

UNIVERSIDAD DE CANTABRIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

DEPARTAMENTO DE CIENCIA E INGENIERÍA DEL TERRENO Y DE LOS MATERIALES

TESIS DOCTORAL

ANÁLISIS TEÓRICO DE LA CONSOLIDACIÓN Y DEFORMACIÓN ALREDEDOR DE COLUMNAS DE GRAVA

Autor JORGE CASTRO GONZÁLEZ

Director CÉSAR SAGASETA MILLÁN

Santander, 2008

"Saber no es suficiente, debemos aplicar. Desear no es suficiente, debemos hacer."

Johann W. Von Goethe

Esta tesis doctoral ha sido financiada por las siguientes instituciones:

- Proyecto de Investigación "Tratamiento de suelos blandos mediante columnas de grava para la cimentación de terraplenes de carretera. Análisis del proceso y criterios de dimensionamiento". Desarrollado al amparo de una Ayuda a la Investigación del Ministerio de Fomento (ref. 2003/17), según convocatoria del B.O.E. 25/02/2003.
- Beca de Investigación Predoctoral de la Universidad de Cantabria (convocatoria año 2005).
- Beca Predoctoral de la Convocatoria Nacional del Plan de Formación de Profesorado Universitario del Ministerio de Educación y Ciencia (Ref. AP2005-0195), según convocatoria del B.O.E. 16/09/2005.
- Ayuda de movilidad para realizar una estancia de investigación en el extranjero de la Fundación Leonardo Torres Quevedo (año 2006).

Agradecimientos/Acknowledgements

Mediante estas líneas deseo expresar aquí públicamente mi reconocimiento a todas las personas y entidades que han hecho posible la realización de este trabajo.

Deseo expresar mi sincero agradecimiento al Prof. César Sagaseta Millán, director de esta tesis, por su excelente dirección, esfuerzo y tiempo dedicado. Sus acertadas ideas y sugerencias han sido la base de esta investigación y me han motivado y guiado para intentar llevarlas acabo. Sus amplios conocimientos, experiencia, así como las oportunidades facilitadas han sido un marco perfecto para iniciarme en el camino de la investigación, que espero haber sabido aprovechar.

Del mismo modo, quiero transmitir mi agradecimiento al Prof. Jorge Cañizal Berini por toda la ayuda que me ha prestado, su dedicación y amplia experiencia que ha querido compartir conmigo.

Agradezco a la Prof.^a Almudena da Costa García toda la ayuda, enseñanzas y sabios consejos proporcionados.

I would like to express my gratitude to Prof. Helmut Schweiger, my research supervisor during the three months I was in Graz, for his warm welcome, guidance and facilities given. His enthusiasm and discussions with his PhD students were a great encouragement.

Objeto de mi gratitud ha de ser también el Ministerio de Fomento por haber financiado el proyecto de investigación del que esta tesis forma parte, en particular, el apoyo de Dña. M^a Dolores Cancela, Coordinadora del proyecto.

Igualmente he de hacer constar mi agradecimiento a la Universidad de Cantabria, a la Fundación Leonardo Torres Quevedo y al Ministerio de Educación y Ciencia que me han sufragado económicamente, otorgándome diferentes becas y ayudas. La instrumentación realizada en la Variante de Sueca ha sido posible gracias a la colaboración de la Demarcación de Carreteras del Estado en Valencia, concretamente del Ingeniero Director de Obra D. Ramón García Vendrell, de la empresa constructora Dragados, de la U.T.E. KellerTerra-Geocisa encargada de ejecutar las columnas y de las medidas realizada por Geocisa.

El análisis de los macizos de tierra armada de Arbuio se realizó gracias a la ayuda de D. Fernando Muñoz, de Interbiak y D. Miguel Ángel Herrera, de la empresa consultora Eptisa-Cinsa, así como al diseño y cálculos realizados por D. José Antonio Barco Herrera.

Este trabajo ha sido realizado en el Grupo de Geotecnia de la Universidad de Cantabria, por ello me gustaría agradecer a todos sus miembros la ayuda, colaboración y entretenimiento proporcionados. En especial, a mis compañeros Ana, Belén y José Miguel con los que me une la amistad y complicidad que conlleva el desarrollo de una tesis doctoral.

Thanks to the PhD students of the Soil Mechanics Institute of Graz for their advice on using numerical methods and making me feel at home.

Finalmente, quiero expresar mi agradecimiento a todas las personas que participan en el aspecto personal y alguna que otra vez también en el profesional, imprescindibles para alcanzar cualquier objetivo. Gracias a mi familia, a mis padres y mi hermano; ellos están detrás de todos mis logros. Gracias a mis amigos por todos los buenos momentos que hemos pasado y que me han permitido distraerme de la tesis. Gracias a Patricia por su apoyo y ánimo.

¡Gracias!

Jorge Castro González

Santander, 19 de marzo de 2008

Contenido

Lista de Figuras	17
Lista de Tablas	25
Resumen	29
Abstract	31
Thesis summary	33
Presentación del documento	41
Motivación y objetivos	43
Notación	47
CAPÍTULO 1. COLUMNAS DE GRAVA. INTRODUCCIÓN	53
1.1. MÉTODOS DE MEJORA Y REFUERZO DEL TERRENO	54
1.2. Construcción y características	66
1.3. Aplicaciones	73
CAPÍTULO 2. ESTADO DEL CONOCIMIENTO	77
2.1. Geometría	79
2.1.1. Deformación plana	79
2.1.2. Simetría axial	86
2.2. Consolidación	88
2.2.1. Teoría de Biot (1941)	88
2.2.2. Consolidación tridimensional	92
2.2.3. Consolidación unidimensional	94
2.2.4. Soluciones aproximadas	112
2.2.5. Acoplamiento. Efecto Mandel-Cryer	120
2.2.6. Métodos numéricos	125
2.2.7. Consolidación radial para drenes verticales	132
2.2.8. Consolidación alrededor de columnas de grava	144

	2.3. INTERACCIÓN COLUMNA-SUELO. SITUACIONES INICIAL Y FINAL	148
	2.3.1. Solución edométrica	150
	2.3.2. Solución elástica (Balaam y Booker, 1981)	153
	2.3.3. Método de Priebe (1976, 1995)	160
	2.3.4. Otras soluciones	163
	2.4. ESTABILIDAD DE LAS COLUMNAS	167
	2.5. INSTRUMENTACIÓN DE OBRAS REALES	173
CAF	PÍTULO 3. MODELO ANALÍTICO DESARROLLADO	185
	3.1. Celda unidad	186
	3.2. HIPÓTESIS	193
	3.3. DESARROLLO	197
	3.3.1. Solución elástica	197
	3.3.2. Deformación plástica de la columna	203
	3.3.3. Integración para toda la columna	210
	3.3.4. Varios escalones de carga	211
	3.4. ESTUDIO PARAMÉTRICO Y COMPARACIÓN CON OTRAS SOLUCIONES PREVIAS	212
	3.4.1. Consolidación	212
	3.4.2. Factor de Concentración de Tensiones	220
	3.4.3. Reducción del asiento	222
	3.5. Ejemplo de diseño	223
	3.6. Análisis numérico	227
	3.6.1. Modelo	227
	3.6.2. Comparación y resultados	229
	3.7. Resumen	238
CAF	PÍTULO 4. INSTRUMENTACIÓN DE OBRAS REALES	243
	4.1. VARIANTE DE SUECA	244
	4.1.1. Caracterización del terreno	246
	4.1.2. Estudio de la instalación de las columnas	255
	4.1.3. Estudio de la elevación del terraplén	278
	4.1.4. Modelo numérico en 3-D	290

