
Climate Dynamics manuscript No.
(will be inserted by the editor)

Daily precipitation statistics in a EURO-CORDEX
RCM ensemble: Added value of raw and
bias-corrected high-resolution simulations

A. Casanueva · S. Kotlarski · S.
Herrera · J. Fernández · J.M.
Gutiérrez · F. Boberg · A. Colette ·
O. B. Christensen · K. Goergen · D.
Jacob · K. Keuler · G. Nikulin · C.
Teichmann · R. Vautard

Received: date / Accepted: date

A. Casanueva (�) · S. Herrera · J. Fernández
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Abstract Daily precipitation statistics as simulated by the ERA-Interim-
driven EURO-CORDEX regional climate model (RCM) ensemble are eval-
uated over two distinct regions of the European continent, namely the Eu-
ropean Alps and Spain. The potential added value of the high-resolution 12
km experiments with respect to their 50 km resolution counterparts is investi-
gated. The statistics considered consist of wet-day intensity and precipitation
frequency as a measure of mean precipitation, and three precipitation-derived
indicators (90th percentile on wet days —90pWET—, contribution of the very
wet days to total precipitation —R95pTOT— and number of consecutive dry
days —CDD—). As reference for model evaluation high resolution gridded ob-
servational data over continental Spain (Spain011/044) and the Alpine region
(EURO4M-APGD) are used. The assessment and comparison of the two res-
olutions is accomplished not only on their original horizontal grids (approx-
imately 12 km and 50 km), but the high-resolution RCMs are additionally
regridded onto the coarse 50 km grid by grid cell aggregation for the direct
comparison with the low resolution simulations.

The direct application of RCMs e.g. in many impact modelling studies
is hampered by model biases. Therefore bias correction (BC) techniques are
needed at both resolutions to ensure a better agreement between models and
observations. In this work, the added value of the high resolution (before and
after the bias correction) is assessed and the suitability of these BC methods
is also discussed. Three basic BC methods are applied to isolate the effect of
biases in mean precipitation, wet-day intensity and wet-day frequency on the
derived indicators.

Daily precipitation percentiles are strongly affected by biases in the wet-
day intensity, whereas the dry spells are better represented when the simulated
precipitation frequency is adjusted to the observed one. This confirms that
there is no single optimal way to correct for RCM biases, since correcting some
distributional features typically leads to an improvement of some aspects but
to a deterioration of others.

Regarding mean seasonal biases before the BC, we find only limited evi-
dence for an added value of the higher resolution in the precipitation intensity
and frequency or in the derived indicators. Thereby, evaluation results con-
siderably depend on the RCM, season and indicator considered. High resolu-
tion simulations better reproduce the indicators’ spatial patterns, especially
in terms of spatial correlation. However, this improvement is not statistically
significant after applying specific BC methods.

Keywords Regional Climate Models · EURO-CORDEX · added value · bias
correction · precipitation indices

R. Vautard
LSCE-IPSL CEA /CNRS / UVSQ 91191 gif sur Yvette cedex France
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1 Introduction1

Regional Climate Models (RCMs) are sophisticated tools that allow repre-2

senting physical processes in the atmosphere that are not yet resolved by3

the coarse resolution of Global Climate Models (GCMs) (Giorgi, 2006; Feser4

et al, 2011). During the last decade, a huge effort has been made in order5

to adapt and apply these models to produce regional climate change sce-6

narios in different regions worldwide. As a result, there is nowadays a num-7

ber of comprehensive datasets developed in projects such as ENSEMBLES8

(van der Linden and Mitchell, 2009) and CORDEX (Giorgi et al, 2009), which9

also provide new opportunities for the intercomparison of different models,10

grid resolutions, boundary conditions, parameterizations (see e.g. Christensen11

et al, 1997; Jacob et al, 2007; Nikulin et al, 2011; Garćıa-Dı́ez et al, 2013;12

Vautard et al, 2013) and model domains (Teichmann et al, 2013). For in-13

stance, the EURO-CORDEX initiative experiment design (European branch of14

CORDEX, http://www.euro-cordex.net/, see Jacob et al (2014) and Kot-15

larski et al (2014)) considers simulations at two horizontal resolutions, 0.44◦16

and 0.11◦. The latter is computationally very costly and its benefits have just17

recently been questioned by Prein et al (2015).18

In principle, higher resolution experiments are able to capture features19

related to topography or land-sea mask, which are missed by coarser ones20

(Pryor et al, 2012; Walther et al, 2013); however, the added value of high21

resolution simulations is not always evident (Chan et al, 2013). Deficiencies22

may be caused for example by the fact that a given model is often developed23

and tuned in its low-resolution version (Gibelin and Déqué, 2003), therefore the24

high resolution cannot systematically improve the model performance. Several25

studies point out the importance of the right combination of parameterizations26

and horizontal (e.g. Déqué et al, 2005; Prein et al, 2013) and vertical resolution27

(Roeckner et al, 2006), highlighting for instance the role of the convection28

scheme (Kendon et al, 2012). Nevertheless, a single best parameterization for29

a specific resolution may not exist (Fernández et al, 2007; Jerez et al, 2012;30

Garćıa-Dı́ez et al, 2015), and also depends on the particular application, i.e.31

the final use of the RCM simulation results. Thus, this situation supports32

the use of ensembles sampling different parameterizations and other model33

settings.34

Model biases typically hamper the direct application of RCM output in35

impact studies (see e.g. Christensen et al, 2008; Kotlarski et al, 2014). There-36

fore, different bias correction (BC) methods were introduced in the literature37

(see e.g. Panofsky and Brier, 1968; Durman et al, 2001) and they have re-38

cently become increasingly popular in their application. BC methods vary from39

very simple factor scaling (additive or multiplicative, Durman et al (2001);40

Casanueva et al (2013)), to multi-variable BC techniques for particular com-41

binations of variables (Wilcke et al, 2013; Vrac and Friederichs, 2015) and42

methods pursuing the correction of more sophisticated bias features, such as43

temperature-dependent biases (Boberg and Christensen, 2012; Bellprat et al,44

2013). BC methods applied to precipitation have traditionally relied on the45
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assumption that models produce more rainy days than the reference observa-46

tions (drizzle effect). There are also some BC methods dealing with dry-day47

frequency overestimation, such as the frequency adaptation (Themeßl et al,48

2012) or the Piani et al (2010) method, modified by Argüeso et al (2013) to49

be used with station data.50

Against the background outlined above, the aim of this study is to, first,51

assess the added value of high (12 km) versus low (50 km) resolution RCM sim-52

ulations regarding daily precipitation statistics. For this purpose, several pre-53

cipitation derived-indicators (accounting for the mean and extreme regimes)54

are evaluated in a EURO-CORDEX RCM ensemble. Secondly, since RCMs are55

prone to systematic biases, BC methods are applied and the question whether56

a potential added value of the raw high-resolution experiments with respect57

to their low-resolution counterparts also remains after bias-correction is in-58

vestigated. The considered BC methods consist of the adjustment of the first59

moments of the precipitation distribution (mean precipitation, wet-day inten-60

sity and wet-day frequency), which are applied separately to isolate the effect61

of biases in precipitation amount and occurrence on precipitation derived indi-62

cators. Note that we do not intend to provide the optimally bias-corrected data63

