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Chapter 1

STATE OF THE ART

1.1 INTRODUCTION
An antenna is, in most cases, a metallic structure which is used in a communica-
tion system for radiating or receiving electromagnetic waves. They act always as
a transducer between the signal in a transmission line or waveguide and the free-space [1].

From a circuital point of view, the antenna behaves as an impedance connected
to the guiding structure. Hence, typical equivalent circuit parameters can be used
to account for antenna parameters like losses, power supplied, maximum transferred
energy and so on. In a non-exhaustive way, the most common antenna types can be
grouped into the following categories:

• Wire antennas: Their main characteristic is that they are constructed with
conducting wires that support current densities which give origin to the radiated
fields. They can be formed by straight wires (like a dipole), loops (circular, square
or of any arbitrary form) or even helixes. These wires support currents and charge
densities with harmonic behavior along them.

• Aperture antennas and reflectors: In these kind of antennas, the radiated fields
are mainly generated by the distribution of fields generated by the feeding system
over a real or equivalent area instead of the current and charge densities over
their metallizations. They are usually excited with waveguides. Some examples
are horn-type antennas (pyramidal and conical) or the apertures or slots on
conducting planes. In this case, the electric and magnetic fields on the aperture
have a harmonic behavior. The use of reflectors associated to a primary feeder,
allows to have antennas with the quality for communications services at great
distances (including space communications). The most common reflector is the
parabolic antenna.

• Antenna clusters: In certain applications, radiation characteristics that are not
achievable with a single element are required; However, with the combination of
several of them a great flexibility is obtained that allows obtaining them. These
clusters can be made by combining, in principle, any type of antenna.
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1.2. MAIN PARAMETERS OF AN ANTENNA

Figure 1.1: Antenna as a transition element between a transmission line and the free space [1].

Like each component in a communication system, antenna design involves a pure
design stage, were the conceptual design is developed and, usually with the help of
electromagnetic simulators, the conceptual design is translated into a physical structure.
A validation stage where measurements are carried out to verify the physical design
behavior is required as final step.

Apart from the specifications concerning equivalent circuit parameters, typically
stated in terms of return losses (matching) and antenna efficiency (losses), both the
directional characteristics of the antenna and the polarization of radiated field are
typical specific requirements for each communication systems. As a consequence,
during the design process antenna designers are required to include restrictions on
the radiation pattern and the feeding system in order to control directional pattern
characteristics as well as the resulting field polarization.

Antenna measurement systems are fundamental tools during the design process of
any antenna in order to assure its proper operation under the restrictions imposed by
the communication system.

Those measurement systems are used to check the degree of compliance with the
specifications of the different specification parameters. Next section summarizes the
most typical parameters used to specify an antenna system.

1.2 MAIN PARAMETERS OF AN ANTENNA
Apart from the typically used concerning equivalent circuit, most important specification
parameters for an antenna are the following: radiation pattern (amplitude and phase),
directivity, gain, efficiency and polarization. They are briefly described in the following:
[2] [3].

2



1.2. MAIN PARAMETERS OF AN ANTENNA

1.2.1 RADIATION PATTERNS
The radiation pattern is the graphical representation of power radiated by an antenna in
the different space directions. Radiation pattern is a far field (FF) parameter that shows
the magnitude or phase for any (θ,φ) combination for an sphere located in the FF region.

Radiation patterns are often shown as field pattern (normalized and on a lineal
scale) or power pattern (on a logarithm scale). The power density is proportional
to the square of the electric field module, so the graphical representation of a power
diagram contains the same information as a field radiation diagram.

A typical radiation pattern is constituted by lobes around local maxima with local
minimum around it. These lobes show the power or field levels in the space directions
around the local maximum, giving a representation of the distribution of power on
different space directions. The lobe containing the global maximum is called the main
lobe and determines the set of directions on which the antenna concentrates or directs
most part of its radiated power.

While radiation information is three-dimensional, it may be of interest to represent
just a simple cut of the diagram. The most common are those that follow the meridians
in a hypothetical sphere (cuts for constant φ) or parallels (cuts with constant θ).
The information of all the cuts of the diagram may be excessive, reason why this
information is provided only for the main planes.

Figure 1.2: Polar diagram (left) and rectangular diagram (right). Radial/vertical axis shows
the amplitude pattern (dB) and circular/horizontal axis shows the angle[3].

A parameter derived from the radiation pattern that is typically specified is the
side lobe level (SLL). It is defined as the ratio, expressed in dB, between the pattern
maximum and the pattern level at the maximum of the rest of the lobes, which are
called secondary lobes. Normally, this relationship refers to the lobes adjacent to the
main lobe which are the lobes of greater amplitude.
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1.2. MAIN PARAMETERS OF AN ANTENNA

1.2.2 DIRECTIVITY
Considering rms values for the fields, the radiation power density in each direction of
the space (θ, φ, r) is given in terms of the radiated fields by:

~P = Re( ~EX ~H∗) W/m2

Total radiated power can be obtained by integration along the whole surface of the
sphere of the radiated power density along the different directions according to:

Prad =
∫ ∫

S

~P(φ, θ) ∗ d~s

From this total radiated power, according to the formal definition, directivity
function can be obtained as the ratio between radiation power density in each direction
at a given distance, and the density of an isotropic antenna with the same total radiated
power, using the following expression:

D(φ, θ) = P(φ, θ)4πr2

Prad

The directivity can be obtained, in general, from the knowledge of the radiation
pattern of the antenna: A clearly predominant main lobe is expected working with
high-directivity antennas, and the lowest directivity antenna is the theoretical isotropic
antenna. When no direction is specified, directivity refers to the direction of maximum
radiation.

1.2.3 GAIN
A second parameter directly related to the directivity is the gain of antenna. Gain
definition is similar, but taking as reference the power delivered to the input terminals
instead of to the total radiated power. This parameter takes into account possible
losses in the antenna, since not all the power delivered is radiated to space. Gain and
directivity are therefore related to the efficiency of the antenna.

Gain is the most important figure of merit that describes the performance of an
antenna. It’s closely related to the directivity and efficiency, according to the following
expression:

G(φ, θ) = P(φ, θ)4πr2

Pdel
= Prad
Pdel

P(φ, θ)4πr2

Prad
= ηD(φ, θ)

From a practical point of view there are two methods to measure the gain:
absolute-gain and gain-transfer measurements. Absolute gain takes into account all
reflection or mismatch losses.

A really effective way to know the gain of an antenna, is to compare its gain with
that of a well-known one. Standard gain horns (SGH) are well-known antennas, that
can be measured in an antenna measurement system in order to determine its gain

4



1.2. MAIN PARAMETERS OF AN ANTENNA

with a huge detailed level: They are typically used as reference antenna in the gain
comparison method. In this case the gain of the antenna under test in obtained by
comparing output signal levels of the AUT with the signal levels obtained with the
SGH. For better accuracy, the comparison has to be corrected with return a cable loss
and any other parameter that is relevant for the gain measurement.

1.2.4 EFFICIENCY
This parameter accounts for all power losses at the structure of the antenna caused, for
example, by structure problems, mismatch, conduction losses, etc. Its defined as the
ratio between the total power radiated by the antenna and the power supplied to its
input. It’s indicated by η.

1.2.5 POLARIZATION
The polarization of an antenna is the polarization state of the waves it radiates in the
direction of its pattern maximum.

In general, all antennas can be considered as having elliptical polarization, being
the most usual lineal and circular polarization cases two extreme cases of the elliptic
one. For the linear case, the ellipse degenerates into a line (one of the ellipse axes
becomes zero). For the circular case, the ellipse degenerates into a circle (both ellipse
axes becomes equal).

Considering two orthogonal linear components of the field in the plane transversal
to the direction of propagation:

Ex(z, t) = Re[Ex0e
ωt+kz+φx ] = Ex0cos(ωt+ kz + φx)

Ey(z, t) = Re[Ey0e
ωt+kz+φy ] = Ey0cos(ωt+ kz + φy)

• Linear polarization results when both linear components are in phase or presents
a phase difference of 180o.

• Circular polarization results when both components have the same magnitude but
presents a phase difference of 90o or 270o. Depending on both the component used
as reference for the phase comparison and the phase difference, the circular polar-
ization can be right-hand or clockwise circular or left-hand or counterclockwise
polarization.

• Other combinations results in left- or right-hand elliptical polarization.

To maximize the link performance, both transmitter and receiver antennas must be
polarization matched.

5
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Figure 1.3: Different types of polarization: circular (left), lineal (center), and elliptical (right).

1.3 ANTENNA MEASUREMENTS
Nowadays, powerful commercial full wave simulators (like HFSS or CST) are used
in the design process of antennas. These are able to provide really good approaches
to the behavior of the structure. However, in order to test the real response of the
device after construction, the measurement of the AUT and the checking of its FF
behavior is mandatory. Since this work is oriented to Planar Near Field to Far Field
processing implementation and the related parameters, the focus is put on this treatment.

FF region, also called Fraunhofer region, is the region where the radiated field
behavior is completely satisfied, and it can be obtained from the Fourier Transform
of the sources that produce it. It is typically considered to start at four times the
Rayleigh distance (2D2/λ, where D is the maximum dimension of the antenna). FF
region is considered a phase-stable distance.

Near field (NF) or Fresnel region, cover from the FF region limit (Rayleigh distance)
to the close or reactive field region limit (depending of the frequency, different criterial
are considered, like L= λ or 0.62∗ (D3/λ)1/2 ), where evanescent fields are predominant.

In order to measure the radiation behavior of an antenna, the receiving antenna
must be in the far field of the antenna being characterized. However, experimental
considerations involve some problems:

• Distance can be really large for high frequencies.