4.2. MACIZOS DE ARBUIO	303
4.2.1. Introducción	303
4.2.2. Descripción de la obra	305
4.2.3. Descripción de la instrumentación	309
4.2.4. Afección de la excavación al pie	315
4.2.5. Ritmo de elevación del terraplén	323
4.2.6. Lecturas realizadas	328
4.2.7. Comportamiento observado	332
4.2.8. Análisis numérico del proceso de construcción	350
4.3. VISIÓN DE CONJUNTO	357
Conclusiones	361
Futuras líneas de investigación	367
Conclusions	369
Future work	373
Referencias	375
APÉNDICES	381
Apéndice A. Hoja de cálculo del modelo analítico desarrollado	383
Apéndice B. Control de la instalación de las columnas. Variante de Sueca	389
Apéndice C. Lecturas de los piezómetros durante la instalación de las col	umnas.
Variante de Sueca	399
Apéndice D. Resumen de lecturas. Variante de Sueca	417
Apéndice E. Resumen de lecturas. Macizos de Arbuio	423

Lista de figuras

CAPÍTULO 1

Figura 1.1.	Aplicabilidad de las técnicas de mejora y refuerzo del terreno en función o	del
	tamaño de partículas (Mitchell, 1981; adaptado por Bielza, 1999)	56
Figura 1.2.	Campo de aplicación de las principales técnicas de mejora del terreno	
	(Ministerio de Fomento, 2002)	62
Figura 1.3.	Alternativas para cimentar un terraplén (Leroueil et al., 1985)	63
Figura 1.4.	Comparación de las posibles cimentaciones de un terraplén sobre suelo	
	blando (adaptado de Visschedijk, 2005)	63
Figura 1.5.	Criterio de adecuación de suelos para tratamiento por vibro-compactación	l
	(Glover, 1992)	65
Figura 1.6.	Esquema de construcción por vía seca (Raju et al., 2004)	67
Figura 1.7.	Vibradores para alimentación (a) por superficie y (b) por fondo (Raju et al	l.,
	2004)	67
Figura 1.8.	Esquema de empleo de columnas de grava (CEDEX, 2005)	71
Figura 1.9.	Hoja de control de la ejecución de una columna (Keller, 2005)	72
Figura 1.10). Terraplén de una autovía en Malasia (Raju et al., 2004)	75
Figura 1.11	. Depósitos para gas líquido en la India (Raju et al., 2004)	75
Figura 1.12	2. Terraplén de acceso a un puente en EE.UU. (Keller, 2005)	76

Figura 2.1. Paso a deformación plana (Van Impe y De Beer, 1981)	80
Figura 2.2. Equivalencia de la resistencia al corte (Barksdale y Bachus, 1983)	81
Figura 2.3. Estudio del módulo elástico equivalente	82
Figura 2.4. Paso a deformación plana (Indraratna y Redana, 1997)	85
Figura 2.5. Paso a simetría axial	86

Figura 2.6. Experimento para determinar las constantes físicas H y R de la teoría de (Wang, 2000)	Biot 91
Figura 2.7. Analogía mecánica de la consolidación (Jiménez Salas et al., 1975)	95
Figura 2.8. Isócronas de la solución de Terzaghi-Frölich (Verruijt, 2006)	107
Figura 2.9. Grado de consolidación medio para el caso unidimensional	109
Figura 2.10. Diferentes fases durante el proceso de consolidación	113
Figura 2.11. Isócronas parabólicas (Muir Wood, 2004)	117
Figura 2.12. Comparación de la solución exacta con la solución aproximada de	
isócronas parabólicas	120
Figura 2.13. Problema estudiado por Mandel (1953)	122
Figura 2.14. Presiones intersticiales en el centro del cilindro	124
Figura 2.15. Discretización en diferencias finitas	125
Figura 2.16. Método gráfico para estudiar la consolidación	128
Figura 2.17. Disgregación en drenaje radial y vertical (Bejan, 1993)	132
Figura 2.18. Celda unidad en simetría axial (Barron, 1948)	134
Figura 2.19. Variación radial de la tensión vertical y la presión intersticial en el caso	o de
Barron (1948) con carga rígida	138
Figura 2.20. Distribución de presiones intersticiales iniciales teórica (o real) y según	1
Barron (1948)	140
Figura 2.21. Distribución de presiones intersticiales inicial para el caso unidimensional	140
Figura 2.22. Solución de Barron (1948) para carga rígida sin zona remoldeada y dre	en de
permeabilidad infinita	142
Figura 2.23. Comparación entre el caso de carga rígida y carga flexible	143
Figura 2.24. Reparto en el tiempo de la tensión vertical según la solución de Han y	Ye
(2001)	147
Figura 2.25. Celda unidad en simetría axial (Balaam y Booker, 1981)	149
Figura 2.26. Relación entre factor de concentración de tensiones (SCF) y relación de	e
módulos en la solución edométrica (Han y Ye, 2001)	152
Figura 2.27. Relación entre el factor de concentración de tensiones (<i>SCF</i>) y la relacionada médulos alásticos	ión
Eigune 2.29. Easter de maiore eigeneration of (Dri 1 - 1007)	160
Figura 2.28. Factor de mejora sin correcciones (Priebe, 1995)	102
Figura 2.29. Reduccion del asiento medido experimentalmente (Greenwood, 1970)	164

Figura 2.30. Factores de mejora teóricos y experimentales	165
Figura 2.31. Mecanismos de fallo de una única columna en un suelo homogéneo (Barksdale y Bachus, 1983)	168
Figura 2.32. Esquema de estabilidad de una columna	168
Figura 2.33. Análisis de la capacidad portante de un grupo de columnas bajo zapata (Barksdale y Bachus 1983)	170
Figura 2.34. Resumen de los diferentes valores de N/k_{ac} (Bernardo y Lam, 1987)	170
Figura 2.35. Factor de concentración de tensiones medido (Han y Ye, 1991)	175
Figura 2.36. Factor de concentración de tensiones medido (Watts et al., 2000)	176
Figura 2.37. Célula para medida simultánea de tensiones y presiones intersticiales (adaptado de Kirsch, 2004)	177
Figura 2.38. Tensiones medidas durante la instalación de una columna (Kirsch, 2004)	178
Figura 2.39. Tensiones medidas durante la instalación de varias columnas (Kirsch, 2004)	179
Figura 2.40. Análisis numérico mediante elementos finitos de un terraplén sobre columnas de grava (Kirsch y Sondermann, 2003)	180
Figura 2.41. Picos de presión intersticial medidos durante la instalación de columnas (Chun et al., 2003)	5 181
Figura 2.42. Presión intersticial medida (Gäb et al., 2007)	183
Figura 2.43. Evolución del asiento y las presiones intersticiales con la altura del terraplén (Bergado et al. 2002)	183
(Dolgado et al., 2002)	105

