechanisms
obtains a throughput higher than 0.8 phits/(node·cycle).

Figure 4.6b depicts the behavior under adversarial ADV+1 traffic. Adversarial
traffic patterns require global misrouting in order to achieve acceptable performance;
VAL routing constitutes the reference because it always sends packets nonminimally.
PB performs slightly better in throughput, at a cost of higher latency. Credit-based
OLM obtains better latency and throughput than VAL and PB, since it avoids local
misrouting and it sends part of its traffic minimally when possible. The throughput of
all contention counters mechanisms is identical to credit-based OLM, slightly exceed-
ing the Valiant theoretical limit of 0.5 phits/(node·cycle) because part of the traffic is
sent minimally.

By contrast, their latency shows a particular behavior split in three different zones.
Under very low loads (0.01 phits/(node·cycle) their latency is relatively low, because
most of the traffic is sent through the noncongested minimal path. With low loads
(0.05-0.15 phits/(node·cycle)) the latency using contention counters grows higher than
OLM. Under these traffic loads there are not enough packets in the input queues to in-
crease the contention counters and provide an accurate estimation of contention. This
leads to minimal routing of the traffic, with packets accumulating in the heads of the
queues until the counter eventually reaches the threshold and traffic is diverted nonmin-



4.3. Results 121

MIN/VAL PB OLM Base Filtered Hybrid ECtN

130

140

150

160

170

180

190

200

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))
Offered load (phits/(node*cycle))

(a) UN traffic.

180

200

220

240

260

280

300

320

340

 0  0.1  0.2  0.3  0.4  0.5

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) ADV+1 traffic.

180

200

220

240

260

280

300

320

340

 0  0.1  0.2  0.3  0.4  0.5

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+h traffic.

Figure 4.6: Latency and throughput under UN and adversarial traffic (ADV+1, ADV+h).



122 Chapter 4. Contention counters

140

160

180

200

220

240

260

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Percentage of UN traffic (0% represents ADV+1)

PB
OLM
Base

Filtered
Hybrid
ECtN

Figure 4.7: Latency under a load of 0.35 phits/(node·cycle) with a mixed traffic pattern,
split between ADV+1 (left) and UN (right).

imally. The increase in latency equals the cycles required for the traffic to accumulate
and trigger misrouting. Alternative implementations might consider a variable thres-
hold based on the amount of traffic in the input queues; however, it would worsen the
performance under UN traffic due to an increase in the rate of unnecessary misrouting.
Finally, under loads below the saturation point, the latency of contention-based mech-
anisms is competitive with OLM. ECtN is the best performer under ADV+1 traffic,
since the distribution of contention information among all the routers in the group in-
creases the statistical significance of the measurement, allowing misrouting at injection
whenever it is required.

Figure 4.6c shows the results under ADV+h traffic, which requires local misrout-
ing in the intermediate group to prevent a pathological case of local link contention
described by Prisacari et al. in [122]. This local misrouting makes the latency of VAL
and PB (which force misrouted traffic to reach an intermediate node before traversing
minimally to the destination) more competitive than under ADV+1. Results are simi-
lar to those under ADV+1 traffic, except for a drop in throughput after the saturation
point. This behavior occurs under all in-transit adaptive mechanisms (congestion- or
contention-based) and VAL. Additionally, now ECtN is slightly outperformed by OLM
for traffic loads between 0.1 and 0.25 phits/(node·cycle).

Figure 4.7 represents the average latency obtained when the traffic pattern is a com-
bination of ADV+1 and UN in different rates, with a load of 0.35 phits/(node·cycle).
Even in intermediate cases in which the traffic pattern is not clearly shaped, contention
counters are competitive with OLM; most notably, ECtN clearly outperforms the other
mechanisms, including credit-based OLM routing.

4.3.2 Transient results

One of the most relevant advantages of a contention-based misrouting trigger is the
adaptability to traffic changes, since it does not need to wait for the router buffers to
fill up or drain in order to determine the nature of the traffic. Figure 4.8 shows the
evolution of the average per-packet latency and the percentage of misrouted packets



4.3. Results 123

PB OLM Base Filtered Hybrid ECtN

150

200

250

300

350

-50  0  50  100  150  200  250

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Cycle

0%

20%

40%

60%

80%

100%

-50  0  50  100  150  200  250

P
er

ce
nt

ag
e 

of
 m

is
ro

ut
ed

 p
ac

ke
ts

Cycle

Figure 4.8: Evolution of latency and misrouting when the traffic pattern changes from
UN to ADV+1, with a load of 0.2 phits/(node·cycle).

when the traffic pattern makes a transition. After a warmup with UN traffic, at cycle
0 the traffic shifts to ADV+1. Other transitions have also been evaluated, with similar
results.

The congestion-based adaptive mechanisms (PB and OLM) show a transient period
of around 100 cycles while routing is adapting to the new traffic pattern; this transient
consists of a “bump” where the average latency grows (waiting for queues to fill up and
trigger misrouting) and then lowers thanks to misrouted traffic, and a phase where the
latency raises very slightly before reaching convergence, where the number of packets
arriving through the largest nonminimal paths grows until it stabilizes. Both phases
last 50 cycles, and the second phase is more distinctive with OLM.

By contrast, contention-based implementations react almost immediately to the
pattern shift, with a reaction time of around 10 cycles. Filtered has a very small lapse
behind base due to the filtering effect; increasing the importance of the contention
history over current values reduces flickering of the misrouting decision under high
loads of uniform traffic at a cost of larger reaction times. Interestingly, ECtN follows
the behavior of base and filtered for the first 100 cycles, because pattern shift occurs
immediately after the partial counters have been broadcasted with the values sensed
under UN traffic. For that period, routers rely on local information to detect the pres-
ence of an adversarial traffic workload; when the remote information is updated, all
routers are able to acknowledge the new traffic pattern and divert traffic nonminimally
at injection. From this moment, minimal local hops in the source group are avoided
and latency decreases.

The amount of misrouted packets follows the same trend as per-packet latency. It
is notable that the amount of misrouted packets when using counters is very close to
0% or 100% when the routing stabilizes; the slowest mechanisms to stabilize are PB
and OLM, which are based on credits. Furthermore, OLM always sends minimally a
small percentage of its traffic under the adversarial pattern. Contention-based imple-
mentations send almost all their traffic nonminimally to avoid congesting the minimal
links in adversarial traffic, and almost always minimally with a uniform traffic pattern.



124 Chapter 4. Contention counters

150

200

250

300

350

 0  200  400  600  800  1000 1200 1400 1600

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Cycle

ECtN
PB

Figure 4.9: Zoom-out of the evolution of latency when the traffic pattern changes from
UN to ADV+1, with a load of 0.2 phits/(node·cycle), considering only PB and ECtN.

PB OLM Base Filtered Hybrid ECtN

150

200

250

300

350

 0  200  400  600  800  1000 1200 1400 1600

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Cycle

Figure 4.10: Evolution of latency when the traffic pattern changes from UN to ADV+1,
with a load of 0.2 phits/(node·cycle), employing large buffers of 256 and 2048 phits per
VC for local and global ports, respectively.

Routing mechanisms that react to congestion are prone to oscillations because the
congestion status acts as misrouting trigger (thus influencing routing) but also depends
on the previous routing decisions. When congestion status is received via Explicit
Congestion Notifications from a remote router, the effect is amplified due to a longer
control loop. This is the case of PB, which performs the misrouting decision based on
the saturation status broadcast by the neighbor routers from the same group. Figure 4.9
shows the average per-packet latency for the same case as Figure 4.8 but with a larger
timescale, focusing only in PB and ECtN. PB shows oscillations around every 600
cycles, which get progressively smaller as the queue occupancy converges to a steady
state but do not completely disappear. In contrast, the behavior of ECtN is completely
flat and does not alter once the partial counters are first updated after the pattern shift.

The last limitation of congestion-based adaptive routing to consider from those
discussed in Section 4.1 is the delay in the detection of traffic changes with larger
buffers. Figure 4.10 displays the reaction time as traffic changes from UN to ADV+1
when buffers are eight times bigger: 256/2048 phits per VC for input local/global



4.4. Conclusions 125

ports instead of 32/256. Output and injection buffers maintain their previous size. The
reaction time of the two credit-based mechanisms (PB and OLM) is larger with deeper
buffers; OLM now requires 700 cycles to reach its steady state, as opposed to 100
cycles in Figure 4.8. By contrast, mechanisms based on contention present the same
reaction time as before.

Latency with PB does not increase significantly with smaller buffers. The behavior
of OLM diverges significantly to the one observed with shorter buffers in Figure 4.8:
following the first 100 cycles after the traffic changes, latency starts to grow until it con-
verges to 350 cycles per packet, almost 100 cycles more than with the smaller buffers.
This effect is due to the larger buffer sizes and the dependency of the misrouting de-
cision on the buffer occupancy (relative to other queues in the same router). Since the
comparison is relative, most packets are misrouted in-transit to avoid the congested
global link (hence the rise of latency at cycle 0); when the transit queues start to fill up,
congestion and latency increase. This growth stops when the amount of congestion at
the local queues is enough to guarantee misrouting at injection. It must also be noted
that the lowest latency achieved with OLM in the first cycles after the pattern shift is
comparable or higher than the latency of all contention-based mechanisms.

4.4 Conclusions

This chapter has introduced the idea of a contention-based misrouting decision for
adaptive routing. The use of contention information mitigates many of the shortcom-
ings of adaptive routing dependent on congestion metrics such as credits: dependency
on buffer size, oscillations in routing, and slow adaptation to changes in the traffic
pattern.

Contention-based adaptive routing can be implemented in high-radix routers through
a low-cost set of contention counters. In this work, four different variants are evalu-
ated: base, filtered, hybrid and ECtN. The base implementation uses solely the values
of the contention counters within the router to perform the misrouting decision. Base
obtains optimal latency under UN traffic, and competitive throughput compared to the
best state-of-the-art adaptive routing mechanisms. It also adapts immediately to traf-
fic changes and mitigates the impact from congestion at in-transit queues when deep
buffers are used.

The filtered mechanism uses a regressive metric which combines its previous value
with the current information from the contention counters. This mechanism trades-
off the reaction time to traffic changes for a lower impact of sudden spikes of traffic
under uniform patterns, such as those that can appear with traffic bursts. However, its
performance is identical to base and increases slightly the implementation complexity.

The hybrid version combines the contention statistics from the contention counters
with congestion information through the use of credits. Under UN traffic, it improves
throughput (outperforming credit-based OLM) but provides worse latency; with adver-
sarial traffic, throughput is competitive and latency is better than the base variant.

ECtN disseminates contention information within the group in the same fashion as



126 Chapter 4. Contention counters

PB to trigger misrouting at injection under adversarial patterns. This mechanism pro-
vides the best latency (or close to) in all scenarios, but entails a higher implementation
cost, both in area and communication requirements.



Chapter 5

Flexible VC management

The routing mechanisms employed in the previous chapters rely on an increasing VC
index order across the packet path as a deadlock avoidance mechanism, as introduced
in Section 1.3. The only exception is the in-transit adaptive OLM routing, which re-
laxes these limitations to reuse VC indices for opportunistic nonminimal local hops
provided that those hops can be avoided in case of congestion.

The most widespread deadlock avoidance mechanism in lossless low-distance net-
works is distance-based, relying on a fixed order in the use of VCs. Günther [69]
proposed a simple mechanism in which packets follow a strictly increasing VC index
sequence with each hop of their paths, assigning the VC index i for each hop i in the
path. Figure 5.1 presents a sample case of this deadlock avoidance in a generic net-
work with diameter 2 using MIN and VAL routing, where path length is up to 2 and 4
hops, respectively. MIN routing can be supported with only 2 VCs, but 4 are required
for VAL routing. The VC index in each hop is fixed, and MIN is unable to exploit half
of the VCs.

This deadlock avoidance policy restricts the number of buffer resources depending
on the routing mechanism. Supporting long nonminimal paths as is the case in VAL
and the adaptive routing mechanisms requires a larger number of VCs compared to

SS DD

Valiant router

Minimal path

Valiant path

Figure 5.1: Distance-based deadlock avoidance with MIN/VAL routing in a generic
diameter-2 network with 4 VCs. Traffic is sent from source S to destination D. Only
the shaded buffers at each router of the paths are allowed for those hops.

127



128 Chapter 5. Flexible VC management

the base minimal routing, as many as the length of the longest allowed path. VC re-
quirements increase likewise when multiple QoS traffic classes are supported, or when
protocol deadlock avoidance is considered, as is the case for the Dragonfly network
in Cray Cascade [56], which employs 8 VCs. Unfortunately, an increasing VC-index
deadlock avoidance policy prevents a free use of the VC buffers and enforces an in-
efficient use of the resources, increasing Head-of-Line Blocking (HoLB) and limiting
performance. A larger number of VCs reduces HoLB but comes at a cost of increas-
ing buffer area and complexity of the router implementation. Furthermore, unbalance
of VC usage exacerbates with deep buffers such as those required to handle bursts of
traffic and ease congestion detection under adaptive routing. Therefore, it is desirable
to decouple the number and usage of VCs from the deadlock avoidance mechanism.

This chapter introduces FlexVC, a simple buffer management mechanism which
permits to use the maximum amount of VCs in every hop of the path, mitigating HoLB
and reducing up to 50% the memory requirements. FlexVC can be applied to any
network topology with a distance-based deadlock avoidance mechanism that relies on
VCs.

5.1 Limitations of deadlock avoidance mechanisms based
on VCs

Distance-based deadlock avoidance policies that rely on VCs present significant limi-
tations. Supporting long paths implies a large number of resources which scales with
the network size. More significantly, the additional VCs required are only used when
the longest paths are exploited and under-exploited in uniform traffic communications.

These limitations exacerbate when protocol deadlock is considered, with request-
reply communications where destination nodes receive requests and generate replies
back to the original sources. As discussed in Section 1.3, deadlock in request-reply
traffic scenarios can be avoided employing separate virtual networks. Separate vir-
tual networks provide isolation between different classes of messages but double the
amount of buffers required, since for each hop of the path a request VC and a reply VC
are needed.

5.1.1 Routing or link-type restrictions

In certain networks, the network links can be classified into different disjoint sets,
which are traversed in a fixed order. This is the case of the X/Y/Z links in a 3D
Flattened Butterfly (traversed following Dimension-Order Routing), the local/global
links in Dragonflies (where the minimal paths are l-g-l), or the upward/downward links
in a Fat Tree (with routing going first up and then down the tree). In such networks,
the number of VCs required to avoid deadlock is lower than the maximum path length,
and for each set of links it depends only on the amount of hops within the set.

In some cases, the VC requirements are imposed by the nature of the topology.



5.1. Limitations of deadlock avoidance mechanisms based on VCs 129

This is the case for Dragonflies and Orthogonal Fat Trees with adaptive routing. In
other cases, the number of VCs is a trade off for minimal path diversity: in the FB,
adaptive routing can be supported at the cost of a larger set of VCs.

Each hop of the path is assigned a given VC (specifying type of link and VC index),
and the VC order sequence (denoted as the reference path) needs to be preserved to
avoid deadlock. In the case of the diameter-3 Dragonfly the minimal reference path
is l0− g1− l2, where l/g denotes the type of link, local or global, and the subscript
represents the VC index. To simplify the explanation, hops are assigned consecutive
indices regardless of the link type. The amount of VCs is therefore not determined by
the highest index value but by the amount of indices within each set; in this case, 2
VCs in input local ports and 1 VC in global ports are enough. This VC arrangement is
denoted 2/1. Shorter paths with missing hops from the reference path (l0−g1, g1− l2)
are possible when certain hops are not needed to reach the destination. However, a
different order of hops (l0− l2− g1) is never allowed. Valiant routing (as defined in
Section 1.4.1.2) requires 4/2 VCs: l0− g1− l2 to reach the Valiant router and l3−
g4− l5 to travel from there towards the destination. In-transit adaptive routing without
opportunistic hops, as is the case of PAR (see Section 1.4.2.2), adds an additional
local VC up to 5/2 VCs: l0 − l1−g2− l3 − l4−g5− l6. As discussed at the
beginning of this section, considering protocol deadlock avoidance doubles the path
length and the number of resources for any of these routing mechanisms.

