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Abstract Both statistical and dynamical downscaling methods are well established
techniques to bridge the gap between the coarse information produced by global cir-
culation models and the regional-to-local scales required by the climate change Im-
pacts, Adaptation, and Vulnerability (IAV) communities. A number of studies have
analyzed the relative merits of each technique by inter-comparing their performance
in reproducing the observed climate, as given by a number of climatic indices (e.g.
mean values, percentiles, spells). However, in this paper we stress that fair compar-
isons should be based on indices that are not affected by the calibration towards the
observed climate used for some of the methods.

We focus on precipitation (over continental Spain) and consider the output of
eight Regional Climate Models (RCMs) from the EURO-CORDEX initiative at 0.44◦

resolution and five Statistical Downscaling Methods (SDMs) —analog resampling,
weather typing and generalized linear models— trained using the Spain044 obser-
vational gridded dataset on exactly the same RCM grid. The performance of these
models is inter-compared in terms of several standard indices —mean precipitation,
90th percentile on wet days, maximum precipitation amount and maximum number
of consecutive dry days— taking into account the parameters involved in the SDM
training phase. It is shown, that not only the directly affected indices should be care-
fully analyzed, but also those indirectly influenced (e.g. percentile-based indices for
precipitation) which are more difficult to identify.
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We also analyze how simple transformations (e.g. linear scaling) could be applied
to the outputs of the uncalibrated methods in order to put SDMs and RCMs on equal
footing, and thus perform a fairer comparison.

Keywords Regional Climate Models · statistical downscaling · EURO-CORDEX ·
precipitation indices

1 Introduction1

Different climate downscaling techniques have been developed since the early 1990s2

to bridge the gap between the large-scale climate information provided by Global3

Circulation Models (GCMs) and the regional-to-local scale required for climate im-4

pacts assessment (see Maraun et al, 2010, and references therein). Two fundamentally5

different downscaling techniques have been followed for this purpose: 1) dynamical6

methods, based on Regional Climate Models (RCMs, Giorgi, 2006; Feser et al, 2011)7

and 2) Statistical Downscaling Methods (SDMs, von Storch et al, 1993; Wilby and8

Wigley, 1997). A number of comparison studies have been carried out in the past9

to assess the relative merits of these two techniques (see e.g. Kidson and Thomp-10

son, 1998; Murphy, 1999; Goodess, 2005; Haylock et al, 2006; Schmidli et al, 2007;11

Tryhorn and DeGaetano, 2011; Hertig et al, 2012; Pizzigalli et al, 2012; Ayar et al,12

2015). However, most of these comparisons do not take into account the important13

differences of these methods when analyzing the results.14

RCMs numerically solve the governing equations of the atmosphere in a limited15

spatial domain, driven by boundary conditions taken from GCMs (or from reanalysis,16

in the model evaluation phase). Apart from the dynamical core, the RCMs include17

physical parameterizations for the subgrid processes which occur at spatial scales18

smaller than the model grid spacing (microphysics, convection, radiation, etc.). In19

most cases, these parameterizations are tuned based on model evaluation against the20

available observations for the region of interest (typically gridded temperature and21

precipitation datasets).22

SDMs build on empirical relationships between model variables (predictors) and23

local point (or gridded) observed predictands of interest. Various conceptually differ-24

ent statistical methods and training approaches have been proposed in the literature to25

establish these relationships. Under the Perfect Prognosis (PP) approach, the statisti-26

cal relationships are calibrated in a training phase considering observations for both27

predictands (historical observations) and predictors (reanalysis data), whereas model28

(GCM or RCM) predictions are used for the latter under the Model Output Statistics29

(MOS) approach. On the one hand, the predictors for PP are typically large-scale vari-30

ables characterizing the circulation for the target area and well represented by both31

reanalysis and GCMs (see e.g. Brands et al, 2012). A number of methods —including32

linear and nonlinear regression, weather types, analog re-sampling, and combinations33

of them— have been proposed to establish the statistical relationships using (daily or34

monthly) pairwise predictor-predictand time series under this approach. On the other35

hand, the typical predictor in MOS is directly the variable of interest, which is cal-36

ibrated against the local observed counterpart. In the climate change context this is37

typically done using distribution (e.g. mean- or quantile-mapping) corrections —this38
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is usually referred to as (distributional) bias correction in the literature.— However,39

more sophisticated MOS methods also consider circulation predictors and regression40

or analog techniques to establish the statistical relationships from pairwise time series41