—more sophisticated BC methods correcting the whole precipitation distribu-64

tion would be needed—, but to attribute indicators’ biases to deficiencies in65

the precipitation frequency (occurrence) and the intensity (amount). By doing66

this, the basic precipitation features are investigated in depth to shed light on67

the limitations and merits of both resolutions and to inform climate scenario68

end users about undesired effects which may also affect more sophisticated BC69

methods.70

Several aspects can be analysed to assess the added value of high resolution71

RCM simulation results. In this respect, a crucial question is the spatial scale72

on which the evaluation and intercomparison is carried out. An evaluation on73

the high resolution grid would penalize the coarse simulations because even74

a perfect coarse simulation would miss sub-grid-scale features (Prein et al,75

2015). For this reason, all comparisons are performed on the coarse resolution76

(50 km), corresponding to the skillful scale of the 12 km experiments (Grasso,77

2000). We consider this as the ‘fairest’ approach since it compares features78

resolved by both resolutions. Nevertheless it is important to note that with79

this choice we do not consider all aspects of the added value, e.g. the more80

local information provided by the high resolution. See also Di Luca et al (2015)81

for a comprehensive discussion about various definitions of added value.82

A further note of caution relates to the fact that our study focuses on83

several extreme precipitation indicators, such as the contribution of very wet84

days (R95pTOT), dry spell lengths (maximum number of consecutive dry85

days, CDD) and percentiles (90th percentile on wet days, 90pWET). These86

indicators are very sensitive to the definition of a wet day, which is widely87

discussed throughout the paper.88

We consider two target areas in Europe: Continental Spain and the Euro-89

pean Alps, where high-resolution and high-quality gridded observational data90

sets are available for the evaluation and where previous versions of the same91
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RCMs have been examined (see e.g. Frei et al, 2003; Herrera et al, 2010). These92

areas cover a wide range of climatic conditions, from Mediterranean to Alpine93

climates, and orographic complexity.94

Taking into account all the above, the specific objectives of the study are95

to96

– examine the added value of high resolution simulations at the skillful scale97

(50 km) of the high resolution98

– assess the added value of the high resolution simulations before and after99

bias correction100

– provide some hints of possible implications of the results for more sophis-101

ticated BC methods.102

This work is organized as follows. In Section 2 we present the data used.103

Section 3 introduces the methodology followed to evaluate the RCMs. The104

results are given in Section 4. Finally, the conclusion and the summary are105

given in Section 5.106

2 Data107

In the present study both high-resolution observational reference and RCM108

output data were used. All analyses were based on the common period 1989-109

2008. The study was performed on a seasonal basis, although only winter110

(DJF) and summer (JJA) results are shown for the sake of conciseness.111

2.1 Observational Data112

Observations play a major role in the evaluation and bias correction procedure113

and, as the RCM grid cells represent areal averages, gridded observational114

products are usually considered for the evaluation.115

Over Spain, we used the new EURO-CORDEX-compliant, gridded ob-116

servational data sets (Spain011/044; Herrera et al, 2015). More than 2700117

quality-controlled stations were selected to develop these gridded precipita-118

tion data sets with 0.11◦ and 0.44◦ horizontal resolution, regular in a rotated119

longitude-latitude system, covering the period from 1971 to 2010. They were120

interpolated following trivariate thin plate splines (TPS) and ordinary kriging121

(AA-3D method in Herrera et al, 2015). This interpolation process is equiva-122

lent to the one used to build the European-scale E-OBS data set (Hofstra et al,123

2009), considering orography as covariable in the formulation of the TPS. In124

order to ensure the area-averaged representativeness, the interpolation method125

was applied at an auxiliary 0.01◦ horizontal resolution grid and the final grids126

were obtained by averaging the results into the final resolution.127

For the Alps, the Alpine Precipitation Grid Dataset (APGD, Isotta et al,128

2013) was used as observational reference. This data set was developed in the129
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framework of EURO4M (European Reanalysis and Observations for Monitor-130

ing) for the period 1971-2008 and is a 5km resolution gridded product pro-131

vided by MeteoSwiss. The interpolation procedure consists of local regression132

(precipitation-elevation regression on independent slopes model) and angular133

distance weighting. In this study, the APGD was conservatively remapped onto134

the rotated 0.11◦ and 0.44◦ RCM grid, therefore the APGD011/044 versions135

exactly match the EURO-CORDEX grids (0.11◦ and 0.44◦). We re-gridded136

from the original 5km resolution in a Lambert Azimuthal Equal Area Coordi-137

nate Reference System to 1km grid in a rotated longitude-latitude system and138

afterwards we averaged the values inside every EURO-CORDEX grid-cell in139

order to guarantee the representation of areal averages.140

2.2 Regional Climate Models141

We evaluated daily precipitation from the EURO-CORDEX RCMs integrated142

at horizontal resolutions of 0.11◦ and 0.44◦ on rotated grids (Table 1). These143

simulations were driven by the ERA-Interim reanalysis (Dee et al, 2011) and144

covered the period 1989-2008. We refer the reader to Table 1 in Vautard145

et al (2013) and Table 1 in Kotlarski et al (2014) for the model details. In146

those tables, WRF311A and WRF311F are referred to as WRF-CRPGL and147

WRF-IPSL-INERIS, respectively, and these two WRF setups apply different148

combinations of physical parameterization schemes (details in Kotlarski et al,149

2014). Most of these simulations are available via the Earth System Grid150

Federation (ESGF archive, http://esgf.org/) under the CORDEX initia-151

tive. Throughout this paper, the individual simulations are referred to as the152

name in the second column in Table 1 plus the resolution (e.g. HIRHAM011,153

HIRHAM044).154

Table 1 EURO-CORDEX RCMs used in the present study. Codes were used to label
RCMs in Figure 10. The last column indicates whether or not the respective RCM applies
a smoothed surface orography.

