
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 193.144.207.13

This content was downloaded on 07/09/2017 at 08:51

Please note that terms and conditions apply.

Fire activity as a function of fire–weather seasonal severity and antecedent climate across

spatial scales in southern Europe and Pacific western USA

View the table of contents for this issue, or go to the journal homepage for more

2015 Environ. Res. Lett. 10 114013

(http://iopscience.iop.org/1748-9326/10/11/114013)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Seasonal changes in the human alteration of fire regimes beyond the climate forcing

Thibaut Fréjaville and Thomas Curt

Modeling very large-fire occurrences over the continental United States from weather and climate

forcing

R Barbero, J T Abatzoglou, E A Steel et al.

Objective identification of multiple large fire climatologies: an application to a Mediterranean

ecosystem

J Ruffault, V Moron, R M Trigo et al.

Future changes in climatic water balance determine potential for transformational shifts in

Australian fire regimes

Matthias M Boer, David M J S Bowman, Brett P Murphy et al.

Controls on interannual variability in lightning-caused fire activity in the western US

John T Abatzoglou, Crystal A Kolden, Jennifer K Balch et al.

Projected changes in daily fire spread across Canada over the next century

Xianli Wang, Marc-André Parisien, Steve W Taylor et al.

How much global burned area can be forecast on seasonal time scales using sea surface temperatures?

Yang Chen, Douglas C Morton, Niels Andela et al.

Measurement of inter- and intra-annual variability of landscape fire activity at a continental

scale: the Australian case

Grant J Williamson, Lynda D Prior, W Matt Jolly et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/10/11
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1748-9326/aa5d23
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124009
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124009
http://iopscience.iop.org/article/10.1088/1748-9326/11/7/075006
http://iopscience.iop.org/article/10.1088/1748-9326/11/7/075006
http://iopscience.iop.org/article/10.1088/1748-9326/11/6/065002
http://iopscience.iop.org/article/10.1088/1748-9326/11/6/065002
http://iopscience.iop.org/article/10.1088/1748-9326/11/4/045005
http://iopscience.iop.org/article/10.1088/1748-9326/aa5835
http://iopscience.iop.org/article/10.1088/1748-9326/11/4/045001
http://iopscience.iop.org/article/10.1088/1748-9326/11/3/035003
http://iopscience.iop.org/article/10.1088/1748-9326/11/3/035003


Environ. Res. Lett. 10 (2015) 114013 doi:10.1088/1748-9326/10/11/114013

LETTER

Fire activity as a function of fire–weather seasonal severity and
antecedent climate across spatial scales in southern Europe and
Pacific western USA

Itziar RUrbieta1, Gonzalo Zavala1, Joaquín Bedia2, JoséMGutiérrez2, Jesús SanMiguel-Ayanz3,
AndreaCamia3, Jon EKeeley4,5 and JoséMMoreno1

1 Departamento deCiencias Ambientales, Universidad deCastilla LaMancha, Av. Carlos III s/n, E-45071 Toledo, Spain
2 Grupo deMeteorología, Instituto de Física de Cantabria, CSIC-Universidad deCantabria, Avda. de los Castros, s/n, E-39005 Santander,

Spain
3 EuropeanCommission, Joint ResearchCentre (JRC), Institute for Environment and Sustainability, I-21027 Ispra Varese, Italy
4 Sequoia-Kings Canyon Field Station,Western Ecological ResearchCenter, U.S. Geological Survey, Three Rivers, CA 93271,USA
5 Department of Ecology and Evolutionary Biology,University of California, Los Angeles, CA 90095,USA

E-mail: josem.moreno@uclm.es

Keywords: area burned, climate change, drought, fireweather index, largefires,Mediterranean ecosystems