(Turco et al, 2011), as typically done in weather forecasting applications.42

Statistical downscaling methods rely on different assumptions and each of them43

has several advantages and limitations (Estrada et al, 2013). However, unlike RCMs,44

SDMs are calibrated in a training phase using some sort of optimization or re-45

sampling process (or establishing a correction function in bias correction meth-46

ods) involving the available observations (see e.g. Maraun et al, 2010). As a re-47

sult, these methods are trained with local observations to reproduce some observed48

statistics, which are directly affected by the particular calibration process (i.e. opti-49

mization, re-sampling, or distribution-mapping process). The affected statistics vary50

from method to method, thus posing additional constraints for a fair validation and51

inter-comparison. For instance, the mean is adjusted in standard regression meth-52

ods —or the mean and variance when considering stochastic or variance inflation53

variants (McCullagh and Nelder, 1989).— Order statistics are affected by methods54

suitable for extremes (such as quantile regression, Tareghian and Rasmussen (2013)).55

The whole distribution is fitted to the observed data —affecting all quantiles of the56

distribution (Déqué, 2007)— in the case of distributional empirical bias correction57

methods. Recent studies analyze the transferability of correction approaches to dif-58

ferent climate conditions based on more sophisticated cross-validation methods in59

present climate (e.g. the method is calibrated in the driest/coldest years and validated60

in the wettest/warmest, on the lines of Gutiérrez et al, 2013; Teutschbein and Seibert,61

2013). However, good performance during the calibration period does not guarantee a62

good performance under changed future conditions (Teutschbein and Seibert, 2012).63

This is due to the stationarity (time invariance) assumption of the correction, that is64

not likely to be met under climate change conditions, together with the finite length65

of the calibration period that may not cover the entire spectrum of the variable of66

interest (Ehret et al, 2012). Thus, the direct comparison of the different downscaling67

approaches using indices differently affected by the training process is particularly68

problematic if the distributions of the training and test subsets are similar in compar-69

ison with the future distributions of the climate projections where the methods will70

be applied.71

A fair comparison of RCMs and SDMs has the additional complication of their72

different spatial representativeness. SDMs provide information at the spatial scale73

given by the observations (i.e. point stations or grids), whereas RCM results are74

areal-representative (of the model grid boxes) and, therefore, cannot represent the75

local variability of point stations (Luo et al, 2013). For this reason, recent studies76

acknowledge that a fair comparison of RCMs and SDMs requires the use of ob-77

servational gridded data sets for SDMs calibration and both techniques evaluation78

(Schmidli et al, 2007; Hertig et al, 2012; Ayar et al, 2015). However, a direct compar-79

ison of SDM results for a local station with those for the nearest grid box of an RCM80

(as e.g. Kidson and Thompson, 1998; Murphy, 1999; Haylock et al, 2006; Tryhorn81

and DeGaetano, 2011; Pizzigalli et al, 2012) could derive misleading conclusions.82

The EURO-CORDEX initiative (Jacob et al, 2014) provides an appropriate frame-83

work for a fair comparison since a common grid was used for all RCMs and gridded84
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observational products are available over the same grid —such as the European-wide85

E-OBS dataset (Haylock et al, 2008) or the Spain02 v4 family of EURO-CORDEX-86

compliant gridded datasets over Spain (Herrera et al, 2015)—. This framework eases87

the fair comparison of SDMs and RCMs on the same grid, as shown e.g. in Ayar et al88

(2015).89

In the above mentioned studies, SDMs and RCMs were compared without bring-90

ing into question whether the indicators considered in the comparison were influ-91

enced by the calibration or tuning of the downscaling methods. As far as we know,92

there is no previous comprehensive comparison study taking this factor into account.93

In this paper we shed light on this problem and describe an inter-comparison ex-94

periment for precipitation over Spain considering eight EURO-CORDEX RCMs at95

a 0.44◦ resolution and five PP SDMs trained using the Spain044 gridded observa-96

tion data in a cross-validation form. The methods considered include an analog re-97

sampling technique and four methods based on a Bernoulli (for occurrence) and a98