• Big antennas can’t always be moved to measurement facilities

• Some antennas have a measurement time enormous, such a phased array.
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1.3. ANTENNA MEASUREMENTS

• There is no environment control (weather, temperature. . . )

• These systems are expensive.

Some solutions to those problems are:

• NF techniques.

• Anechoic chambers.

• Scale model measurements.

• Automated test systems.

Antenna measurement systems can be classified in two different categories: outdoor
and indoor ranges.

1.3.1 OUTDOOR RANGES
Outdoor ranges allow an easy way to create FF conditions, but present two important
disadvantages: the big size of the measurement field required and the uncontrollable
environmental conditions.

In general terms, two kinds of outdoor antenna measurement ranges are used: the
reflection and the free-space range.

• Reflection ranges take advantage of the constructive interference of direct signal
and specular reflections from the ground to obtain a quiet zone in the region were
the AUT is located during measurements.

• Free-space ranges designs avoid interference of reflected signals placing both AUT
and receiving antenna physically located far away from ground (for example in the
top of two mountains) in the case of elevated ranges, or with a receiving antenna
designed with a null pointing to the specular reflection point in the case of slat
ranges.

1.3.2 INDOOR RANGES
Indoor ranges have no problem with the environmental conditions, but, depending on
the size of the antenna to be characterized, FF conditions can’t be directly obtained.
This implies post-processing of the measurement results with different alternative
measurement setups, or require more acquisition tools (like compact antenna test
ranges, CATRs).

If the size of the AUT satisfy the FF distance criteria, a direct FF measurement
can be done in an anechoic chamber without any additional calculation.
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1.3.2.1 ANECHOIC CHAMBERS

The indoor measurements are carried out into an anechoic chamber, that provide
a controlled environment as alternative to outdoor testing. They are rooms fully
covered with absorbing material that keeps reflected signal levels below a specified
level. They are isolated from external environment, so they are not affected
by weather conditions, temperature, etc. The biggest problems working in ane-
choic chambers are the room size (which is limited) and the working frequency, that
has to be fixed before chamber’s construction (a chamber works in a wide bandwidth) [9].

Figure 1.4: Photo of a radar cross section measurement in a aneechoic chamber. Source:
Eletrical-GReece

A parameters definition is required to ensure a correct chamber design. Once the
build is done, changing the operation specifications is not an option. So we need to
define:

• Type of measurements to be test, in order to install the correct instrumentation
(for example, a complete mechanical system to take planar and spherical scans).

• Frequency band of operation, that will affect the absorbent material design, system
size. . . A high frequency, like V or W-band, could induce problems with secondary
waves.

• Geometry of the chamber: the most extended configuration is the rectangular
chamber, but also tapered chambers can be built. In these chapters, just rect-
angular chambers will be considered. A rectangular chamber needs some design
considerations to be taken before starting to build. According to the Rayleigh dis-
tance (2D2/λ), if the maximum antenna dimension (D) is defined, the chamber’s
minimum range length R is set. The chamber with (W) and quiet zone diameter
(q) are directly related with R through W>R/2 and q=W/3.
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Figure 1.5: Rectangular (left) and tapered (right) anechoic chamber [4].

To design a measuring system, the instrumentation must be:

• Source antenna. Typical antennas would be gain horns, that operate over the
common waveguide frequency bands, but the main parameter to set a source
antenna is the frequency. Dipoles are used for low frequencies (f¡1GHz). The
source antenna has a lineal polarization.

• Transmitting system, that controls the polarization, frequency (center, stabil-
ity. . . ), power level, modulation, and any other property of the signal. It can be
built with a simple oscillator, or with a complete frequency synthesizer. The use
of one or another depends on the requirements of the measure.

• Receiving and recording system, that is able to storage and export the data. A
VNA (vector network analyzer) can be used to set the magnitude and the phase
of the wave. A good receiving system is needed to get correct measures, because
it’s characteristics are the most influential in quality of the complete system.
Recording system affects the speed of data acquisition, because the data must be
processed in the right order.

• Positioning system, that must be able to rotate in different planes in order to get
a complete radiation pattern in all directions. There is no difference between the
AUT rotation or the source antenna rotation (as the same as TX/RX work). The
mechanical part is critical in order to take good antenna’s scans: the precision
of the mobile parts becomes really important when the wavelength is just a few
millimeters. Roll over azimuth is the most used configuration to scan the phase
of the signal (with the magnitude, too).
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Figure 1.6: Azimuth over roll (left) and roll over azimuth (right) configuration [4]

• AUT/probe rotation is very important, too: a single polarized antenna can
be used to get different polarization if the positioning system is able to rotate
it (for example, to change from vertical-linear polarization to horizontal-linear
polarization).

• The mechanical precision is crucial in order to take a good measurement. For
a high frequency work, the wavelength can be just a few centimeters, so a bad
regulated axis could compromise all the work.

• Data-processing system, that allows a post-processing after the data acquisition.
The processing device (normally, a computer) takes the data from the VNA, and
gives an output in a visual-friendly way. The most usual post-processing works are
rotation (which makes possible a maximum/minimum signal position’s correction)
and interpolation (in order to increase the measurement precision, the system can
calculate more field points to set the radiation value on a non-measured position).

Figure 1.7: Example of radiation pattern representation colored by it magnitude.
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1.3.3 NF MEASUREMENTS
The need for precise measurement techniques of the antenna radiation diagram
has been linked to the development of high performance antennas and to the
improvement of the methods of analysis. In many applications, like space commu-
nications, it is necessary to know the gain radiation pattern of the antennas with
accuracies of the order of 1%. In other cases, the characteristics of the antenna
(electrical size) impose, as the only viable alternative, the measurement in the
near field. Furthermore, the criterion usually used for the antenna-probe Rayleigh
distance may be insufficient if very precise measurements are required. NF measure-
ments have become the usual measurement method when precise measurements are
required, or when the dimensions of the antenna make far-field measurement prohibitive.

The process of obtaining the radiation pattern of the antenna is called NF to FF
transformation, and requires later mathematical processing after measuring. Unlike
in the FF measurements case, to obtain a single cut of the radiation pattern it is
necessary to explore the whole measurement surface with two polarizations, taking
information of both modulus and phase. Therefore, in general, the measurement time
will be higher for the measurements in the near field, although this inconvenience is
partially overcome with the use of rapid measurement instrumentation. On the other
hand, the knowledge of the field components in module and phase on a surface near the
antenna allows its use in the diagnosis of antennas using inverse scattering algorithms
although this aspect is out of the scope of this TFM. [4].

As previously mentioned, to carry out the near-field to far-field transformation, it is
necessary to acquire both tangential components of the electric field on the measuring
surface. For this reason, the full exploration of the surface has to be carried out two
times using in each case a probe sensitive to one of the orthogonal components, or only
one time if using a double-polarization probe that allows to acquire the two orthogonal
components at each point by electronic switching. Obviously, the latter case takes less
time, but requires a high synchronization level.

It is necessary to compensate for the effects of the measurement probe. This process
is called probe correction and aims to eliminate the effect of the radiation pattern of
the probe on the measurement, and the presence of a certain probe response to the
cross polarization. In FF measurements it is usual to use directional antennas as probes
in order to improve the dynamic range and reduce the effect of the reflections. In
NF measurements it is important that the probe does not present any null, since it
could not be corrected. To perform probe correction, it is necessary to have previously
characterized its radiation pattern. To do it correctly, it is necessary to locate the
probe with the same reference to which it was measured, so that, in general, the whole
system of alignment of the antennas is much more critical in the NF measurements
than in the FF measurements.

NF provides some advantages:

• NF test allows to control all environment conditions (using an anechoic chamber),
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avoiding external interference.

• Big antennas can be measured in small environments.

• Data precision is the same or better than FF measurement.

• The AUT can be completely characterized.

Obviously, AUT’s performance changes with frequency. All designs have a
determined work band, where the antenna radiates with good conditions (gain,
directivity. . . ). For this reason, a measurement under working conditions is better
than an outside-band test, but there isn’t the only way. Low frequency antennas
can have a huge size, which complicates their handling, and precision is critical
for high frequency systems. Furthermore, FF conditions are harder to achieve
with a frequency increase: Rayleigh distance is the minimum distance where the
wave has a planar distribution, but it can include some NF components. This
could affect the measurement with a factor about 0.05 dB (it depends on the
distance, the antenna, and many other parameters). At those conditions, some
frequency change techniques are developed, like scaling models and frequency conversion.

First works were designed at X-band (8-12 GHz), a frequency used for radar
antennas and other military systems. Nowadays, mobile phone industry is one of the
most interested in antenna’s measurement, so frequencies have changed. 4G frequencies,
like 850 MHz (UHF), is one of the most demanded, because phone operators are trying
to cover all places with 4G coverage with their base stations.

The next step, 5G, will be prepared for higher frequencies (V and W-band). These
frequency blocks (60, 100 and 110 GHz) imply other issues, like the small wavelength:
any distance change could be critical for such a small value (5, 3 and 2’72 mm).
Mechanical acquisition system has to handle a very high precision level, in order to
avoid measurement errors. Measurement step or antenna pointing technologies are
being developed to work almost without margin of error. Laser technology is often
incorporated to mechanical system to solve this.

Different antenna measurement facilities are much more suitable for some different
kinds of antenna under test. Take in count final use of this antenna will help into
measurement processing. Some example of these antennas and its use are:[8]:

• X-band designs uses radar antennas, which means that big measurement systems
are needed. Those antennas are typically parabolic reflectors and slotted waveg-
uides, and they are able to rotate (physically or changing the phase of the beam)
to cover all scanning area.

• Reflector antennas are used for Kurz bands (Ku, K and Ka). Dish antennas and
flat systems are included, with one or more reflectors, like Cassegrain designs.