5.1.2 Buffer organization and cost

Augmenting the number of VCs has a significant penalty in the implementation costs of
the router. A constraint of current ASICs is to use limited buffers [130]; trading off the
buffer size for a larger number of buffers reduces the capability to handle large bursts
of traffic and to detect congestion under adaptive routing. Moreover, small sets of VCs
increase HoLB and limit performance. VC-index restrictions imposed by the deadlock
avoidance mechanism are specially pervasive, because they prevent full usage of all
VC buffers.

An alternative to improve the balance of usage between buffers is to switch to
a different buffer allocation strategy. In Section 1.1 different implementations are
discussed, such as Dynamically Allocated Multi-Queues (DAMQs [138]) in which a
buffer pool is shared between VCs, and dynamically allocated buffers combined with
smaller statically allocated per-VC buffers. Dynamic buffer organizations increase
the implementation complexity of the router. FIFO buffers are typically implemented
through circular buffers using SRAM [140]. DAMQs also rely on SRAM to store data,
but need to store pointers for linked lists [138] or alternative control structures. The
memory overhead for DAMQs is small but not negligible: for a 4KB DAMQ with 8-
byte phits (512 phits per DAMQ), pointers need to be 9 bits long and the overhead is
roughly 576 bytes (14% increase). Considering per-packet pointers (as in [40]) with 8-
phit packets shrinks this overhead to 1.6%, but reduces flexibility with variable packet
sizes. The added complexity of DAMQs also implies a penalty in memory accesses.



130 Chapter 5. Flexible VC management

The implementation in [59] adds three cycles to read or write access latency. Choi
et al. measure in [40] slowdowns in packet access time ranging 59-77% for different
DAMQ implementations.

Furthermore, in the context of Dragonfly networks under adversarial traffic patterns
they only provide small performance gains against statically partitioned memories be-
cause a significant amount of buffering needs to be statically allocated to avoid con-
gestion. An evaluation of the impact of the amount of static buffering on the network
performance is given in Section 5.3.1.

5.2 FlexVC mechanism

This section introduces a novel buffer management mechanism called FlexVC, which
permits a more flexible use of the VCs. FlexVC combines statically partitioned buffers,
opportunistic routing and a relaxed distance-based deadlock avoidance policy. FlexVC
permits packet forwarding to several VCs, providing similar or better performance
than shared buffer implementations as DAMQs. It also reduces the minimal number of
buffers needed, because it can be implemented with less VCs than hops in the longest
allowed nonminimal path.

5.2.1 Base FlexVC

The key idea of FlexVC is that packets do not need to follow a strictly increasing order
of VCs {c0,c1,c2, · · ·} to guarantee deadlock freedom. To avoid deadlock, it is only
required that such increasing path exists for every hop in the path of a packet, from
the VC currently hosting the packet upwards to the final destination. This increasing
index path is denoted escape path as in the notation from [53], because it is deadlock
free due to the absence of cyclic dependencies and provides an alternative route to
other paths which might present cycles. Note that, contrary to Duato’s protocol [53],
escape paths in FlexVC share resources with other paths. For a VC index to be used
in a given hop, it is only compulsory to have such increasing VC-index path towards
the destination. Observer that all the implementations of FlexVC are applied to Virtual
Cut-Through (VCT) switching, which is typical in system networks since the buffer
requirements from link-level flow control already guarantee enough space to hold a
complete packet.

Using the notation in [46], the set of channels is denoted by C and the set of network
nodes by N. The incremental routing function R : C×N 7→C specifies an output VC,
ck, for each path determined by the routing protocol. A routing protocol R based
on FlexVC specifies the highest VC ck allowed in each hop, and considers safe and
opportunistic hops. The router allocator and forwarding unit employ a certain VC
selection function to select any VC, c j, with available credits in the output port, such
that 0 ≤ j ≤ k. This work considers four different VC selection functions: highest-
index, lowest-index, JSQ (Join the Shortest Queue) and random.



5.2. FlexVC mechanism 131

SS DD

Valiant router

Minimal path

Valiant path

(a) Safe MIN/VAL paths with 4 VCs.

Valiant router

Minimal path

Valiant path

Valiant
escape 
path

SSS

In-transit change to a Valiant path

Valiant router

DDD

(b) Opportunistic VAL and in-transit adaptive paths with 3 VCs.

Figure 5.2: Sample FlexVC usage in a generic diameter-2 network. Allowed VCs in
each hop are shaded.

Definition 1 Safe hops require that from the input channel c j0 there exists a safe path
{c j0,c j1, · · · ,c jn} to the destination with increasing vc index c jk > c jl ∀k > l ≥ 0.

Definition 2 Opportunistic hops require that regardless of the input channel c j0 there
exists a safe path {c j1,c j2 , · · · ,c jn} from the next buffer c j1 to the destination node,
with increasing vc index c jk > c jl ∀k > l ≥ 0. Opportunistic paths contain safe hops
and one or more opportunistic hops, each of them with their associated safe path as
escape.

Every connected routing protocol R must provide at least one safe path for each
possible destination to guarantee deadlock-freedom. Opportunistic paths can be used
as long as the buffers after the next hop hold enough space for the complete packet;
otherwise, packets revert to the corresponding safe path. This routing restriction avoids
the appearance of cyclic dependencies in the extended resource dependency graph [53]
and can be applied to wormhole networks as long as input buffers can store a complete



132 Chapter 5. Flexible VC management

Table 5.1: Allowed paths using FlexVC in a generic diameter-2 network.

VCs
Routing 2 3 4 5

MIN safe safe safe safe
VAL X opp. safe safe

In-Trns X opp. opp. safe

packet. Several opportunistic hops can be performed in the same path as long as there
is a safe escape path from each of them. The longest allowed safe path is a design
parameter and can vary, as shown in Figure 5.2; routers with more VCs can reduce
HoLB and implement more safe paths.

For each safe hop, the VC index determined by R equals the maximum amount of
VCs minus the remaining hops to the destination router. For each opportunistic hop,
the VC index determined by R equals the index set by the shortest safe escape path
associated to the opportunistic hop.

Theorem 1 A routing protocol R using FlexVC is deadlock-free with as many VCs as
the longest safe path allowed in the network.

Note that Definition 1 requires as many VCs as the path length to consider such path
as safe. With consumption assumption [71], safe paths are deadlock free by induction
on the VC indices. Opportunistic paths are deadlock-free since they necessarily have a
safe escape path for each opportunistic hop, similar to Duato’s protocol [53]. Observe
that, as opposed to Duato’s mechanism, FlexVC does not require dedicate resources
for the escape path; VCs in the safe path can also be used for opportunistic hops as long
as an increasing VC index order can be guaranteed in the safe path. FlexVC therefore
reduces the minimum number of buffers required. It also allows to exploit additional
VCs above the minimum required by the longest path, in order to reduce HoLB.

Figure 5.2 presents two examples of paths allowed by FlexVC in a generic diameter-
2 network from a given source node S to the destination D. This network might repre-
sent a 2D Flattened Butterfly, a SlimFly, or a Demi-Projective network. The situation
in Figure 5.2a employs routers with 4 VCs per input port. With 4 VCs, both minimal
and Valiant paths (whose length is 2 and 4, respectively) are safe by Theorem 1 and
the amount of allowed VCs on each hop only depends on the remaining distance to the
destination. It is remarkable that in most hops FlexVC allows to choose between sev-
eral VCs, compared to the base deadlock avoidance protocol which specifies a single
one. This is particularly useful to absorb transient bursts of traffic because the effective
buffer space per hop increases, without requiring dynamic buffer configurations such
as DAMQs. Additionally, relegating higher-index VCs to latter steps in the path makes
FlexVC immune to congestion caused by excessive occupancy of a single buffer.

The example in Figure 5.2b employs routers with 3 VCs per input port. With this
configuration minimal paths are safe (they only require 2 VCs for a diameter-2 net-
work) but Valiant paths are not with less than 4 VCs. However, for each opportunistic



5.2. FlexVC mechanism 133

hop of the path there is a safe escape path available, so opportunistic Valiant paths can
be implemented. The first two hops of the upper Valiant path are opportunistic, and the
escape path for the second is depicted; the escape path for the first opportunistic hop
is the original minimal path. Changing from minimal to Valiant paths with in-transit
adaptive routing is also supported with two opportunistic hops in the path. The escape
path for the first hop of the Valiant path is the continuation of the minimal path, and the
escape path for the second opportunistic hop is omitted for simplicity reasons. Note
that VAL and in-transit adaptive routing would not be deadlock-free with the 2 VCs
required for MIN because their opportunistic hops would not have an associated safe
escape path. Table 5.1 summarizes the allowed paths depending on the amount of VCs
for a generic diameter-2 network.

5.2.2 FlexVC considering protocol deadlock

At the beginning of the chapter it has been discussed how considering protocol dead-
lock doubles the VC requirements, considering separate sets of request and reply VCs.
FlexVC concatenates both paths in a single unified sequence, joining all VCs in a sin-
gle set rather than considering them as distinct virtual networks in order to increase the
flexibility in buffer management. With this approach, request packets can only employ
their associated request VCs in the manner presented in the previous section, but reply
packets can employ both reply and request VCs. This increases flexibility and further
reduces HoLB.

Theorem 2 FlexVC is deadlock-free in presence of request-reply traffic.

Both request and reply paths are deadlock-free considering Theorem 1 in the sub-
sequence of request and reply VCs. Reply messages can also employ request VCs
since there exists a safe path to the destination considering the complete sequence of
VCs.

FlexVC can be further exploited to reduce the number of VCs required to support
long paths. The set of reply VCs only needs to be dimensioned for safe minimal
paths (by Theorem 1) since opportunistic reply hops in nonminimal paths can leverage
lower-index request VCs. Therefore, a larger amount of VCs can be employed to
either support longer safe paths (e.g. 4+4 for safe VAL paths in a diameter-2 network)
or as additional VCs at the start of the request sequence. The second option reduces
HoLB in request and reply subpaths, because they both are allowed to use them. Both
alternatives are later evaluated in Section 5.3, observing that the use of additional VCs
is beneficial compared to supporting longer safe routes.

Table 5.2 summarizes an example for a diameter-2 network. Distance-based dead-
lock avoidance requires 5+5=10 VCs to support safe VAL and PAR paths in both re-
quest and reply virtual networks. FlexVC can support the same paths with just 3+3=6
VCs, as illustrated in Figure 5.2b. Moreover, if reply VCs are dimensioned to only
support MIN routing (leveraging request VCs for opportunistic VAL and in-transit
adaptive paths) the number of VCs further diminishes to 3+2=5 VCs, as depicted in



134 Chapter 5. Flexible VC management

Table 5.2: Allowed paths using FlexVC and considering protocol deadlock in a generic
diameter-2 network.

VCs (Request + Reply = overall)
Routing 2+2=4 3+2=5 3+3=6 4+4=8 5+5=10

MIN safe safe safe safe safe
VAL X opp. opp. safe safe

In-Trns X opp. opp. opp. safe

SS DD

Valiant router

Minimal request

Minimal reply

Valiant
reply

Figure 5.3: Example of protocol deadlock avoidance in a generic diameter-2 network
with 3+2 = 5 VCs using FlexVC.

Figure 5.3. This represents a reduction of 50% compared to the baseline reference.
With 8 VCs as in Cray Cascade [56] safe routing can be applied to both request and re-
ply routes, distributing 4+4 VCs; they can also be combined with opportunistic routing
in the request (2+4+2 VCs) or reply (4+2+2 VCs) subpaths, with the two additional
VCs available for each hop.

5.2.3 FlexVC with link restrictions

Section 5.1.1 discussed the particularities of networks with routing or topology-induced
path restrictions, which lowered the number of VCs required below the length of the
longest path. In such networks, FlexVC needs to also consider the specific sequence
of hops in the reference paths, in addition to the distance to the destination.

Table 5.3: Allowed paths using FlexVC in a diameter-3 Dragonfly network following
local/global links in topology-determined order.

VCs (Local/Global)
Routing 2/1 3/1 or 2/2 3/2 4/2 5/2

MIN safe safe safe safe safe
VAL X X opp. safe safe

In-Trns X X opp. opp. safe



5.2. FlexVC mechanism 135

Table 5.4: Allowed paths with FlexVC considering protocol deadlock in a diameter-3
Dragonfly network.

VCs (Request + Reply = overall)

Routing
2× (2/1) =

4/2
3/2+2/1 =

5/3
2× (4/2) =

8/4
2× (5/2) =

10/4
MIN safe safe safe safe
VAL X / opp. opp. safe safe

In-Trns X / opp. opp. opp. safe

In the case of the Dragonfly network, 2/1 VCs support minimal paths l0− g1− l2
but adding a single VC to either global (2/2 VCs) or local ports (3/1 VCs) would not
support opportunistic VAL. In the first case, there would be no safe path after the first
opportunistic local hop l0 because there would not be two additional local hops for
MIN routing to the destination. In the second case, there is no possible safe escape
path after the first opportunistic global hop. To support opportunistic VAL and in-
transit adaptive paths, one VC needs to be added to both local and global ports (up
to 3/2 VCs) using the sequence l0 − g1 − l2 − g3 − l4. To support safe VAL paths
an additional local VC is needed, following the sequence l0− g1− l2− l3− g4− l5.
Another extra local VC is required to make safe in-transit adaptive paths, employing
the sequence l0− l1− g2− l3− l4− g5− l6 and pushing the total to 5/2 VCs. This
behavior is summarized in Table 5.3. Additional VCs of any type can be inserted at the
start of the reference path.

Protocol deadlock avoidance requires in each sub-path a longer reference path tak-
ing into account the link type. The reply sub-sequence can be dimensioned for MIN
paths as in the base case described in Section 5.2.1, and use opportunistic nonminimal
paths that exploit the request subsequence of VCs. Table 5.4 summarizes the possi-
ble configurations, with 5/3 overall VCs required for opportunistic VAL and in-transit
adaptive paths in the request and reply subpaths. Note that 4/2 VCs allows for oppor-
tunistic hops in the reply path under VAL and in-transit routing, but not for requests
since there are no safe escape paths using request VCs.

5.2.4 Detection of adversarial patterns in source-adaptive routing
with FlexVC

In the results from previous chapters, the implementation of source-adaptive routing
has performed the misrouting decision marking global links as saturated when they
exceeded a threshold over the average occupancy of the global links in the router. This
comparison has been performed per-VC, observing the occupancy of the buffers in a
given VC in other ports. In this chapter, it is also considered a variant observing the
saturation per-port, aggregating all the buffers for the different VCs in the same port.
The behavior of both implementations is similar under uniform traffic, but diverges
significantly under ADV patterns, as is shown later in Section 5.3.



136 Chapter 5. Flexible VC management

source group

destination 
group

minimal 
link

Figure 5.4: Zoom of a source group under ADV+1 traffic. The minimal global link is
highlighted in red.

355

344 34

266 26

044 04

Combined packet counter Minimally routed packet counter

Figure 5.5: Router with minCred misrouting decision. Each output port has a regular
counter tracking the total number of occupied slots in the next buffer, and a counter to
track only the occupancy for minimally routed packets. Link-level flow control relies on
the first counter, but the misrouting decision is taken based on the second counter.

Figure 5.4 shows a source group sending ADV+1 traffic, highlighting the minimal
global link. Minimal global links connecting to destination groups are only used to
deliver traffic minimally using the first VC in the path (or the first VC in the request
or reply subpath, correspondingly, when request-reply traffic is considered). The rest
of the global links forward nonminimal Valiant traffic, employing two global VCs in
a balanced way: one for traffic coming out of the same group, and another for traffic
that employs the current group as intermediate. Under a high traffic load all global
links forward a significant amount of traffic and render per-port sensing inefficient.
However, the per-VC variant identifies implicitly the traffic pattern by analysing the
amount of traffic being routed minimally, because only the first VC is used for mini-
mally routed traffic in the global links. Since this port is only used for minimal traffic,
and nonminimal traffic in the other global links is balanced across two VCs, the first
VC in the minimal global link receives twice as much traffic as other global link buffers
and triggers misrouting even when a high threshold is employed.