Gamma (for amount) distributions, fitted to the data conditioned to circulation in dif-99

ferent forms. Therefore, the training process of the SDMs used in this study only100

affects directly the mean and distribution shape of the precipitation amount, except101

for the analog method which affects various aspects of the distribution due to its re-102

sampling nature. By doing this, we keep the number of parameters affected in the103

training phase as small as possible, unlike other methods that calibrate the whole104

distribution. Moreover, in order to analyze the potential impact of the adjustment of105

these statistics, the comparison is also performed after the application of two basic106

bias correction methods to both statistical and dynamical downscaling for precipita-107

tion frequency and intensity.108

This paper is structured as follows. In Section 2 we present the data and methods109

used. The results are given in Section 3. Finally, the conclusions and summary are110

presented in Section 4.111

2 Data and Methods112

2.1 Observational Data113

In this work we used precipitation data from the new EURO-CORDEX-compliant114

gridded daily observational dataset Spain044 (Herrera et al, 2012, 2015) defined on115

the 0.44◦ resolution rotated grid used in the EURO-CORDEX initiative as a common116

basis for the RCM runs. Spain044 is part of the Spain02 v4 products (freely available117

from http://www.meteo.unican.es/datasets/spain02), which are based on a118

dense network of quality-controlled stations in Spain, covering the period 1971-2008.119

In order to ensure area-averaged representativeness of the resulting gridbox values,120

the interpolation method (full monthly 3D thin plate splines plus ordinary kriging on121

the daily anomalies) was carried out on an auxiliary 0.01◦ grid, averaging the results122

afterwards to the final 0.44◦ resolution grid. Therefore, this dataset is appropriate123

for the evaluation of the EURO-CODEX RCMs and it is also suitable for statistical124

downscaling.125
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2.2 Regional Climate Models126

In this work, daily precipitation values from the freely-available RCM simulations127

within the EURO-CORDEX initiative at 0.44◦ resolution were downloaded from the128

ESGF archive (http://esgf.org/) in January 2015 (see Table 1). In particular we129

considered the simulations driven by the ERA-Interim reanalysis (Dee et al, 2011)130

covering the common period 1990-2008. Notice that this ensemble contains two ver-131

sions of the WRF model, with different microphysics and radiation schemes but the132

same convection parameterization. We refer the reader to Table 1 in Kotlarski et al133

(2014) for further details on the particular model configurations.134

Note that 0.44◦ resolution RCM simulations were considered instead of the state-135

of-the-art 0.11◦ runs since previous studies (e.g. Casanueva et al, 2015) have shown136

limited evidence of added value of the high resolution for this region in this kind of137

analysis.138

Table 1 EURO-CORDEX RCMs used in the study. Codes are used to label RCMs in the figures.

Code RCM Institution Re f erence
D1 CCLM 4.8.17 COSMO-CLM Community Rockel et al (2008)
D2 HIRHAM 5 Danish Meteorological Institute, Denmark Christensen et al (2007)
D3 RACMO 2.2 Royal Netherlands Meteorological Institute, Ministry of In-

frastructure and the Environment, Netherlands
Meijgaard et al (2012)

D4 RCA 4 Swedish Meteorological and Hydrological Institute, Sweden Samuelsson et al (2011)
D5 HadRM 3P Met Office Hadley Centre, Exeter, UK Collins et al (2006)
D6 ALADIN 52 Hungarian Meteorological Service, Hungary Radu et al (2008)
D7 WRF 3.3.1.F Institut Pierre Simon Laplace / Institut National de

l’Environment Industriel et des Risques, France
Skamarock et al (2008)

D8 WRF 3.3.1.G University of Cantabria, Spain Skamarock et al (2008)

2.3 Statistical Downscaling Methods139

In this study we built on the work done by San-Martı́n et al (2016) who tested differ-140

ent predictor configurations (both variables and geographical domains) for an ensem-141

ble of SDMs in Spain. In particular, we considered the best performing configuration142

of predictors, formed by sea level pressure (SLP), and temperature and specific hu-143

midity at 850 hPa (T850 and Q850, respectively), defined on a geographical domain144

covering the Iberian peninsula —from 10W to 5E and from 35N to 45N—. Moreover,145

predictor values at the start and end of the observation period (i.e. data at 00UTC at146

day D and D+1) were included to characterize each particular day D, thus forming147

a dynamic temporal set up. Predictor values were obtained from the ERA-Interim148

reanalysis (Dee et al, 2011) data set with 2◦ x 2◦ regular latitude-longitude horizontal149

resolution for the period 1989-2008.150

The SDMs used in this work (see Table 2) were those recommended by San-151

Martı́n et al (2016) for climate change applications, and included particular config-152

urations of different methodologies: the analog family (AN), weather types (WT),153
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Generalized Linear Models (GLMs) and circulation-conditioned GLMs (GLM-WT).154