• Lower bands, like C or S-band, works with LPDA and Yagi. The LPDA consists
of a number of driven elements of gradually increasing length. The dipoles are
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mounted close together, connected in parallel to the feedline with alternating
phase. It simulates a series of two or three-element connected together, each set
tuned to a different frequency.

• Standard gain horns (SGH) are used for gain reference for high gain antennas
and antenna measurements. They are good known antennas that work perfectly
as a reference. In 1.8, we can see (in order, from left to right):a pyramidal horn
(with a rectangular cross section) a sectoral E-plane and H-plane horn (often used
for radar applications), a conical horn (better for spherical measurements) and a
exponential horn (with curved sides).

Figure 1.8: Different types of standard gain horns.

• Open-ended waveguide antennas (that works with the same principle that SGH
antennas), has physical properties that make them recommended for some mea-
surements. Circular waveguide antennas are often used for spherical NF to FF
transformation, as the same that rectangular waveguide antennas for planar NF
to FF transformation. These antennas can include filtering structures to avoid
the propagation of annoying frequency modes.

Figure 1.9: Open-ended waveguide with a stepped filter.

1.3.3.1 MEASUREMENT TYPES

To emulate a FF response in NF conditions, we have two principal options: CATR
measurement and NF to FF transformation.
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The CATR (compact antenna test range) is a device that creates a nearly FF
planar wave in a short distance. It uses collimated waves from a reflector close to the
feeder, that achieve a planar pattern when arrives to the test zone. Different reflector
configurations can be implemented in order to achieve different waves at the AUT’s place.

The antenna to be measured is placed in front of the reflector, whose size must be
large enough to ensure a flat wave over the entire antenna. Even so, the total dimensions
of the set are much smaller than those required in a far-field direct measurement.
Its practical realization is not simple, since certain important problems, such as the
diffraction of fields at the edges of the reflector, or direct radiation from the feeder in the
direction of the antenna to be measured, that must be solved. These problems basically
give rise to curls in the measuring area. To avoid them, the feeder is usually hidden in
conveniently insulated enclosures, which are hidden from the measurement area, and
to reduce the diffraction of the edges of the reflector, it is given serrated or curved shapes.

Figure 1.10: Example of how works a reflector: the nf signal rebounds and go to the test zone
with a planar front [7].

As alternative to big-space-needed designs, near-field tests transform the magnitude
and phase measure to a far-field waves. In order of computing cost, there are planar,
cylindrical and spherical systems. All data acquisition begins with a system’s sweep
(according with the geometry). Planar sweep scans X and Y axes with a line move.
Cylindrical sweep covers all φ range for each Z axis position. Spherical sweep combines
θ and φ rotation (normally, an angle is covered between 0 and 180o and the other
moves between 0 and 360o). The scanned surface could be anyone, but using one of the
three commented geometries makes easily the data transform from NF to FF. Another
point of view is to see the problem as a plane wave made with the sum of all close
measures scanned.
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Figure 1.11: Different canonical measurements [8].

Fastest measurement is the continuous sweep measurement scheme. So, the AUT
(or the probe, TX and RX behavior are reciprocal) has to be moved around the axes
to emulate a planar, cylindrical or spherical distribution. In any interval o position,
electrical field components will be measured in NF conditions. Modal-Expansion
method can be used to translate NF to FF: waves can be studied as a plane, cylindrical
or spherical waves composition, and with the determination of the magnitude and
phase of these plane waves, FF wave can be calculated. According to the Equivalence
Theorem, the field at any point can be determined from the tangential fields to a
surface that enclose all sources. If we calculate a solution for r=∞, we’ll have the FF
approach.

1.3.3.2 HISTORY OF NF TO FF MEASURES

The development of near-field scanning as a method for measuring antennas can be
divided into four periods: experimental period without probe correction (1950-1961),
first probe-corrected theories period (1961-1975), the period in which the first theories
were put into practice (1965-1975), and the period of technology transfer (1975-1985),
in which 50 or more near-field scanners were built throughout the world [8].

Firsts times of those periods, many of the basic techniques for measuring the
characteristics of antennas were developed before and during World War II at Bell
Telephone Laboratories, R.C.A. Laboratories, and M.I.T. Radiation Laboratory,
among others. The introduction of commercial equipment specifically designed for
antenna measurements was due, in part, to the large quantities of antenna patterns
that were required by programs in the aerospace/defense industry. This period saw
the introduction of antenna pattern recorders, a variety of positioners, receivers,
pattern integrators, and signal sources. During the same period, the most difficult
problems were associated with antenna design and not with elaborate measurements [10].

Beginning with the space program in the 1960’s, system requirements, with smaller
design margins, started the evolution of measurement techniques. The techniques
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previously employed became inadequate for the technical problems of the 1960’s. This
led to the search of new methods to be developed along with a requirement for more
sophisticated instrumentation.

Probably, the first NF antenna scanner was the “automatic antenna wave front
plotter” built around 1950 in the Air Force Cambridge Research Center, without any
attempt to compute FF transformation. They obtained full-size maps of the phase
and amplitude variations in front of microwave antennas. Richmond and Tice, in 1955
experimented with air and dielectric-filled, open-ended rectangular waveguide probes
for NF measuring of microwave antennas, and compared calculated far fields with
directly FF measured. In 1958, Kyle used an open-ended circular waveguide working at
X-band to compare its FF measurement with its NF to FF transformation. Gamara
(1960) compared computed FF with directly measured fields working at X-band[10].

All those investigations didn’t apply any probe correction. In 1961 Brown and
Jull gave a rigorous solution to the probe correction problem in two dimensions
using cylindrical wave functions. However, it wasn’t until 1963 when Kerns re-
ported a rigorous and complete system’s correction theory, in order to improve
data acquisition for planar NF scanning. It was included three dimensions cor-
rection. Years later, in 1973, probe-compensated cylindrical near-field scanning
was extended to three dimensions by Leach and Paris. The first probe-corrected
NF measurements were in 1965, and it was developed for 10 years for planar and
cylindrical case. During that period, acquisition system reached the 60 GHz. The
electronic revolution in last years has allowed a huge computation capacity, so the NF
measurements are quite developed, especially for antennas that are difficult to test in
FF conditions (like satellites systems, array configurations, millimeter antennas...)[8][10].

Also, radiation patterns can’t always be measured easily in FF region. To take
some accuracy scanning lowest lobes, far distances are needed. Another NF application
is to align the beamformers of an array antenna. We must remember that distance
will be always electrical distance, so it could be a large physical distance for specific
frequencies.

1.3.3.3 SPHERICAL AND CYLINDRICAL SURFACES

The solution of Maxwell’s equations in cylindrical geometry includes Bessel functions
and exponential functions, which complicates mathematical formulation with respect to
planar geometry. On the other hand, the measurement surface involves much more to
the AUT, so the errors due to the truncation are smaller.

These errors disappear in the spherical geometry, since it totally surrounds the
antenna, and the fields found are completely accurate. In the mathematical formulation
appear Hankel functions and Legendre polynomials, which make it the most complicated
of the three formulations. However, with the great advance that has occurred in the
capacity of memory and the speed of calculation of the computers, the mathematical
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problems are smaller.

Figure 1.12: Cylindrical and spherical scheme of measurement.

1.3.3.4 PLANAR SURFACE

This is the easiest computational case. We assume the electromagnetic field for a
rectangular grid close to the AUT as known, and then we will make the NF to FF
transformation. This mathematical operation is based on the plane wave expansion
using Fourier transform techniques. A wave can be formed as a superposition of plane
waves in different directions, all of the same frequency. If we can determine the unknown
directions and amplitudes of those waves, FF will be calculated [6] [7]. In the next
chapters, the best performance conditions to measure AUT pattern will be discussed.

Figure 1.13: Planar grid. The measurement can be done by rows, columns, or meander
movement. Each small square has a dimension of ∆x = λ/2 and ∆y = λ/2
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In practice, the planar surface is not infinite, so some considerations have to be
taken to assure a correct Fourier application. To avoid a pattern distortion, an angle
limitation must be set:

tgθm = L−D
2z0

where L is the dimension of the measured zone. Of course, as any other Fourier
transform, Nyquist theorem must be respected. The x, y and z dimension have to be
transform in polar condition into

kx = ksenθcosφ, ky = ksenθsenφ

Applying Nyquist:

∆x = 2π
2kx,max

= λ

2 , ∆y = 2π
2ky,max

= λ

2

Calculating the power modes, the performance in any situation (distance, position. . . )
can be set using the FFT. Once the FF is calculated, the FFT operation can be used
to adjust the data with more precision (interpolate data, applying rotations. . . ). Power
modes offered the real interaction of the AUT’s pattern, so if we have a high precision
measurement (with the enough number of modes), the electromagnetic field form can
be obtained with a high accuracy level.

1.3.4 OBJECTIVES AND DOCUMENT STRUCTURE
In this project, an tool for the near-field (NF) to far-field (FF) transform is going to be
developed. Moreover, other useful processes are implemented, too, like field rotation
and interpolation, to adjust the signal to desired conditions. Each calculation will be
set in a independent function, to allow the program be used in a recursive way.

The object of the project is set a “simple” program able to calculate all the basic
parameters of a NF to FF transformation, without a complex calculation environment
installed. The goal is program an accurate and fast tool able to perform the correct
calculation.