FlexVC allows minimally and nonminimally routed traffic to share the same first
VC in the global links. Therefore, both per-port and per-VC variants are unable to
properly identify adversarial traffic and provide poorer performance, as will be ob-
served in Section 5.3. An alternative version is provided to regain the capability to
identify the traffic pattern with FlexVC, tracking separately the buffer occupation as-



5.3. Simulation results 137

sociated to minimally-sent packets to identify global link buffers as saturated. This
version is denoted minCred, and can be combined with any of the previous strategies
(per-VC and per-port); however, a per-port comparison performs significantly better
under request-reply traffic or when a VC set larger than minimally required is used,
because it accounts all minimally-routed packets spread across multiple VCs. The im-
plementation cost of this strategy only implies an additional credit counter per output
port and a flag per credit packet, to distinguish the credits for minimally and nonmin-
imally routed packets, as can be observed in Figure 5.5. Regular data packets do not
need any additional flags, since they already carried a field in the header specifying the
type of routing.

5.2.5 Implementation costs

One of the main reasons for the use of FlexVC is to alleviate the hardware costs as-
sociated to the use of dynamic memory management configurations (such as DAMQs)
while keeping or improving their performance. From the point of view of the mecha-
nism, FlexVC is particularly frugal in its implementation. Part of the additional hard-
ware required is a VC selection function that selects which VC to employ from the
range available. As it will be demonstrated in Section 5.3.6, the main contributor to
the achieved performance is the number of VCs employed, and the particular VC selec-
tion function employed does not have an appreciable impact. A policy like JSQ can be
therefore considered competitive, and implemented easily with a stage of comparators
which select the VC with the highest credit count. Regarding flow control, FlexVC
relies on the original and simpler per-VC credit management rather than tracking both
per-port and per-VC occupancy as is required in DAMQs.

The complexity and latency of the (de)muxers and allocators grows with the num-
ber of buffers implemented per port; nevertheless, FlexVC can exploit buffers which
would be required anyhow for deadlock avoidance when using long paths, so in prac-
tice it does not need to increase the number of buffers. Conversely, it also allows
to reduce the number of buffers required for nonminimal paths and to avoid protocol
deadlock, simplifying the design of the router elements.

5.3 Simulation results

This section presents the results of the evaluation of FlexVC in combination with obliv-
ious and adaptive routing mechanisms, observing the impact of router speedup and
protocol deadlock. The routing mechanisms and the network configuration employed
follow the descriptions in Sections 1.4 and 1.6.4. The uniform pattern with bursts of
traffic BURSTY-UN employs a burst size of 5 packets; this implies that once a destina-
tion of a traffic burst is selected, in average 5 packets are sent towards said destination.
The impact of FlexVC is compared against the baseline VC management with tradi-
tional FIFO and DAMQ buffers. Before evaluating the performance of DAMQs, a
configuration for the DAMQ memory allocation needs to be selected in Section 5.3.1.



138 Chapter 5. Flexible VC management

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

Reserved
Local

Queue
(in phits)
0 (0%)

8 (25%)
16 (50%)
24 (75%)

32 (100%)

Figure 5.6: Throughput under UN traffic with MIN routing, using DAMQ buffers with
different buffer reservation per VC.

Results are split into three subsections, one for oblivious routing, one with source-
adaptive routing, and another with in-transit adaptive routing. Section 5.3.5 evaluates
the performance without router speedup and the impact of the VC allocation policy in
FlexVC.

5.3.1 Impact of reserved space in DAMQs

Figure 5.6 portrays the achieved throughput with MIN routing under UN traffic with
DAMQ buffers, varying the size of the reserved buffers for each VC. This system em-
ploys 2/1 VCs with 128 phits in local ports and 512 phits shared among the VCs in
input global ports. Each line represents a different amount of reserved statically al-
located buffering per VC, in packets; possible values range from 0 to 8 packets. A
reserve of 0 packets means that the whole DAMQ buffer is shared, whereas a reserva-
tion of 8 packets is equivalent to statically partitioned buffers (64 phits are statically
allocated for each VC, and there is no shared buffering).

Without reserved statically allocated memory, the system presents deadlock: when
VC c0 is assigned all the memory in several ports, packets cannot advance to c1 in the
next buffer and create a cyclic dependency between VCs. Deadlock is only observed
at saturation loads but may occur for any traffic load.

With 16 reserved phits per local port (25% of the overall space is statically allo-
cated) the results present congestion. An analysis of the simulation data shows that
most of the buffering space is again dynamically assigned to c0, not leaving enough
amount of buffer in c1 to cover link round trip time. The optimal result is obtained
when 75% of the buffering is reserved per VC and statically assigned, and the im-
provement over statically allocated buffers (represented by the curve with 100% re-
served local queue) is negligible.



5.3. Simulation results 139

5.3.2 Results with oblivious routing

The performance evaluation is split into two separate cases: with oblivious traffic
patterns, in which no cyclic dependencies at a protocol level are analyzed, and with
request-reply traffic. Note that instead of the Valiant routing implementation described
in Section 1.4.1.2 and employed in previous chapters, results under ADV traffic cor-
respond to a VAL variant where packets at injection can recalculate the Valiant inter-
mediate router. This allows a fair comparison against the similarly updated source-
adaptive variant used in Section 5.3.3 to avoid a pathological case of HoLB; this effect
is explained in more detail in Section 5.3.3.3.

5.3.2.1 Results with oblivious routing under traffic without dependencies

Figure 5.7 displays the latency and throughput under uniform and adversarial traf-
fic patterns, employing the internal speedup described in Section 1.6.4 and keeping
constant the amount of memory per VC (32 phits per VC at local input ports, and 256
phits per VC at global ports). Oblivious routing is employed and constitutes the base-
line reference for each pattern, MIN under uniform traffic and VAL for adversarial. In
all cases, latency remains similar before reaching saturation, regardless of the buffer
management. FlexVC outperforms the baseline and the DAMQ implementation, sig-
nificatively when the number of VCs exceeds the restricted set that can be used by the
baseline and DAMQ-based mechanisms. In particular, under UN traffic FlexVC with
8/4VCs is able to reach a throughput of 0.9 phits/(node·cycle), approaching the maxi-
mal performance of the network. Interestingly, under BURSTY-UN traffic the satura-
tion throughput decreases with respect to UN, and the average latency curves diverge
slightly before saturation: for a load of 0.4 phits/(node·cycle) DAMQ reduces average
latency in 4,8% over baseline, while FlexVC reduces 11,2%, 23,8% and 27,6% with
2/1, 4/2 and 8/4 VCs respectively. Under ADV traffic with VAL routing, the network
links represent a significant bottleneck; nevertheless, FlexVC achieves a throughput
of up to 0.49 phits/node/cycle in saturation, approaching the theoretical limit for VAL
routing described in Section 1.4.1.2. Latency-wise all implementations perform simi-
larly.

However, the comparison is not entirely fair for the case of FlexVC with larger VC
sets than strictly required (4/2 VCs and 8/4 VCs), where not only the number of VCs
per port is higher than in the baseline and DAMQ cases but also the amount of mem-
ory (the amount of memory per-VC is kept fixed). Figure 5.8 compares the throughput
achieved in saturation with the same mechanisms when the memory per port is con-
stant. Four total buffer capacities have been considered: 64/256, 128/512, 192/768
and 256/1024 phits per local/global port. Left charts refer the absolute throughput in
phits/(node·cycle), whereas right charts display the relative increase over the baseline
with the same total buffer capacity.

FlexVC is beneficial under uniform and adversarial traffic patterns for all buffer



140 Chapter 5. Flexible VC management

Baseline DAMQ 75% FlexVC 2/1VCs FlexVC 4/2VCs FlexVC 8/4VCs

140

160

180

200

220

240

260

280

300

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.50

0.60

0.70

0.80

0.90

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))
Offered load (phits/(node*cycle))

(a) UN traffic with MIN routing.

150

200

250

300

350

400

450

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) BURSTY-UN traffic with MIN routing.

260

280

300

320

340

360

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.30

0.35

0.40

0.45

0.50

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+1 traffic with VAL routing.

Figure 5.7: Latency and throughput under uniform (UN), uniform with bursts of traffic
(BURSTY-UN) and adversarial (ADV+1) traffic with oblivious routing.



5.3. Simulation results 141

Baseline DAMQ 75% FlexVC 2/1VCs FlexVC 4/2VCs FlexVC 8/4VCs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

64/256 128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1

1.04

1.08

1.12

1.16

1.2

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e
Buffer capacity in phits per port (local/global ports)

(a) UN traffic with MIN routing.

0.45

0.5

0.55

0.6

0.65

0.7

64/256 128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1

1.04

1.08

1.12

1.16

1.2

1.24

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(b) BURSTY-UN traffic with MIN routing.

0.35

0.4

0.45

0.5

128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1

1.04

1.08

1.12

128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(c) ADV+1 traffic with VAL routing.

Figure 5.8: Absolute and relative maximum throughput under uniform and adversarial
traffic with oblivious routing.



142 Chapter 5. Flexible VC management

sizes, increasing throughput between 8% and 12% with the initial amount of mem-
ory (64/256 phits per port). Under UN traffic, FlexVC with 2/1 VCs and the smallest
memory configuration achieves the same throughput as the baseline and DAMQ im-
plementations with three times more memory per port. Since the number of VCs is
the same, the improvement comes from a more flexible usage of the VCs that helps
to mitigate HoLB. Furthermore, FlexVC with four times more VCs but only 64/256
phits per port clearly outperforms baseline and DAMQ with four times more memory.
Largest buffer sizes reduce the improvement that can be achieved with FlexVC and
bigger VC sets, but FlexVC is beneficial in every case compared to the baseline and
more efficient than DAMQ buffers.

5.3.2.2 Results with oblivious routing under request-reply traffic

Figure 5.9 displays latency and throughput modeling request and reply messages as
described in Section 1.6.2. In this case, the minimum number of VCs that can be used
is 4/2 (2/1+2/1) for MIN and 8/4 for VAL. Latency curves are similar below the satu-
ration point; however, under UN the base implementations (MIN and DAMQ) present
congestion after reaching the saturation point, with DAMQ providing slightly better
response. FlexVC with the same 4/2 VCs presents both higher peak throughput and
a less pronounced congestion effect. Throughput at maximum load increases 24.6%
from MIN and 17.9% from DAMQ.

The use of more VCs increases peak throughput and mitigates congestion. FlexVC
with 6/4 VCs arranged in 4/3+2/1 reduces congestion significantly (less than a 2%
drop from peak to highest offered load) and reaches a 23.7% increase over MIN; other
configurations present intermediate results. It is noteworthy that throughput under
request-reply traffic is not sorted by the overall amount of VCs, but by the amount
of VCs in the request subpath. The three FlexVC configurations with 2/1 VCs in the
request subpath are at the bottom, two configurations with 3/2 are in the middle, and
the best configuration employs 4/3 VCs for requests. While only 2/1 VCs are required
in each subpath for MIN routing, the allocation of additional VCs at the start of the
request subpath makes them available for both requests and replies, making a more
efficient use of them.

BURSTY-UN and ADV+1 only present congestion with the DAMQ implemen-
tation, and with a much smaller impact. The behavior under BURSTY-UN traffic is
analogous to that of UN; in the case of adversarial traffic, the impact of the distribu-
tion of additional VCs is less noticeable because the maximal theoretical limit of 0.5
phits/(node·cycle) explained in Section 1.4.1.2 is reached.

5.3.3 Results with source-adaptive routing

This section evaluates the performance of FlexVC when combined with source-
adaptive routing, implemented following the description of PB in Section 1.4.2.1.



5.3. Simulation results 143

Baseline
DAMQ 75%

FlexVC 4/2VCs(2/1+2/1)

FlexVC 5/3VCs(2/1+3/2)
FlexVC 5/3VCs(3/2+2/1)
FlexVC 6/4VCs(2/1+4/3)

FlexVC 6/4VCs(3/2+3/2)
FlexVC 6/4VCs(4/3+2/1)

150

200

250

300

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.50

0.60

0.70

0.80

0.90

 0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))
Offered load (phits/(node*cycle))

(a) UN traffic with MIN routing.

150

200

250

300

350

400

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) BURSTY-UN traffic with MIN routing.

Baseline
DAMQ 75%

FlexVC 8/4VCs(4/2+4/2)
FlexVC 10/6VCs(5/3+5/3)

FlexVC 10/6VCs(6/4+4/2)

260

280

300

320

340

360

380

400

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+1 traffic with VAL routing.

Figure 5.9: Latency and throughput under uniform (UN, BURSTY-UN) and adversarial
(ADV+1) traffic patterns with oblivious routing, modeling request-reply dependencies.



144 Chapter 5. Flexible VC management

5.3.3.1 Results with source-adaptive routing under traffic without dependencies

Figure 5.10 shows the results of source-adaptive routing under oblivious traffic
workloads without request-reply dependencies, as in Figure 5.7. The two variants of
buffer occupancy comparison described in Section 5.2.4, -per-port and -per-VC, are
considered for the baseline and DAMQ implementations. All configurations require
4/2 VCs except the MIN oblivious reference under uniform patterns, which only uses
2/1 VCs.

FlexVC performs significantly better than the base and DAMQ implementations,
with lower latency under uniform traffic and higher throughput in all cases; DAMQ
only gives a small improvement over baseline under adversarial and bursty uniform
traffic. The impact of the congestion-sensing implementation with source-adaptive
routing and oblivious traffic workloads is almost negligible. In the baseline PB, per-
Port sensing reduces the amount of misrouting performed and under UN traffic it gives
closer throughput to the oblivious MIN reference, but requires a high offered load to
properly detect adversarial traffic patterns. With DAMQ, the only difference occurs
with UN traffic, where per-VC sensing indirectly achieves a better result as a conse-
quence of not accounting for the uneven distribution of memory among VCs, enforcing
less misrouting. FlexVC shows no difference in throughput whatsoever across its im-
plementations, and only slightly lower latency when the distinction between minimal
and nonminimal traffic is applied to the misrouting decision (PB-minCred-per-VC and
PB-minCred-per-port). It outperforms by a wide margin both the base and DAMQ
implementations of PB and also the oblivious routing reference under all traffic pat-
terns, with the exception of marginally higher latency under intermediate traffic loads
of uniform patterns.

5.3.3.2 Results with source-adaptive routing under request-reply traffic

Figure 5.11 presents results of source-adaptive routing with request-reply traffic.
Base configurations require 4/2+4/2=8/4 VCs, while FlexVC variants employ 6/3 VCs
arranged as 4/2+2/1, according to the findings in the analysis of the behavior with
oblivious routing. Note that the drop in performance under UN traffic (Figure 5.11a)
when the network is saturated is less pronounced than with MIN routing.

Figure 5.11c shows that, for the baseline PB, per-port sensing performs worse than
per-VC sensing under ADV traffic. With the base VC management, per-VC sens-
ing implicitly identifies the traffic pattern by analysing the amount of traffic routed
minimally, as discussed in Section 5.2.4. The figure is truncated to distinguish bet-
ter the performance of each sensing; the full Y-axis is shown in Figure 5.13b. The
DAMQ implementation suffers a significant case of congestion under ADV that drops
the throughput below 0.15 and 0.05 phits/(node·cycle) with per-VC and per-port sens-
ing, respectively. Congestion appears regardless of the sensing employed, because it is
due to an interference of the memory allocation with the misrouting decision in PB: if



5.3. Simulation results 145

MIN/VAL
 

PB - per port
PB - per VC

PB DAMQ - per port
PB DAMQ - per VC

PB FlexVC - per port
PB FlexVC - per VC

PB FlexVC - per port min
PB FlexVC - per VC min

150

200

250

300

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.50

0.60

0.70

0.80

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))
Offered load (phits/(node*cycle))

(a) UN traffic.

200

250

300

350

400

450

 0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) BURSTY-UN traffic.

300

350

400

450

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.35

0.40

0.45

0.50

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+1 traffic.

Figure 5.10: Latency and throughput under uniform (UN, BURSTY-UN) and adversar-
ial (ADV+1) traffic patterns with source-adaptive routing. MIN is the oblivious routing
reference for uniform traffic, and VAL for the adversarial pattern.