Figura 3.1. Celda unidad	187
Figura 3.2. Líneas equipotenciales alrededor de una columna	191
Figura 3.3. Red de filtración alrededor de una columna	191
Figura 3.4. Condiciones de equilibrio y compatibilidad entre el suelo y la columna	197
Figura 3.5. Trayectoria de tensiones de la columna en condiciones habituales: a) cas	30
elástico, b) caso elasto-plástico y c) dos escalones de carga	204
Figura 3.6. Coeficiente de consolidación equivalente. Columna elástica. Influencia	de la
relación de módulos	213

Figura 3.7. Coeficiente de consolidación equivalente. Columna elástica. Comparaci	ón
con ensayos de laboratorio (Cimentada, 2008)	214
Figura 3.8. Asiento elástico en el tiempo para un área de sustitución elevada	215
Figura 3.9. Coeficiente de consolidación equivalente. Columna plástica. Influencia	de
los ángulos de rozamiento y dilatancia	215
Figura 3.10. Comparación de soluciones elásticas. Caso analizado por Balaam y Bo (1981)	oker 218
Figura 3.11. Comparación de soluciones elásticas empleando la solución de Barron	para
carga flexible como base. Caso analizado por Balaam y Booker (1981)	218
Figura 3.12. Solución de un caso típico. Columna elasto-plástica	219
Figura 3.13. Factor de concentración de tensiones. Influencia de la deformación rad	ial y
de las deformaciones plásticas de la columna	220
Figura 3.14. Evolución con el tiempo de las tensiones en el suelo y la columna	221
Figura 3.15. Factor de mejora, n. Comparación con el método de Priebe (sin	
correcciones)	222
Figura 3.16. Mallas de elementos finitos de los modelos analizados	228
Figura 3.17. Grado de consolidación, U_s , obtenido mediante elementos finitos	230
Figura 3.18. Comparación de diferentes grados de consolidación	231
Figura 3.19. Evolución del factor de concentración de tensiones	231
Figura 3.20. Evolución de las tensiones verticales totales	232
Figura 3.21. Evolución de las tensiones radiales y circunferenciales totales	233
Figura 3.22. Evolución de la presión intersticial	233
Figura 3.23. Tensiones verticales medidas en laboratorio (Cimentada, 2008)	234
Figura 3.24. Tensiones verticales obtenidas con elementos finitos	234
Figura 3.25. Comparación del estado final	235
Figura 3.26. Comparación del estado inicial	236
Figura 3.27. Influencia de los incrementos de tiempos fijados	237
Figura 3.28. Influencia del incremento de tiempo fijado (Booker y Small, 1975)	238

Figura 4.1. Planta de situación de la instrumentación (adaptado de Geocisa, 2007)	245
Figura 4.2. Perfil geotécnico típico en la zona instrumentada	247

Figura 4.3. Resistencia al corte sin drenaje obtenida a partir de penetrómetros dinán	nicos
y cortes simples (Intecsa-Inarsa, 2005)	249
Figura 4.4. Resistencia por punta y presión intersticial medida en los piezoconos m	ás
cercanos a la zona instrumentada	250
Figura 4.5. Resistencia por punta y presión intersticial medida en el piezocono	
CPTU-30	251
Figura 4.6. Permeabilidad medida en el ensayo edométrico	255
Figura 4.7. Coeficiente de consolidación medido en el ensayo edométrico	255
Figura 4.8. Construcción de las columnas de grava en la Variante de Sueca	257
Figura 4.9. Perfil teórico de la columna 10041	259
Figura 4.10. Esquema de instalación de los piezómetros y orden de ejecución de las	S
columnas de grava	260
Figura 4.11. Equipo de adquisición de datos para lectura continua de los	
piezómetros	262
Figura 4.12. Presiones intersticiales durante la ejecución de las columnas	263
Figura 4.13. Esquema de expansión de la cavidad cilíndrica	264
Figura 4.14. Ajuste de los incrementos de presión intersticial en la instalación de la	L
primera columna	268
Figura 4.15. Ajuste de los incrementos de presión intersticial en la instalación de to	odas
las columnas	268
Figura 4.16. Comparación de los picos de presión intersticial medidos a 4 y 7 m	270
Figura 4.17. Comparación de los picos de presión intersticial normalizados	270
Figura 4.18. Picos de presión intersticial durante la instalación de la segunda	
columna	271
Figura 4.19. Influencia de la instalación de las columnas previas.	272
Figura 4.20. Curvas de disipación de los picos de presión intersticial	273
Figura 4.21. Isócronas teóricas después de la ejecución de una columna	275
Figura 4.22. Disipación de presiones intersticiales teórica para $r = 1.6$ m	277
Figura 4.23. Ajuste de la disipación de presiones intersticiales	277
Figura 4.24. Esquema de situación de las placas de asiento	279
Figura 4.25. Colocación de la instrumentación	279
Figura 4.26. Vista general del terraplén y de la arqueta de lectura	280
Figura 4.27. Esquema de situación de la instrumentación	280

Figura 4.28. Ritmo de elevación del terraplén	282
Figura 4.29. Presiones intersticiales medidas	284
Figura 4.30. Presiones verticales totales medidas	287
Figura 4.31. Factor de concentración de tensiones obtenido a partir de las tensiones	
medidas	288
Figura 4.32. Asientos medidos por el extensómetro	289
Figura 4.33. Lecturas en la placa de asiento 144 (pk 0+180)	289
Figura 4.34. Lecturas en la placa de asiento 145 (pk 0+130)	290
Figura 4.35. Comparación de los elementos de 2 y 3 dimensiones	291
Figura 4.36. Superficies de plastificación del modelo "Hardening-Soil Model"	
(Brinkgreve y Broere, 2006)	293
Figura 4.37. Obtención de E_{oed}^{ref} de los resultados de un ensayo edométrico (Brinkgre	eve
y Broere, 2006)	293
Figura 4.38. Relación hiperbólica entre tensión y deformación en un ensayo triaxial	
drenado (Brinkgreve y Broere, 2006)	294
Figura 4.39. Diferentes leyes de flujo no asociado analizadas (adaptado de Galavi et	al.,
2007)	296
Figura 4.40. Comparación de las diferentes leyes de flujo con ensayos de	
laboratorio	296
Figura 4.41. Modelo tridimensional del terraplén con EF	298
Figura 4.42. Comparación de los asientos	300
Figura 4.43. Módulo elástico a partir de la resistencia por punta en un piezocono	301
Figura 4.44. Tensiones verticales totales obtenidas con el modelo y SCF	301
Figura 4.45. Comparación de las tensiones verticales totales	302
Figura 4.46. Vista general de la obra	308
Figura 4.47. Esquema de situación de la instrumentación	310
Figura 4.48. Perfiles de las secciones instrumentadas	311
Figura 4.49. Situación de los pernos de control	313
Figura 4.50. Diferentes alturas y zonas de medida en la Sección 2	314
Figura 4.51. Planta de situación de las secciones y de la excavación al pie	317
Figura 4.52. Superficie de deslizamiento obtenida mediante equilibrio límite. Secció	on 1,
una fila de anclajes, corto plazo (F=1.17)	322