After comment about the antenna’s measurement, Chapter 2 will explain how the
transformation is done (equations and parameters) in a theoretical way. This approach
is programmed using MATLAB. Chapter 3 shows the same algorithm in a compiled
language (C#), which is used to create a executable able to perform all calculations.
Results and comparison between MATLAB and C# programs are commented in
Chapter 4 (according to time performance and data accuracy). Chapter 5 shows the
future improvement we can develop for our tool.
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Chapter 2

THEORETICAL
IMPLEMENTATION

The mathematical process to transform a NF signal into a FF pattern needs to be
tested before the final implementation step. Furthermore, most of the programming
languages are not prepared for a complex mathematical operation, so a good
mathematical reference is really helpful. To check the correctness of the transformation,
MATLAB will be used. On the other hand, different corrections and options are
needed (rotation, interpolation...) to properly process the data that also need to
be included into final software. These will be also initially developed and debugged
in MATLAB. In this chapter, the mathematical process will be discussed- with a
theoretical explanation of the separated operations that the final program has to execute.

2.1 MATLAB

Figure 2.1: MATLAB window.
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MATLAB is one of the most used software by engineers and scientist, basically
because it includes many functions, toolboxes and libraries very helpful with complex
calculations.

The easiest way to work with radiated electromagnetic field data is using matrix:
ordering data with a 3-coordinate system (x-y-z) and computing data with MATLAB
matrix operations. As is commented in Chapter 1, Fourier transforms and interpolation
are needed, and MATLAB can easily work with them. Of course, matrix can be used in
simple operations, but with different and useful options, too (for example: A*A or A.*A).

Matrix and vector operations can be set to avoid loop functions in MATLAB and
that will decrease the computational cost. But these options are not available in all
programming languages, so some functions are differently implemented, to compare
results in a truthful way. For example, a double interpolation in MATLAB (interp2)
will be set with two blocks of normal interpolation in a loop. That prevents algorithm
errors too: some operations can be implemented with variants, so if the program is
written in a simpler way, controlling all the steps will be easier.

The main use of MATLAB is based in mathematical block: linear algebra,
interpolation and Fourier analysis (based on FFTW algorithm). In order to compute
some specific calculations and functions, Communication Toolbox (with many signal pro-
cessing tools) and Antenna Toolbox (with many graphical options) are implemented, too.

2.2 FAR-FIELD TRANSFORMATION
The main block developed in this TFM is the NF to FF transformation. As discussed
in Chapter 1, antenna’s measurement in FF conditions are not always available
for many reasons (a difficult experimental setup needed, very long measurement
distance, weather conditions. . . ), so the NF measurement is a solution for the
engineers. The complexity of the process is in the mathematical calculation of
the FF: if the real behavior of an AUT under FF conditions is required, the trans-
formation program must actually provide a very good approach to the FF of the antenna.

2.2.1 FORMULAS
The mathematics behind the transformation belongs to spectral processing techniques.
We are going to consider a rectangular aperture of dimension a and b. The aperture is
located in an infinite ground plane.
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Figure 2.2: Rectangular aperture mounted on infinite ground planes [6].

The radiated wave can be calculated as a superposition of plane waves. These
waves are all of the same frequency, traveling in different directions and with different
amplitudes.

We can define the radiated electric field as:

E(x, y, z) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

f(kx, ky)e−jk∗rdkxdky

where

• f is the plane wave spectrum function,

• kx and ky are the spectral frequencies,

• r is the direction of propagation of the plane wave,

• k is the propagation factor or vector wavenumber.

As we have said before, measurement plane is defined in X-Y coordinates, but there
is a Z component that is directed related with the distance between the wave and the
aperture. So, separating the coordinates, the field can be written as

E(x, y, z) = 1
4π2

∫ ∞
−∞

∫ ∞
−∞
E(kx, ky, z)e−j(kxx+kyy)dkxdky

with

E(kx, ky, z = 0) = f(kx, ky)
.

Applying Fourier inverse transform we get

E(kx, ky, z) =
∫ ∞
−∞

∫ ∞
−∞

E(x, y, z)e+j(kxx+kyy)dxdy

That means that we can set f(kx, ky) using the tangential components of the E-field
at z=0

fx(kx, ky) =
∫ a/2

−a/2

∫ b/2

−b/2
Exa(x, y, z = 0)ej(kxx′+kyy′)dx′dy′
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fy(kx, ky) =
∫ a/2

−a/2

∫ b/2

−b/2
Eya(x, y, z = 0)ej(kxx′+kyy′)dx′dy′

with Exa and Eya as the tangential components of the electric field over the aperture.

The FF radiation is

E(φ, θ, r) ' j
ke−jkr

2rπ [cosθf(kx, ky)]

Eθ(φ, θ, r) ' j
ke−jkr

2rπ (fxcosφ+ fysinφ)

Eφ(φ, θ, r) ' j
ke−jkr

2rπ cosθ(−fxsinφ+ fycosφ)

Figure 2.3: NF to FF algorithm flowchart.

2.2.2 IMPLEMENTATION
First of all, field data which comes from a real measurement system will be import to
MATLAB (data could be in a .cvs file,. mat format, etc). Field measurement at each
point will be stored in a matrix, as well other important parameters, like frequency,
number of points on each axis and others need to be stored too. A relevant data is
the output domain: NF measurement is test in X-Y plane, but FF output will be in
phi-theta domain. All parameters must be imported from measurement conditions to
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ensure a correct calculation.

The first step is set the grid. All variables that contain information about one
point, will be easily stored in a matrix. The coordinate (x=. . . or y=...) gives us no
information to make the FF transformation, but the spectral frequency (kx and ky) at
each point does. Furthermore, kz is easily calculated by

k2
z = k2 − (k2

x + k2
y)

Applying Fourier inverse transform (to get fx and fy, as we set before), and

fz = −fxkx + fyky
kz

In this point we have now three matrix fx, fy and fz, with the amplitude components
of the wave. After that, we need to define the radiating field composition. A loop will
check kz grid to set if the mode associated to that point is radiated or evanescent: if it
is evanescent (kz is not real), field will be set to 0. All the field is moved to the aperture
to obtain the FF field: FF signal is proportional to NF field at the aperture. After the
cleaning of the rectangular modes, wave will be interpolated into a semi-spherical grid.
MATLAB allows to calculate a double interpolation for a matrix within the domain
data. The input contains the kx and kyy grid for each field data, the field data (fx, fy
and fz), and the projection of the output phi-theta domain into a rectangular grid.
Projection follows the spherical to cartesian coordinates transform:

x = rsinθcosφ y = rsinθsinφ

Figure 2.4: Radiated field on a rectangular grid and its interpolation over a spherical projected
grid.

To finish the FF transformation, we will apply equation for both polarization:
where r contains a long distance (r > Rayleigh distance = 2D2/λ) in the FF
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domain. Eφ and Eθ are easily calculated with phi and theta grid calculated for the
rectangular-into-semispherical interpolation. These last operations put the field into
a FF distance, so the value of r will affect directly the magnitude and phase of the
signal.Theoretically, this distance should be defined but we will use at least several
times Far Field distance criteria defined previously.

Eθ(φ, θ, r) ' j
ke−jkr

2rπ (fxcosφ+ fysinφ)

Eφ(φ, θ, r) ' j
ke−jkr

2rπ cosθ(−fxsinφ+ fycosφ)

2.3 FIELD ROTATION
We can assume that all details about FF signal are stable for any distance, so a field
change applied under FF conditions, like a rotation, won’t degrade the signal information.
If we want to rotate the signal, we can use Euler angles processing. Rotation is useful to
set a determined point into an angle position to offset a measurement error or prepare
the signal for a specific process.

We consider two rotations:

• Euler rotation: A spatial rotation applying Euler angles. This calculation is done
by the program to set the final position of the field.

• Shifting rotation: After the Euler rotation, the original position and final position
are compared to express the movement by a φ and θ change (roll and azimuth).
This rotation is the one that is applied to obtain the output.

2.3.1 FORMULAS
The Euler angles are three angles that describe the orientation of a body with respect
to a fixed coordinate system. Any orientation can be achieved by composing three
elemental rotations, typically denoted as φ, θ and ψ. Axes can be repeated, but
not twice in a row (it would be just a rotation, not two). There are twelve dif-
ferent options to apply the rotation (xyx, xzx, yxy, yzy, etc). We will use the zxz rotation.

Figure 2.5: Euler rotation scheme. The xyz system is shown in blue and the rotated axes,
XYZ, system is shown in red. Source: Lionel Brits.
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2.3. FIELD ROTATION

The first field turn is done in z axis (0-360o). Then, we have a new rotated axis
(x2, y2, z2=z), so the second turn will be applied to these axes. After the x2 rotation
(0-180o), the last one will be on the z3 axis (0-360o) (Fig. 2.6).

Figure 2.6: Euler rotation movements. By order (from left to right):Precession, nutation, and
intrinsic rotation. Source: UPM.

Each rotation is represented by a rotation matrix (3x3), that can be assembled
into a complete rotation matrix. If we call R to the three-dimensional rotation matrix
representing the coordinate transformation from the fixed system to the mobile sys-
tem, Euler’s theorem on three-dimensional rotations states that there exists a unique
decomposition in terms of Euler’s three angles:

R =

 cosψ −sinψ 0
−sinψ cosψ 0

0 0 1


 1 0 0

0 cosθ −sinθ
0 −sinθ cosθ


 cosφ −sinφ 0
−sinφ cosφ 0

0 0 1


In order: z rotation (ψ), x2 rotation (θ) and z3 rotation (φ) (mathematical repre-

sentation of Fig. 2.6).

2.3.2 IMPLEMENTATION
MATLAB’s matrix management makes really easy the field rotation in XYZ domain:
just multiply each point coordinates by R:

[px py pz]R = [p2x p2y p2z]
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2.3. FIELD ROTATION

Figure 2.7: Example of vector rotation in MATLAB with ψ=-50o, θ=10 and φ=3o.