146 Chapter 5. Flexible VC management

MIN/VAL
 

PB - per VC
PB - per port

PB DAMQ - per VC
PB DAMQ - per port

PB FlexVC - per VC
PB FlexVC - per port

PB FlexVC - per VC min
PB FlexVC - per port min

150

200

250

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.50

0.60

0.70

0.80

 0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN traffic.

150

200

250

300

350

400

 0.1  0.2  0.3  0.4  0.5  0.6

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.50

0.60

0.70

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) BURSTY-UN traffic.

250

300

350

400

450

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.35

0.40

0.45

0.50

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+1 traffic.

Figure 5.11: Latency and throughput under request-reply uniform (UN, BURSTY-UN)
and adversarial (ADV+1) traffic patterns with source-adaptive routing. MIN and VAL are
the oblivious routing reference for uniform and adversarial traffic, respectively. 4/2+4/2
VCs are used in baseline PB and VAL, 4/2+2/1 in FlexVC PB and 2/1+2/1 in MIN.



5.3. Simulation results 147

MIN path

VAL path

MIN path

VAL path

Figure 5.12: Sample group of a Dragonfly network, suffering a pathological case of
congestion with oblivious/source-adaptive nonminimal routing under ADV traffic. Black
lines represent MIN paths, red lines correspond to VAL paths. Note that the path overlap
prevents any of the routes from being followed except at a very slow pace.

a given VC receives a larger segment of the shared buffer, a fair comparison between
port/VC tuples cannot be performed.

Under uniform traffic, all four FlexVC variants clearly outperform the baseline PB,
with a throughput increase of up to 20.4% in saturation under UN and overall reduced
latency. However, under ADV traffic the two variants of FlexVC without differentiated
credit tracking (FlexVC-per-VC and FlexVC-per-port) perform worse than the base
VC management. FlexVC allows different flows to employ a common set of VCs, so
per-VC sensing provides less accuracy and lower throughput even with separate credit
tracking for minimally-routed packets. In such case, only FlexVC-minCred using per-
port sensing is competitive with the baseline. The FlexVC-minCred-per-port variant
is preferable over the baseline PB as it achieves better latency and significantly better
throughput under uniform patterns, and competitive throughput and latency in ADV,
while requiring 25% less buffers.

5.3.3.3 Behavior with source-adaptive routing

The implementation of source-adaptive Piggyback routing described in Section 1.4.2.1
does not recompute the intermediate Valiant node in case its associated path is not
available. Since a Valiant node is only restricted to be located outside the destination
group of the packet, the first global link in the nonminimal path can be connected to
the same router as the global link in the MIN path. In such case, the local link at the
source group is the same for both the minimal and nonminimal paths. Under ADV
traffic, this implies that the nonminimal path traverses through the bottleneck router
of the group. Similarly, misrouted packets may choose a Valiant node linked to the
bottleneck router of their group, forcing incoming global traffic to compete with the
injection ports for the already congested global link. When an adversarial request-
reply traffic pattern is considered, the congestion due to this effect can also propagate
from replies to requests. Since the nonminimal path cannot be recomputed at any point
of the route, a pathological case of HoLB can appear where most of the packets at the
injection and global buffers are stalled because the head-of-buffer packets contend for



148 Chapter 5. Flexible VC management

MIN/VAL
 

PB - per VC
PB - per port

PB DAMQ - per VC
PB DAMQ - per port

PB FlexVC - per VC
PB FlexVC - per port

PB FlexVC - per VC min
PB FlexVC - per port min

0.10

0.20

0.30

0.40

0.50

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) Without recomputing VAL router.

0.10

0.20

0.30

0.40

0.50

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) Recomputing VAL router.

Figure 5.13: Throughput under request-reply ADV+1 traffic with VAL and source-
adaptive routing, with/without recalculation of the VAL router.

the same output port, and performance drops significantly. This situation can originate
with the base VC management employed in previous chapters, but it exacerbates with
FlexVC because minimally- and nonminimally-routed packets share the same buffers.
Figure 5.12 shows this behavior in one group of the network.

To avoid this scenario, a different implementation of PB can be employed. One
variant is to recompute the Valiant intermediate router for those packets at the head of
the buffer that are not assigned an output in the allocation phase. Another implemen-
tation is to consider multiple Valiant destinations and choose the path with the least
congested output port, as is done in Cray Cascade [116]. This exploits more efficiently
the available resources and avoids stalls from HoLB in the majority of queues. This
section employs the first solution, exploiting more efficiently the available resources
and avoiding stalls from HoLB in the majority of queues. In order to perform a fair
comparison, a similar variant of VAL routing where packets at injection can rerun the
selection of the Valiant node is used as a reference. The previous non-reconfigurable
implementation of VAL presented in Section 1.4.1.2 can also suffer from this patho-
logical case of congestion, although it is less likely because all packets are diverted to
the longer nonminimal route at injection.

Figure 5.13 illustrates the severity of the problem. Some of the points in the curve
for FlexVC with per-port sensing drop due to averaging at least one simulation with
pathological HoLB; however, throughput for FlexVC is bad in general, with FlexVC-
minCred-per-port achieving 15% less accepted load than PB without FlexVC. In con-
trast, all baseline and FlexVC implementations that recompute the Valiant router in
Figure 5.13b achieve competitive throughput, with the best performers reaching the
theoretical limit described in Section 1.4.1.2.



5.3. Simulation results 149

MIN/VAL 4/2VCs
MIN/VAL FlexVC 4/2VCs

PB 8/4VCs
PB FlexVC 6/3VCs

InTransit 10/4VCs
InTransit FlexVC 5/3VCs

InTransit CtA 10/4VCs
InTransit Cta FlexVC 5/3VCs

150

200

250

300

350

400

450

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))
Offered load (phits/(node*cycle))

(a) UN traffic.

150

200

250

300

350

400

450

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

 0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(b) BURSTY-UN traffic.

250

300

350

400

450

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

0.25

0.30

0.35

0.40

0.45

0.50

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(c) ADV+1 traffic.

Figure 5.14: Latency and throughput under request-reply uniform (UN, BURSTY-UN)
and adversarial (ADV+1) traffic patterns with in-transit adaptive routing. MIN and VAL
are the oblivious routing reference for uniform and adversarial traffic, respectively.



150 Chapter 5. Flexible VC management

5.3.4 Results with in-transit adaptive routing

Figure 5.14 shows the performance results with in-transit adaptive routing under request-
reply traffic. Results with oblivious and source-adaptive routing with base VC man-
agement and with FlexVC are also shown as a reference. In-transit adaptive routing
follows the OLM implementation described in Section 1.4.2.2.1. In the case of adap-
tive routing, the best overall performing variants are chosen for each configuration:
baseline with perVC sensing and FlexVC-minCred-perPort.

Performance with in-transit routing and FlexVC is competitive under uniform traf-
fic patterns, but saturates at a very low load under ADV+1 traffic. Since FlexVC allows
to reuse VCs in each hop, congestion sensing presents a similar limitation to detect ad-
versarial patterns as observed with source-adaptive routing in Section 5.3.3. In contrast
to source-adaptive routing, in-transit routing needs to trigger misrouting in-transit con-
sidering the availability of free slots in the next buffer, including traffic routed nonmin-
imally. However, in-transit routing can be paired to the contention-based misrouting
trigger described in Section 4.2.1.1 to decouple the misrouting decision from the buffer
occupancy. Results with in-transit routing and contention-based misrouting decision,
denoted as In-transit Cta in the figure, achieve competitive throughput and latency with
FlexVC, even outperforming source-adaptive routing under BURSTY-UN and ADV+1
patterns. Furthermore, the use of FlexVC allows these results to be achieved with half
the number of VCs needed for the base in-transit adaptive implementation, and fewer
buffers per port than any of the source-adaptive implementations.

5.3.5 Simulation results without internal speedup

Results in Sections 5.3.2- 5.3.4 have been achieved simulating routers with internal
speedup, as detailed in Table 1.2. Figure 5.15 reproduces the absolute and relative
maximum throughput results from Figure 5.8 but removing the internal speedup, with
network routers and their crossbars working at the same frequency as the network
links. Base throughput is significantly lower due to HoLB, but the impact of FlexVC is
higher, and it performs consistently better than DAMQ. FlexVC performs consistently
better than DAMQ, which shows little benefit from the base case. Under ADV+1 traffic
the impact of buffer organization is lower than under uniform patterns, and DAMQ
is detrimental when larger buffer sizes are considered. Increasing the number of VCs
magnifies the throughput improvement with FlexVC, although it is also beneficial from
the baseline in all the evaluated cases. Relative improvement diminishes with deeper
buffers, since the absolute throughput is larger and other factors aside HoLB limit
the network performance. FlexVC allows a relative throughput improvement of up to
37% from the base case, with 8/4 VCs under UN traffic. Results with request-reply
traffic show less congestion and better performance at maximum offered load under
UN traffic, and are omitted for the sake of brevity. FlexVC still outperforms baseline
and DAMQ-based versions with the minimal set of VCs, but the relative gains with a
larger set of VCs are significantly higher.



5.3. Simulation results 151

Baseline DAMQ 75% FlexVC 2/1VCs FlexVC 4/2VCs FlexVC 8/4VCs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

64/256 128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1.04

1.12

1.2

1.28

1.36

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e
Buffer capacity in phits per port (local/global ports)

(a) UN traffic with MIN routing.

0.4

0.45

0.5

0.55

0.6

0.65

64/256 128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1.04

1.12

1.2

1.28

1.36

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(b) BURSTY-UN traffic with MIN routing.

0.32

0.34

0.36

0.38

0.4

128/512 192/768 256/1024A
cc

ep
te

d 
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Buffer capacity in phits per port (local/global ports)

0.96

1

1.04

1.08

1.12

1.16

128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r 

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(c) ADV+1 traffic with VAL routing.

Figure 5.15: Absolute and relative maximum throughput under uniform and adversarial
traffic with oblivious routing without router speedup.



152 Chapter 5. Flexible VC management

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Baseline
DAMQ 128/512 75%

FlexVC JSQ
FlexVC Highest-VC

FlexVC Lowest-VC
FlexVC Random

     4/2
(2/1+2/1)

     5/3
(2/1+3/2)

     5/3
(3/2+2/1)

     6/4
(2/1+4/3)

     6/4
(3/2+3/2)

     6/4
(4/3+2/1)

Figure 5.16: Throughput under UN request-reply traffic at 100% load, with multiple VC
selection functions and amount of VCs. MIN routing.

5.3.6 Evaluation of the VC allocation policy

FlexVC requires a VC selection policy to establish which VC to employ from the range
of allowed VCs for each hop, as described in Section 5.2.5. Results from previous sec-
tions employ a JSQ (Join the Shortest Queue) policy which chooses the queue with the
largest number of available slots. Figure 5.16 presents the throughput under request-
reply UN traffic with different VC allocation policies and different distributions of the
set of VCs. Although the absolute values change from one case to another, the trend
between the performance of each policy does not alter with the number and distribution
of VCs.

For each configuration, JSQ provides the best performance on average, since it
balances the utilization of all VCs. Interestingly, a Random policy is also competitive
in all the configurations. Lowest-VC tends to saturate lower-index VCs that are more
used in the first hops of requests, eventually restricting the injection; it consistently
provides the lowest performance. A side effect of this restriction which cannot be
observed in this figure is that Lowest-VC also presents lower peak throughput. In any
case, the difference between policies under maximum load varies less than 3.4% in
average.

5.4 Conclusions

This chapter has identified some of the main limitations of distance-based deadlock
avoidance in low-diameter networks: HoLB, inefficient utilization of router buffers,
and scaling restrictions with the longer paths associated to nonminimal adaptive rout-
ing and protocol-deadlock avoidance. Dynamically-allocated buffers such as DAMQs
increase design complexity and introduce access delays, and only partially mitigate
the previous limitations. Furthermore, they require statical partitioning for a signif-
icant amount of the memory to avoid congestion in small diameter networks as the
Dragonfly. By contrast, the FlexVC mechanism relies on a simple design with stati-



5.4. Conclusions 153

cally partitioned buffers and on opportunistic routing, relaxing VC usage restrictions.
FlexVC partially decouples the amount of VCs from the deadlock avoidance mecha-
nism. It allows longer network paths with a low amount of resources, reducing memory
up to a 50% (considering in-transit adaptive routing and protocol-deadlock avoidance).

A thorough evaluation in a Dragonfly network shows that FlexVC improves through-
put up to 12% compared to a base oblivious case with the same buffering and number
of VCs. It also reduces latency under traffic bursts at medium traffic loads below the
saturation point. Furthermore, FlexVC leverages additional VCs, reaching 23% im-
provements in throughput with less buffering per VC but the same total amount of
memory per port. FlexVC is even more efficient when the internal speedup of the
router is removed, with an improvement of up to 37.8%, because the baseline per-
formance degrades due to HoLB. Doubling the number of buffers (but keeping total
buffering unaltered) allows FlexVC to match or outperform the behavior of the base-
line with the internal router speedup. Increasing the amount of VCs also mitigates the
congestion that appears with long oblivious paths used to avoid protocol deadlock. It
can be observed that additional VCs are more useful when assigned to both subpaths
for request and reply packets rather than reserving them for the replies, even when the
number of VCs used solely for replies is lower than in the baseline mechanism.

However, reusing VCs for packets in different hops of their paths complicates the
identification of adversarial traffic patterns for adaptive routing decisions. FlexVC-
minCred handles credits separately for packets traveling minimally/nonminimally, prop-
erly identifying the communication pattern for adaptive routing. Combined with a
per-port sensing strategy, it outperforms alternative designs and provides a 20.4% in-
crease in throughput and noticeable latency reductions over the base PB implementa-
tion, while requiring 25% less buffers and total memory.

In-transit adaptive routing presents a similar problem to properly identify adver-
sarial traffic when combined with FlexVC. Unfortunately, using separate credits for
minimally routed packets does not offer acceptable performance in this case. How-
ever, the drop in performance is clearly associated to an inability to detect adversarial
traffic from the congestion information; resorting to the contention-based misrouting
decision proposed in the previous chapter allows to distinguish uniform from adversar-
ial traffic workloads. In-transit adaptive routing with FlexVC and the Base contention
counters implementation is competitive against the baseline and FlexVC variants of
oblivious and source-adaptive routing, outperforming them in BURSTY-UN traffic and
providing lower latency in all cases, while halving the number of buffers and the total
memory per port required for in-transit routing.

Overall, FlexVC is a simple design that maximizes buffer utilization and outper-
forms state-of-the-art and more complex alternatives.





Chapter 6

Related Work

This chapter explores the existence of related work to the analysis and proposals of this
thesis. It is organized in six blocks, following the order of the sections to which they
are related. In Section 6.1 there is an analysis of BigData applications and simulation
tools to evaluate the performance and behavior of the system interconnect. Section 6.2
reviews the different network topologies proposed for and implemented in different
systems, as well as the routing mechanisms to forward the information between the
source and destination nodes. Section 6.3 cites different mechanisms exploited to guar-
antee fairness in the network. In Section 6.4 discusses different congestion detection
mechanisms and the use of contention metrics in previous works. Section 6.5 explores
different deadlock avoidance mechanisms, and Section 6.6 describes different buffer
implementations and the impact of the buffer size in other works.

6.1 Graph500 and simulation tools for network archi-
tects

Network simulators constitute a useful tool for network architects in the design and
evaluation of new systems. Simulators are commonly based on full-system simulation,
trace-driven execution or synthetic traffic patterns. Full system simulators such as
Gem5 [25] present high computational and memory requirements; an alternative is to
replace the application by a skeleton restricted to the most relevant sections for the
network evaluation, as done in the SST simulator [126]. Such option is not feasible for
the Graph500 benchmark because the core interest of the network simulation requires
the graph traversal, and presents similar memory restrictions to the simulation of the
whole application. Trace-driven simulators sometimes fail to accurately represent the
dependencies in the execution.