Code RCM Institution Orog. smoothed
1 CCLM COSMO-CLM Community Yes
2 HIRHAM Danish Meteorological Institute, Denmark No
3 RACMO Royal Netherlands Meteorological Institute, Nether-

lands
Yes

4 RCA Swedish Meteorological and Hydrological Institute,
Sweden

Yes

5 REMO Climate Service Center, Germany No
6 WRF311A CRP - Gabriel Lippmann, Luxembourg No
7 WRF311F Institut Pierre Simon Laplace / Institut National de

l’Environment Industriel et des Risques, France
No
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3 Methodology155

3.1 Precipitation Indices156

Within the framework of the World Meteorological Organization, the Expert157

Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.158

pacificclimate.org/) deals with the definition of climate indices in order to159

obtain comparable results worldwide. Based on these definitions we here used160

seasonal precipitation indices derived from daily precipitation amounts (Table161

2).162

Table 2 Precipitation and derived indices used in this study.

ID Indicator Units
RR Daily precipitation amount mm/day
SDII Simple day intensity index (mean wet day precipitation) mm/day
RR1 Wet-day frequency %
90pWET 90th percentile on wet days mm
R95pTOT Percentage of total precipitation contributed by 5% most rainy days %
CDD Maximum number of consecutive dry days days

SDII, RR and RR1 account for the mean precipitation regime, whereas163

90pWET and R95pTOT are considered extreme indices in the sense that they164

are related to the tails of the probability distribution function, even though165

they are not associated to rare events. R95pTOT measures the contribution166

of heavy precipitation events to total precipitation. For Spain, this indicator167

clearly separates the different extreme regimes of the Atlantic and Mediter-168

ranean climates (see, for example, Fig. 10 in Herrera et al, 2012). CDD quan-169

tifies dry spells and is linked to precipitation occurrence. CDD and R95pTOT170

also present different driving mechanisms: CDD is more related to large-scale171

atmospheric circulation while R95pTOT has a convective origin and depends172

more on local processes and moisture fluxes (Casanueva et al, 2014).173

As recommended by Orlowsky and Seneviratne (2012), 90pWET and R95pTOT174

were derived over the entire period, while CDD was calculated for each year175

and season before computing the median for all years.176

Figure 1 shows the seasonal observed values for the indices in Table 2177

for both regions as represented by APGD011 and Spain011. Note that in both178

regions, the spatial pattern has a paramount orographic component, especially179

in winter.180

3.2 Aggregation Procedure181

In order to examine the added value of high resolution simulations at their skill-182

ful scale (0.44◦), a comparison between the evaluation of the coarse and high183

resolutions with respect to the coarse resolution observations (Spain044/APGD044)184
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Fig. 1 Seasonal observed distribution of the RR, SDII, RR1, 90pWET, R95pTOT and
CDD in winter (left) and summer (right), according to the APGD011/Spain011 datasets.
The numbers are the spatial averages in both regions.

was performed. Also, the standard evaluation of the high resolution (i.e. RCMs185

at 0.11◦ with respect to Spain011/APGD011) is shown for illustrative pur-186

poses. Thus, from now on we refer to the individual resolutions as three in-187

dependent datasets: 0.44◦ (original simulation), 0.11AGG (0.11◦ simulation188

aggregated to 0.44◦ resolution) and 0.11◦ (original simulation). By construc-189

tion, the 0.44◦ and 0.11◦ EURO-CORDEX grids match each other at the grid190

cell boundaries, i.e. each 0.44◦ grid cell contains exactly 16 0.11◦ grid cells. We191
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obtained the aggregated data (0.11AGG) by spatially averaging the grid boxes192

from the 0.11◦ grid that belonged to each 0.44◦ grid box (i.e. 16 0.11◦ grid193

cells were spatially averaged for each 0.44◦ grid box). Firstly, we obtained the194

011AGG data from the original 0.11◦ simulations for each RCM, and secondly195

we calculated the derived indices from that aggregated data. By means of196

this procedure we address the added value of the high resolution at its skillful197

scale (Grasso, 2000), therefore grid-point details (not only related to topogra-198

phy and land-sea mask, but also to better resolved local processes) from the199

high resolution cannot be discerned, but may be still present after smoothing200

them onto the coarse resolution. Note that 0.44◦ and 0.11AGG were defined201

in the same 0.44◦ EURO-CORDEX grid and, therefore, they can be directly202

compared with respect to the same observations (APGD044/Spain044).203

The comparison of 0.44◦ and 0.11AGG on the coarse grid can be considered204

‘fair’ since both resolutions are able to resolve the analysed features, however205

this is not a unique way to assess the added value. Comparing both resolutions206

on the high resolution grid would penalize the coarse resolution since, even for207

a perfect simulation, some sub-grid-scale features are missing. According to208

Prein et al (2015) added value of high resolution is more evident in the evalu-209

ation on the high resolution grid since more fine-scale processes are captured.210

Note that a completely fair comparison would also imply to perform the eval-211

uation exercise at the skillful scale of the coarse resolution experiments (for212

instance at 4x0.44◦=1.76◦), otherwise one resolution is always punished. This,213

however, would considerably smooth the spatial precipitation fields and also214

precipitation extremes. We here refrain from doing so but acknowledge that215

the 0.11◦ experiments might be slightly favored in our evaluation setup.216

3.3 Assessment of simple bias correction techniques217

Additionally to the evaluation of the raw RCM outputs, we assessed the results218

of three simple BC techniques for precipitation frequency and intensity and219

evaluated their effect on precipitation indices. The indicators considered in220

this work depend on precipitation occurrence and/or amount (see Table 2),221

therefore their biases can be attributed to deficiencies in the precipitation222

frequency and/or intensity. The three corrections considered were performed223

seasonally. The first one was based on mean precipitation (considering rainy224

and non-rainy days), while the others isolated the effect of the precipitation225

amount (how much) and occurrence (how often), respectively.226

First, rainfall data were corrected using a multiplicative scaling factor ob-227

tained as the quotient of the observed and simulated spatially averaged pre-228

cipitation over the specific region (from now on denoted as global scaling, GS ):229