But, as we have discussed before, the rotation is set to change the field position into
its angle distribution, not in xyz domain. That will be really helpful to correct the
draws of azimuth and roll cuts. That will be really helpful to correct the picture of
azimuth and roll cuts. If we think about the FF like a sphere, Euler rotation makes the
sphere turns around (Fig. 2.8). If we measure its position change, we will be able to
change the roll and azimuth field distribution.

Figure 2.8: Rotation scheme of a sphere.

The FF is unrolled in roll and azimuth domain, so Euler rotation will turn into a
shift. To measure this change, a xyz into roll and azimuth transformation is needed, so
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2.4. INTERPOLATION

first of all we will use a reference to get the gap. The reference vector will be x=1, y=2,
z=3 (each dimension must be different to avoid any swap between coordinates with the
same value). Taking the azimuth and roll with no Euler rotation as a fixed value, we
will compare these parameters with the reference R angles.

To assure a more detailed solution, it’s recommended to work in a complete roll and
azimuth domain. The signal could have been measured in a small range, but we will fill
it with zero until the end. Main reason is the 2D-Fourier transform: as in the picture
treatment, data can be easily shifted using an exponential factor with the desirable
change.

F [k, l] = 1
MN

M−1∑
m=0

N−1∑
n=0

f [m,n]e−j2π( k
M
m+ l

N
n)

Before this processing, Fourier transform, the input is interpolated into a complete
roll (0:360o-step) and azimuth (0:180o) grid. Furthermore, this field is copied to add a
small margin (the complete domain is cyclic, so signal repeats itself with a 360o-step
roll period and 180o azimuth period).
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Figure 2.9: Example of the addition of a small margin (red square on the right picture) in a
copied field. The left figure shows the original field.

Once the signal is shifted and inverse-transformed by Fourier, different values from
zero can appear: the interaction of the modes can set different values after the shifting
process. Finally, signal can be extracted into the input domain to compare the rotated
values.

2.4 INTERPOLATION
The interpolation block is a processing based in linear 2D interpolation. In many cases,
you need a more accurate analysis of the signal, but the measurement didn’t have
enough angular resolution due to different reasons (mechanical limits, measure time,
for example). A linear interpolation allows to take a determined point at any wanted
interval.
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2.4. INTERPOLATION

Figure 2.10: Original field (left) and interpolated field to increase the data resolution (right).

2.4.1 FORMULAS
The linear interpolation is a method used for curve fitting that obtains new data points
within the range of a known data points. It approximates the value of an unknown
point using a straight-line distribution between two known points. It’s a particular case
of Newtons interpolation, where the polynomial is n = 1.

y = y0 + (x− x0) y1 − y0

x1 − x0
= y0(x1 − x0) + y1(x− x0)

x1 − x0

2.4.2 IMPLEMENTATION
MATLAB 2D implementation needs to manage square matrix, so to avoid this
limitation, the interpolation block is programmed as two-times 1D interpolation. The
first loop will check the column values, and the second loop will do the same in the
other direction (rows). The order between the direction doesn’t matter.

If we start with a MxN matrix, after the first loop we will get a MxN2 (N2 > N)
matrix. The final loop will get us a M2xN2 (M2 > M) matrix. That makes an easy
implementation just with a normal interpolation algorithm.
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Figure 2.11: Linear interpolation. The original function (blue line) is approximated (red
circle) using a straight line (red line) between two known points (red stars) to calculate an
unknown point (blue circle).

0 5 10

-2

0

2

4

6

8

10

12

0 5 10

-2

0

2

4

6

8

10

12

0 5 10

-2

0

2

4

6

8

10

12

Figure 2.12: Scheme of how the interpolation increase the dimension of the field in two steps
(first: rows, second: columns). By order (from left to right): Original dimension, dimension
after the first interpolation and dimension after two interpolations.
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Chapter 3

PRACTICAL
IMPLEMENTATION

C# is an object-oriented programming language developed and standardized by
Microsoft as part of its .NET platform. This language describes a virtual environment
for application execution, whose main feature is to allow applications written in
different high-level languages can then run on multiple hardware and software platforms
without the need to rewrite or recompile their source code. Its basic syntax derives
from C / C ++ and uses the object model of the .NET platform, similar to Java. The
program has been developed using Microsoft Visual Studio.

C# is a compiled language, which means that its source code, written in a high-level
language, is translated by a compiler into an executable file understandable for the
machine on a certain platform, which reduce the execution time. This file can run
be run as many times as necessary without having to repeat the process so the time
between execution and execution is very small. That’s the reason why the Planar FF
transformation is programmed in C#: it’s faster and reusable.

3.1 MICROSOFT VISUAL STUDIO
Microsoft Visual Studio (MSV) is an integrated development environment (IDE)
from Microsoft. It is used to develop computer programs for Microsoft Windows,
as well as web sites, web apps, web services and mobile apps. It can produce both
native code and managed code. Visual Studio supports 36 different programming
languages and allows the code editor and debugger to support nearly any programming
language, provided a language-specific service exists. Built-in languages include C#,
C, C++ and C++/CLI, F# and TypeScript. Support for other languages such
as Ruby, Python, Node.js, and M among others is available via language services
installed separately. It also supports HTML/XHTML, XML/XSLT, JavaScript and CSS.

Using MVS allows not only to develop the final software, but also to debug and
modify it. The modular structure designed also allows to call just a part of the code
to probe it. It will be really helpful to develop properly the software. The different
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modules of the program will be explained in the next paragraphs.

3.2 MATH.NET
An advantage of MATLAB becomes a problem in C#: matrix management. While
MATLAB has a full working capacity with matrix, C# has a basic matrix management,
with limited options. Furthermore, mathematical complex process, like a Fourier
transformation, are quiet simple working with MATLAB.

To get over the limitations that basic C# offers, Math.NET library and Math.NET
Numerics module are used. Math.NET Numerics aims to provide methods and
algorithms for complex numerical computations. Covered topics include special func-
tions, linear algebra, probability models, random numbers, interpolation, integration,
regression, optimization problems and more. It is license free, so is not limited for
commercial purposes.

Math.NET allows to work with a like-MATLAB experience, so Fourier transform,
interpolation, and matrix work are covered. Another small-functions are programmed
to ease the work.

3.3 STRUCTURE

3.3.1 INPUT DATA
The main program has to read the input-field data and apply any of the operation
showed at MATLAB’s chapter. But, first of all, data must be correctly loaded. Two
files will be read: a .DAT file, which contains field data, and a .PINP (planar-input)
file, which contains some data for the calculation (angle domain, signal step, output
paths. . . ). Those files are in a known location, so the program can start without any
other external data.

Knowing the file format, data can be loaded in a fixed way. All files (input and
output) have a header, with some information about the file or the process: time of
execution, name of the operator. . . . The format must be flexible enough to be used for
all calculation, no matter what (format can’t produce any error in the code).

The .DAT file (Fig.3.1) has four columns: two of them are for one polarization,
and the other two are for the second polarization. Each row contains the real and
the imaginary field component at each point. Both polarizations are loaded into two
matrices, so data management can be quite similar to MATLAB. To assure that the
recursion program works (1 call = 1 calculation), output data must have the same file
format. The header contains some information about the antenna (that is not relevant
to the calculation) and 6 vars: number of points of each polarization and the range of
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3.3. STRUCTURE

the measured axes.

Figure 3.1: Example of a .DAT file.

The .PINP file (Fig. 3.2) has many parameters (numbers and characters) followed
by its name. To load all data, a function analyzes each line, look for the parameter
name, and load the value into a specific variable. If the line has two or more parameters,
they are ordered as VALUE1, VALUE 2, NAME1, NAME2. So, function look for the
position, too.

Figure 3.2: Example of a .PINP file for NF to FF transformation.

Different calculations have different .PINP file, but the structure is the same for all
types. In the picture (Fig. 3.2) a sample file is shown:

• COEF: a code that indicates what calculation has to be done.

• DIST: distance (in cm) between the probe and the AUT.

• FREC: frequency (in MHz).

• NX and NY: number of measured points in each dimension.

• MODEXP: indicates the frequency interpolation factor, that is applied to the
FFT/IFFT.

• NYMAXI: a probe correction parameter.

• ROUT: distance of FF calculated
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3.4. FAR-FIELD TRANSFORMATION

• XI, XE, YI and YE: axes limits.

• THEIOU, THEEOU, PHIIOU and PHIEOU: output φ and θ limits.

• THETASTEP and PHISTEP: output φ and θ steps.

• NTHETA and NPHI: number of calculated points in each dimension.

• BIASCORR, NCORR, MCORR and FCORR: noise correction parameters.

• PWNORM and CJGDAT: data management parameters .

• Directions: selected locations for input field, output data, output field and probe
field.

All output variables from .DAT and .PINP are defined as public, to allow their
access from another function. The calculation modules are just like the ones of
MATLAB, but programmed with C# characteristics.

The calculation modules are just like the ones of MATLAB, but programmed with
C# characteristics.

3.3.2 OUTPUT DATA
The program has three output files after each execution: ouput.DAT, output.OUT and
output.LOG.

Output data file (ouput.DAT) has the same structure that input (Fig. 3.1). The
only change we can find is the range of the measurement: FF data are calculated in a
φθ area, while NF measures are obtained in a rectangular grid (XY).

Log file works like any other program log: it records all the important events to
check (errors, most of the time). If there is a program exception, .LOG file gets a new
line with the function that has the problem. This is possible using the try-catch block:
all the code lines after the try statement are checked. If there is any error (overflow,
format exception. . . ), log function writes a simple message to know where the problem
is. The rest of the program must continue without showing any problem (obviously,
output data won’t be correct). Log data can be shown by the command windows
instead of creating another file.

.OUT file shows calculation data in a human-friendly way, which allows the operator
to know more about the process. It contains information about the power of the signal,
the number of point calculated, etc.