Supplementarymaterial for this article is available online

Abstract
Climate has a strong influence onfire activity, varying across time and space.We analyzed the
relationships between fire–weather conditions during themain fire season and antecedent water-
balance conditions andfires in twoMediterranean-type regions with contrastedmanagement
histories:five southern countries of the EuropeanUnion (EUMED)(allfires); the Pacificwestern coast
of theUSA (California andOregon, PWUSA)(national forest fires). Total number offires (�1 ha),
number of largefires (�100 ha) and area burnedwere related tomean seasonal fire weather index
(FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-
evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring)months.
Calculationsweremade at three spatial aggregations in each area, andmodels related first-difference
(year-to-year change) offires and FWI/climate variables tominimize autocorrelation. An increase in
mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions.
SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions
from autumn through spring (SPEI8)were generallymore important than positive conditions (moist)
in spring (SPEI3), both of which contributed positively tofires. TheR2 of themodels generally
improvedwith increasing area of aggregation. For total number offires and area burned, theR2 of the
models tended to decrease with increasingmean seasonal FWI. Thus,fires weremore susceptible to
changewith climate variability in areas with less amenable conditions for fires (lower FWI) than in
areaswith highermean FWI values. The relationships were similar in both regions, albeit weaker in
PWUSA, probably due to thewider latitudinal gradient covered in PWUSA than in EUMED. The large
variance explained by some of themodels indicates that large-scale seasonal forecast could help
anticipating fire activity in the investigated areas.

1. Introduction

Climate plays a major role in fires. On a short-term
scale, weather closely controls fire ignition and propa-
gation (Rothermel 1972). Daily warnings offire danger
are used by fire agencies across the world to allocate

fire suppression resources based on indices that
primarily integrate meteorological variables in ways
that reflect the main processes affecting fire ignition,
behavior, and difficulty of fire control (Fujioka
et al 2008, Dowdy et al 2010). Numerous studies have
related mean fire–weather values of various periods
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(the fire season being the most common), alone or
combined with other climate variables of the relevant
period to explain fire activity (e.g., Preisler et al 2008,
Koutsias et al 2013, Riley et al 2013). While many
studies emphasize the importance of climate during
the fire season in determining fire activity (e.g.,
Koutsias et al 2012, Morton et al 2013), antecedent
climate (i.e., conditions that occur months or years
before the fire season) has been shown to also
contribute to fire occurrence (Dimitrakopoulos
et al 2011), area burned (Trouet et al 2006, Archibald
et al 2010a, Abatzoglou and Kolden 2013), and large
fires (Keeley and Zedler 2009, Barbero et al 2014),
through its influence in fuel load and flammability of
live and dead fuels (e.g., Castro et al 2003, Dennison
et al 2008).

On a longer term, climate has a strong but com-
plex influence on fires because it determines primary
productivity and vegetation, hence fuels, all of which
determine global fire patterns (Krawchuk et al 2009,
Archibald et al 2013). The study of the longer-term cli-
mate controls on fires has been recently framed in a
context of the fuel amount versus fuelmoisture limita-
tions paradigm (Meyn et al 2007, Krawchuk andMor-
itz 2011, Pausas and Ribeiro 2013). According to this,
inmore arid areas, with less favorable climate for plant
growth, low primary productivity more than weather
conditions will limit fuels and fires. At the other end of
the spectrum, in areas with favorable climate for plant
growth, fires may be limited by unfavorable weather
conditions for them to ignite and spread owing to
excess moisture. Consequently, changes in climate
from year to year can differentially affect areas with
different controls on fires. Moreover, areas that
encompass a variety of vegetation types due to climate
could also be differentially responsive to changes in
climate variability, depending on what factors most
limit fires. Notwithstanding, changes in local condi-
tions (i.e., particular strong winds) (Moritz et al 2010)
and in the environmental and sociological contexts
can occur across the geographic space as well, all of
which can modify climate-related controls on fires
beyond the fuels/conditions limitations paradigm
(Loepfe et al 2014, Parks et al 2014). As geographic
scale increases, the probability of having areas respon-
sive to different climate controls is also likely to
increase, hence the relative importance of the various
factors affecting fire can vary with the scale (Falk
et al 2007, Parisien and Moritz 2009, Archibald
et al 2010b). All of this complicates anticipating how
the fire–climate relationships will change when mov-
ing from smaller to larger areas or across areas through
climate and other gradients.