In the present study, the methods were calibrated using either Principal Components155

(PCs) of the predictor fields or local predictor values in the nearest grid boxes. In the156

former case, we used 25 PCs, that retain approximately 95% of the variance of the157

predictor fields. The latter considered the four reanalysis grid boxes nearest to the158

target location (Spain044 grid box). The combined method labeled as S5 is a version159

of S4 conditioned on 10 Weather Types (WTs) obtained from a classification based160

on SLP.161

All the experiments were accomplished using a k-fold (k = 5) cross validation162

with random sampling, by dividing the total 20-year period in two subsets of 4 years163

for testing and the remaining 16 years for training the method. This process was164

repeated five times, leading to five pairs of training and test periods which were con-165

sidered for all the methods. The resulting test periods were concatenated into a single166

final downscaled multi-year series for validation. We refer the reader to Gutiérrez167

et al (2013) and San-Martı́n et al (2016) for more details regarding the methods and168

validation framework.169

Table 2 Statistical downscaling methods used in the study. Codes are used to label SDMs in the figures.
The second column (CodeSM16) is the label used by San-Martı́n et al (2016), who provide full details of
the different methods.

Code CodeSM16 Family Predictors Description
S1 SM1a AN PCs Nearest analog
S2 SM2c WT PCs 100 WTs, simulation from Bernoulli+gamma
S3 SM3a GLM PCs GLM (Bernoulli)+GLM (gamma)
S4 SM3c GLM Four nearest gridboxes GLM (Bernoulli)+GLM (gamma)
S5 SM4b GLM-WT Four nearest gridboxes S4 conditioned on 10 WTs

2.4 Precipitation indices170

Table 3 summarizes the precipitation indices that were derived seasonally from daily171

precipitation amounts (RR). RR1 and SDII account for the mean precipitation regime172

whereas 90pWET, RX1day and RX5day are related to the tail of the distribution and173

CDD to the (dry) spells. The performance of the different downscaling methods is174

illustrated by means of the evaluation of RR, 90pWET, RX1day, RX5day and CDD.175

Moreover, the mean precipitation frequency (RR1) and the amount/intensity (SDII)176

are considered to adjust the first moments of the precipitation distribution via simple177

bias correction methods (Section 2.5).178

According to the recommendations from Orlowsky and Seneviratne (2012),179

90pWET was derived over the entire period (i.e. for all days in a season for the whole180

period), while CDD, RX1day and RX5day were calculated for each year and season,181

considering the interannual median as the final indicator.182
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Table 3 Precipitation indices used in this study as defined by the Expert Team on Climate Change Detec-
tion and Indices (ETCCDI, Sillman and Roeckner, 2008).

ID Indicator Units
RR Daily precipitation amount mm/day
RR1 Wet-day frequency %
SDII Simple day intensity index (mean wet-day precipita-

tion)
mm/day

90pWET 90th percentile on wet days mm
CDD Maximum number of consecutive dry days days
RX1day Maximum 1-day precipitation amount mm
RX5day Maximum 5-day precipitation amount mm

2.5 Simple bias correction methods183

In order to take into account the effect of model biases (in frequency and amount) in184

the comparison of SDMs and RCMs, we considered both the raw (statistically and185

dynamically downscaled) model outputs and different simple bias corrected versions186

of them. Thus, we can test the potential effect of the training phase for SDMs, which187

typically adjusts the mean precipitation during the calibration process. Two bias cor-188

rection methods (Local Scaling, LS, and Frequency Adjustment, FA) were applied189

separately to the precipitation indices in Table 3 depending on the different nature190

of the indices (i.e. intensity- or occurrence-related, respectively). The application of191

these corrections builds from previous work for RCMs only (Casanueva et al, 2015)192

and is extended here to SDMs.193

The indices 90pWET, RX1day and RX5day were corrected using a multiplicative
local scaling (LS) factor obtained as the quotient of the observed and simulated wet-
day precipitation:

RRLS = RRDS
SDIIOBS

SDIIDS
(1)

where RRDS represents daily downscaled precipitation. The correction factor changed194

from season to season for each grid box. The precipitation indices were computed195

from the resulting RRLS series.196

Other precipitation indicators, such as CDD, are more related to precipitation oc-
currence and the autocorrelation of the precipitation series. This indicator changes as
the wet-day threshold (typically 1mm) changes, thus it would be sensitive to changes
in the wet-day frequency. The frequency adjustment was applied to the precipitation
series by obtaining the adjusted wet-day threshold P∗ that adjusts the simulated and
observed wet-day frequency (i.e. the percentage of wet-days is the same for observa-
tions and simulation). For this purpose, P∗ was estimated selecting the value of the
downscaled precipitation matching the observed wet-day frequency computed with a
1mm threshold (RR1OBS = FOBS(1mm)) for each grid box:

P∗ = F−1
DS (FOBS(1mm)) (2)

where F is the empirical cumulative density function (CDF), so FDS and FOBS refer to197

the downscaled and observed CDFs, respectively. Thus, the correction of CDD con-198

sists in using P∗ (instead of 1mm) as the wet-day threshold in the index calculation.199
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Note that this correction adjusts the precipitation occurrence, but does not af-200

fect the order (and thus, autocorrelation) of the precipitation series, i.e. whether the201

dry and wet days are located in the correct place. This correction may also affect202

percentiles on wet days, such as 90pWET. However, previous work analysing this203

correction shows that the changes in percentiles are very small and in some cases204

lead to higher biases than the original percentiles (Casanueva et al, 2015).205

2.6 Connection between the mean and percentiles206

Multiplicative LS correction of a modelled variable X, consists of multipliying at207

each grid point by a constant λ , to produce a new, corrected variable Y = λX , which208

is expected to match exactly the observed mean µO. That is, λ = µO/µX . This cor-209

rection is used to mimic the calibration of the mean that occurs during the SDMs210

training phase. Thus, implicitly, it is useful to determine whether the indicator used211

for the SDM-RCM comparison would be affected by a calibration of the mean and,212

then, to analyse the fairness of the comparison.213

Wet-day precipitation amount is usually represented by the Gamma distribution,214

Ga(κ,θ), or its particular exponential distribution case, Ex(θ) = Ga(1,θ) (Benestad215

et al, 2011). Regardless of the probability distribution of X, the quantiles of Y = λX ,216

for any positive λ , are accordingly scaled: QY (p) = λQX (p). Therefore, all quantiles217

are linearly scaled along with the mean after LS.218

The question remains whether the new quantiles λQX (p) better match those of the219

observations QO(p). If the variable from both observations and model results belong220

to the same Gamma family, multiplicative LS correction provides a perfect correction221

for all quantiles, and not only for the mean. For example, if both model and observa-222

tions follow an exponential distribution, which depends on a single scale parameter,223

a perfect correction would be achieved. The original variable has mean µX = θ and224

variance σ2
X = θ 2. Therefore, after LS: µλX = λθ and variance σ2

λX = (λθ)2, and225

the scaled distribution is still exponential with parameter λθ . Adjusting the mean226

exactly matches the single parameter and, thus, the whole distribution, including all227

percentiles. Moreover, if the exponential distribution applies to both the observations228

and model results, the reproduction of the mean (through LS or any other calibration229

methodology) implies the reproduction of the whole distribution.230

In the case of the general Gamma family, the same result applies, as long as the231

shape parameter, κ , is equal in the observations and model. For reasonably simi-232

lar shape parameters, LS would tend to bias correct all quantiles, even though the233

method is devised to correct the mean. Deviations from perfect percentile bias cor-234

rection therefore indicate different shape parameters of different distribution families235

between model and observations. Section 3.2 shows the effect of the correction on236

90pWET with (statistically and dynamically) downscaled data over Spain.237

Note that the correction of percentiles by correcting the mean only holds for dis-238

tribution families where a scale parameter controls both the mean and the variability.239