Figura 4.53. Mecanismo de fallo (contorno de deformaciones tangenciales) obtenido)
mediante elementos finitos. Sección 1, una fila de anclajes, corto plazo	
(F=1.11)	322
Figura 4.54. Ritmo de elevación del terraplén previsto ($d_c = 1 \text{ m}$)	325
Figura 4.55. Ritmo de elevación del terraplén previsto ($d_c = 0.7 \text{ m}$)	325
Figura 4.56. Ritmo de elevación del terraplén	327
Figura 4.57. Presiones intersticiales medidas	333
Figura 4.58. Factor de concentración de tensiones obtenido con las tensiones	
medidas	336
Figura 4.59. Presiones verticales totales medidas	338
Figura 4.60. Asientos medidos en líneas continuas de asiento	339
Figura 4.61. Asiento medido en pernos de control	340
Figura 4.62. Evolución del asiento medido con el tiempo	342
Figura 4.63. Asiento medido en pernos frente a altura del terraplén	343
Figura 4.64. Método de Asaoka para estudiar la estabilización de los asientos	343
Figura 4.65. Movimientos horizontales medidos	345
Figura 4.66. Desplazamiento horizontal máximo frente a altura del terraplén	346
Figura 4.67. Evolución del desplazamiento horizontal máximo con el tiempo	347
Figura 4.68. Relación entre velocidad de movimiento horizontal al pie de un terraple	én y
factor de seguridad (Leroueil, 2001)	349
Figura 4.69. Comparación entre asiento y desplazamiento horizontal	350
Figura 4.70. Desplazamientos horizontales obtenidos con el modelo numérico.	
Sección 3, altura definitiva	353
Figura 4.71. Asientos obtenidos con el modelo numérico. Sección 3, altura	
definitiva	353
Figura 4.72. Asientos en la base del muro de tierra armada (Sección $3 / H = 6 m$)	354
Figura 4.73. Evolución del asiento máximo con la altura del terraplén	354
Figura 4.74. Desplazamiento horizontal (Sección 3 / $H = 6 m$)	356
Figura 4.75. Evolución del desplazamiento horizontal máximo con la altura del	256
terrapien	356
Figura 4.76. Relación entre el módulo elástico antes y después de la ejecución de las	3
conunnas (auaptauti ur Kitsch, 2004)	551

Lista de tablas

CAPÍTULO 1

Tabla 1.1. Clasificación de los métodos de mejora y refuerzo del terreno (Schaefer,	
1997)	57
Tabla 1.2. Clasificación de los métodos de mejora y refuerzo del terreno (TC-17,	
2004)	58
Tabla 1.3. Utilización de algunos métodos de mejora del terreno (IKD Statistics,	
2005)	64
Tabla 1.4. Obras recientes de columnas de grava en España (Fuentes: Keller, 2005;	
Geocisa, 2006; Pennine, 2007)	70

Tabla 2.1. Diámetro de la celda unidad equivalente	87		
Tabla 2.2. Tipos de e.d.p. de segundo orden (adaptado de Álvarez et al., 1999)	102		
Tabla 2.3. Analogía con diferentes procesos físicos (adapt. de Álvarez et al., 1999)			
Tabla 2.4. Estado de compresión confinada (solución edométrica). Solución A	154		
Tabla 2.5. Estado de deformación plana (continuidad de la tensión radial).			
Solución B	156		
Tabla 2.6. Estado elástico final (Balaam y Booker, 1985)	157		
Tabla 2.7. Estado elástico sin drenaje (Balaam y Booker, 1981)	159		
Tabla 2.8. Factor de mejora medido en obras reales			

CAPÍTULO 3

Tabla 3.1. Diámetro de la celda unidad equivalente propuesto para igualar tiempos o	de
consolidación	189
Tabla 3.2. Distancias reales según la línea de flujo	192
Tabla 3.3. Distancias en línea recta	192
Tabla 3.4. Cociente entre distancia según línea de flujo y línea recta	192
Tabla 3.5. Cociente de diferencias al cuadrado	193
Tabla 3.6. Tensiones y deformaciones del Estado B	200
Tabla 3.7. Solución elástica general. Tensiones y deformaciones para cualquier carg	ga
p_a y exceso de presión intersticial \overline{u}	201
Tabla 3.8. Incrementos de tensiones y deformaciones plásticas a partir del momento) de
plastificación para una carga constante p_a , y para un incremento de	
presiones intersticiales $\overline{\Delta u} = \overline{u} - \overline{u_y}$	209
Tabla 3.9. Resultados del ejemplo de diseño. Tensiones y desplazamientos en super	ficie
(z=0)	225
Tabla 3.10. Principales características de las diferentes soluciones	240
Tabla 3.11. Parámetros manejados en las diferentes soluciones	241

CAPÍTULO 4

Tabla 4.1. Resumen de los ensayos de identificación de suelos	253	
Tabla 4.2. Resumen de los ensayos edométrico, triaxial y compresión simple	253	
Tabla 4.3. Presiones intersticiales iniciales y profundidad exacta de los piezómetros	261	
Tabla 4.4. Picos de presión intersticial durante la instalación de columnas	265	
Tabla 4.5. Distancia a los piezómetros durante la instalación de cada columna (m)	265	
Tabla 4.6. Plan inicial de lecturas	282	
Tabla 4.7. Nuevo plan de lecturas	283	
Tabla 4.8. Lecturas realizadas	283	
Tabla 4.9. Resumen de los parámetros empleados en el análisis	299	
Tabla 4.10. Resumen de los parámetros empleados en los análisis	318	
Tabla 4.11. Factores de concentración de tensiones y ángulo de rozamiento equivalente		

para los análisis por equilibrio límite (E. L.) y elementos finitos (E. F.) 320

Tabla 4.12. Resultados de los análisis de estabilidad	321
Tabla 4.13. Plan inicial de lecturas de la instrumentación	330
Tabla 4.14. Resumen de lecturas realizadas	331
Tabla 4.15. Factor de concentración de tensiones teórico y medido	336
Tabla 4.16. Velocidad de movimiento horizontal medida con altura definitiva	349
Tabla 4.17. Empuje de tierras sobre el muro de contención (Sección 3)	351
Tabla 4.18. Relación de módulos y factor de concentración de tensiones medido	358

Resumen

Las columnas de grava constituyen uno de los métodos habituales de mejora del terreno para la cimentación de terraplenes o estructuras en suelos blandos. Son perforaciones verticales en el terreno, que se rellenan en sentido ascendente con grava introducida mediante un vibrador, que va realizando su compactación. Actúan como inclusiones con una mayor rigidez, resistencia y permeabilidad que el terreno natural. Además de mejorar la capacidad portante y la estabilidad al deslizamiento, reducen el valor del asiento, el tiempo que tarda en producirse y la posibilidad de licuefacción.