Here we investigated the relationships between fire
activity during the main fire season and climatic con-
ditions during that season and the preceding months
for the 1985–2011 period in two Mediterranean-type
climate areas that have had different management his-
tories: southern European Union (EUMED) and the

Pacific western USA (Oregon and California,
PWUSA). Analyses were done at three spatial scales,
from provincial level in Spain/national forests in
PWUSA, to subregions in both EUMED/PWUSA,
and whole region in each continent. By comparing
southern Europe, including fires in all its territory, and
PWUSA, focusing on national forest lands, would per-
mit assessing climate controls in two most contrasted
territories, sharing a largely-similar climate.

2.Methods

Models of fire activity (total number of fires [�1 ha],
number of large fires [�100 ha] and area burned by all
fires [�1 ha]) as a function of within-season and
antecedent climate conditions were developed for the
period 1985–2011 in two regions: the southern
countries of the European Union (Portugal, Spain,
South France, Italy and Greece; EUMED) (figure 1(a)),
and the two southern states of the Pacific western coast
of the USA (Oregon and California, PWUSA)
(figure 1(b)). EUMED (Latitude: 43.11 to 36.12, Long-
itude: −9.28 to 28.08 in decimal degrees) covered a
wider longitudinal gradient than PWUSA (Latitude:
46.28 to 32.60, Longitude:−124.0 to−116.27), which
represented a longer latitudinal gradient.

Fire–climate models were developed at three
geographical scales in each study region: small
(10 900±4500 km2 and 11 850±3400 km2,
(mean±SD)), medium (54 000±31 700 km2 and
23 700±6750 km2), and large (1188 010 km2 and
166 000 km2 for EUMED and PWUSA, respectively)
(figure 1). At EUMED, calculations at the smaller
scale were made for 47 provinces (i.e., NUTS3—
nomenclature of territorial units for statistics—level)
(EUROSTAT 2011) at Peninsular Spain based on daily
fire statistics (EGIF, Spanish National Forest Fire
Statistics, Spanish Ministry of Agriculture, Food and
the Environment). In the medium scale, we modeled
21 subregions (proxy of NUTS2) of the different
southern EU countries with monthly fire statistics,
using the European Fire Database stored at the Joint
Research Centre of the European Commission (Camia
et al 2014), and then aggregated at the larger scale for
the whole EUMED (figure 1(a)). At PWUSA, calcula-
tions weremade using national forests fire data (FAM-
WEB Forest Service state data http://fam.nwcg.gov/
fam-web/weatherfirecd/state_data.htm, last accessed
5 February 2015). At the smallest scale, we defined 15
areas using single national forests or, when these were
too small, aggregations of several of them to reach an
approximate equivalent area to the Spanish provinces.
For the medium scale, we aggregated national forest
data into 7 subregions following US climatic divisions
boundaries for Oregon and California (www.esrl.
noaa.gov/psd/data/usclimdivs/boundaries.html, last
accessed 5 February 2015) (figure 1(b)). Los Padres
National Forest was treated as South California
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subregion, although one part is located in the Central
Coast. Finally, for the larger scale, data were aggre-
gated for thewhole PWUSA.Despite similarities in cli-
mate between both regions, there were some
differences between them that need to be mentioned.
At EUMED, the whole territory was used, and thus
all fires, the majority of which are caused by people
(on average 7% of area burned by lightning, 58%
human-caused, and 35% unknown which most prob-
ably correspond to human-causes), albeit with some

differences among the various areas (see Vázquez and
Moreno 1998 for data from Spain). At PWUSA, only
national forests territory, (which amounted to 25% of
Oregon and California), and corresponding fires, were
analyzed. National forest fires data have been often
used in studies assessing large scale patterns of rela-
tionships between climate and fire activity (Gedalof
et al 2005, Trouet et al 2006, 2009, Keeley and
Syphard 2015).While it has been shown that the inter-
annual variation in fire activity in national forests is