Synthetic traffic models have smaller computational and memory requirements
than both alternatives while retaining the core characteristics of the workload they rep-
resent. However, synthetic traffic models have traditionally consisted of permutations
to determine the destination or set of destinations for the messages from a given node,

155



156 Chapter 6. Related Work

which isn’t a fitting scheme for the behavior of BigData applications. SynFull [17]
generates synthetic network traffic which preserves the characteristics (temporality,
destinations, volume, etc) from executions of a real application. It relies on Markov
Chains to model the behaviour of multiple phases of an application. However, it is
focused on Networks-on-Chip only, modeling memory accesses and their associated
coherence traffic, which is not appropriate for system-level interconnects.

BigData applications like MapReduce [47] or Spark [154] have become ubiqui-
tous and gather the interest of system architects and designers. The Graph500 bench-
mark [2, 109] appeared in 2010 with the aim of influencing the design of new systems
to match the needs of BigData applications. It is based on the execution of a Breadth-
First Search (BFS), a strategy to explore a graph and organize its data into a tree. The
benchmark consists of three kernels (generation of a small-world graph, BFS over the
graph, and validation of the resulting tree from the BFS) of which only the BFS is
accounted for the performance measurements. Graph500 ranks the execution of a ma-
chine through a metric called Traversed Edges Per Second (TEPS), calculated as the
division of the number of edges traversed in the graph by the execution time of the
BFS. An in-depth characterization of the benchmark and its communications can be
found in the works of Suzumura et al. [136] and Anghel et al. [14, 15]. Beamer et al.
characterize the memory requirements and locality of the benchmark in [19], but they
do not study the impact of the network and its utilization.

The benchmark includes three implementations of the BFS algorithm, plus a tem-
plate to define alternative versions of the algorithm. Several authors have proposed
efficient and scalable shared memory implementations of BFS on commodity mul-
ticore processors. Agarwal et al. present in [9] a multi-core implementation with
several optimizations. Beamer, Asanovic and Patterson develop in [18] a hybrid ap-
proach combining a conventional top-down algorithm along with a bottom-up one. The
bottom-up algorithm reduces the number of edges visited and accelerates the search as
a whole. This approach is advantageous for low-diameter graphs.

Alternative implementations have also been introduced to exploit architectures with
hardware accelerators and custom hardware. Hong et al. [73] present a hybrid method
which dynamically decides the best execution method for each BFS-level iteration,
shifting between sequential execution, multi-core CPU-only execution, and GPUs.
Tao, Yutong and Guang [139] develop two different approaches to improve the per-
formance of BFS algorithm on an Intel Xeon Phi coprocessor. Checconi et al. [38]
describe a family of highly-efficient Breadth-First Search (BFS) algorithms optimized
for their execution on IBM Blue Gene/P and Blue Gene/Q supercomputers. Alterna-
tively, Buluç and Madduri [31] conducted a performance evaluation of a distributed
BFS using 1D and 2D partitioning on Cray XE6 and XT4 systems.

6.2 Network topologies and routing mechanisms

The design of large-radix routers has been studied in multiple works, such as [92, 11,
117]. Large-radix routers allow interconnection networks to scale to a large number of



6.3. Throughput unfairness 157

nodes retaining full bisection bandwidth. They are assumed to optimally exploit the
available pin bandwidth of current chips. Many highly-scalable low-diameter network
topologies have been proposed based on high-radix routers. Some well-known ex-
amples are 2D or 3D Flattened-Butterflies (FB, [90, 10]), diameter-3 Dragonflies [91],
and diameter-2 Slim Flies (SF, [24]), Orthogonal Fat Trees (OFT, [142]) and Projective
Networks (PN, [32]). Low-diameter networks present low average distance between
nodes and permit to reduce latency, cost and energy consumption, while achieving high
scalability.

Minimal routing in these networks proves insufficient when adversarial traffic loads
are considered, leading to high congestion and poor performance. Adversarial patterns
of many of these networks are studied in [91, 84]. Valiant routing [143] avoids network
hotspots by sending all packets minimally to a random intermediate router, and then
minimally to destination. The impact of using an intermediate group in the Dragonfly,
instead of an intermediate router, was evaluated in [122].

Adaptive routing has been used in multiple interconnection networks to exploit
their path diversity [28, 27, 89, 130]. Nonminimal adaptive routing allows for the
selection of minimal or nonminimal paths, in terms of their cost. Different variants
of nonminimal adaptive routing have been proposed for multiple network topologies,
such as Flattened Butterflies [90, 10] or Dragonflies [91, 82, 63]. This work only con-
siders a single class of traffic that can be routed minimally or nonminimally depending
only on the status of the network links. In a real system this would typically not hap-
pen because not all traffic can be sent adaptively: in Cascade [56] minimal routing is
used for packets that need to preserve in-order delivery, and in PERCS [16] it is the
programmer who decides whether MIN or VAL is employed.

Universal Globally-Adaptive Load-balanced routing (UGAL, [134]) selects at in-
jection between a minimal and a Valiant path, based on their respective buffer occu-
pancy. Buffer occupancy within the router is insufficient when congestion occurs in
links not directly connected to the source router; this happens for example in Drag-
onflies, in which global inter-group links are more prone to congestion, but the global
link to be used by a packet is often connected to a neighbor router in the source group.
PiggyBack (PB, [91]) employs a variant of Explicit Congestion Notifications (ECN) to
propagate the occupancy status of the queues within every group. In-transit adaptive
routing mechanisms re-evaluate the routing decision in some hops of the path; Pro-
gressive Adaptive Routing (PAR, [82]) may switch from MIN to VAL after a minimal
hop. Opportunistic Local Misrouting (OLM, [64]) can resort to VAL paths at injection,
after a minimal local hop in the source group, and in the intermediate group.

6.3 Throughput unfairness

A previous analysis of the performance impact due to throughput unfairness and its
mitigation through the global misrouting policy has been presented in [60].

End-to-end congestion control mechanisms such as TCP [13] typically also deal
with fairness, in particular with an Additive-Increase, Multiplicative Decrease (AIMD)



158 Chapter 6. Related Work

policy. However, fairness is provided only between flows which compete for some
given link in their paths. Adaptive nonminimal routing mechanisms typically em-
ployed in dragonflies are not suited for such congestion control policies, since packets
from each flow follow different paths.

Explicit fairness mechanisms include age-based arbitration [5] and SAT [77]. Age-
based arbitration employs a modified allocator which considers the age of the packets
for arbitration. Tracking packet age is quite costly, and multiple implementations in the
Network-on-Chip environment try to mimic its performance with lower cost [97, 98,
106]. SAT restricts injection when some nodes are starving and cannot inject at their
desired rate. To do so, SAT relies on a circulating signal. When some node starves, it
holds the SAT signal, what eventually slows down other nodes which are waiting for
the periodic message. As far as the authors know, SAT has not been applied before in
Dragonfly networks.

The ADVc traffic pattern described and used for the evaluation in Chapter 3 can
correspond to a real case of execution where applications with uniform traffic loads
are assigned a set of consecutive groups in a Dragonfly network. Some approaches
to prevent this assignation have been discussed in Section 3.1.3.1, modifying the job
scheduler [3] or increasing network wiring between every pair of groups (called trunk-
ing). Another option is to alter the topology itself to avoid ADVc traffic; arranging
the global links randomly has been considered before in [33]. Such mechanism would
however randomize output nodes for a given subset of the network, but would not
guarantee the absence of ADVc or similar traffic patterns.

6.4 Congestion detection and contention counters

Nonminimal adaptive routing mechanisms usually employ a misrouting trigger (the
mechanism used to select between minimal or nonminimal routing) that relies on a
congestion detection scheme based on buffer occupancy [89, 90, 10, 91, 82, 63]. This
presents a problem of oscillations that has been known for a long time [86, 148].

Congestion detection mechanisms in WAN and lossy networks have been typically
indirect, based on collisions, packet drops or jitter [78, 30, 113]. Random Early De-
tection (RED, [58]) mechanisms analyze the buffer occupancy to determine the con-
gestion status. When routers detect congestion, the sources can be notified indirectly
(i.e., by dropping packets) or explicitly (ECN: Explicit Congestion Notification). ECN
is used in many technologies, such as the FECN and BECN messages in Frame Re-
lay, the EFCI bit in ATM cells, the ECN bits in IP [125], the Quantized Congestion
Notification in Datacenter Ethernet (802.1Qau) [74] or the congestion control in In-
finiband [66]. All of these mechanisms rely, ultimately, in the buffer occupancy to
determine the congestion status.

Most congestion-control implementations react by throttling injection [96, 78]. Fo-
cusing on HPC and Datacenter networks, the Datacenter TCP protocol [12] uses the
IP ECN bits to restrict the transmission window of the sources, relying on an estima-
tion of the amount of congestion. There exist alternative mechanisms that use adaptive



6.4. Congestion detection and contention counters 159

routing to circumvent congested network areas. Such routing was proposed for loss-
less Datacenter Ethernet networks in [108], while PiggyBack and Credit Round-Trip
Time (PB and CRT, [82]) behave as ECN mechanisms to support adaptive source rout-
ing in Dragonfly networks. Alternative mechanisms to cope with congestion such as
RECN [54] alleviate the impact of congestion by using separate buffers for congested
traffic, but require additional hardware in the router logic.

In-network congestion in Dragonflies is typically employed to drive adaptive rout-
ing [91, 82, 64]. Nonminimal routing is employed in such case to avoid congested
areas, and throughput is typically reduced in half due to the use of Valiant routing.
In [82], Jiang et al. propose two source-based adaptive routing mechanisms for Drag-
onflies in addition to the PB routing whose limitations have been analyzed in Chap-
ter 3. These two proposals, Credit Round Trip (CRT) and Reservation (RES) routing,
are outperformed by PB on steady-state latency evaluations and have not been consid-
ered in this work. End-point congestion, described at the beginning of Section 1.4.2.2,
requires different handling. In [80] and [81] the authors propose several reservation
mechanism for dragonflies, which avoid congestion by pre-reserving bandwidth for
each flow. Alternative proposals include the use of dynamically allocated side-buffers
in the network switches [54]. In [151], Won et al. propose the use of a history window
to avoid the uncertainty in credit-based congestion detection with saturation in remote
network routers.

Contention indicators have been employed to drive routing in alternative contexts.
Elwhishi et al. introduce their use in the context of shared-medium mobile wireless
networks [55]. In the context of mesh-based networks-on-chip, Regional Congestion
Awareness (RCA) [67] explores the use of contention information for minimal adap-
tive routing. It shows that contention information can be effectively employed to select
between different minimal paths. RCA relies on the evolution of crossbar demand (i.e.
allocator requests) for the output ports, whereas the contention counters proposed in
Chapter 4 track the minimal output port of each packet, regardless of its actual fol-
lowed path. Although both mechanisms could be similar under uniform traffic, their
behaviour could differ with adversarial traffic: crossbar demand could oscillate be-
tween alternative paths, whereas contention counters not. In the same context, Chang
et al. [36] consider the rate of change in the buffer levels to predict congestion, what
avoids uncertainty issues with small buffers. In the context of interconnection net-
works, Dynamic Routing Control [118] employs a set of counters to track the number
of packets targeting a certain destination to detect hotspots in Omega networks. Based
on these counters, it prioritizes traffic flows aiming non-hotspot destinations. How-
ever, it does not employ adaptive routing (Omega networks do not have path diversity)
and the size of the counters is related to the depth of the buffers since all packets are
counted. Finally, Contention-Based Congestion Management (CBCM, [87]) applies
the use of contention information and remote notifications to detect and overcome
endpoint congestion. CBCM is based on the concept of the Explicit Contention Noti-
fication (ECtN) mechanism introduced in this work in Section 4.2.1.4, and extends it
to the detection of endpoint congestion.



160 Chapter 6. Related Work

6.5 Deadlock avoidance

In [52], Duato defines the existence of an acyclic channel dependency graph as a suf-
ficient condition to guarantee deadlock-free networks employing adaptive routing and
wormhole switching; furthermore, deadlock-freedom can be achieved as long as there
exists a routing subfunction with a subset of the channels that is connected and com-
plies the first condition. This theorem can be identically applied [53] to Virtual Cut-
Through switching with lower restrictions, since the extended dependencies are sim-
pler and restricted to buffers.

The most widespread mechanism proposed for deadlock avoidance in low-diameter
networks relies on a fixed order in the use of virtual channels (VCs). Seminal works on
distance-based deadlock avoidance in store-and-forward networks were introduced by
Günther [69] and Gopal [65]. Several current systems employ such mechanisms (or a
variation of them), such as IBM PERCS [16] or Cray Cascade [56], and have been ex-
tended to commodity InfiniBand [129]. In these proposals, the amount of required VCs
increases with the maximum path length. Therefore, supporting nonminimal paths, in-
transit adaptive routing, multiple QoS traffic classes and avoiding protocol deadlock
significantly increases buffer requirements (e.g., the Dragonfly network in Cray Cas-
cade requires 8 VCs to support nonminimal routing and avoid protocol deadlock [56]).

Opportunistic Local Misrouting (OLM, [64]) violates the base order of increasing
VC index only for certain local hops in Dragonflies. However, compared to the FlexVC
proposal in Chapter 5 it does not fully exploit the available VCs to reduce HoLB, does
not consider protocol-deadlock and is not exploited to simplify buffer management.

Distance-based deadlock avoidance allows to deal separately with deadlock avoid-
ance and routing. However, this mechanism is not supported in all network technolo-
gies. For example, Infiniband switches select the output VC (denoted Virtual Lane,
VL) based on the input and output ports and the packet service level (which does not
change during the path). For this reason, most routing mechanisms in Infiniband (such
as LASH [135], SSSP [72] and DF-SSSP [50]) assign a single VC to a complete path
from source to destination. These routing protocols typically calculate sets of paths
with a reduced amount of cyclic dependencies, so that the VL assignment phase result
fits in a low amount of VLs. NUE routing [49] provides better results by combining
path computing and VL assignment in a single calculation, but still assigns VLs to
complete paths. Schneider et al extend distance-based deadlock avoidance to Infini-
band in [129], but still determine a single fixed output VC per packet.

Protocol deadlock can occur when the arrival of certain packets triggers the gener-
ation of another packet in response; a cyclic dependency between both traffic classes
results in deadlock if they share the same network resources. The typical mechanism
employed to avoid protocol deadlock in lossless networks relies on two virtual net-
works, one for requests and other for replies (e.g., as implemented in Alpha 21364),
what doubles the buffering requirements. In [147], Wang et al. introduce a bubble-
based deadlock avoidance protocol for on-chip networks which does not employ sep-
arate networks. Instead, their mechanism shares router buffers but employs a separate



6.6. Buffer sizing and organization 161

bubble for each type of message. The FlexVC mechanism in Chapter 5 similarly avoids
a strict separation in different virtual networks, but ensures that replies have exclusive
buffers to avoid deadlock.

6.6 Buffer sizing and organization

Current ASICs are constrained to use limited buffers [130], making them one of the
most critical areas in the router design. Shared buffer structures as the DAMQs [138]
described in Chapter 1 try to improve the utilization of the available space and over-
come some of the limitations of statically partitioned buffers, hence its widespread use
(e.g. in the SCOC design [41] and the Tianhe-2 network switches [100]).

Statically partitioned FIFO buffers are typically implemented through circular buffers
using SRAM [140]. DAMQs also rely on SRAM to store data, but need a control
structure to share a single buffer across multiple queues. This can be done using linked
lists [138], devoting some of the buffer space to store the pointers for the lists. The
associated buffer overhead is small but not negligible: for a 4KB DAMQ with 8-byte
phits (512 phits per DAMQ), pointers need to be 9 bits long and the overhead is roughly
576 bytes, a 14% increase. Choi et al.[40] minimize this overhead by considering per-
packet pointers; for this case of 8-phit packets, the overhead shrinks to 1.6%, but the
flexibility of the buffer for variable packet sizes is reduced.

Shared buffer organizations present also a penalty in access latency, due to the
indirections required in the linked lists. The implementation in [59] adds three cycles
to read or write access latency. Choi et al. measure in [40] slowdowns in packet
access time ranging 59-77% for different DAMQ implementations. This work has not
evaluated the impact of this penalty on the performance of the DAMQ configurations,
constituting an optimistic scenario for shared buffer structures.