For instance, in the case of temperature, where a Gaussian distribution is commonly240

considered, mean and variance are independent parameters. The mean can be cor-241
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rected by additive LS without affecting the variability (the quantiles would be shifted242

in this case).243

Frequency adjustment (FA, Section 2.5) is associated with the wet-day frequency.244

It is not related to the parameters of the exponential and Gamma distributions, but it245

changes the precipitation distribution by modifying the number of zero-precipitation246

values. When P∗ is larger than 1mm (the reference wet-day threshold), all values in247

the range (1mm, P∗) would be considered dry, thus increasing the number of dry days.248

For the opposite situation (P∗ < 1mm) the frequency adjustment does not provide an249

optimal correction since it cannot ‘invent’ wet days (Bärring et al, 2006). The adjusted250

threshold P∗ would directly have an impact on derived indicators affected by the251

wet-day definition (e.g. CDD). Note that the wet-day frequency is not an optimized252

parameter in any of the statistical or dynamical methods considered in this work.253

Thus, this correction does not resemble any calibration of the considered downscaling254

methods.255

3 Results256

3.1 Unfair comparison: Mean precipitation257

When looking at the mean precipitation regime, a fair evaluation and comparison of258

both downscaling techniques on equal footing should be carefully performed. It is259

important to note that the EURO-CORDEX RCMs have not assimilated any infor-260

mation from Spain044 observations, whereas the SDMs have been cross-calibrated261

using them —in particular, GLMs are trained minimizing the distance between the262

observed and predicted/downscaled daily mean training error.— Therefore, RCMs263

typically exhibit non-negligible biases (Casanueva et al, 2015), whereas mean pre-264

cipitation is usually well represented by the different SDMs. This argument, how-265

ever, should not be used to classify or rank statistical and dynamical techniques as266

in the recent work from Ayar et al (2015). Every classification of methods will rely267

on specific criteria, but the fairness of that criteria (i.e. no benefit for any method) is268

essential.269

Comparing SDMs and RCMs in terms of mean precipitation would inevitably270

favour SDMs, since the mean is an optimized parameter in the SDMs training phase,271

thus leading to an unfair comparison of downscaling techniques. This is illustrated in272

the Taylor diagrams (Taylor, 2001) for the statistically and dynamically downscaled273

mean precipitation fields in the four seasons (Figure 1). In order to give a spatially274

averaged measure of accuracy avoiding the compensation of opposite sign biases, we275

use throughout the entire paper the spatially averaged mean absolute error (MAE),276

which is calculated as the spatial average of the absolute value of the mean temporal277

errors at each grid box. Each downscaling method is represented by a square (filled278

with the MAE) using the labels given in Tables 1 and 2. Among the SDMs, the two279

GLMs (S3 and S4) are almost identical in all seasons (note that the only methodolog-280

ical difference is found in the predictors, i.e. PCs in S3 and nearest grid boxes in S4).281

S5 (circulation-conditioned GLM) is slightly worse than the other SDMs. Regarding282

the RCMs, HIRHAM (D2) and RCA (D4) stand out among the others for their worse283
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representation of the spatial pattern. The two WRF versions (D7 and D8) present284

very similar results in every season. RCMs show the larger spread in performance in285

summer, probably due to small-scale processes (such as those related to convection)286

which are more strongly controlled by parameterized physics in summer (Déqué et al,287

2005).288

As expected, the SDMs largely outperform the RCMs, as the scores are closer289

to the observations in all seasons. This is an example of an unfair comparison, even290

though the SDMs have been calibrated at the annual scale and, therefore, may exhibit291

seasonal biases. However, as shown in Figure 1, this has a small effect on the seasonal292

spatial patterns. Note that, in this case, performing a fair comparison is difficult, since293

even the simplest bias correction would adjust the mean precipitation spatial patterns,294

thus giving optimal results for both RCMs and SDMs. However, a fair comparison295

of both techniques can be done considering statistics or indicators not affected by the296

calibration processes, as shown in Sections 3.2 and 3.3.297
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3.2 Comparing extreme precipitation298

Pursuing a fair comparison of RCMs and SDMs, we evaluate precipitation in-299

dices which have not been directly optimized during the calibration of the methods300

(90pWET, RX1day, RX5day and CDD, see Table 3). In this case, results are only301

shown for winter season (DJF), although the same conclusions also hold for the rest302

of the seasons. Figure 2 (left panel) shows Taylor diagrams of 90pWET, RX1day and303