3.4 FAR-FIELD TRANSFORMATION
If the input field is a NF signal, the calculation will give the FF transformation. The
program will take both .DAT matrix as input, like all the .PINP parameters. These
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3.4. FAR-FIELD TRANSFORMATION

values include the frequency, input domain (XY) and output domain (φθ).

The mathematical process is just the same as the MATLAB program. First of
all, some vectors with input domain information are calculated. MATLAB has a
perfect method implemented to work with vector and matrix, but C# don’t, so the
solution is using a loop (two loops in case of a matrix) to complete all positions. The
calculated vectors have the information about the number of points in each direction
(XY). The total number of points can be different from the number of acquisitions if an
interpolation value is selected: the Fourier transform can be programmed with a zero
padding, to increase signal resolution, so more grid points are needed.

Those input points are used to get spectral frequency (kx, ky and kz) vectors,
because the amplitude of the wave depends on the spectral frequency values. Setting
kx, ky and kz grid, we can calculate the amplitude of the wave for all the spatial points
we have. To ease the matrix calculation, a small meshgrid function is implemented in a
“like-MATLAB” way.

After the input data calculation, let’s set the output domain in a matrix view. The
same method is used: we put output domain values in two vectors (φθ), and we use
those vectors as input for the meshgrid function.

Figure 3.3: Meshgrid function in MATLAB. Input vector are on the left, and output matrices
are on the right.

The next step is to apply the Fourier inverse-transform to the near field data.
As discussed before, the radiated wave of a rectangular aperture is the Fourier
inverse-transform between the aperture limits. We have used Math.NET library to
obtain fx and fy applying Fourier, but not directly. Math.NET give us the option
to set a vector Fourier transform in a MATLAB way, but we need a 2D Fourier
transformation. In other words, our calculation is applied to a matrix, not a single vector.

To avoid this problem, we have programmed a 2D Fourier function using the single
one: 2D Fourier transform can be decomposed as two Fourier modules. First, we apply
Fourier transformation to each row, and then, we apply the same operation to each
column. Complex data management is implemented, so there is no any other issue.
After the transformation, we apply data shifting, to order the field, like MATLAB
ifftshift function. Amplitude of the wave along Z axis (fz) is directly calculated from fx,
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3.4. FAR-FIELD TRANSFORMATION

fy and kz grid.

After that, filtering of the evanescent modes is needed: an evanescent wave is an
oscillating field that does not propagate as an electromagnetic wave, but whose energy
is spatially concentrated in the vicinity of the source, so it won’t be radiated. To filter
the signal, we will check the kz grid, because if the vector has imaginary components,
it may have a magnitude that is less than its real components. Maxwell’s equations in
a dielectric medium impose a boundary condition of continuity for the components of
the fields, and it is only confirmed with evanescent modes. If there is a complex value,
this position will be an evanescent mode, so we will turn fx, fy and fz into a zero.

Now, we need to change the signal into the output domain. We have the φθ grid,
but we need to project it into the XY domain.

x = rsinθcosφ y = rsinθsinφ z = rcosθ

With the grids in the same domain, we can interpolate the signal from the XY to the
φθ projected one. But C# has no a MATLAB interpolation function, and Math.NET
doesn’t provide a good 2D interpolation into different distributions. The reason is
that XY domain has a rectangular distribution, but the φθ projected grid follows a
concentric circles way (Fig. 3.4).

-4000 -2000 0 2000 4000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-4000 -2000 0 2000 4000
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Figure 3.4: Different grid distribution: rectangular grid (left) and spherical projected grid
(right).

To solve the interpolation, we have programmed an index search method: XY grid
follows just two vectors (one for X, and one for Y), so we pair each projected matrix
with one direction, looking for the closest value between the vector and matrix rows
(or columns). Once we find the four point that enclose the projected point, we define
two planes. We solve the plane equation for the projected point to approximates a
value of the function (Fig. 3.5). If we sweep all projected positions, we can build an
interpolated field with the closest field data for each output point. To increase accuracy,
the interpolation module can be used to get more data. That avoid errors searching
the optimal value: if two different point in φθ projected grid are too close, they may
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3.5. FIELD ROTATION

has associated the same field point, and that’s not correct. The error values of the
calculations are discussed below (Chapter 4). If a projected point is out of XY limit,
the value of the function is set as 0.
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Figure 3.5: Interpolation by plane adjustment scheme. The Z value for XY coords at the red
point is obtained solving the plane equation (in this case, the yellow plane equation).

Finally, we can obtain FF signal applying an exponential coefficient to “move” the
field into a FF distance.

3.5 FIELD ROTATION
Due to pointing problems between the AUT and the probe, or the need to change a
determined position of a point, field rotation can be really useful to correct an acquisition.

The rotation has two domains: XYZ, and phi-theta domain. Both domains
use Euler matrix, R, to correct the position of the field, but phi-theta domain
needs an extra processing. For direct rotation, R is multiplied by a coordinates
vector, with XYZ data of a point, if both fields (with and without rotation)
are represented, we will find a space rotation according to Euler angles. These
angles will rotate the field by Z1 (Z axis before any rotation), X2 (X axis of the
rotated field after first rotation) and Z3 (Z axis of the resultant field after two rotations).

To achieve the right rotated field, we just have to set two matrices: R and field
XYZ position (each line will be related with a specific point). A loop will take each
XYZ vector, will rotate the position, and will store the new coordinates. The rotation
part is programmed in a friendly way thanks to Math.NET, that includes all matrix
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operation we need.

Phi-theta-domain rotation imply more calculation. As we commented at MATLAB
implementation, it starts with a XYZ rotation as reference (v=[1 2 3]). This opera-
tion will set the roll (phi) and azimuth (theta) rotation. The index search method
programmed for the NF to FF transformation is used here, too. It will give us the field
position in roll-azimuth domain (that works as an extended domain from phi-theta).
Program will search 0o position for both angles, and those indices will be taken as
reference to shifting the field. Four submatrices (depends on the position, it could be
two or none) are built to load in there the field data.
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Figure 3.6: Example of shifting process. The signal is periodic (360o for φ and 180o for θ), so
the negative values (left) appear before the 360o (right).

Once the field is extended into roll-azimuth domain, we set a margin. The domain
is periodic, so the wave can be easily duplicated. This is really helpful to interpolate
the signal into a real roll-azimuth domain: as we commented above, our shifting doesn’t
start at 0o, it starts at first positive angle value that index search function could find.
Extending the signal assure a correct interpolation method.

The interpolation method has been programmed from a simple one. We manage
complex data, so the first step is put them into two variables: one with real ones, and
another with imaginary data. A linear interpolation with complex data can be set as a
real data interpolation with an imaginary data interpolation. When both interpolation
are done, results put together like Rdata + jIdata.

Now, with the field perfectly set into the regular roll-azimuth domain ([0,360o-step]
and [0,180o]), we can apply the Fourier transform, which allows us to easily move the
signal across the domain.

f [m+M,n+N ] = 1
MN

M−1∑
m=0

N−1∑
n=0

F [k, l]ej2π( k
M

(m+M)+ l
N

(n+N))
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The exponential factor that set the angle shifting is normalized with the number of
points: due to the Fourier properties, the movement can’t be expressed as an angle gap,
it has to be set as a cell change (each point is considered in one cell). Fourier functions
are implemented in the same way that NF to FF operations. After the exponential
variable, inverse Fourier operation is applied.

The last step before finish Euler rotation is the re-shifting. To set the field into the
input domain, we need to undo the field reorder. Four submatrix (or 2) are loaded at
the correct order into an output matrix. This matrix has the same size that input field
(input and output domain is the same).

3.6 INTERPOLATION
Interpolation module allows to increase data resolution. Euler rotation’s interpolation
is used as reference to program the module: complex data must be decomposed into
real data and imaginary data to interpolate it separately.

As input we have the filed, the old steps and the new ones (for each dimension).
The step are normalized by the old step to easily the calculation. The new size of the
field will be

1 + lengthold − 1
stepnew

= lengthnew

Figure 3.7: Example of new axis. Original points (red), with a stepold = 1, are splitted by the
stepnew (green).

With the new size, we can fill the new vectors in each direction. The old ones are
from 1 to the length of the field, one by one (as we have said above, its normalized).
The new axis limits are the same, but they increase the value using the new step (that
will be smaller than the old step).

After that, the interpolation will be set in two dimensions: a loop to interpolate the
rows, and other loop to interpolate the columns. The interpolation method is the same
that the function in Euler rotation.
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3.7 CORRECTIONS
The measurements can have unexpected results if we don’t take into account some
issues that could happen: interference, calibration error. . . We have considered two
errors to correct: noise error, and normalization.

3.7.1 NOISE CORRECTION
White noise is a random signal, characterized because its values at different time points
have no relation to each other, that is, there is no statistical correlation between their
values. It has uniform power across the frequency band. We will consider that it has a
distribution, with an average value, so its Gaussian centered on a specific mean. This
polarization noise always affects our measurements, as WGN (White Gaussian Noise)
does, and it will be different at each point.

The power of the noise could be considered irrelevant if our power is high enough,
and it happens at the center of our measurement: the main lobe of the AUT will point
the center of the area. But at the edge of the measurement area, the power of the field
is lower than the power of the noise.

The signal follows S=N+E, and if we consider the field close to zero at the edge of
the measurement area, we will be able to cancel the noise. The mean of the field is
zero, so the mean of the signal is the mean value of the noise. With this parameter, we
can correct each point subtracting the signal mean.

The program load the noise correction with the BIAS parameters of the .PINP
file (Fig. 3.2): activate or avoid correction (BIAS CORR), dimension of the area
to correct (N corr, M corr), and field of application (F corr, wich can be X or Y).
The measurement is done with two polarizations, and the most affected will be the
crosspolar polarization. Crosspolar polarization is the one that its radiation pattern
includes more radiated signal.