Las columnas acortan el camino de drenaje de una forma similar a los drenes verticales. Por ello, suelen emplearse las mismas soluciones para estudiar la consolidación radial a su alrededor. Sin embargo, las columnas son mucho más rígidas que los drenes y soportan una parte importante de la carga. En esta tesis se ha desarrollado una solución analítica que permite incluir la interacción radial y vertical entre la columna y el suelo en el estudio de su consolidación radial, mejorando las soluciones previas. En el estudio de esta interacción se ha supuesto un comportamiento elástico para el suelo y elasto-plástico para la columna, teniendo en cuenta en su plastificación: la dilatancia de la grava, las tensiones iniciales y la consolidación del suelo.

La reducción del tiempo de consolidación provocada por la rigidez de la columna se tiene en cuenta a través de coeficientes de consolidación equivalentes, que permiten emplear cualquiera de los métodos habituales para integrar la ecuación de la consolidación radial. La hipótesis básica de este modelo es el empleo de una presión intersticial media a lo largo del radio, de la misma forma que se realiza en el resto de soluciones para el drenaje radial. La solución permite obtener las tensiones y las deformaciones en cualquier instante a través de una sencilla hoja de cálculo.

Se presentan también los resultados de la instrumentación realizada en dos obras reales de columnas de grava. Una de ellas se realizó en el terraplén de acceso a un paso superior en la Variante de Sueca (Valencia). De forma extraordinaria y para estudiar el efecto de la instalación de las columnas, se midieron las presiones intersticiales generadas durante la misma. Se emplearon seis piezómetros, un extensómetro con tres niveles de varillaje, seis células de presión total y dos placas de carga para controlar la elevación del terraplén. La existencia de niveles drenantes provocó una disipación de presiones intersticiales muy rápida, impidiendo el estudio del proceso de consolidación. Se han analizado los asientos y el reparto de tensiones entre la columna y el suelo.

La otra obra real controlada son los macizos de Arbuio en la Autopista del Kadagua (Vizcaya). En esta obra, el principal problema era la estabilidad de los macizos de tierra armada, agravado por la existencia de una excavación al pie. Los macizos se cimentaron sobre columnas de grava para mejorar el ángulo de rozamiento medio y acelerar la disipación de presiones intersticiales. Se han empleado piezómetros, células de carga, inclinómetros, pernos y líneas de asiento para controlar el comportamiento de las columnas. La instrumentación ha sido una herramienta muy útil para controlar la estabilidad de los muros. Se han comparado las medidas en campo con modelos en deformación plana.

Abstract

Stone columns, either by the vibro-replacement or vibro-displacement methods, are one of the most common improvement techniques for foundation of embankments or structures on soft soil. They are vertical boreholes in the ground, filled upwards with gravel compacted by means of a vibrator. They act mainly as inclusions with a higher stiffness, shear strength and permeability than the natural soil. These columns increase the bearing capacity of the foundation and improve the stability of embankments and natural slopes, and also reduce the settlement and the consolidation time.

Stone columns shorten the drainage path in a similar way to vertical drains. Therefore, the same methods are often used to study the radial consolidation around them. However, columns are much stiffer than vertical drains and carry a substantial part of the applied load. In this thesis, a new closed-form analytical solution is developed to include the radial and vertical interaction between column and soil in the study of its radial consolidation. In the soil/column interaction analysis, the soil behaviour is elastic and the column is elasto-plastic, including the gravel dilatancy, the initial stresses and the soil consolidation in the column yielding.

The reduction of the consolidation time due to the influence of column stiffness is modelled with equivalent consolidation coefficients, which enable the application of the existing methods of integration of the radial consolidation equation. All the stresses and strains are easily calculated with help of a spreadsheet.

Two different work sites have been instrumented. One of them was in the approach embankment of an overpass, in the ring road of Sueca (Valencia). Pore pressures were controlled during the stone column installation. The dissipation of pore pressures was fast and their peaks fit reasonable well a logarithmic law dependent on the distance to the columns, as it is predicted by the cavity expansion theory. The embankment construction was controlled by six piezometers, a three-level vertical extensometer, six total pressure cells and two settlement plates. Due to the presence of

interbedded sandy layers, the dissipation of pore pressures during the embankment construction was too fast to be registered, and the consolidation process could not be studied. The settlement and the soil/column stress distribution were assessed.

The second work site is located in the Arbuio reinforced earth walls, which are part of the Kadagua highway (Vizcaya). In this site, the main problem was the stability of the walls. Further problems were posed by an open deep excavation at their toe. The foundation soil was improved with stone columns to increase the average shear strength and to lessen excess pore pressures. Piezometers, total pressure cells, inclinometers and settlement profiles were used to control the stone column behaviour. Limit equilibrium and finite element models in plane strain were developed. Combined use of instrumentation and detailed calculations was a successful tool for the completion of a particularly difficult case.

Thesis summary

- Aim and scope

This thesis is part of a research project, named: "Improvement of soft soils with stone columns for foundation of embankments. Analysis of the process and design criteria". The project is aimed to the study of the behaviour of stone columns, commonly used as reinforcement of soft soil for foundation of road embankments, and to improve the available design methods, regarding the evaluation of the settlement rate.

The purpose is the derivation of simple rules for practical application in design. These rules, in spite of their intended simplicity, are based on the mechanisms of load transfer between soil and columns. The thesis covers the theoretical work and the instrumentation of actual cases.

- State of the art

Stone columns shorten the drainage path in a similar way as vertical drains do. Therefore, the same methods (Barron, 1948; Hansbo, 1981) are often used to study the radial consolidation around them. However, columns are much stiffer than vertical drains and support an important part of the applied load. This stiffness of the column leads to a reduction of the final settlement. This final situation has been widely studied.

The simplest approach is to assume full lateral confinement in the columns and in the soil. Then, the final vertical strains at the end of consolidation are related to the vertical effective stresses through the respective oedometric (constrained) moduli. In this approach, the final stress concentration ratio (quotient between stresses on the column and soil) is equal to the constrained modular ratio. This is in contradiction with experience; the modular ratio is usually in the range 10-50, whilst the stress concentration ratio measured in actual cases is much lower, in the range 3-10 (Barksdale and Bachus, 1983). The reason for this discrepancy is commonly attributed to the influence of the column lateral deformation, and furthermore, to column yielding. Balaam and Booker (1981) solve the elastic problem of soil and column, with simultaneous consideration of the horizontal and vertical components of the deformation. However, the stress concentration factor is still higher than observed due to the elastic behaviour assumed for the column.