CDD indices for winter. Each arrow represents a different downscaling method link-304

ing the validation scores of the original predictions (squares) and the bias-corrected305

ones (circles; see Section 2.5).306

Before any correction, the same conclusion as for mean precipitation (Figure 1)307

holds for 90pWET (Figure 2a), with better validation scores for the SDMs. Although308

90pWET is not an optimized parameter in the SDMs calibration, evaluation results309

are clearly better than for the RCMs. This can be explained by the relationship that310

links the mean and the percentiles of a precipitation distribution (Benestad et al,311

2012), since the calibration of the mean in the SDMs leads to the adjustment of312

the percentiles (Section 2.6) and, thus, 90pWET. For this reason, the comparison313

of SDMs and RCMs in terms of percentile-based indicators would be as unfair as for314

the mean precipitation.315

The local scaling (Section 2.5) is applied to mimic a calibration in the mean316

in both statistical and dynamical techniques. After this correction, all the methods317

present comparable results. Results improve not only in terms of spatial correlation318

and variability, but also in terms of MAE (colors inside the markers in the Taylor319

diagram). Therefore, RCM biases in mean precipitation are responsible for the worse320

evaluation results for percentiles and they are able to properly represent percentiles321

as long as the mean precipitation is adjusted. Negligible changes are found for the322

SDMs, since good evaluation results were found before the correction.323

Similar conclusions apply to RX1day (Figure 2c). Before the correction, SDMs324

present better scores than the RCMs although S3-S5 exhibit an anomalous large spa-325

tial variability. Again, this could be partially explained by the relationship of the tail326

statistics of the precipitation distribution with the precipitation mean value, since the327

RX1day indicator would correspond to a percentile at the tail of the distribution.328

Therefore, a direct comparison of results from both techniques is also unfair in this329

case. After local scaling, the results of the RCMs become comparable to the SDMs.330

Similar results were also found for RX5day (not shown).331

3.3 Comparing spells332

The temporal autocorrelation of the precipitation series is not optimized in the cali-333

bration phase of any of the methods, therefore, CDD is a good candidate to provide334

an example of a fair SDM-RCM comparison. In this case, comparable validation335

scores are found for winter CDD (Figure 2e) for both downscaling techniques before336

and after the frequency adjustment (see Section 2.5). Before the correction, specific337

methods (regardless of the downscaling family) may present similar skill or deficien-338

cies in representing dry spell spatial patterns. After the frequency adjustment, spatial339
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patterns and MAEs improve for the RCMs (in agreement with Casanueva et al, 2015).340

SDMs show very small changes after the frequency adjustment (mainly a reduction341

in the spatial variability). This suggests that they present inherent deficiencies in rep-342

resenting dry spells, which cannot be solved by means of a bias correction. Note that343

the correction does not alter the series autocorrelation, but the wet-day frequency.344

In particular, S5 shows a completely different behaviour as compared to the other345

SDMs, whereas the analog method (S1) is the best-performing SDM. Bear in mind346

that the analog method is an algorithmic method that is based on a resampling of347

the observations. Therefore, it does not explicitly calibrate the mean or the temporal348

correlation but, according to the results, they are indirectly quite well captured. This349

is one advantage of this method, but it also presents some limitations such as the350

lack of robustness associated to the impossibility of extrapolating future atmospheric351

conditions (Gutiérrez et al, 2013).352

More detailed analyses have been performed to examine the ability of SDMs and353

RCMs in representing CDD (Figure 3). Before the correction, methods S2-S4 predict354

longer dry spells than observed (Figure 3, first column). RCMs usually overestimate355

the number of wet days, and thus underestimate CDD, by frequently simulating light356

rainfall (Figure 3, second column). The frequency adjustment (Section 2.5) works357

well for finding optimal thresholds (P∗) greater than 1mm (e.g. D3, D4 and D8 in358