Once the four correction areas are delimited, each field component is accumulated
to calculate the mean value. Both fields are loaded again to subtract the noise effect.
The output of Bias correction is a same-size-input field.

3.7.2 NORMALIZATION
Data aren’t always for seeing the AUT’s performance. Sometimes, we are interested in
comparing an antenna with another, and normalization helps to do that. This process
change the module of all points, dividing its value by maximum. The phase of all
points is preserved.

Applying this function, the maximum value just can be 1 (0 if we are working in
logarithm). This is useful if we want to compare two fields by their behavior, not by
their power: the main lobe width, the radiation form, etc.
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Chapter 4

MEASUREMENTS AND
RESULTS

In this part, a comparison between error parameters and performance of both programs
is done. Each programing language has its own issues, so the results have to be taken
considering each situation.

As we commented above, MATLAB is used as mathematical reference: the
calculation can be implemented without error for NF to FF transformation, Euler
rotation and interpolation. Furthermore, the extensive amount of functions that
are implemented make really easy using MATLAB for this work. The graphical
options are good, too: data can be plotted in many ways, so the results are easy to check.

C# options are focused to offer an easy execution and a good performance: once
is compiled, the executable doesn’t need another program to be used, and the lack of
graphical options increase the performance of the program. To check the results, we
should consider:

• Each module should be tested separately. Error can accumulate, and it’s better
to set the quantity of each module. Furthermore, the NF to FF calculation is
not the same as the interpolation module, so the blocks that has a more complex
calculation must be analyzed apart.

• The properties of the input data influence the results. All data that affect the
quantity of points are very important for the calculation: the accuracy and the
time of execution are directly affected by the number of measures, the factor of
fundamental frequencies. . . So each measurement will have a critical calculation.

• Both programs start with the same measured data, so any acquisition error can
be ignored. We can try to reduce its influence by software, but isn’t necessary do
it to compare two data processing.
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4.1 MEASUREMENT ERRORS
Measurement process implies the management of many tools and devices (probes, com-
puter systems, VNA’s, cables, etc). The behavior and response of all these components
are not perfect, and it doesn’t follow the theoretical pattern at 100%. Fig. 4.1 shows a
summary of the main parameters and errors.

Method of evaluating

Source of error Computer
Simulation

Test on
measure

Error
equation

Probe relative pattern X
Probe polarization radio X
Probe gain measurement X

Probe alignment error X
Normalization constant X

Impedance mismatch factor X
AUT alignment error X X
Data point spacing X X

Measurement data truncation X X
Probe x,y-position errors X X
Probe z-position errors X X

Multiple reflections X
Receiver amplitude nonlinearity X X X

System phase error X X
Receiver dynamic range X

Room scattering X
Leakage and crosstalk X

Random errors in amplitude/phase X X

Figure 4.1: Error sources in planar NF measurements [11].

4.1.1 ANTENNAS ERRORS
The probe is a critical element in the measuring process: The AUT and the probe are
the two antennas of the system, and any property of one of them may affect the other.
The main probe effects are:

• Relative pattern: as an antenna, probe has its own radiation pattern, and its
peaks and lobules have to be determined to measure the effect.

• Polarization radio: a perfect probe should isolate different polarizations (a 0o

linear polarization have to take no signal from a 90o polarization, for example).
Because the probe is not perfect, the quantity of different-polarization signal that
see the probe has to be set.

• Gain measurement: all systems will introduce gain or loss to our measurement,
so the probe must be characterized.
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• Alignment error: the mechanical parts precision affects the field (more relevant
for high frequencies). If the step is not exactly the correct value (λ/2), or the
AUT and the probe are not faced to each other, the acquisition can have errors.
Laser systems help to reduce this problems.

• Leakage and crosstalk: some errors are defined by the geometry of the antenna.
Power can be radiated where is not expected, creating a leakage error. A crosstalk
effect can be produce by a pair of coupled cables, that induce a bad transmitted
signal.

4.1.2 MECHANICAL ERRORS
Planar measurements have two mechanical axes (X-Y) that move the AUT or probe
along all measurement area. Those axis, along with a third axis (Z) that can move the
antennas closer or farther, can introduce some position errors. The shift should be as
precise as possible, to take the measurement at the correct point. For high frequencies,
the electrical distance is just a few of mm (for example: 12 GHz, λ/2=12.5 mm), so
any position error can produce a bad acquisition.

A typical effect of a bad position error is the aliasing: if distance between points is
bigger than λ/2, signal data will interference with next to points, inducing acquisition
errors.

Figure 4.2: Example of aliasing error. Left symbols are not overlapped, so the receiver can
identify them correctly. Right symbols are taken too close, so the power of the second symbol
interfere with the first one, creating an error.

4.1.3 SOFTWARE ERRORS
Some errors are produce for the software calculation. Data adjustment, like normaliza-
tion constant, can spoil the acquired data, especially secondary lobes. Both patterns
(AUT and probe) must be normalized by the same factor. Other cases the signal could
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4.1. MEASUREMENT ERRORS

be distorted (Fig. 4.3). Secondary lobes are affected by the pattern of the probe, that
decrease while the measure moves from the center of the probe. This effect minimize
the effect of rebounds and secondary signals. That is the reason that main lobe is the
most affected by a bad normalization process.

-5 -4 -3 -2 -1 0 1 2 3 4 5

deg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

dB

-5 -4 -3 -2 -1 0 1 2 3 4 5

deg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dB

Figure 4.3: Example of normalization: if the AUT and the probe are not normalized at
the same factor, the signal shows a false level (left). Blue lines are the antenna’s radiation
patterns, and red line is the field that the system obtains.

Another error of calculation is the measurement area truncation. When we set that
the field just cover a sector of the total space that the AUT covers, we assume that all
the power is in this area, and that’s not true. In planar measurements, the maximum
area calculated is a semi-sphere, so an intrinsic error affects our data. Spherical systems
minimize this error because they cover a complete sphere around the AUT.

4.1.4 RECEIVER ERRORS
A good measurement needs a complex and calibrated receiver system, that includes the
VNA, cables, amplifiers and many other components. The most common error are:

• Impedance mismatch error: like any other circuit, power can be reflected or
transferred at connected ports. A huge reflection could damage our system, so we
need to assure a good power transfer.

• Reflections: the chamber is part of the system, and its geometry can cancel many
reflections, and attenuate the low-grade signal (with just a few of rebounds). The
quiet zone may be compromised if the scattering creates many distortion signals.

• Amplitude nonlinearity: the response between input data and output data must
cover the linear range of the system. A nonlinear response makes the acquisition
invalid, because there is no sense between the input and output field.

• Dynamic range: dynamic range its defined as the range between the minimum
signal that we can take, and the maximum level of field we can measure. These
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levels have to include active elements, like amplifiers, to avoid any saturation
point. They must keep the linearity criteria.

• Phase error: signals have and amplitude and a phase associated to each point. A
bad phase induces error data, because the receiver can’t read correctly the signal.
The main phase error sources are rotary and cables effects, and temperature
problems.

4.1.5 OTHER ERRORS
Random error points can appear while the signal is evaluated. Electrical system, like
a bad earth wire, can produce signal derivations and affect to the measured signal.
Active components, like mixers, could create fake signals (like image signals) if the work
frequency is not the expected. Another source of error could be the isolation of all
components. These complex systems need a huge accuracy level from their components.

4.2 NF TO FF TRANSFORMATION

4.2.1 TEST MEASUREMENT
To train the C# program, we need to manage a very known data. ASYSOL has many
resources from proves, previous installations, so a complete planar NF measurement
will be the test field. Those data include two polarization measurement, for many
frequencies. We are going to use a 51x51 measurement for 110 GHz. The output will
be calculated for all possible angles (φ from 0o to 180o, θ from -90o to 90o).

First of all, a correct MATLAB program is needed. A theoretical script has been
developed by ASYSOL: The program takes all the calculations from Balanis [6] [7] and
apply them to a input field (as we commented at the NF to FF transformation section
in Chapter 2, MATLAB implementation). All parameters needed (steps, angles. . . ) are
defined in a .MAT file with the field data. Fig. 4.4 represents the output FF fields.

NF to FF transformation function has the more complex calculation: FFT,
interpolation and domain change. That means that most of the error will come from
this module. The reason is that MATLAB and Math.NET has no difference using simple
operations included in the other modules. Furthermore, more complicated calculations,
like Fourier transforms, have similar results. Until the projection from spherical
coordinates to rectangular points, MATLAB and C# results are exactly the same. So,
the domain change between the θφ projected area and the kx and ky grid becomes the
main function to introduce error, because is programmed using an alternative method
(2D interpolation is not implemented in Math.NET, so as is explained at Chapter 3,
a interpolation adjustment by planes is used). The error is reduced increasing the
number of points we have: a pre-interpolation is recommended before change the domain.

To compare both programs, C# results have been loaded into MATLAB. Fig. 4.5
shows the theta-Z axes. The left column corresponds to the MATLAB results. Right
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Figure 4.4: Output test FF calculated using MATLAB.