Figure 1. Study areas and scales. (a)Mapof the Spanish provinces (gray lines), subregions (darker lines) and thewhole EUMED region;
(b)map of the national forests of Oregon andCalifornia (polygons), group of forests (filled areas) based onNOAA climate divisions
(dotted lines), and thewhole PWUSA region.
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correlated with that at the state level for California
(Trouet et al 2006), differences in climate drivers of
fires between forest and non-forest areas have been
documented (e.g., Keeley and Syphard 2015). In
Oregon, national forests territory covers a diverse
range of fire regimes (Agee 1993, Gedalof et al 2005),
but excludes the grassland fires of the Intermountain
West (e.g., Knapp 1998). Thus, while national forests
cover a diverse range of ecosystems, yet they may not
capture the full range of them and of other factors
driving fires in the study area. Forest fires in national
forest of PWUSA are caused on average by lightning
(36% of area burned) and human causes (64%), with
differences between interior mountains, where light-
ning-ignited fires become more important than along
coastal subregions where human-caused fires
dominate.

A potential problem when comparing two time
series is the possibility of autocorrelation. One means
of dealing with such autocorrelations is with the time
series technique of differencing, where the value of the
variable at time t−1 is subtracted from the variable at
time t (Lobell and Field 2007, Trouet et al 2009, Turco
et al 2014, Bedia et al 2015). Thus, the relationship
between fire activity and climate conditions was ascer-
tained bymeans ofmultiple linear regressions between
first-difference time series of fire and climate-related
variables. The period of study (1985–2011) was com-
mon to both regions and for all three scales, as well as
the fire season (June to September, from now
on abbreviated JJAS) except for South California
(Los Padres, Angeles, San Bernardino and Cleveland
national forests), in which October fires were included
(i.e., JJASO) due to the presence of large fires in some
years. This fire season amounted, on average, to 70%,
83% and 82% of number of fires, large fires and area
burned, respectively, in EUMED, and 81%, 92% and
97%, respectively, in PWUSA.

To set themodeling framework, we first calculated
the yearly change, in percentage, of each response vari-
able (i.e., number of fires (�1 ha), number of large
fires (�100 ha) and area burned by all fires �1 ha).
Similarly, we characterized within fire-season condi-
tions using the fire weather index (FWI) of the Cana-
dian Forest Fire Danger Rating System (Van
Wagner 1987), which is calculated based on daily
meteorological conditions at noon time for air tem-
perature and relative humidity, wind speed, and rain-
fall accumulated over 24 h. From the FWI time series
we calculated the corresponding absolute increment,
or yearly delta, of the mean FWI (FWIm) conditions
experienced in the fire season. Prior to the modeling
exercise, trends in the three metrics of fire activity and
FWIm time series data at medium and large scales
were analyzed using the Mann–Kendall trend-test,
using the R package ‘Kendall v.2.2’ (Hipel and
McLeod 2005, R Development Core Team 2013). Fur-
thermore, we also tested the influence of extreme FWI
events on fire activity, calculating the delta in the

number of days over the 90th percentile of the FWI
historical series for each area (dFWI90). FWI daily
values were calculated from WATCH-Forcing-Data-
ERA-Interim at 50 km (Weedon et al 2010) applied to
ERA-Interim data (Dee et al 2011), following Bedia
et al (2012). Finally, in order to test the influence of
antecedent climate on fires, we extracted the standar-
dized precipitation-evapotranspiration index (SPEI)
(Vicente-Serrano et al 2010) from the Global 0.5° grid-
ded SPEI dataset (Beguería et al 2014), which indicates
the deviations of the current (e.g., period of reference)
water-balance (precipitation minus potential evapo-
transpiration) with respect to the long-term water-
balance, with time-scales between 1 and 48 months.
Specifically, for each spatial unit of analysis at each
scale we sampled the SPEI in May (i.e., to reflect the
water-balance conditions accumulated just before the
fire season) for two time scales: 3-months SPEI
(March to May, SPEI3) to cover spring months, and
8-months SPEI (October to May, SPEI8) to capture
the preceding autumn through spring conditions. We
calculated the corresponding absolute increment, or
yearly delta, for SPEI3 and SPEI8 with positive values
indicating an increase in moisture and negative indi-
cating an increase in drought conditions.