RRGS = RRRCM
〈RROBS〉
〈RRRCM 〉

(1)

where RRRCM represents daily RCM precipitation at an individual grid point230

and the overline and angle brackets represent temporal and spatial averages,231
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respectively. This scaling reduces the bulky systematic biases present in every232

RCM and can be considered as a minimum correction needed at both resolu-233

tions. The correction factor is the same for all grid points in a single model,234

resolution and season, it does not depend on the grid box but on the spatial235

mean precipitation for the respective analysis domain. To some extent, this236

bulk correction could mimic a (global) retuning of the model to better fit ob-237

servations. Note that this correction would work well for overall too dry or238

too wet models, because it implies constant biases across grid points. As the239

precipitation spatial pattern presents very high variability and local features,240

some further corrections were needed at grid point level.241

Second, a local scaling (LS ) was applied at a grid point level considering242

the quotient of the observed and simulated wet-day precipitation:243

RRLS = RRRCM
SDIIOBS

SDIIRCM
(2)

Note that these two corrections, GS and LS, do not alter the values of the244

indicators R95pTOT and CDD.245

Third, in addition to these corrections related to the precipitation amount,246

a correction concerning the precipitation frequency was applied. Many indi-247

cators (including those in Table 2) consider the wet day frequency (RR1) in248

their definitions. Thus an over/underestimation of RR1 would inevitably lead249

to biases in the derived indicators. A dry (wet) day is defined as a day with250

precipitation below (above) a given threshold. In the recent literature, the251

analysis of dry/wet days of observed precipitation and climate model output252

normally uses subjectively-selected rainfall thresholds (often 0.1mm or 1mm)253

to separate dry and wet days (see e.g. Lázaro et al, 2001; Herrera et al, 2010;254

Orlowsky and Seneviratne, 2012). Some studies suggest the use of alternative255

wet/dry day thresholds different to the usually accepted such as 10mm (Yoo256

et al, 2001), 5 and 10mm (Fdez-Arroyabe Hernáez and Mart́ın-Vide, 2012) or257

the amount exceeded by 96% of the total rainfall (Aviad et al, 2013). Bärring258

et al (2006) find an optimal (according to several statistics) wet-day thresh-259

old for the whole of Europe of 0.56 and 1.20mm (for two model versions of a260

specific RCM), for the reference threshold of 1mm in point observation series.261

Selecting a single optimal threshold for the whole of Europe is a compromise,262

since this threshold depends on the location. In this study, we estimated an263

adjusted wet-day threshold P ∗ at grid point level by selecting the wet-day264

threshold value in the RCM which matches the observed wet-day frequency265

(RR1) computed with a 1mm threshold:266

P ∗ = F−1
RCM (FOBS(1mm)) (3)

where F is the empirical cumulative distribution function (CDF), so FRCM267

and FOBS refer to the simulated and observed CDFs, respectively. This value268

could be different from grid cell to grid cell and was derived separately for269

each RCM, resolution and season. From now on we denote by XFA a given270

indicator after the frequency adjustment (FA) is applied, i.e. P ∗ is used for271
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the indicator calculation instead of 1mm. Every precipitation value above this272

adjusted threshold was assumed to be a wet day in the RCM simulation,273

otherwise the day was considered dry. After this adjustment in the wet-day274

threshold, the observed RR1 is perfectly reproduced by the simulation and the275

contribution of the frequency to the biases in the derived indicators can be276

isolated.277

Bear in mind that FA with very large (P ∗ � 1mm) and close to zero278

(P ∗ � 1mm) P ∗ values may lead to non reliable results, especially considering279

its application to impact studies. In the former case, FA and more sophisti-280

cated methods adjusting the wet-day frequency —such as quantile mapping281

(Panofsky and Brier, 1968)— can deal with P ∗ � 1mm, but at the expense282

of mapping P ∗ values into 1mm. For P ∗ < 1mm, the FA itself is not able to283

provide an optimal correction since the model is drier than observations and284

it cannot ‘invent’ wet days (Bärring et al, 2006). For this reason, sophisticated285

BC methods have included additional methods such as the frequency adapta-286

tion by randomly sampling the observational distribution into the simulated287

first bin (Themeßl et al, 2012; Wilcke et al, 2013).288

The perfect representation of the wet-day frequency does not necessarily289

lead to reduced biases in precipitation threshold-dependent indicators, espe-290

cially in the two cases mentioned above. In the following sections we address291

the effect of considering P ∗ instead of 1mm on the indicators’ biases at the292

different resolutions.293

A fourth correction was considered combining the local scaling and the294

frequency adjustment. Thus, we locally scaled the daily precipitation after295

adjusting the wet-day threshold (i.e. YLS where Y = XFA, as Schmidli et al,296

2006). Results were similar to the LS case, therefore, this correction is not297

shown in the paper.298

4 Results299

4.1 Added value in mean precipitation300

Mean precipitation consists of the combination of the daily intensity and wet-301

day frequency. We analyse the contribution of both components separately in302

order to account for their effect on biases in precipitation-derived indicators303

(Sect. 4.2). Biases in the precipitation intensity (SDII) are shown in Figures304

2 and 3 for winter and summer, respectively, using the 1mm threshold for the305

wet-day definition (same for the wet-day frequency —RR1— in the supple-306

mentary material, Fig.S1-S2). The fourth column represents the difference of307

the bias on the 0.44◦ grid minus 0.11AGG, both in absolute values. Thus, pos-308

itive differences (greenish colours) show added value of the 0.11AGG and the309

opposite for negative differences (brownish colours). There is no overall added310

value of the high resolution simulations aggregated to the 0.44◦ grid since,311

depending on the model and season, biases are smaller for one resolution or312

the other (in agreement with Kotlarski et al, 2014). Due to the averaging313



12 A. Casanueva et al.

procedure, in most cases, 011AGG presents smoother patterns than 0.11◦. In314

winter (Fig. 2), there is a clear orographic pattern in the bias of both regions315

with some improvements of the high resolution for WRF311A and WRF311F,316

whereas HIRHAM, RCA and REMO present the highest positive biases at317

both resolutions for at least one of the regions. In summer (Fig. 3), there is no318

common spatial bias pattern in both regions. CCLM and RCA considerably319

reduce biases in the high resolution (especially in the Alpine region) whereas320