The semi-empirical method by Priebe (1976, 1995) is probably the most successful and popular approach. The column is considered as rigid-plastic, with infinite modulus of elasticity, yield limit at the active state and plastic deformation at constant volume (zero dilatancy). Some assumptions of semi-empirical nature are made along the analysis (Dhouib et al., 2004).

The simplest way of considering the influence of column stiffness in the study of radial consolidation is assuming that the vertical load on the soil is constant with time but different from the applied load. The obvious result of this approach is that the settlements are reduced with respect to the untreated case, but the relative consolidation time is unchanged.

The column/soil stiffness ratio varies considerably during consolidation. Initially, soil deforms in undrained condition, and hence, with a relatively high stiffness (zero settlement if lateral confinement is assumed). With consolidation, soil apparent modulus gradually reduces towards its drained value. This means that at the undrained stage, the load transfer to the columns is less important, and it increases as consolidation proceeds. Inversely, the soil is subjected to a higher load at the beginning, implying some degree of "pre-loading" with respect to the final soil stress. This produces a faster consolidation compared with the case of constant load. This is considered by Han and Ye, 2001. They impose vertical equilibrium and compatibility condition of vertical displacements in soil and column, extended to any time. Soil and column are assumed elastic and constrained. As commented above, this leads to an abnormally high stress concentration ratio. In this method, the radial consolidation equation keeps the same form as before (Barron/Hansbo), but with a modified coefficient of consolidation:

$$c_{vr}^{ze} = c_{vr} \left(1 + \frac{E_{mc}}{E_{ms}} \frac{a_r}{1 - a_r} \right)$$

where the superscript *ze* refers to the influence of elastic column vertical deformation. It is always $c_{vr}^{ze} > c_{vr}$, so this implies a faster consolidation than for constant load.

- Solution developed

The main objective of the proposed solution (Castro and Sagaseta, 2008) is to include the radial deformation and the yielding of the column in the radial consolidation analysis. In a first step, elastic behaviour is assumed for the soil and the column. Consolidation takes place starting from the elastic solution of Balaam y Booker (1981) for undrained loading. This means a non-zero initial undrained settlement, which is absent if lateral confinement is considered. Equilibrium of radial stresses and compatibility of radial displacements at the soil-column interface are added to the vertical equations used by Han and Ye (2001). Nevertheless, the solution is kept as simple as possible, and hence, the consolidation is formulated in terms of the average pore pressure along the radius, as in the previous solutions.

The reduction of the consolidation time due to the elastic column stiffness is modelled also with an equivalent consolidation coefficient, which enables the application of the existing methods of integration of the radial consolidation equation.

$$c_{vr}^{zre} = c_{vr} \cdot \frac{\left[a_r (\lambda_c + 2G_c) + (1 - a_r)(\lambda_s + 2G_s)\right] \left[H - (\lambda_c - \lambda_s)\right] - (1 - a_r)(\lambda_c - \lambda_s)^2}{(\lambda_s + 2G_s)[H - (1 - 3a_r)(G_c - G_s)]}$$

with: $H = G_s - G_c + (\lambda_c + G_c + G_s) \frac{1}{a_r}$

and where the superscript *zre* refers to the influence of vertical and radial elastic deformation of the column.

A comparison between this equivalent consolidation coefficient and Han and Ye's one is shown:

For high replacement ratios, Han and Ye propose a high equivalent consolidation coefficient to compensate the large initial settlement that is not included in their solution.

Now, the yielding of the column is analysed. Plastic strains in the column can be adequately modelled with Mohr-Coulomb yielding criterion and a non-associate flow rule for the plastic strains, with a constant dilatancy angle $(\psi_c \neq \phi_c)$:

$$\frac{\sigma_{rc}}{\sigma_{zc}} = \frac{1 - \sin \phi_c}{1 + \sin \phi_c} = k_{ac} \quad ; \quad -\frac{\varepsilon_{zc}^p}{2\varepsilon_{rc}^p} = \frac{1 - \sin \psi_c}{1 + \sin \psi_c} = k_{\psi c}$$

The yield condition must include also the previous stresses existing before the load application. Using the stress increments during consolidation and the initial stresses, the moment of column yielding at the considered depth is worked out. Elastic strains in the column are neglected during the plastic stage.

Equilibrium and compatibility condition when plastic strains occur in the column lead to the following equivalent consolidation coefficient:

$$c_{vr}^{zrp} = c_{vr} \cdot \frac{\left(1 - a_r\right) + \frac{a_r}{\left(\lambda_s + 2G_s\right)} \left(\frac{\lambda_s}{k_{vc}} + \frac{J}{k_{ac}}\right)}{\left[1 + \frac{a_r}{\left(1 - a_r\right)k_{vc}}\right] \left(1 - a_r + \frac{a_r}{k_{ac}}\right)}$$

with:
$$J = \lambda_s + \frac{G_s + a_r(\lambda_s + G_s)}{(1 - a_r)k_{\psi c}}$$

All the stresses and strains are easily calculated with help of a spreadsheet. As an example, the column/soil vertical stress distribution is:

The stress concentration ratio decreases by nearly a half if radial strains of the column are considered, but yielding of the column is needed to get realistic values.

- Field instrumentation

Two different work sites were instrumented. One of them was in the approach embankment of an overpass, in the ring road of Sueca (Valencia). The foundation soil was improved with 9-metre-length columns by the dry bottom-feed method. Columns have a diameter of 0.8 m and a spacing of 2.8 m in a triangular pattern. The improved soil is slightly overconsolidated clay of low plasticity with an average undrained shear strength of 50 kPa and a friction angle of 26-28°.

Six piezometers controlled pore pressures during the installation of seven columns. Because of vibrator penetration, pore pressures increased. Their dissipation was fast and their peaks fit reasonable well a logarithmic law with the distance to the columns, as it is predicted by the cavity expansion theory.

The embankment construction was controlled by six piezometers, a three-level vertical extensometer, six total pressure cells and settlement plates. Due to the presence of interbedded sandy layers, the dissipation of pore pressures during the embankment construction was too fast to be registered, and the consolidation process could not be studied. A final surface settlement of 15 cm was measured. It was lower than predicted and a part of them (6 cm) was the settlement of the clay below the columns, even though the design columns were end-bearing. Stress concentration factors of 3-8 were assessed. No total stress increase was measured until the embankment height was 3 m.

A three-dimensional finite element model of the embankment was developed to analyse its construction. The modelled stiffness of the clay had to be increased in order to match the measured settlement. The permeability which was used in the model was higher than the measured in the oedometer to simulate the sandy layers.

The other work site is located in the Arbuio reinforced earth walls, which are part of the Kadagua highway (Vizcaya). The problem deals with the construction of a highway embankment on a hillside. The foundation ground was improved with stone columns (vibrodisplacement) to increase stability. The column diameter and the replacement ratio were 0.7 m and 0.05, respectively. An open deep excavation supported with an anchored wall, unforeseen during the design stage, was undertaken close to the toe once the embankment construction had started. As the safety factor was

low, corrective measures, basically consisted of anchors, were taken. The global stability had to be reanalyzed in different sections for this new situation. Analyses were carried out by means of:

-Limit equilibrium with Morgenstern-Price (program Slope/w)

-Finite elements with the c- ϕ reduction procedure (code Plaxis v8)

Short term (S.T.) and long term (L.T.) for different scenarios with respect to the anchor loads were considered.