Alternative control structures have been employed for the implementation of shared
buffers with multiple VCs per port, such as self-compacting buffers [115] or Fully-
connected circular buffers [110]. Alternative designs allow for a variable number of
VCs, what helps reduce HoLB particularly under adaptive routing [40, 111]. These
dynamically allocated buffers present two main drawbacks: a more complex design
that leads to increases in area, power and delay; and a pathological case of congestion
when a single VC occupies the complete buffer space, as studied in Section 5.3.1.
The second effect can be partially avoided in an implementation with reserved space
per VC, such as those presented in [101, 156]; such approach has been employed
in the Tianhe-2 network switch [100]. Alternative approaches suggest to extend flow
control to detect such congestion and regulate buffer usage [21, 155], but increase
buffer complexity even further.

This work has considered a small buffer size sufficient to cover the link round-
trip latency and permit lossless flow control. However, larger buffers are typically
implemented to properly deal with congestion bursts of traffic. Yébenes et al. [153]
reduce HoLB in Dragonflies by implementing multiple buffers per VC. This multiplies
the complexity and buffer requirements, whereas the FlexVC mechanism proposed in



162 Chapter 6. Related Work

Chapter 5 produces a similar outcome by only exploiting the buffers already available
for longer paths.



Chapter 7

Conclusions and future work

This work has focused in VCT system networks not only considering the traditional
HPC workloads, which are mainly constrained by latency, but also BigData applica-
tions. To evaluate the performance with the latter, a synthetic traffic model of the
communications in the Graph500 benchmark has been developed. This traffic model
has allowed to observe that BigData workloads are more constrained by the network
throughput than the average latency. Consequently, the maximum throughput in a
Dragonfly network has been analyzed, considering the throughput fairness of the sys-
tem and identifying pathological starvation effects. Implicit and explicit fairness mech-
anisms have been exploited to mitigate these starvation effects.

Regarding network design, two mechanisms have been proposed, the use of con-
tention counters and FlexVC. In these kind of networks with nonminimal adaptive
routing, they allow to diminish the size of the buffers, decoupling them from the rout-
ing decision and using them more efficiently. Relaxing the buffer restrictions results in
lower implementation costs and provides better performance.

7.1 Conclusions

This work makes an extensive analysis of high radix-based, low-diameter networks
aimed for Exascale systems. It starts by providing a synthetic traffic model of the com-
munications of the Graph500 benchmark. This benchmark reproduces the behavior of
BigData applications, which is more constrained by the memory and the network than
traditional HPC workloads. The model introduced in this work permits to evaluate
the impact of different network designs under a network-intensive workload without
resorting to more time-consuming and non-scalable alternatives such as whole system
or trace-driven simulations. As far as this author knows, it is the first synthetic traffic
model of these characteristics to be proposed. To develop the model, an in-depth anal-
ysis of the benchmark communications has been performed. The analysis observes the
asynchronous nature and spatial uniformity of the messages, and evaluates the impact
of message aggregation on the overall performance. Communications have a staged
structure with almost temporal message uniformity within each stage. The model pre-

163



164 Chapter 7. Conclusions and future work

dicts the number of messages for each stage and network node, receiving only the size
of the graph and an estimation of the computing capabilities of the network nodes.

Results from the execution of the traffic model in a Dragonfly network evince a
range of situations in which the interconnection is the performance bottleneck in the
benchmark execution. The impact of the network is tightly linked to the routing mech-
anism and the number and distribution of processes assigned to the model execution in
the simulator. Although as a whole the workload resembles a random uniform pattern,
the execution over a subset of network nodes steers the behavior towards adversarial
traffic scenarios.

One of the evaluated scenarios presents performance degradation due to through-
put unfairness. Throughput unfairness occurs when the network nodes are assigned
different ratios of resources, even reaching node starvation. To analyze the fairness of
the network, a novel adversarial-consecutive (ADVc) pattern is used. ADVc induces
throughput unfairness in a Dragonfly network when combined with an adaptive rout-
ing mechanism. The analysis evaluates the impact of in-transit traffic over injection
priority, the global misrouting policy for adaptive routing, and the arbitration policy.

In-transit adaptive routing with the MM policy achieves the best overall perfor-
mance. However, under ADVc traffic the in-transit traffic priority prevents the injec-
tion from nodes attached to the bottleneck router which connects to the destination
groups, leading to a pathological case of starvation. The PB implementation used for
source-adaptive routing presents an inherent incapability to detect the ADVc pattern as
adversarial at injection. Removing the priority dismisses the implicit throttle injection
and reduces performance even further. Furthermore, priority removal is insufficient
to fully avoid unfairness under ADVc traffic. An explicit fairness mechanism such
as the use of age-based arbitration achieves good performance and complete fairness
with in-transit adaptive routing, at the expense of a more complex arbitration policy
that leads to higher implementation costs. The rest of the work adheres to the simpler
round-robin policy for the crossbar allocation without prioritizing in-transit traffic over
new injections.

One of the sources of the unfairness in said scenarios is a tight dependence of the
misrouting decision with the buffer size and its utilization. The misrouting decision,
which selects between a minimal and a nonminimal path in adaptive routing mecha-
nisms, typically relies in a congestion metric such as the number of available slots in
the neighbor routers. Congestion-based misrouting decisions suffer from a series of
shortcomings, such as a strong dependency on the buffer size, oscillations in routing,
and a slow adaption to changes in the traffic pattern. The dependency on the buffer
size translates into deeper buffers needed to achieve fine granularity in the congestion
detection. However, greater buffer sizes slow the adaption to traffic changes, incur-
ring in a latency penalty to fill up or empty the buffer past the threshold to update the
misrouting decision. Additionally, using nonminimal paths allows the buffers in the
minimal route to drain, introducing a loop in the misrouting decision which provokes
misrouting oscillations.

Using a contention-based misrouting decision avoids these limitations and detects



7.1. Conclusions 165

the cause of the congestion (contention for the same resources) rather than its out-
come (full buffers). The use of a contention metric is proposed, with a counter per
output port tracking the demand from head-of-buffer packets at the input ports. These
counters only consider the output in the minimal path of a packet, in order to identify
the communication pattern. Four different implementations with in-transit adaptive
routing are considered; all have a fast adaption to traffic changes, avoid routing oscil-
lations and are competitive in performance. Overall, the hybrid and ECtN variants are
the most enticing because they outperform the credit-based in-transit adaptive routing
mechanism while averting its drawbacks, although they entail a higher implementation
cost: hybrid combines the contention statistics with credit-based congestion informa-
tion, and ECtN broadcasts contention statistics for the global links within each group.

In low-diameter networks deadlock is typically prevented through distance-based
deadlock avoidance, relying on the use of virtual channels (VCs) with a separate buffer
for each VC at every input port, and following an ever-increasing VC index for every
hop of a packet path. Distance-based deadlock avoidance mechanisms prevent an effi-
cient utilization of the buffers and incur in Head-of-Line Blocking (HoLB). Moreover,
they couple the number of required buffers per port with the length of the longest non-
minimal path, hindering the scalability of the network. The share of memory across the
VCs within the port (e.g., through the use of a Dynamically Allocated Multi-Queue,
DAMQ) theoretically overcomes those limitations, in exchange for higher implemen-
tation costs and access delays. However, they require a significant amount of memory
to be assigned statically in small diameter networks, partially negating their benefits.

This work introduces a novel VC management called FlexVC, which relaxes VC
usage restrictions and relies only on statically partitioned buffers and opportunistic
routing. The core idea behind FlexVC is that for a path to be deadlock free it is suf-
ficient that an increasing VC-index sequence towards the destination exists, although
it does not need to be followed. Instead, lower VC indices can be used for every hop,
and additional VCs can be used to further mitigate HoLB and increase performance.
FlexVC is particularly useful when deadlock avoidance is accounted for under traf-
fic with request-reply dependencies, since it can reuse the VCs from the petitions for
the requests. FlexVC achieves significant improvements in throughput with oblivious
routing, without suffering latency penalties, particularly with request-reply traffic. Re-
sults evidence that it is more useful to perform opportunistic misrouting and assign
additional VCs to both request and reply subpaths rather than reserving them to en-
sure longer safe paths. VC reuse complicates the implicit identification of adversarial
traffic that the baseline source-adaptive routing performs. To regain this capability, an
additional set of counters can be used to account separately those packets that are trav-
eling minimally. When combined with a per-port sensing strategy, it allows FlexVC
to outperform the base source-adaptive mechanism while demanding 25% less buffer
resources. Per-port sensing is insufficient to achieve good performance with FlexVC
combined with in-transit adaptive routing. Resorting to a contention-based misrouting
decision like the use of contention counters permits to FlexVC to be competitive with
in-transit adaptive routing while halving the number of buffers needed at each port.



166 Chapter 7. Conclusions and future work

7.2 Future work

Future lines of research contemplate the use of FlexVC and contention counters in
other topologies, where the benefits of a more flexible use of the VCs can be equally
useful. Furthermore, in networks without link restrictions the potential savings in the
number of resources required can be higher, because the VCs are not grouped into
disjoint sets.

Other topics that will be pursued are the application of contention-based misrouting
decisions to employ speculative flow control [107] with adaptive routing. The use
of speculative flow control allows to diminish the size of the buffers, relying on the
retransmission of discarded packets; however, less shallow buffers are detrimental for
a credit-based misrouting decision. The metric based on contention counters that has
been proposed in this thesis overcomes that limitation and could exploit speculative
flow control, reducing the router area devoted to buffers.

The base implementation of contention counters can also be combined with in-
jection throttling to prevent endpoint congestion. In a case of endpoint congestion,
exploiting path diversity through adaptive routing only spreads the congestion to the
network and can reduce the performance. The use of contention counters has opened
a line of researched pursued by Kim et al. in [87]; our mechanism could simplify
their proposal while still being able to prevent endpoint congestion from saturating the
network links.

It is also intended to evaluate the performance of other network topologies pro-
posed for Exascale system interconnects, such as the SlimFly [24] or Projective Net-
works [32], through the synthetic traffic model of the Graph500 benchmark. In the
long term, the impact of other fairness mechanisms in Dragonfly networks may also
be explored.

7.3 Publications

During the development of this thesis a significant collaboration has been established
with the IBM Zurich Resarch Laboratory in Rüschlikon, Switzerland. This collabora-
tion has allowed the author to perform two internships, from September 6th 2012 until
July 31st 2013 (11 months), and from September 1st 2015 until November 30th 2015
(3 months).

The research included in this thesis has lead to a number of publications. A prelim-
inary version of the Graph500 synthetic traffic model has been published in [3] and is
the first model for Graph500 traffic as far as we know. An extended version has been
submitted to a special issue of the Journal of Concurrency and Computation: Practice
and Experience [1]. The analysis of the benchmark communications conducted prior
to the model development was first presented in [7], where the impact of message
aggregation was first brought to light.

An earlier analysis of the unfairness issues in Dragonflies discussed in Chapter 3
has been presented in [5], without evaluating any effective solution to the causes of the



7.3. Publications 167

unfairness problem. A more compact version of the evaluation in this work has been
published in [4].

The core idea behind the use of contention counters and the variants described in
Chapter 4 (minus the filtered implementation) have been introduced in [6]; an early
evaluation was presented in [8]. A paper describing the FlexVC mechanism and evalu-
ating its performance with oblivious and PB routing has been accepted for publication
in [2].

[1] P. Fuentes, M. Benito, E. Vallejo, J. L. Bosque, R. Beivide, A. Anghel, G. Rodrı́guez,
M. Gusat, C. Minkenberg, and M. Valero, “A scalable synthetic traffic model of
Graph500 for computer networks analysis,” Submitted for publication in Concur-
rency and Computation: Practice and Experience (CCPE), 2017.

[2] P. Fuentes, E. Vallejo, R. Beivide, C. Minkenberg, and M. Valero, “FlexVC: Flex-
ible virtual channel management in low-diameter networks,” in Parallel and Dis-
tributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 2017.

[3] P. Fuentes, E. Vallejo, J. L. Bosque, R. Beivide, A. Anghel, G. Rodrı́guez, M. Gusat,
and C. Minkenberg, “Synthetic traffic model of the Graph500 communications,”
in Proceedings of the 16th International Conference on Algorithms and Architec-
tures for Parallel Processing (ICA3PP), 2016.

[4] P. Fuentes, E. Vallejo, C. Camarero, R. Beivide, and M. Valero, “Network unfair-
ness in Dragonfly topologies,” The Journal of Supercomputing, pp. 1–29, 2016.

[5] ——, “Throughput unfairness in Dragonfly networks under realistic traffic pat-
terns,” in 1st IEEE International Workshop on High-Performance Interconnec-
tion Networks Towards the Exascale and Big-Data Era (HiPINEB), Sept 2015,
pp. 801–808.

[6] P. Fuentes, E. Vallejo, M. Garcı́a, R. Beivide, G. Rodrı́guez, C. Minkenberg, and
M. Valero, “Contention-based nonminimal adaptive routing in high-radix net-
works,” in Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International. IEEE, 2015, pp. 103–112.

[7] P. Fuentes, J. L. Bosque, R. Beivide, M. Valero, and C. Minkenberg, “Character-
izing the communication demands of the Graph500 benchmark on a commodity
cluster,” in Proceedings of the 2014 IEEE/ACM Int. Symposium on Big Data
Computing, pp. 83–89.

[8] P. Fuentes, E. Vallejo, M. Garcia, and R. Beivide, “On the use of contention in-
formation for adaptive routing,” Tenth International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and Embedded
Systems (ACACES 2014), vol. 0, pp. 243–246, 2014.



168 Chapter 7. Conclusions and future work

Out of the scope of this work, but performed in the same interval, is the collabora-
tion in a proposal for an optical switch for data-intensive computing [10], a comparison
of interconnection networks for HPC [11] and two evaluations of different mechanisms
for better teaching activities, one submitted for publication [9] and another published
in [12].

[9] E. Vallejo, P. Fuentes, and M. Benito, “Aprendizaje autónomo del estudiante
apoyado en recursos audiovisuales en el contexto de un Grado de Ingenierı́a In-
formática: experiencias con metodologı́as de enseñanza activas,” Submitted for
publication in Congreso Nacional de Innovación Educativa y de Docencia en Red
(IN-RED), 2017.

[10] L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini,
C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized
optical network for data-intensive computing,” IEEE Micro, vol. 34, no. 5, pp.
52–63, Sept 2014.

[11] P. Fuentes, E. Vallejo, C. Martinez, M. Garcia, and R. Beivide, “Comparison
study of scalable and cost-effective interconnection networks for HPC,” 2012 41st
International Conference on Parallel Processing Workshops, vol. 0, pp. 594–595,
2012.

[12] P. Fuentes, C. Martınez, E. Vallejo, E. Stafford, and J. L. Bosque, “Plataforma
web para retroalimentación automática en la docencia de ensamblador,” in XXIII
Jornadas de Paralelismo (JP2012), 2012.



Bibliography

[1] “Sun datacenter switch 3456 architecture white paper,” Nobember 2007.

[2] “Graph500 benchmark,” May 2016. [Online]. Available: http://www.graph500.
org/

[3] A. H. Abdel-Gawad, M. Thottethodi, and A. Bhatele, “RAHTM: Routing
algorithm aware hierarchical task mapping,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 325–335.
[Online]. Available: https://doi.org/10.1109/SC.2014.32

[4] F. Abel, C. Minkenberg, R. P. Luijten, M. Gusat, and I. Iliadis, “A four-terabit
packet switch supporting long round-trip times,” IEEE Micro, vol. 23, no. 1, pp.
10–24, Jan 2003.

[5] D. Abts and D. Weisser, “Age-based packet arbitration in large-radix k-ary n-
cubes,” in Supercomputing, 2007. SC ’07. Proceedings of the 2007 ACM/IEEE
Conference on, Nov 2007, pp. 1–11.

[6] D. Abts, “Cray XT4 and Seastar 3-D torus interconnect,” in Encyclopedia of
Parallel Computing. Springer, 2011, pp. 470–477.