WRF311A and WRF311F present negligible differences between both resolu-321

tions. In both seasons, opposite-sign biases at 0.44◦ and 0.11AGG are found in322

some areas, more noticeable for CCLM in winter and RCA and REMO (also323

HIRHAM for Spain) in summer. This means that the same parameterizations324

with different resolutions lead to different precipitation intensities and also325

different spatial patterns. REMO stands out in summer, since both regions326

present mainly wet biases at 0.44◦, but dry biases predominate at 0.11◦ and,327

therefore, at 011AGG. Apparently, some physical schemes seem more resolu-328

tion dependent than others (Déqué et al, 2005). Further research about the329

sensitivity of seasonal biases to the different schemes (see e.g. Garćıa-Dı́ez330

et al, 2013) should be performed in the specific RCMs and resolutions. Note331

also the patchy spatial pattern in HIRHAM011, RCA011 and REMO011 with332

strong, opposite biases in nearby grid boxes, i.e. there is not a gradual change333

across the zero bias between opposite sign biases. For HIRHAM and REMO334

this could be due to the use of non-smoothed orography (see the fourth col-335

umn in Table 1). Previous studies have also associated biases to the excessively336

smoothed (Shkolnik and Efimov, 2013) or non-smoothed topography (Polanski337

et al, 2010), being the orography another factor to take into account in RCMs338

evaluation.339

Precipitation occurrence is characterized in terms of the wet-day frequency,340

which depends on the particular threshold (e.g. 1mm) used to define a wet day.341

Figure 4 shows the q-q plot for three selected grid points in RCA011 for win-342

ter daily precipitation (black crosses). The vertical line corresponds to 1mm in343

the observations. Therefore the intersection with the q-q plot provides the ad-344

justed threshold equivalent to 1mm in the observations (P ∗, see Eq.3). On the345

left, the model overestimates the wet-day frequency and P ∗ is around 16mm346

(intersection of black crosses with the vertical line). The center panel corre-347

sponds to a grid point where P ∗ approximates 1mm. On the right, the model348

presents more dry days than observed (P ∗ < 1mm). This figure illustrates349

that adjusted thresholds are in some cases very far from 1mm (left), but also350

close to 0mm (right). Only the points with P ∗ ≈ 1mm (center) would work351

well with the usually accepted 1mm threshold.352

When defining wet days using P ∗ instead of 1mm, precipitation intensity353

(SDII) is also altered, since it is defined as the mean of the wet-day precip-354

itation. For P ∗ > 1mm, SDII would be shifted towards higher values, since355

low-precipitation values in the range (1mm, P ∗) are considered dry days. For356

P ∗ < 1mm, dry SDII biases are expected due to the contribution of many357

close-to-zero precipitation values regarded as wet days.358
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Figures 5 and 6 show the spatial pattern of P ∗ computed according to Eq. 3359

for winter and summer, respectively. In winter, P ∗ is higher in places with360

complex orography (the Alps and Pyrenees) and lower in lowlands, especially361

for HIRHAM and RCA. In Spain, P ∗ does not reach as large values as in the362

Alpine region. Smaller P ∗ is also found in summer, with many zero or close363

to zero values (e.g. CCLM, HIRHAM, RCA especially in Spain). Notice that364

the definition of wet days depends on P ∗ and, therefore, the indicators (SDII,365

CDD, 90pWET and R95pTOT) are expected to change as the threshold P ∗
366

changes. Hence, the evaluation results depend on the value which is chosen as367

the wet-day threshold, which is usually subjectively adopted (e.g. commonly368

1mm or 0.1mm) or adjusted with the observations, as done in this study.369

Thus far, EURO-CORDEX RCMs present biases in SDII and RR1 at both370

resolutions that will propagate to the derived indices. BC methods allow to371

statistically correct these deviations, but the underlying physical misrepresen-372

tations will remain and may still affect higher-order moments of the corrected373

variables. Large P ∗ also affects sophisticated BC methods. For instance, P ∗
374

(Figs. 5 and 6) determines the highest (or lowest) value which is mapped into375

1mm when applying a quantile mapping (Panofsky and Brier, 1968) using the376

standard 1mm wet-day threshold. The patchy spatial pattern shown before for377

SDII (Figs. 2 and 3) is also found in the HIRHAM011, RCA011 and REMO011378

adjusted thresholds (Figs. 5 and 6). This may lead to spatial inconsistencies379

in sophisticated BC techniques, since two nearby grid points can have very380

different P ∗. These aspects constitute a theoretical discussion and need to be381

proven and analysed in further studies. No patchy spatial pattern is noticeable382

at the 011AGG scale, due to the underlying averaging procedure. Therefore,383

corrections in the frequency should be accomplished at the coarse scale, where384

no spatial inconsistencies are found and 0.44◦ and 011AGG present compa-385

rable results in terms of spatial coherence. Conversely, at 0.11◦ resolution,386

WRF and CCLM present more spatially coherent and smoothed patterns and387

RACMO stands out with P ∗ close to 1mm, especially over large parts of Spain.388

4.2 Added value in precipitation derived indicators389

We now examine the added value of the high resolution experiments for precipitation-390

derived indicators (low versus high resolution) and account for the effect of391

the biases in SDII and RR1 on derived indicators by applying BC methods at392

both resolutions (raw versus corrected data). All indicators considered (Table393

2) depend on the wet-day threshold. Thus, they are calculated with the 1mm394

and P ∗ (FA, Sect.3.3). 90pWET is also affected by the precipitation amount,395

therefore GS and LS corrections are performed. Biases for 90pWET and CDD396

(relative) and R95pTOT (absolute) are obtained for the raw and the corrected397

data for 0.44◦ and 011AGG.398



14 A. Casanueva et al.

90pWET399

Results for the 90th percentile on wet days (90pWET) are summarized in400

Figure 7. The ‘original’ label refers to the case when no correction is per-401

formed, i.e. without any scaling and taking 1mm as the wet-day threshold.402

Global scaling does not lead to overall conclusions, it usually reduces very403

high biases but deteriorates smaller ones. Local scaling strongly reduces the404

biases, along with their spatial variability, in every RCM and resolution. This405

results in individual grid-point biases of similar magnitude at both resolutions406