Section	Anchor force	Limit Equilib.		Finite	Elements
	(kN/m)	S.T.	L.T.	S.T.	L.T.
1	425 (3 rows)	1.27	1.57	1.25	-
	150 (1 row)	1.17	1.37	1.11	1.19
3	600 (3 rows)	1.66	1.71	1.50	1.69
	0	1.34	1.35	1.20	1.30

No excess pore pressures were measured as it was expected from the permeability of the soil and the embankment construction sequence. Total pressures measured on the soil agree with the embankment height but the total pressures on the column seem to be low. Therefore, low stress concentration factors are measured: 2.8, 1.3 and 1.1. This scatter is usual in total stress measurements in coarse materials. Inclinometers were really useful to control the stability of the embankment; particularly the influence of the excavation located at its toe.

The measured vertical and horizontal displacements are compared with the predictions of the finite elements plane strain model. Settlements are well reproduced but horizontal displacements are overestimated by the model. The simplicity of the soil behaviour in the model (linear elastic – perfectly plastic) or a higher horizontal stiffness of the soil may well explain it.

Combined use of instrumentation and detailed calculations was a successful tool for the completion of a particularly difficult case.

Presentación del documento

La presente tesis doctoral se divide en cuatro capítulos. Estos capítulos están precedidos por una serie de elementos previos: los diferentes índices, el resumen de la tesis, en castellano e inglés, el resumen de la notación empleada, la presentación del documento y la motivación y objetivos de la tesis que ejercen de prólogo.

En el primer capítulo se introducen los diferentes métodos de mejora del terreno y las columnas de grava, sus principales características y aplicaciones.

En el segundo capítulo se repasa el estado del conocimiento, haciendo especial hincapié en la modelización del problema, el estudio de la consolidación, la estabilidad de las columnas, la interacción entre el suelo y la columna y la instrumentación en campo.

En el tercer capítulo se presenta el modelo analítico desarrollado. Se explica por qué se considera necesario un nuevo modelo y cuáles son sus hipótesis, desarrollo y resultados. Se muestra un ejemplo de diseño y se compara con otras soluciones.

En el cuarto capítulo se muestran las medidas realizadas en obras reales. Se describen las dos obras instrumentadas, los resultados, su interpretación y los modelos numéricos realizados de las obras.

Por último, se resumen las principales conclusiones alcanzadas con el estudio y las posibles futuras líneas de investigación. Las referencias y apéndices completan el documento.

Motivación y objetivos

En las últimas décadas, la cada vez mayor ocupación del suelo y su consiguiente incremento de valor obliga a utilizar zonas marginales que plantean nuevos retos a la ingeniería geotécnica. Esta situación sumada a la mayor importancia de las consideraciones medioambientales en los proyectos de ingeniería permite abrir la puerta a un gran número de soluciones diferentes de las convencionales. Sin embargo, estas diferentes alternativas necesitan demostrar su idoneidad medioambiental y su rentabilidad económica. Para ello, son necesarios estudios que mejoren su eficacia y puesta en obra e investigaciones que permitan conocer mejor su comportamiento y realizar diseños más ajustados y económicos.

Las columnas de grava constituyen una de estas soluciones que posibilitan realizar actuaciones en terrenos marginales o blandos. Se trata de una técnica que lleva varias décadas empleándose y que ha demostrado sobradamente su competitividad. Sin embargo, las bases de su dimensionamiento han experimentado avances sólo moderados y como ocurre en muchas ramas de la técnica, el conocimiento teórico de su comportamiento ha ido por detrás de la resolución práctica del problema. Ocurre así que su diseño se basa frecuentemente en consideraciones semi-empíricas y que a pesar de existir una investigación relativamente abundante, tanto teórica como experimental, el traslado de los resultados a la aplicación práctica no ha sido todo lo intenso que hubiera sido deseable.

En consecuencia, en líneas generales, el estado actual de los métodos habituales de análisis y dimensionamiento no es completamente satisfactorio. Sin ánimo de hacer un examen exhaustivo y sistemático, la experiencia revela que, junto a numerosos casos de predicción correcta del funcionamiento de este método, son relativamente frecuentes las ocasiones en que:

 a) la velocidad de desarrollo de los asientos que se consigue con el tratamiento es en general superior a la prevista; b) se argumenta en el proyecto o en informes técnicos que el método no es factible, pues el terreno natural no posee capacidad de soporte lateral suficiente para mantener la estabilidad de las columnas frente a la carga del terraplén, mientras que en otros estudios se justifica lo contrario.

Si el origen de estas inexactitudes en la predicción fuera únicamente la incorrección del análisis, se estaría ante una simple falta de difusión de los métodos correctos de dimensionamiento. Sin embargo, en la mayoría de los casos mencionados el estudio se ha realizado aplicando métodos de análisis avanzados, apoyados por publicaciones a nivel internacional de autores de prestigio. En España, la ausencia de una normativa o recomendaciones sobre estos aspectos contribuye a esta situación. Únicamente, en la relativamente reciente Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002) se hace una escueta aunque útil referencia al diseño de una cimentación mediante columnas de grava.

Como consecuencia de esta situación, y con el objetivo de clarificar estas condiciones y desarrollar herramientas y métodos que sean de aplicación práctica en el diseño de las mismas, surgió el Proyecto de Investigación denominado: "Tratamiento de suelos blandos mediante columnas de grava para la cimentación de terraplenes de carretera. Análisis del proceso y criterios de dimensionamiento" (Ref. 03 A634), asignado por el Ministerio de Fomento al Grupo de Geotecnia de la Universidad de Cantabria. En él se analizó el comportamiento de las columnas de grava cuando se emplean extensivamente, como ocurre en terraplenes, y no aquellas situaciones en las que su uso es más puntual, por ejemplo bajo zapatas. El problema se ha examinado tanto desde la perspectiva teórica: analítica y numérica; como desde la experimental: ensayos de laboratorio e instrumentación de obras reales.

Esta tesis forma parte de este proyecto y desarrolla su parte teórica y la instrumentación en campo.

En el repaso del estado del conocimiento se ha comprobado que la estabilidad de las columnas es un problema muy complejo en el que son necesarias diversas hipótesis simplificativas. No obstante, la mayoría de las divergencias en el análisis que se han comentado se deben a imprecisiones en la interpretación de las soluciones. En cuanto a la velocidad de desarrollo de los asientos, se observa que en el diseño de las columnas de grava se emplean las soluciones que estudian la consolidación alrededor de drenes verticales. Estas soluciones no tienen en cuenta la interacción entre la columna y el suelo, y por ello subestiman la velocidad de desarrollo de los asientos. El estudio teórico realizado en estas tesis se ha centrado en desarrollar esta idea. El objetivo final ha sido obtener una solución analítica, basada en las soluciones previas para drenes verticales pero que tuviese en cuenta la rigidez y diámetro de las columnas y su interacción con el suelo circundante.