Figure 3, fourth and sixth columns). However, the excess of dry days leads to close-359

to-zero wet-day thresholds (see S2-4 in third column in Figure 3). As stated in Sec-360

tion 2.6, the frequency adjustment cannot solve this problem and biases would still361

be present in the corrected CDD (Figure 3, fifth column), since the procedure cannot362

invent wet days for too dry methods (Casanueva et al, 2015). Summer precipitation363

indices in RCMs are affected also by this situation (long dry spells), which can also364

be seen in winter (e.g. D5).365

4 Conclusions366

It is nowadays commonly recognized that there are some key factors which must be367

taken into account for a fair comparison of statistical and dynamical downscaling368

techniques. Both approaches use observational data in different ways, either explic-369

itly for model fitting/calibration in SDMs (for instance, to fit the parameters of a370

regression model minimizing the mean squared error), or implicitly for model tun-371

ing in RCMs (for instance, to adjust model parameters based on evaluation against372

observations). Therefore, misleading results can be obtained when comparing the per-373

formance of both techniques using scores/indices which might be affected by model374

fitting. This paper gives insight into a fair comparison of statistical and dynamical375

downscaling methods.376

We analyze RCMs from the EURO-CORDEX initiative compared to previously377

tested SDMs in continental Spain (San-Martı́n et al, 2016) for the period 1989-2008.378

Both the RCM boundary conditions and the SDM predictors are taken from the ERA-379

Interim reanalysis (Dee et al, 2011). The SDMs calibration is performed using the380

new EURO-CORDEX compliant gridded observational data set (Spain044), there-381

fore the comparison of RCMs and SDMs is accomplished on the same grid, unlike382
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previous studies that interpolate from local stations/grid to RCM grid or vice versa383

(e.g. Kidson and Thompson, 1998; Murphy, 1999; Haylock et al, 2006).384

As expected, we find that SDMs outperform the RCMs with respect to seasonal385

mean precipitation, with an almost perfect performance in the four seasons. Regard-386

ing the derived indicators, 90pWET (90th percentile on wet days) and RX1day (maxi-387

mum 1-day precipitation amount) appear to be indirectly calibrated by the SDMs, due388

to their close relationship to the precipitation intensity. A local scaling bias correction389

method is applied to all statistical and dynamical downscaling methods resembling390

the calibration phase of the SDMs towards the observations. After this correction, all391

downscaling methods show comparable skill in reproducing 90pWET, RX1day and392

RX5day. This confirms that a good representation of mean precipitation also provides393

good evaluation results for high percentile indicators, regardless of the downscaling394

technique. This is a result of the usually employed exponential or gamma distribution395

models for precipitation, as long as the shape parameter is reasonably represented.396

Thus, the calibration in the mean during the training phase produces also an adjust-397

ment of percentile-based indicators and this would inevitably benefit the SDMs in a398

SDM-RCM comparison (if RCM biases are not removed).399

Alternatively, the evaluation of the CDD (maximum number of consecutive dry400

days) provides a fair comparison of RCMs and SDMs, since the autocorrelation of401

the precipitation series is not an optimized parameter in the calibration process. Our402

results show that specific SDMs and RCMs may be more or less skillful regardless403

of the downscaling technique. A correction in the wet-day frequency produces an404

improvement in the representation of the CDD spatial pattern although biases might405

remain high, meaning that the frequency adjustment is not enough to correct defi-406

ciencies in the lower part of the distribution in some of the methods.407

More efforts devoted to the evaluation of non-optimized parameters, as well as408

the use of several observational data sets should be considered in a fair SDM-RCM409

comparison framework. Note that in this work RCMs do not assimilate information410

from the observational reference, but different results may have been obtained if the411

observational data set had played a role in the RCM’s tuning phase.412
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Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL,467

Rockel B, Jacob D, Kjellström E, Castro Md, Kucharski F, Hurk Bvd (2005) Global468

high resolution versus limited area model climate change projections over Eu-469

rope: quantifying confidence level from PRUDENCE results. Climate Dynamics470

25(6):653–670, DOI 10.1007/s00382-005-0052-1471



15

Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS Opinions472

”Should we apply bias correction to global and regional climate model data?”.473

Hydrol Earth Syst Sci 16(9):3391–3404, DOI 10.5194/hess-16-3391-2012474

Estrada F, Guerrero VM, Gay-Garcı́a C, Martı́nez-López B (2013) A cautionary note475
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(third and fourth columns, see Section 2.5) and CDD biases after the correction (fifth and sixth columns)
for the SDMs (S1-5) and some representative RCMs, in winter. The numbers inside the figures are the
spatially averages MAE’s. For a better contrast of spatial differences in P∗, values are presented using a
non-linear scale.