(median markers close to zero, and similar-sized boxes). This means that any407

improvement of a resolution with respect to the other before the correction408

does not necessarily lead to an improvement after the local scaling since biases409

become comparable for both resolutions (see e.g. WRF331F in Spain). Less410

frequently, an improvement before the correction remains (see e.g. RCA in411

Spain) or turns into a deterioration (see e.g. RACMO in Spain in winter) after412

the LS, although these are subtle changes. The application of the frequency413

adjustment (using P ∗ as the wet-day threshold) leads to similar biases to those414

in the original case (using 1mm wet-day threshold). Notice that especially for415

P ∗ > 1mm, changing the threshold yields slightly different percentiles, while416

the scaling changes the indicator more rapidly (see dots in Fig. 4, representing417

the deciles from the wet day distribution for the original (black), FA (blue)418

and LS (red)).419

Regarding the added value, neither the original nor the corrected data lead420

to an overall improvement of one resolution against the other since results are421

similar for both resolutions and the best performance is obtained for 0.44◦ or422

0.11AGG depending on the specific case.423

R95pTOT424

Figure 8 summarizes the absolute biases for the contribution of very wet days425

(R95pTOT). In winter, negligible differences are found between resolutions in426

both regions and few changes are obtained after the frequency adjustment.427

The correction can cause a small improvement (e.g. RCA in Spain) or deteri-428

oration (e.g. CCLM in the Alpine region). Hence the R95pTOT involves more429

processes (related to precipitation intensity) responsible for the biases that430

cannot be attributed to the wet-day frequency. In summer, the 0.44◦ simu-431

lation in the original case in the Alpine region is slightly better or does not432

differ much from 0.11AGG except for CCLM. After the frequency adjustment433

CCLM, HIRHAM and RCA biases increase dramatically on the coarse reso-434

lution. This could be due to the very low P ∗ values (see Fig. 6), leading to an435

increase of this indicator and therefore to very large positive biases.436

CDD437

For the number of consecutive dry days (CDD, Fig. 9) in winter the frequency438

adjustment tends to reduce biases and diminish the differences between reso-439
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lutions in Spain, but slightly benefits 0.11AGG in the Alpine region. Relative440

biases for summer CDD are very large for CCLM and HIRHAM at both reso-441

lutions —related to their large negative biases in the frequency (see Fig.S2)—,442

showing their difficulties to properly represent the lower part of the precip-443

itation distribution and the temporal coherence. The frequency adjustment444

substantially reduces these biases, meaning that the spells are better captured445

when the wet-day frequency is adjusted to the observed one. Unlike CCLM446

and HIRHAM, RCA does not reduce its large bias in summer in the Alpine447

region after the frequency adjustment and a large negative bias remains. This448

is due to the zero values of the wet-day adjusted thresholds that are apparent449

over approximately one third of the Alpine domain (black grid boxes in Figure450

6). Since the wet-day threshold is exactly zero, there are no dry spells in these451

grid boxes, leading to large negative biases of CDD.452

Joint discussion453

The above results show that 90pWET is more sensitive to the intensity whereas454

the CDD is affected by the wet-day threshold. Thus, they also present differ-455

ent sensitivities to the local scaling and frequency adjustment. On the one456

hand, the frequency adjustment slightly changes the 90pWET (i.e. changing457

the threshold yields a slightly different percentile). This means that the precip-458

itation frequency (i.e. the lower tail of the precipitation distribution) does not459

have a systematic implication for the upper percentiles (i.e. upper tail based460

indices). In some models the correction can either make it slightly better or461

worse, but in very dry models the correction can even strongly deteriorate it462

(e.g. CCLM and RCA in summer). Precipitation intensity, however, plays a463

major role in 90pWET; when the precipitation distribution is scaled by SDII,464

the upper percentiles are scaled too (in agreement with Benestad et al, 2012).465

On the other hand, the frequency adjustment considerably reduces CDD bi-466

ases. Once the observed and simulated wet-day frequencies are equal, the RCM467

better captures the dry spell durations. As mentioned before, in some cases468

(see e.g. RCA in summer in the Alpine region in Fig. 9) frequency adjustment469

does not reduce CDD biases because the time series autocorrelation and persis-470

tence (and therefore occurrence) of specific situations are not well represented471

by the model and the correction is not able to resolve this. For this reason, the472

frequency adjustment deteriorates biases in that example for 90pWET and473

R95pTOT too. Unlike 90pWET and CDD, which are more sensitive to the474

intensity and frequency, respectively, for R95pTOT the frequency adjustment475

can either deteriorate or not affect the results. The definition of R95pTOT in-476

cludes both the intensity and the frequency, and correcting for biases of these477

two aspects can have converse effects.478

As shown in Figures 7, 8 and 9, the selected indicators are affected by479

very low summer P ∗. In this case, 90pWET (CDD) is lower (higher) because480

of too many zero-precipitation values. R95pTOT is based on a lower 95th481

percentile, resulting in a higher quotient of the contribution of very wet days482

relative to the total wet-day precipitation amount. This is a limitation in the483
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frequency adjustment; when RCMs are too dry, an optimal threshold does not484

necessarily lead to an improvement because the correction cannot ‘invent’ wet485

days (Bärring et al, 2006). This should be carefully examined since basic bias486

correction techniques are not able to solve this problem and more sophisticated487

techniques are required to deal with this issue (Themeßl et al, 2012; Wilcke488

et al, 2013).489

The correction methods used in this study are not able to correct all in-490

dicators at a time. The precipitation occurrence affects the indices related to491

spells rather than the upper-tail percentiles, which are more influenced by492

precipitation intensity. That result suggests that there is not a single optimal,493

best way of bias correcting RCMs, since methods adjusting the frequency bet-494

ter represent the CDD, but can deteriorate the upper tail percentiles. Further495

analyses should be performed to quantify this result in more sophisticated bias496

correction methods combining several corrections. Note that we use the same497

period for the calibration and validation of the BC methods, since we validate498

aspects that are not directly tackled by the BC procedure. Validation results499

might look worse if an independent validation period would be chosen.500

4.3 Added value and bias correction effect on the spatial pattern501

The correction methods applied in the previous section preserve the temporal502

structure of the data and in this section we analyse their effect on the spatial503

pattern. We only show results for the 0.44◦ and 0.11AGG data sets, since these504

can be directly compared against the same observations.505

The ability to represent the spatial structure is summarized by means of506

Taylor (2001) diagrams (Fig. 10). These show several spatial scores at a time:507

spatial Pearson correlation coefficient (r), Centered Root Mean Squared Dif-508

ference (RMSD), standard deviation (std) and biases of spatial averages (bias).509