-1.5 -1 -0.5 0 0.5 1 1.5

θ (rad)

-250

-200

-150

-100

-50

0

|E
θ
| (

dB
i)

f = 110.000000 GHz

-100

-50

0

-1.5 -1 -0.5 0 0.5 1 1.5

θ (rad)

-250

-200

-150

-100

-50

0

|E
φ
| (

dB
i)

-100

-50

0

-1.5 -1 -0.5 0 0.5 1 1.5

θ (rad)

-250

-200

-150

-100

-50

0

|E
C

#
θ
| (

dB
i)

f = 110.000000 GHz

-100

-50

0

-1.5 -1 -0.5 0 0.5 1 1.5

θ (rad)

-250

-200

-150

-100

-50

0

|E
C

#
φ
| (

dB
i)

-150

-100

-50

0

Figure 4.5: Output field calculated using MATLAB (left) and C# (right). All fields are
normalized.

column shows the C# output. The figures are similar, but we need to process all data
to evaluate the performance of both programs. We have calculated the error function
for each point by

20log10(||Ematlab| − |EC#||)

Both fields Ematlab and EC# are normalized before obtain the error values.

The error function is always under the -50 dB point, so we can assume that
the calculation is correct. The distribution increases its value at the center of the
measurement, which is normal, because the main beam matches this area. There are
more power, and any peak can produce a bigger error due to the interpolation method.
At the edge of the surface, the variation of magnitude decrease (there are less power of
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Figure 4.6: Error function between MATLAB and C# calculation.

field), so the error as well.

This error is adjusted with a pre-interpolation calculation: we reduce the step of the
function to increase the number of points. This reduce the error until -100dB, but it
can be a problem if the field has a big measurement surface, because its computational
cost. The execution time and the memory behavior can be compromised. So the best
solution is define an adaptative step interpolation: with good number of original points,
we are going to calculate less pre-interpolated points.

4.3 ALGORITHM STABILITY
To see how acts the algorithm under different conditions, the test field is going to be
checked with different MODEXP (no expansion, 4, 8, 16 and 32) variable and different
BIASCORR (no noise correction, 1, 2 and 4) parameters. All no-corrected fields are
taken as reference. MODEXP factor increase the number of points as result of Fourier
transform, so the signal resolution increase, too. BIASCORR factor specify the size of
the area of the noise measurement.

This new test field corresponds to planar antenna (Fig. 4.7) measured in a planar grid
of 67x67 points, and the frequency of the measurement is 12 GHz. Its output has been
calculated for all possible angles (φ from 0o to 180o, θ from -90o to 90o) with a step of 1o.

The first thing we can see after draw the fields with different MODEXP is the
similar form, but the different level between them (Fig. 4.8): when the MODEXP
increase its value, the number of points is bigger, so the mean power decrease. Same
situation happens for both polarizations.
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Figure 4.7: Planar antenna measured to obtain a real test field.

Figure 4.8: Reference crosspolar field for different number of modes calculation. All data are
in dB.

Evaluating the error between the reference field (no noise correction, no expansion)
and the different BIASCORR data (with 1 point, 2 points and 4 points of noise
correction area) and MODEXP fields (1, 4, 8, 16 and 32 as expansion factor), we can
see that all error is under 75 dB (some examples in Fig. 4.9). This indicates that the
algorithm has a stable behavior: it calculates the same, no matter the input conditions
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for the same input .DAT. In this case, a small BIAS grid is selected, because the input
has 51 points in both axes, so the BIAS grid has to be consequent with field size.
Before the error calculation, all fields have been normalized.
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Figure 4.9: Different error for some MODEXP-BIAS combination. First row shows error
between reference field without MODEXP and BIASCORR of (from left to right): 1, 2 and 4
points. Second row shows error between reference field with MODEXP = 16 and BIASCORR
of (from left to right): 1, 2 and 4 points. All data are in dB.

4.4 TIME PERFORMANCE
Results are important, and the main target of any calculation. But there are more
important parameters, like time of execution and memory performance. Comparing
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memory management between MATLAB and C# seems useless: algorithms are so
different, and to compare it we need to define all the small functions under the main
calculation, with all its variables.

But time performance is easy to extract and compare. Both programs have defined
functions to measure the time between two points. Is important to consider some points
to assure a fair comparation:

• MATLAB programs include some functions to draw the solutions. Those parts
have to be excluded from the time measured. C# just calculates a text file as
output, there is no any representation.

• The input data must be the same. The size of input field is a critical parameter,
but all variables that affect the interpolation process, or the complex calculation
(like FFT/IFFT) are really important to the execution time.

• The execution must be done under normal computer conditions: we are going to
try to stop all secondary programs. If MATLAB or C# are running with other
heavy programs, the performance won’t be realistic.

To test the software, we have changed two parameters: pre-interpolation factor (the
value that indicates the increase of points before the change between the rectangular
and the spherical domain) and the size of the input field. With more point (for the size
or the interpolation factor), more time of execution is expected.

Figure 4.10: C# and MATLAB execution times. Biggest field combinations (grey background)
are out of the computer capacity.

This test also can indicate the limit of point for the software: a large quantity of
points can produce an out of memory exception. The characteristics of the computer
affect directly to the amount of data that the computer can handle. All the times are
obtained in a i7-5500U of 2.40 GHz CPU, with 8 Gb of RAM memory.

Each value in Fig. 4.10 is the mean time of 5 executions. After a brief assessment,
C# is the best option while the number of data is supported. For small input files, the
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C# speed is lower than MATLAB’s, but it doesn’t take too long. For big data files,
MATLAB has more problems loading the points. The main problem for both programs
is the memory management, which avoid a correct calculation for extreme (large field)
conditions. To lead with this issue, the interpolation-factor must be adaptive: it takes
a large value for small fields, and it is reduced with the field size increase.

4.5 FIELD ROTATION
After the NF to FF transformation, field rotation is the second complex system to
check. To compare the calculation between MATLAB and C#, we are going to test
only the roll and azimuth, because the program calculates XYZ and roll and azimuth,
but the output is just in the roll and azimuth domain.

The input 51x51 field used for the test measurements is rotated with Euler angles:
φ=15o, θ=-40o and ψ=10o.
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Figure 4.11: Original far-field without rotation.

Visually, the fields (Fig. 4.12) are quite similar, but there is the correct way to
evaluate it. The same error function that in the NF to FF section is calculated.

This process shows a really good performance, with a max error of -264 dB, that
only includes the rotation error (the input for MATLAB and C# is the same). So we
can consider that this calculations doesn’t add any error to our data.

Both process (FF transformation and rotation) use the interpolation block, so no
interpolation error is assumed.
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Figure 4.12: Euler rotation by MATLAB (left) and C# (right).
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Chapter 5

CONCLUSIONS AND FUTURE
WORK

Planar NF measurements are near field antenna measurement systems with the easiest
mechanical implementation but this does not mean that they are trivial. Form the
transformation from NF to FF point of view, is the kind of NF measurement system
that involves the lowest computational cost. However, a complex mathematical process
has to be considered that involves more correction factors than other measurement
methods. That’s why a correct approach is important before achieving a correct
transformation.

The main objective of this TFM, has been reached: a fast and simple software tool
to carry out the NF to FF transformation including some corrections and postprocessing
capibilities has been developed. The software is a software development environment
programing environment independent tool implemented in a .exe app. The tool uses as
input files with with a known predetermined format and provides as output a file with
the same input-format allowing its recurrent use in such a way that each call carries
out just one calculation.

As demonstrated in the results Chapter, the program works properly for the NF to
FF transformation with assumable error levels, and post-processing and implemented
corrections works properly.

5.1 FUTURE WORK
Along this project it has been shown how the tool developed is working properly.
However, that does not mean it is finished. The software can be improved, and in this
section, a comment about different actions to carry out some improvements is done:
algorithm optimization and new options addition.

Concerning algorithm optimization, the logical option is to analyze the developed
code performance to improve speed and memory management. This implies checking
all small functions defined using C# properties to obtain an optimal software. C# is an
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object-oriented programming-language and, taking advantage of those functionalities,
the software will reach a great performance. Furthermore, the libraries (like Math.NET)
and drivers should be updated: new corrections and new functions are released
with each version, so revisions are needed from time to time. The aspect that
requires a significant further improvement is the interpolation between the rectangular
grid and the spherical projected domain, that is the is the biggest error source in the code.

Main calculation (NF to FF transformation) is a mathematical process that includes
too many variables like the mechanical precision of the positioning system or the effect
of the probe over all the measurement. The main effects that can be measured, can
be corrected too and programmed to improve the transformation. However, the main
source of errors form the transformation point of view is the probe correction and needs
to be treated on the first place.

The probe, as an antenna, has its own radiation pattern and affects the mea-
surements with its lobes, gain. . . Probe effects is one of the most representative
parameters from the corrections point of view. The probe affects mainly to the
secondary lobes due to its aperture. The perfect data acquisition would be just
from a point, associated with the main beam, but its impossible to achieve because
there are another signals. The secondary lobes are more affected than the main
lobe because the power of the main beam makes interference from the probe al-
most irrelevant at this point. But secondary lobes, with less power, need to be corrected.

The idea is calculated the NF data for the probe, and subtract its effect to the
AUT measured data. The simplest way to do it is to measure in the same planar
conditions the probe, but is not the easiest method: all acquisitions implies two
realizations (one for the AUT, and on for the probe). The optimal way is use the
spherical measurement for the probe: because its geometry, just 4 cuts are needed for
the majority of the probes, so the measured time is minimum. This method implies a
complex mathematical calculation, including spherical to cartesian change domain and
scattered interpolation.

The starting point will be the FF probe field. The FF data of the probe will be
move to the aperture plane (applying an exponential factor). The next step will be the
domain change: data are now in a φ-θ grid, and we have to interpolate the signal into a
kx and ky grid. Once the interpolation is done, the probe field is ready to be applied
to the measured data:

NFmeasured = NF (AUT ) +NF (Probe) NF (AUT ) = NFmeasured −NF (Probe)
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Figure 5.1: Workflow of a NF to FF transformaion. 1: NF measurement. 2: field movement
to the aperture. 3: FFT transformation. 4: FF distance movement.

With the data corrected, the NF to FF transformation continuous as is described in
Chapter 3.
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