[7] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa,
P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken, M. Tsao, and
P. Vranas, “Blue Gene/L torus interconnection network,” IBM Journal of Re-
search and Development, vol. 49, no. 2.3, pp. 265 –276, march 2005.

[8] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha, “GARNET: A detailed on-
chip network model inside a full-system simulator,” in 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, April 2009, pp.
33–42.

[9] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.46

169

http://www.graph500.org/
http://www.graph500.org/
https://doi.org/10.1109/SC.2014.32
http://dx.doi.org/10.1109/SC.2010.46


170 Bibliography

[10] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hy-
perX: Topology, routing, and packaging of efficient large-scale networks,” in
SC ’09: Conf. on High Performance Computing Networking, Storage and Anal-
ysis, 2009, pp. 41:1–41:11.

[11] J. H. Ahn, Y. H. Son, and J. Kim, “Scalable high-radix router microarchitecture
using a network switch organization,” ACM Trans. Archit. Code Optim., vol. 10,
no. 3, pp. 17:1–17:25, Sep. 2008.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in ACM SIG-
COMM Conference, 2010, pp. 63–74.

[13] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control, RFC 5681,
Internet Engineering Task Force Std., September 2009.

[14] A. Anghel, G. Rodrı́guez, and B. Prisacari, “The importance and characteristics
of communication in high performance data analytics,” in Workload Character-
ization (IISWC), 2014 IEEE International Symposium on. IEEE, 2014, pp.
80–81.

[15] A. Anghel, G. Rodrı́guez, B. Prisacari, C. Minkenberg, and G. Dittmann,
“Quantifying communication in graph analytics,” in High Performance Com-
puting. Springer, 2015, pp. 472–487.

[16] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler,
J. Joyner, J. Lewis, J. Li et al., “The PERCS high-performance interconnect,” in
18th Symposium on High Performance Interconnects. IEEE, 2010, pp. 75–82.

[17] M. Badr and N. E. Jerger, “SynFull: Synthetic traffic models capturing cache co-
herent behaviour,” in 2014 ACM/IEEE 41st International Symposium on Com-
puter Architecture (ISCA), June 2014, pp. 109–120.

[18] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing breadth-
first search,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, ser. SC ’12, IEEE.
IEEE Computer Society Press, 2012, pp. 1–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389013

[19] ——, “Locality exists in graph processing: Workload characterization on an
Ivy Bridge server,” in Workload Characterization (IISWC), 2015 IEEE Interna-
tional Symposium on, Oct 2015, pp. 56–65.

[20] D. U. Becker and W. J. Dally, “Allocator implementations for network-on-chip
routers,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, Nov 2009, pp. 1–12.

http://dl.acm.org/citation.cfm?id=2388996.2389013


Bibliography 171

[21] D. U. Becker, “Adaptive backpressure: Efficient buffer management for on-chip
networks,” in Intl Conf. on Computer Design. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 419–426.

[22] M. Benito, E. Vallejo, and R. Beivide, “On the use of commodity Ethernet tech-
nology in exascale HPC systems,” in 2015 IEEE 22nd International Conference
on High Performance Computing (HiPC), Dec 2015, pp. 254–263.

[23] M. Benito, E. Vallejo, R. Beivide, and C. Izu, “Extending commodity Open-
Flow switches for large-scale HPC deployments,” in 3rd IEEE International
Workshop on High-Performance Interconnection Networks Towards the Exas-
cale and Big-Data Era (HiPINEB), 2017.

[24] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter network
topology,” in Int. Conf. High Performance Computing, Networking, Storage and
Analysis. Piscataway, NJ, USA: IEEE Press, 2014, pp. 348–359.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 simulator,” SIGARCH Com-
put. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[26] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer,
K. D. Underwood, and R. C. Zak, “Intel R©Omni-Path architecture: Enabling
scalable, high performance fabrics,” in 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, Aug 2015, pp. 1–9.

[27] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger,
S. Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas, “Design and anal-
ysis of the BlueGene/L torus interconnection network,” IBM Research Report
RC23025 (W0312-022), vol. 3, 2003.

[28] R. V. Boppana and S. Chalasani, “A comparison of adaptive wormhole routing
algorithms,” in ISCA ’93: 20th International Symposium on Computer Archi-
tecture, 1993, pp. 351–360.

[29] S. Bradner and J. McQuaid, Request for Comments 2544: Benchmarking
Methodology for Network Interconnect Devices, Internet Engineering Task
Force, Network Working Group Std., 1999.

[30] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: new techniques
for congestion detection and avoidance,” in SIGCOMM ’94: Conf. on Commu-
nications architectures, protocols and applications. ACM, 1994, pp. 24–35.

[31] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proceedings of 2011 International Conference for High



172 Bibliography

Performance Computing, Networking, Storage and Analysis. ACM, 2011,
p. 65. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063471

[32] C. Camarero, C. Martı́nez, E. Vallejo, and R. Beivide, “Projective networks:
Topologies for large parallel computer systems,” IEEE Transactions on Parallel
and Distributed Systems (To appear), 2016.

[33] C. Camarero, E. Vallejo, and R. Beivide, “Topological characterization of Ham-
ming and Dragonfly networks and its implications on routing,” ACM Trans. Ar-
chit. Code Optim., vol. 11, no. 4, pp. 39:1–39:25, 2014.

[34] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for
graph mining,” in Proceedings of the 2004 SIAM International Conference on
Data Mining, pp. 442–446.

[35] J. Chambers and T. Hastie, Statistical Models in S. Wadsworth & Brooks/Cole,
1992.

[36] E.-J. Chang, H.-K. Hsin, S.-Y. Lin, and A.-Y. Wu, “Path-congestion-aware adap-
tive routing with a contention prediction scheme for network-on-chip systems,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 33, no. 1, pp. 113–126, 2014.

[37] K.-Y. K. Chang, S.-T. Chuang, N. McKeown, and M. Horowitz, “A 50 gb/s
32/spl times/32 CMOS crossbar chip using asymmetric serial links,” in 1999
Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326),
June 1999, pp. 19–22.

[38] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for
graph exploration on distributed-memory machines,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for. IEEE Computer Society Press, 2012, pp. 1–12. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389014

[39] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V. Sala-
pura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The IBM Blue
Gene/Q interconnection network and message unit,” in SC: Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–10.

[40] Y. Choi and T. M. Pinkston, “Evaluation of queue designs for true fully adaptive
routers,” J. Parallel Distrib. Comput., vol. 64, no. 5, pp. 606–616, May 2004.

[41] N. Chrysos, C. Minkenberg, M. Rudquist, C. Basso, and B. Vanderpool,
“SCOC: High-radix switches made of bufferless Clos networks,” in Intl Symp.
on High Performance Computer Architecture, 2015, pp. 402–414.

http://doi.acm.org/10.1145/2063384.2063471
http://dl.acm.org/citation.cfm?id=2388996.2389014


Bibliography 173

[42] C. Clos, “A study of non-blocking switching networks,” Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, 1953. [Online]. Available:
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x

[43] W. Dally, “Performance analysis of k-ary n-cube interconnection networks,”
IEEE Transactions on Computers, vol. 39, no. 6, pp. 775–785, Jun 1990.

[44] ——, “Virtual-channel flow control,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 3, no. 2, pp. 194 –205, mar 1992.

[45] W. Dally and C. Seitz, “Deadlock-free message routing in multiprocessor inter-
connection networks,” Computers, IEEE Transactions on, vol. 100, no. 5, pp.
547–553, 1987.

[46] W. Dally and B. Towles, Principles and practices of interconnection networks.
Morgan Kaufmann, 2004.

[47] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online].
Available: http://doi.acm.org/10.1145/1327452.1327492

[48] S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, and F. W. Atos, “The
BXI interconnect architecture,” in 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects, Aug 2015, pp. 18–25.

[49] J. Domke, T. Hoefler, and S. Matsuoka, “Routing on the dependency graph:
A new approach to deadlock-free high-performance routing,” in Symposium on
High-Performance Parallel and Distributed Computing (HPDC’16), Jun. 2016.

[50] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivious routing for
arbitrary topologies,” in Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, May 2011, pp. 616–627.

[51] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003. [Online]. Available:
http://dx.doi.org/10.1002/cpe.728

[52] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole net-
works,” Parallel and Distributed Systems, IEEE Transactions on, vol. 4, no. 12,
pp. 1320 –1331, dec 1993.

[53] ——, “A necessary and sufficient condition for deadlock-free routing in cut-
through and store-and-forward networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 8, pp. 841–854, Aug 1996.

http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1002/cpe.728


174 Bibliography

[54] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo, “A
new scalable and cost-effective congestion management strategy for lossless
multistage interconnection networks,” in HPCA-11: Intl. Symp. on High-
Performance Computer Architecture., 2005, pp. 108–119.

[55] A. Elwhishi, P.-H. Ho, K. Naik, and B. Shihada, “Self-adaptive contention aware
routing protocol for intermittently connected mobile networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 7, pp. 1422–1435, Jul. 2013.

[56] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. John-
son, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: a scalable HPC
system based on a Dragonfly network,” in SC: Intl Conf on High Performance
Computing, Networking, Storage and Analysis, 2012, pp. 103:1–103:9.

[57] J. Flich and D. Bertozzi, Designing network on-chip architectures in the
nanoscale era. Chapman and Hall/CRC, 2010.

[58] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993.

[59] G. L. Frazier and Y. Tamir, “The design and implementation of a multiqueue
buffer for VLSI communication switches,” in Intl Conference on Computer De-
sign, Oct 1989, pp. 466–471.

[60] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero,
J. Labarta, and G. Rodrı́guez, “Global misrouting policies in two-level hier-
archical networks,” in INA-OCMC: Workshop on Interconnection Network Ar-
chitecture: On-Chip, Multi-Chip, 2013, pp. 13–16.

[61] M. Garcı́a, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide. (2014)
FOGSim interconnection network simulator. University of Cantabria. [Online].
Available: http://fuentesp.github.io/fogsim/

[62] M. Garcı́a, E. Vallejo, R. Beivide, C. Camarero, M. Valero, G. Rodrı́guez,
and C. Minkenberg, “On-the-fly adaptive routing for Dragonfly interconnection
networks,” The Journal of Supercomputing, vol. 71, no. 3, pp. 1116–1142,
2015. [Online]. Available: http://dx.doi.org/10.1007/s11227-014-1357-9

[63] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero,
G. Rodrı́guez, J. Labarta, and C. Minkenberg, “On-the-fly adaptive routing in
high-radix hierarchical networks,” in The 41st International Conference on Par-
allel Processing (ICPP), 09 2012.

[64] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero, “Efficient rout-
ing mechanisms for Dragonfly networks,” in The 42nd International Conference
on Parallel Processing (ICPP), 10 2013.

http://fuentesp.github.io/fogsim/
http://dx.doi.org/10.1007/s11227-014-1357-9


Bibliography 175

[65] I. Gopal, “Interconnection networks for high-performance parallel computers,”
I. D. Scherson and A. S. Youssef, Eds. IEEE Computer Society Press, 1994,
ch. Prevention of Store-and-forward Deadlock in Computer Networks, pp. 338–
344.

[66] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne, L. Huse, and G. Shainer,
“First experiences with congestion control in InfiniBand hardware,” in IEEE
Intl. Symp. on Parallel Distributed Processing, 2010.

[67] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness for load
balance in networks-on-chip,” in HPCA’08: IEEE 14th Intl. Symp. on High
Performance Computer Architecture., 2008, pp. 203–214.

[68] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the R-MAT
random graph generator,” Networks, vol. 58, no. 3, pp. 159–170, 2011.

[69] K. Günther, “Prevention of deadlocks in packet-switched data transport sys-
tems,” Communications, IEEE Transactions on, vol. 29, no. 4, pp. 512 – 524,
apr 1981.

[70] M. G. Hluchyj and M. J. Karol, “Queueing in space-division packet switching,”
in IEEE Infocom, vol. 88, 1988, pp. 334–343.

[71] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling message-
dependent deadlock in parallel computer systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 14, no. 3, pp. 259–275, Mar. 2003.

[72] T. Hoefler, T. Schneider, and A. Lumsdaine, “Optimized routing for large-scale
InfiniBand networks,” in 2009 17th IEEE Symposium on High Performance In-
terconnects, Aug 2009, pp. 103–111.

[73] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph exploration
on multi-core CPU and GPU,” in Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on. IEEE Computer
Society, 2011, pp. 78–88, doi:10.1109/PACT.2011.14. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2011.14

[74] “IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged
Local Area Networks - Amendment: 10: Congestion Notification,” 802.1Qau,
IEEE Std., April 2010.

[75] I. Iliadis and W. E. Denzel, “Performance of packet switches with input and
output queueing,” in IEEE International Conference on Communications, In-
cluding Supercomm Technical Sessions, Apr 1990, pp. 747–753 vol.2.

[76] Infiniband architecture specification, InfiniBand Trade Association Std.,
November 2007.

http://dx.doi.org/10.1109/PACT.2011.14


176 Bibliography

[77] C. Izu and E. Vallejo, “Throughput fairness in indirect interconnection net-
works,” in 13th International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, ser. PDCAT ’12. IEEE Computer Society,
2012, pp. 233–238.

[78] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM ’88: Commu-
nications architectures and protocols. ACM, 1988, pp. 314–329.

[79] N. Jiang, J. Balfour, D. Becker, B. Towles, W. Dally, G. Michelogiannakis, and
J. Kim, “A detailed and flexible cycle-accurate network-on-chip simulator,” in
2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2013, pp. 86–96.

[80] N. Jiang, D. Becker, G. Michelogiannakis, and W. Dally, “Network congestion
avoidance through speculative reservation,” in High Performance Computer Ar-
chitecture (HPCA), IEEE 18th International Symposium on, Feb 2012, pp. 1–12.

[81] N. Jiang, L. Dennison, and W. Dally, “Network endpoint congestion
control for fine-grained communication,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. ACM, 2015, pp. 35:1–35:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807600

[82] N. Jiang, J. Kim, and W. Dally, “Indirect adaptive routing on large scale inter-
connection networks,” in Intl. Symp. on Computer Architecture (ISCA), 2009,
pp. 220–231.

[83] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos, “Variable
packet size buffered crossbar (CICQ) switches,” in 2004 IEEE International
Conference on Communications (IEEE Cat. No.04CH37577), vol. 2, June 2004,
pp. 1090–1096 Vol.2.

[84] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoefler,
“Cost-effective diameter-two topologies: Analysis and evaluation,” in Intl Conf
High Performance Computing, Networking, Storage and Analysis, New York,
NY, USA, 2015, pp. 36:1–36:11.

[85] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer commu-
nication switching technique,” Computer Networks (1976), vol. 3, no. 4, pp.
267–286, 1979.

[86] A. Khanna and J. Zinky, “The revised ARPANET routing metric,” in Symp. on
Communications Architectures & Protocols, ser. SIGCOMM ’89, 1989, pp. 45–
56.

http://doi.acm.org/10.1145/2807591.2807600


Bibliography 177

[87] G. Kim, C. Kim, J. Jeong, M. Parker, and J. Kim, “Contention-based congestion
management in large-scale networks,” in 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–13.

[88] J. Kim, W. Dally, S. Scott, and D. Abts, “Cost-efficient Dragonfly topology for
large-scale systems,” Micro, IEEE, vol. 29, no. 1, pp. 33–40, 2009.

[89] J. Kim, W. Dally, and D. Abts, “Adaptive routing in high-radix Clos network,”
in SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
2006.

[90] ——, “Flattened Butterfly: a cost-efficient topology for high-radix networks,”
in ISCA: Intl. Symposium on Computer architecture, 2007, pp. 126–137.

[91] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable
Dragonfly topology,” in ISCA’08: 35th International Symposium on Computer
Architecture. IEEE Computer Society, 2008, pp. 77–88.

[92] J. Kim, W. Dally, B. Towles, and A. K. Gupta, “Microarchitecture of a high-
radix router,” in International Symposium on Computer Architecture, ser. ISCA
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 420–431.

[93] M. Kim and J. Leskovec, “Multiplicative attribute graph model of real-world
networks,” in Algorithms and Models for the Web-Graph. Springer, 2010, pp.
62–73.