Arrows join, for a given RCM, the 0.44 score (squares) with the 011AGG (cir-510

cles). Therefore, arrows pointing towards the observational reference indicate511

that the high-resolution runs (011AGG) perform better than the coarse ones512

(0.44◦). To summarize the added value of 0.11AGG, the bars in the right pan-513

els show the number of RCMs (from 0 to 7) in which the 0.11AGG improves514

with respect to the 0.44◦ resolution, in terms of the four statistics shown in the515

Taylor diagram. In these barplots, the numbers of the right Y-axis show the516

statistical significance of the existence of added value, obtained by a Z-test for517

proportions. The results are statistically significant only when 6 or 7 RCMs518

(and symmetrically for 0 and 1) out of 7 improve upon the 0.44◦ resolution519

runs. For the raw RCM output (Fig. 10, first row), high-resolution RCMs gen-520

erally perform better than the coarse counterparts, especially in terms of r and521

RMSD (bias and std are not conclusive). After the corrections (Fig. 10, second522

row), all the RCMs present similar validation scores for CDD and 90pWET re-523

gardless of the resolution (the squares are close to the circles). The proportion524

of the 0.11AGG RCMs that improves with respect to the coarse ones is not525

statistically significant after the corrections. R95pTOT deteriorates with the526
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frequency adjustment except for CCLM and RACMO (labels 1 and 3, respec-527

tively) since these two RCMs present P ∗ close to 1mm (as shown in Fig.5).528

This degradation after applying the correction was also shown in the previous529

section, meaning that this indicator is not favoured by the frequency adjust-530

ment. The results for summer and for Spain in both seasons lead to similar531

conclusions and are included in the supplementary material (Fig.S3-S5).532

5 Conclusions533

This paper evaluates daily precipitation characteristics in the ERA-Interim-534

driven EURO-CORDEX RCM ensemble. Experiments at both 0.11◦ and 0.44◦535

horizontal resolution are considered, and the potential added value of the 0.11◦536

simulations is addressed. For this purpose, high-resolution RCMs are regrid-537

ded onto the coarse grid by grid cell aggregation (0.11AGG). The analysis is538

performed in two regions of Europe where high quality gridded observational539

data sets are available (continental Spain and the Alpine region) consider-540

ing mean precipitation and derived indicators (90th percentile on wet days541

—90pWET—, contribution of the very wet days —R95pTOT— and number542

of consecutive dry days —CDD—).543

In terms of seasonal biases we find only limited evidence for an added value544

of the higher resolution in the precipitation intensity, wet-day frequency and545

derived indicators, since results depend on the RCM, season and indicator and546

small differences rather randomly favour the 0.44◦ or the 0.11AGG resolutions.547

We find added value of the high resolution simulations in the spatial pattern548

(especially in correlation and RMSD). To adequately represent daily precip-549

itation statistics, bias correction techniques are needed at both resolutions.550

Nevertheless, after applying simple bias correction techniques the proportion551

of the 0.11AGG RCMs that improves with respect to the coarse ones is not552

statistically significant and there are negligible differences between resolutions.553

Note that we only partly address the potential added value, since high554

resolution simulations are not only used with the intention to improve the555

larger scale processes and features but also in order to provide better local556

information (i.e. the local departures of the 0.11◦ relative to the 0.11AGG or557

0.44◦ simulation results should be better than a random information). Our558

validation on the coarse grid can be considered ‘fair’ because it compares559

features resolved by both resolutions, however it is not the unique way to assess560

the added value (Di Luca et al, 2015). Pursuing a fairer comparison between561

resolutions would also require the retuning of the high resolution simulations562

and the consideration of the 0.44◦ simulations at their skillful scale. Prein et al563

(2015) claim that the added value of the high resolution is more evident when564

the comparison is performed on the high resolution grid but acknowledge that565

this procedure benefits the high resolution runs.566

The present work and Prein et al (2015) try to shed light on the added567

value issue by analysing different precipitation aspects taking into account568

precipitation-derived indices related to the intensity, frequency and extremes,569
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and from daily to sub-daily scales. As such, both works are complementary to570

each other. Both show the benefits of the high resolution in spatial patterns,571

however we find no statistically significant results after bias correction. Prein572

et al (2015) identify Spain and the Alpine area as the regions with largest net-573

improved-area fractions (i.e. fraction of grid boxes in which more than 75% of574

the high resolution simulations improve on the coarse counterparts). However575

that fraction is never higher than 50% of improvement, meaning that more576

than half of the grid points in each region is deteriorated or (in most of the577

cases) is similar in both resolutions. From our results, added value of the high578

resolution on seasonal mean biases depends on the indicator, RCM and season579

and the best performance is obtained for 0.44◦ or 0.11AGG depending on580

the specific case. Both studies are focused on different indicators for extreme581

precipitation, thus making it difficult to intercompare them. While Prein et al582

(2015) find also added value in other aspects such as the sub-daily scale, we583

focus on the added value of bias corrected simulations, which could be of great584

interest for the impact community.585

We apply three simple bias correction methods based on the correction of586

the first moments of the precipitation distribution. First, results show that587

scaling by the quotient between observed and simulated spatial mean precipi-588

tation is not enough to reduce biases in the 90pWET. Second, the local scaling589

with the wet-day intensity reduces the 90pWET biases dramatically (i.e. cor-590

recting the mean also corrects the percentiles) and makes both resolutions591

comparable after the correction. Third, the frequency adjustment improves592

the lower part of the probability distribution function (better representation593

of the CDD) but it deteriorates the upper tails (worse or negligible changes594

in the 90pWET and R95pTOT). Therefore, these corrections do not show an595

overall improvement which strongly indicates that there is no single optimal596

way to correct for RCM biases. Users should make a choice for one bias correc-597

tion method or the other depending on the precipitation metric being assessed598

(e.g. local scaling is more efficient for percentiles and the frequency adjust-599

ment for dry spells), but being aware that the same method can at the same600

time deteriorate another feature of the distribution. This emphasizes the need601

to investigate more sophisticated bias correction methods that correct several602

aspects at a time.603

Large biases remain in the derived indicators after the frequency adjust-604

ment when the adjusted threshold is zero (see e.g. CCLM in Spain and RCA605

in the Alpine region in summer). Bias correction has traditionally relied on the606

assumption that models produce more rainy days than the reference observa-607

tions and these methods work well for finding optimized thresholds when the608

climate model overestimates the number of wet days by frequently simulating609

light rainfall. However, the procedure cannot improve the opposite situation610

because it cannot ‘invent’ wet days if the model is too dry (in agreement with611