Aunque es evidente la potencia que actualmente tienen los métodos numéricos para estudiar todo tipo de problemas, éstos son costosos en tiempo y dinero, ya que requieren un modelo fiable y contrastado, y un usuario experimentado con la suficiente base teórica. Por ello, se ha preferido buscar una solución analítica lo más sencilla posible, que pueda ser empleada en el proyecto de casos simples o servir de referencia en el caso de complicados modelos numéricos.

En la parte numérica se han realizado cálculos para facilitar la comprensión del problema y contrastar las aportaciones analíticas realizadas. También se han modelado numéricamente las obras reales instrumentadas, pudiéndose comparar los valores medidos con los predichos por el modelo numérico. Como conclusión de estos cálculos, se señalan diferentes inconvenientes vislumbrados, factores que conviene tener en cuenta e influyen en el resultado y se proporciona una visión crítica de los resultados.

El objetivo de la instrumentación de obras reales era confirmar las consideraciones teóricas realizadas y validar el modelo analítico desarrollado. Sin embargo, no se ha podido comparar el proceso de consolidación del modelo teórico con el medido en campo, ya que en ninguno de los dos casos instrumentados fue posible medir la disipación de presiones intersticiales debido a la rapidez del proceso de consolidación. A pesar de esto, se ha estudiado la situación final, reparto de tensiones entre suelo y columna y asiento desarrollado. Por último, debido al reciente interés existente en los efectos provocados por la instalación de las columnas, se han medido en campo las sobrepresiones intersticiales generadas durante su ejecución.

ESQUEMA DE LA TESIS DOCTORAL

Notación

Con carácter general, se recoge aquí la notación específica más importante empleada en la tesis. No obstante, cuando se hace referencia a otros trabajos o publicaciones, en algún caso se ha empleado la notación original. En estos casos y cuando pueda existir confusión entre diferentes símbolos, su significado se especifica en el texto.

а	Radio de la cavidad cilíndrica
a_r	Relación de sustitución: $a_r = A_c / A_l$
b	Ancho de la zanja longitudinal equivalente
С	Cohesión
C_u	Resistencia al corte sin drenaje
C_{V}	Coeficiente de consolidación
d	Separación entre columnas
e_0	Índice de poros inicial
g	Aceleración de la gravedad
i	Unidad imaginaria: $i = \sqrt{-1}$
k	Conductividad hidráulica o "permeabilidad"
k_0	Coeficiente de empuje en reposo
k_a , k_p	Coeficientes de empuje activo y resistencia pasiva
k_s	Permeabilidad de la zona remoldeada ("smear")
k_{arphi}	Coeficiente de la ley de flujo: $k_{\psi} = (1 - \sin \phi)/(1 + \sin \phi)$
п	Factor de mejora (relación entre el asiento sin y con columnas)
p_a	Carga vertical unitaria aplicada
q_c	Resistencia por punta en un ensayo de penetración
r_{l}, r_{c}	Radio de la celda unidad y de la columna

Radio de la zona remoldeada ("smear")
Desplazamientos / Parámetro de la transformada de Laplace
Asiento sin columnas
Tiempo
Presión intersticial / Exceso de presión intersticial
Humedad
Límites de Atterberg (líquido y plástico)
Profundidad
Profundidad crítica a la que la columna plastifica

A	Sección transversal
A_r	Coeficiente A de Skempton en rotura
В	Ancho de la zona tratada con columnas
C_{c}, C_{s}	Índices de compresión noval y entumecimiento
D	Diámetro
Ε	Módulo de Young
E_m	Módulo edométrico (confinado): $E_m = [E(1-\nu)]/[(1+\nu)(1-2\nu)]$
F, H, J	Parámetros intermedios de la solución elástica drenada, elástica
	no drenada y del incremento plástico
G	Módulo de elasticidad transversal: $G = E/[2(1 + v)]$
Н	Altura del terraplén / Espesor de un estrato de arcilla
Κ	Módulo volumétrico: $K = E/[3(1-2\nu)] = \lambda + 2G/3$
L	Longitud de las columnas
Ν	Relación de diámetros o radios: $N = r_l/r_c$
N _c	Factor de carga: $N_c = p_a/c_u$
R	Radio de la zona plastificada
RSC	Razón de sobreconsolidación
S	Superficie
SCF	Factor de concentración de tensiones: $SCF = \sigma_{zc} / \sigma_{zs}$

Т	Fuerza tangencial
T_{ν}	Factor tiempo adimensional: $T_{vz} = c_v t / H^2 / T_{vr} = c_v t / d_l^2$
U	Grado de consolidación
V	Volumen
Ζ	Profundidad adimensional: $Z = z/L$

α	Factor de reducción de asientos: $\alpha = 1/n = s_z/s_{z0}$
β	Factor de concentración de carga en la columna: $\beta = \mu_c = \sigma_{zc}/p_a$
γ	Distorsión unitaria / Peso específico
З	Deformación unitaria
\mathcal{E}_{vol}	Deformación unitaria volumétrica
ζ	Variación del contenido de agua: $\zeta = dV_w/V_w$
κ	Permeabilidad
λ	Constante de Lamé: $\lambda = 2Gv/(1-2v) = E_m - 2G$
μ	Viscosidad / Factor de concentración de carga: $\mu = \sigma_z / p_a$
v	Coeficiente de Poisson
ρ	Distancia radial adimensional: $\rho = r/r_e$
σ	Tensión normal
σ_{oct}	Tensión octaédrica
σ'_p	Presión de preconsolidación
τ	Tensión tangencial
ϕ	Ángulo de rozamiento
Ψ	Ángulo de dilatancia

Subíndices / superíndices:

c, s, l	columna, suelo, celda unidad
е, р	elástico, plástico
d, ap, sat	seco, aparente, saturado
i, u, f, y	inicial (previo), sin drenaje, final, al plastificar
r, z, θ	coordenadas cilíndricas
x, y, z	coordenadas cartesianas
1, 2,3	ejes principales

⁻ (barra superior horizontal): valor medio a lo largo del radio

Δ	incremento
'(apóstrofe)	tensiones efectivas
En negrita	valor matricial

Abreviaturas:

c.c.	Condición de contorno
CG	Columna de grava
СР	Corto plazo (sin drenaje)
СРТ	Célula de presión total / Ensayo de penetración estática de cono
ec.	Equación
e.d.o.	Ecuación diferencial ordinaria
e.d.p.	Ecuación diferencial en derivadas parciales
E.L.	Equilibrio límite
E.F.	Elementos finitos
LCA	Línea continua de asiento
LP	Largo plazo (drenado)
N.F.	Nivel freático
p.k.	Punto kilométrico
Pz	Piezómetro
SPT	Ensayo de penetración dinámica estándar

Convenio de signos:

Como es habitual en mecánica de suelos, se consideran positivas las tensiones y deformaciones de compresión. Los desplazamientos siempre son positivos en las direcciones de los ejes respectivos.