[94] P. Koka, M. O. McCracken, H. Schwetman, X. Zheng, R. Ho, and
A. V. Krishnamoorthy, “Silicon-photonic network architectures for scalable,
power-efficient multi-chip systems,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10. New
York, NY, USA: ACM, 2010, pp. 117–128. [Online]. Available: http:
//doi.acm.org/10.1145/1815961.1815977

[95] J. Labarta, S. Girona, and T. Cortes, “Analyzing scheduling policies
using Dimemas,” Parallel Computing, vol. 23, no. 1, pp. 23 – 34,
1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167819196000944

[96] S. Lam and M. Reiser, “Congestion control of store-and-forward networks by
input buffer limits–an analysis,” IEEE Trans. on Communications, vol. 27, no. 1,
pp. 127–134, 1979.

[97] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames for guar-
anteed quality-of-service in on-chip networks,” in 35th International Sympo-
sium on Computer Architecture. IEEE, 2008, pp. 89–100.

http://doi.acm.org/10.1145/1815961.1815977
http://doi.acm.org/10.1145/1815961.1815977
http://www.sciencedirect.com/science/article/pii/S0167819196000944
http://www.sciencedirect.com/science/article/pii/S0167819196000944


178 Bibliography

[98] M. Lee, J. Kim, D. Abts, M. Marty, and J. Lee, “Probabilistic distance-based
arbitration: Providing equality of service for many-core CMPs,” in Microarchi-
tecture (MICRO), 2010 43rd Annual IEEE/ACM International Symposium on,
dec. 2010, pp. 509 –519.

[99] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient super-
computing,” IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892–901,
Oct 1985.

[100] X.-K. Liao, Z.-B. Pang, K.-F. Wang, Y.-T. Lu, M. Xie, J. Xia, D.-Z. Dong, and
G. Suo, “High performance interconnect network for Tianhe system,” Journal
of Computer Science and Technology, vol. 30, no. 2, pp. 259–272, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s11390-015-1520-7

[101] J. Liu and J. G. Delgado-Frias, “A shared self-compacting buffer for network-
on-chip systems,” in 2006 49th IEEE International Midwest Symposium on Cir-
cuits and Systems, vol. 2, Aug 2006, pp. 26–30.

[102] S. Ma, Z. Wang, Z. Liu, and N. E. Jerger, “Leaving one slot empty: Flit bubble
flow control for torus cache-coherent NoCs,” IEEE Transactions on Computers,
vol. 64, no. 3, pp. 763–777, March 2015.

[103] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb 2002.

[104] R. Mandeville and J. Perser, “Benchmarking methodology for LAN switching
devices,” Tech. Rep., 2000.

[105] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz, “Tiny
Tera: a packet switch core,” IEEE Micro, vol. 17, no. 1, pp. 26–33, Jan 1997.

[106] S.-J. Miao and Y. Hsu, “Group allocation: A novel fairness mechanism for on-
chip network,” in Networked Embedded Systems for Enterprise Applications
(NESEA), 2011 IEEE 2nd International Conference on, Dec 2011, pp. 1–7.

[107] C. Minkenberg and M. Gusat, “Design and performance of speculative flow
control for high-radix datacenter interconnect switches,” Journal of Parallel and
Distributed Computing, vol. 69, no. 8, pp. 680 – 695, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731508001482

[108] C. Minkenberg, M. Gusat, and G. Rodrı́guez, “Adaptive routing in data cen-
ter bridges,” in 17th IEEE Symposium on High Performance Interconnects
(HOTI’09). IEEE Computer Society, 2009, pp. 33–41.

[109] R. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the Graph
500,” Cray User’s Group (CUG), May 5, 2010.

http://dx.doi.org/10.1007/s11390-015-1520-7
http://www.sciencedirect.com/science/article/pii/S0743731508001482


Bibliography 179

[110] N. Ni, M. Pirvu, and L. Bhuyan, “Circular buffered switch design with worm-
hole routing and virtual channels,” in Intl Conf on Computer Design, Oct 1998,
pp. 466–473.

[111] C. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. Yousif, and C. Das,
“ViChaR: A dynamic virtual channel regulator for network-on-chip routers,”
in IntlSymp. on Microarchitecture, 2006, pp. 333–346.

[112] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, “Effect of speedup in non-
blocking packet switch,” in IEEE International Conference on Communications,
World Prosperity Through Communications,, Jun 1989, pp. 410–414 vol.1.

[113] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno
performance: a simple model and its empirical validation,” IEEE/ACM Trans.
Netw., vol. 8, no. 2, pp. 133–145, Apr. 2000.

[114] A. Papoulis, “Bernoulli trials,” in Random Variables, and Stochastic Processes.
McGraw-Hill, New York, 1990, pp. 57–63.

[115] J. Park, B. O’Krafka, S. Vassiliadis, and J. Delgado-Frias, “Design and eval-
uation of a DAMQ multiprocessor network with self-compacting buffers,” in
Supercomputing ’94., Proceedings, Nov 1994, pp. 713–722.

[116] M. Parker, S. Scott, A. Cheng, and J. Kim, “Progressive adaptive routing in a
Dragonfly processor interconnect network,” Patent, Sep. 15, 2015, uS Patent
9,137,143. [Online]. Available: https://www.google.com/patents/US9137143

[117] G. Passas, “VLSI micro-architectures for high-radix crossbars,” Ph.D. disserta-
tion, FORTH-ICS, April 2012.

[118] J.-K. Peir and Y.-H. Lee, “Improving multistage network performance under
uniform and hot-spot traffics,” in 2nd IEEE Symposium on Parallel and Dis-
tributed Processing, dec 1990, pp. 548 –551.

[119] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni, “Design exploration of
optical interconnection networks for chip multiprocessors,” in 2008 16th IEEE
Symposium on High Performance Interconnects, Aug 2008, pp. 31–40.

[120] T. Pinkston, “Deadlock characterization and resolution in interconnection net-
works,” Deadlock Resolution in Computer-Integrated Systems, pp. 445–492,
2004.

[121] B. Prabhakar and N. McKeown, “On the speedup required for combined
input- and output-queued switching,” Automatica, vol. 35, no. 12, pp. 1909 –
1920, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0005109899001296

https://www.google.com/patents/US9137143
http://www.sciencedirect.com/science/article/pii/S0005109899001296
http://www.sciencedirect.com/science/article/pii/S0005109899001296


180 Bibliography

[122] B. Prisacari, G. Rodrı́guez, M. Garcı́a, E. Vallejo, R. Beivide, and C. Minken-
berg, “Performance implications of remote-only load balancing under adversar-
ial traffic in Dragonflies,” in INA-OCMC: Workshop on Interconnection Network
Architecture: On-Chip, Multi-Chip. ACM, 2014, pp. 5:1–5:4.

[123] V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and J. Prellezo, “The
adaptive bubble router,” Journal of Parallel and Distributed Computing, vol. 61,
no. 9, pp. 1180–1208, 2001.

[124] N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. Vilarrubi, C. Gomez, D. Ni-
eto, H. Servat, X. Martorell, J. Labarta et al., “The Mont-Blanc prototype: An
alternative approach for HPC systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2016.

[125] K. Ramakrishnan, S. Floyd, and D. Black, RFC 3168: The Addition of Explicit
Congestion Notification (ECN) to IP, Std., 2001.

[126] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. We-
ston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob, “The struc-
tural simulation toolkit,” SIGMETRICS Perform. Eval. Rev., vol. 38, no. 4, pp.
37–42, Mar. 2011.

[127] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: combined input-crosspoint-
output buffered packet switch,” in Global Telecommunications Conference,
2001. GLOBECOM ’01. IEEE, vol. 4, 2001, pp. 2654–2660 vol.4.

[128] L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini,
C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-
optimized optical network for data-intensive computing,” IEEE Micro, vol. 34,
no. 5, pp. 52–63, Sept 2014.

[129] T. Schneider, O. Bibartiu, and T. Hoefler, “Ensuring deadlock-freedom in low-
diameter InfiniBand networks,” in IEEE Hot Interconnects, 2016.

[130] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The BlackWidow high-radix Clos
network,” in Intl Symposium on Computer Architecture. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 16–28.

[131] R. Sedgewick, “Algorithms in C, part 5: Graph algorithms,” 2002.

[132] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-optimal
worst-case throughput routing for two-dimensional mesh networks,” in
Proceedings of the 32Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 432–443. [Online]. Available: http://dx.doi.org/10.1109/ISCA.2005.
37

http://dx.doi.org/10.1109/ISCA.2005.37
http://dx.doi.org/10.1109/ISCA.2005.37


Bibliography 181

[133] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth study of stochastic Kro-
necker graphs,” in Data Mining (ICDM), 2011 IEEE 11th International Confer-
ence on. IEEE, 2011, pp. 587–596.

[134] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D. disserta-
tion, 2005.

[135] T. Skeie, O. Lysne, and I. Theiss, “Layered shortest path (LASH) routing in ir-
regular system area networks,” in Intl Parallel and Distributed Processing Sym-
posium, Washington, DC, USA, 2002, pp. 194–.

[136] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka, “Perfor-
mance characteristics of Graph500 on large-scale distributed environment,” in
Workload Characterization (IISWC), 2011 IEEE International Symposium on.
IEEE, 2011, pp. 149–158.

[137] E. E. Swartzlander, “Parallel counters,” IEEE Trans. Comput., vol. 22, no. 11,
pp. 1021–1024, Nov. 1973.

[138] Y. Tamir and G. L. Frazier, “Dynamically-allocated multi-queue buffers for
VLSI communication switches,” IEEE Trans. Comput., vol. 41, no. 6, pp. 725–
737, Jun. 1992.

[139] G. Tao, L. Yutong, and S. Guang, “Using MIC to accelerate a typical data-
intensive application: The breadth-first search,” in Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th In-
ternational. IEEE, 2013, pp. 1117–1125.

[140] Texas Instruments, FIFO Architecture, Functions, and Applications, 1999.

[141] K. Ueno and T. Suzumura, “Highly scalable graph search for the Graph500
benchmark,” in Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’12, ACM.
ACM, 2012, pp. 149–160, doi:10.1145/2287076.2287104.

[142] M. Valerio, L. E. Moser, and P. M. Melliar-Smith, “Using fat-trees to maximize
the number of processors in a massively parallel computer,” in Intl Conf on
Parallel and Distributed Systems, 1993, pp. 128–134.

[143] L. G. Valiant, “A scheme for fast parallel communication,” SIAM journal on
computing, vol. 11, p. 350, 1982.

[144] ——, “Bulk-synchronous parallel computers,” Parallel Processing and Artifi-
cial Intelligence, pp. 15–22, 1989.

[145] ——, “A bridging model for parallel computation,” Communications of the
ACM, vol. 22, no. 8, pp. 103–111, aug 1990.



182 Bibliography

[146] D. W. Walker and J. J. Dongarra, “MPI: a standard message passing interface,”
Supercomputer, vol. 12, pp. 56–68, 1996.

[147] R. Wang, L. Chen, and T. M. Pinkston, “Bubble coloring: Avoiding routing-
and protocol-induced deadlocks with minimal virtual channel requirement,” in
International Conference on Supercomputing, 2013, pp. 193–202.

[148] Z. Wang and J. Crowcroft, “Analysis of shortest-path routing algorithms in a
dynamic network environment,” SIGCOMM Comput. Commun. Rev., vol. 22,
no. 2, pp. 63–71, Apr. 1992.

[149] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[150] P. Wijetunga, “High-performance crossbar design for system-on-chip,” in The
3rd IEEE International Workshop on System-on-Chip for Real-Time Applica-
tions, 2003. Proceedings., June 2003, pp. 138–143.

[151] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott, “Overcoming far-
end congestion in large-scale networks,” in Intl. Symp. on High Performance
Computer Architecture (HPCA), Feb 2015, pp. 415–427.

[152] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The
TianHe-1A supercomputer: Its hardware and software,” Journal of Computer
Science and Technology, vol. 26, no. 3, pp. 344–351, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s02011-011-1137-8

[153] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garcı́a, and F. J. Quiles, “Straightfor-
ward solutions to reduce HoL blocking in different Dragonfly fully-connected
interconnection patterns,” The Journal of Supercomputing, pp. 1–23, 2016.

[154] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95,
2010.

[155] H. Zhang, K. Wang, Z. Pang, L. Xiao, Q. Dou, and Y. Yuan, “An area-efficient
DAMQ buffer with congestion control support,” Journal of Circuits, Systems
and Computers, vol. 25, no. 10, p. 1650125, 2016.

[156] H. Zhang, K. Wang, J. Zhang, N. Wu, and Y. Dai, “A fast and fair shared buffer
for high-radix router,” Journal of Circuits, Systems and Computers, vol. 23,
no. 01, p. 1450012, 2014.

http://dx.doi.org/10.1007/s02011-011-1137-8

	Portada
	Abstract
	Acknowledgment
	Resumen
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Router architecture
	1.2 Topologies for Exascale system networks
	1.2.1 Dragonfly networks

	1.3 Deadlock-avoidance mechanisms
	1.4 Routing mechanisms
	1.4.1 Oblivious routing
	1.4.2 Adaptive routing
	1.4.3 Global misrouting policy

	1.5 Performance metrics
	1.5.1 Unfairness metrics

	1.6 Network simulation tools
	1.6.1 Synthetic traffic patterns
	1.6.2 Request-reply Traffic
	1.6.3 FOGSim Network Simulator
	1.6.4 Simulation configuration

	1.7 Contributions

	Chapter 2  Graph500 Synthetic Traffic Model
	2.1 Analysis of the communications in the Graph500 benchmark
	2.2 Synthetic Traffic Model
	2.2.1 Equations of the model
	2.2.2 Implementation

	2.3 Validation
	2.3.1 Validation of the model equations
	2.3.2 Simulation results

	2.4 Conclusions

	Chapter 3 Throughput unfairness
	3.1 Throughput unfairness in Dragonflies
	3.1.1 Global misrouting policy
	3.1.2 In-transit traffic priority
	3.1.3 Traffic pattern

	3.2 Fairness mechanisms
	3.2.1 Age Arbitration

	3.3 Results
	3.3.1 Results with Round-Robin arbitration and in-transit priority
	3.3.2 Performance issues with source-adaptive routing
	3.3.3 Results with Round-Robin arbitration without in-transit priority
	3.3.4 Results with Age arbitration

	3.4 Conclusions

	Chapter 4 Contention counters
	4.1 Limitations of credit-based congestion decision.
	4.1.1 Granularity of the congestion detection
	4.1.2 Oscillations of routing
	4.1.3 Uncertainty when using output credits
	4.1.4 Reaction time on traffic changes and slow-lane traffic

	4.2 Contention counters
	4.2.1 Implementations
	4.2.2 Threshold selection
	4.2.3 Implementation costs

	4.3 Results
	4.3.1 Steady-state results
	4.3.2 Transient results

	4.4 Conclusions

	Chapter 5 Flexible VC management
	5.1 Limitations of deadlock avoidance mechanisms based on VCs
	5.1.1 Routing or link-type restrictions
	5.1.2 Buffer organization and cost

	5.2 FlexVC mechanism
	5.2.1 Base FlexVC
	5.2.2 FlexVC considering protocol deadlock
	5.2.3 FlexVC with link restrictions
	5.2.4 Detection of adversarial patterns in source-adaptive routing with FlexVC
	5.2.5 Implementation costs

	5.3 Simulation results
	5.3.1 Impact of reserved space in DAMQs
	5.3.2 Results with oblivious routing
	5.3.3 Results with source-adaptive routing
	5.3.4 Results with in-transit adaptive routing
	5.3.5 Simulation results without internal speedup
	5.3.6 Evaluation of the VC allocation policy

	5.4 Conclusions

	Chapter 6 Related Work
	6.1 Graph500 and simulation tools for network architects
	6.2 Network topologies and routing mechanisms
	6.3 Throughput unfairness
	6.4 Congestion detection and contention counters
	6.5 Deadlock avoidance
	6.6 Buffer sizing and organization

	Chapter 7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work
	7.3 Publications

	Bibliography