Bärring et al, 2006). This problem is very noticeable in summer and further612

research is needed (e.g., along the lines of the frequency adaptation from The-613

meßl et al, 2012) since it is not possible to fully solve it with the basic bias614

correction techniques applied in the present work.615
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Sophisticated bias correction methods are well prepared to solve any prob-616

lem in the precipitation Probability Density Function. In this work we identify617

some shortcomings (e.g. deficiencies in the representation of the wet-day fre-618

quency) in specific RCM simulations that may have implications for the suit-619

ability for such methods. For instance, some RCMs at 0.11◦ resolution present620

very high P ∗ (caused by strong biases in the precipitation frequency). Some621

sophisticated methods (e.g. quantile mapping) map this large P ∗ onto 1mm622

and values in the range (1mm, P ∗) onto dry days. There are also spatial in-623

consistencies in some models at the high resolution which might be related to624

instabilities due the use of non-smoothed orographies and a spatial displace-625

ment of precipitation structures (Maraun and Widmann, 2015). This could626

give unreliable results after applying single-site bias correction methods (i.e.627

point-wise methods, not considering the spatial coherence).628

This study gives insight into the daily precipitation statistics in the EURO-629

CORDEX RCM ensemble by analysing each ensemble member individually.630

Better agreement with the observations is usually found when ensemble aver-631

ages are validated and, moreover, this improves when only the best performing632

models are considered (Herrera et al, 2010). Bearing this in mind more efforts633

should be devoted towards the improvement of the individual models in order634

to avoid very strong biases. For this purpose, further research about the im-635

pact of different parameterization schemes on seasonal biases as Garćıa-Dı́ez636

et al (2013) should be performed for the specific RCMs.637

Acknowledgements The authors are grateful to Prof. C. Schär for his helpful comments638

and E. van Meijgaard for making available the RACMO model data. We acknowledge the639

observational data providers. Calculations for WRF311F were made using the TGCC su-640

per computers under the GENCI time allocation GEN6877. The WRF331A from CRP-GL641

(now LIST) was funded by the Luxembourg National Research Fund (FNR) through grant642

FNR C09/SR/16 (CLIMPACT). The KNMI-RACMO2 simulations were supported by the643

Dutch Ministry of Infrastructure and the Environment. The CCLM and REMO simula-644

tions were supported by the Federal Ministry of Education and Research (BMBF) and645

performed under the Konsortial share at the German Climate Computing Centre (DKRZ).646

The CCLM simulations were furthermore supported by the Swiss National Supercomputing647

Centre (CSCS) under project ID s78. Part of the SMHI contribution was carried out in648

the Swedish Mistra-SWECIA programme founded by Mistra (the Foundation for Strategic649

Environmental Research). This work is supported by CORWES (CGL2010-22158-C02) and650

EXTREMBLES (CGL2010-21869) projects funded by the Spanish R&D programme and651

the European COST ACTION VALUE (ES1102). A. C. thanks the Spanish Ministry of652

Economy and Competitiveness for the funding provided within the FPI programme (BES-653

2011-047612 and EEBB-I-13-06354). We also thank two anonymous referees for their useful654

comments that helped to improve the original manuscript.655

References656
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Fig. 2 Winter SDII relative biases (%) for the RCMs (rows) at 0.44◦ (first column),
0.11AGG (second column) and 0.11◦ (third column) resolutions. Values in the upper left
and lower right corner represent the relative biases of the spatially averaged SDII in both
regions. The fourth column shows the difference between the first two columns in absolute
values.
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Fig. 3 As Figure 2, but in summer.
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Fig. 4 q-q plots for 3 selected grid points from RCA011 simulations in winter (black crosses).
These grid points corresponds to adjusted wet-day thresholds greatly exceeding 1mm (left),
around 1mm (center) and under 1mm (≈ 0.3mm, right). Values are presented in squared
root scale with labels in the original units. The vertical line corresponds to 1mm in the
observations; its intersection with the q-q plot provides the adjusted threshold equivalent
to 1mm in the observations (P ∗). Dots show the deciles from the wet day distribution for
1mm threshold (black), the adjusted wet day threshold (blue) and after local scaling (red).
90pWET corresponds to the last dot of each series.
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Fig. 5 Wet-day threshold equivalent to 1mm in the observations for all the RCMs (rows)
and resolutions (columns) in winter. For a better contrast of spatial differences, values are
presented using a non-linear scale. Note that the black color represent P ∗ = 0.
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Fig. 6 As Figure 5, but in summer.
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Fig. 7 Boxplots summarizing the spatial distribution of 90pWET relative biases (in %)
for winter (DJF) and summer (JJA) for both regions (columns). The 90th percentile is
calculated with the standard 1mm fixed threshold as reference (first row). Second to fourth
rows correspond to the relative biases in 90pWET when GS, LS and FA corrections are
applied, respectively. Each box corresponds to one RCM and resolution (0.44◦ and 0.11AGG
per RCM). The boxes show the interquartile range and the median (circle) but, for the sake
of clarity, the whiskers extend only to the 5th and 95th percentiles.
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Fig. 8 As Figure 7, but for the absolute biases of R95pTOT (in %). GS and LS corrections
are omitted, since they do not affect this index.
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Fig. 9 Boxplots for the spatial distribution of CDD relative biases (in %) for winter (left)
and summer (right). The indicator is calculated with the 1mm fixed threshold (first row)
and with the adjusted wet-day threshold (second row). See Figure 7 for further details.
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Fig. 10 Taylor diagrams for winter 90pWET, R95pTOT and CDD in the Alpine region.
The first row shows the original data using a 1mm fixed wet-day threshold. The second row
shows corrected data (LS for 90pWET and FA for R95pTOT and CDD). Squares represent
0.44◦ resolution and circles 0.11AGG. Their colors correspond to the biases in the spatially-
averaged index. The numbers close to the square markers identify the RCMs (see codes in
Table 1). The right panel shows barplots of the number of RCMs at 0.11AGG resolution
that perform better than the 0.44◦ resolution in spatial Pearson correlation coefficient (r),
centered root mean squared difference (RMSD), variability (std) and bias. The results are
statistically significant only when 6 or 7 RCMs improve upon the 0.44◦ (see text).