A forward stepwise regression analysis was per-
formed with the pool of potential predictors (FWIm,
dFWI90, SPEI3, SPEI8), using the R package ‘stats
v.3.0.2’ (R Development Core Team 2013). We tested
combinations of all possible predictors, maintaining
those that were significant (p<0.05) and added var-
iance explained of the fire variables. Goodness of fit of
the models was assessed by maximum log-likelihood,
explained variance (adjusted R2), and examining the
model residuals. Resulting models for each fire vari-
able were compared using Akaike’s information cri-
terion (AIC) (Akaike 1992). The model with the
minimum AIC was selected as the best model. If two
models showed a difference in AIC between 0 and 2,
these were considered to have equivalent empirical
support (Burnham and Anderson 2002), and the sim-
plest one was selected as the best model. The high
variability in the fire data in a few small areas led us to
carefully examine outliers. These were investigated
using the Bonferroni outlier test in ‘car v. 2.0.19’ pack-
age (Fox andWeisberg 2011), omitting those values at
p<0.001, and after rigorous examination of residual
plots. The reasons for such highly deviant years, when
present, was beyond our primary interest, and were
not further investigated. Additionally, to confirm that
results were not sensitive to different assumptions of
regressing first-differences, we checked the alternative
technique of regressing the detrended residuals
(Nicholls 1997) in a number of areas and for various
scales, which produced qualitatively similar results
(not shown). Before calculations, fire data were trans-
formed to meet linear regression assumptions: num-
ber of fires (�1 ha, and �100 ha) was square-root
transformed, and area burned log-transformed.
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Finally, to ascertain how climate controls on fires
vary in relation to the prevailing climate conditions
across areas, for both small andmedium scales in both
continents, we linearly related the R2 of the best cli-
mate–fire model obtained in each particular area (for
each of the three fire variables) with the long-term
mean seasonal FWI of the respective area.

3. Results

During the 1985–2011 period, significant decreasing
trendswere found at thewhole EUMED for thenumber
of fires (tau=−0.45, p<0.01), number of large fires
(tau=−0.40, p<0.01), and marginally for area
burned (tau=−0.27, p=0.058) (figure 2). Similarly,
decreasing trends were found for several EUMED
subregions, particularly in Spain, Italy andGreece (table
A1). Italian Islands were the only subregion showing an
increase in the three fire variables (p<0.05). On the
other hand, no trend was found at the whole PWUSA
(figure 2), and only few subregions showed significant
trends in fire activity (table A2). While the number of
fires significantly decreased in the South East and South
of California (p<0.05), an increasing trend was found

for large fires and area burned in Northern Cascades
(p<0.05), andmarginally for area burned in the South
California subregion. In mean seasonal FWI no sig-
nificant trends were detected for any of the two regions;
at the subregional scales, positive FWIm trends were
found in Spain East (tau=0.30, p<0.05) and Spain
South (tau=0.40, p<0.01) at EUMED, and in the
Sacramento Drainage (tau=0.40, p<0.01) at
PWUSA (appendixA).

At the smallest scale of provinces and national for-
ests, fire activity was moderately explained by both,
within season FWI and antecedent climate, and for
both regions, EUMED and PWUSA. This was true for
the three fire variables tested (number of fires, number
of large fires and area burned), with minor differences
among them within and between regions (figure 3(a)).
Only a few (5 provinces and 3 national forests) did not
show significant relationships to within season FWI
conditions and antecedent climate for any of the three
fire variables (tables B1 andB2).

At the medium (i.e., sub-regional) scale, the var-
iance explained by the models increased, more so in
EUMED than in PWUSA (figure 3(b)). Differences
between fire variables within regions were small. Note
the high values obtained in some subregions at

Figure 2.Time series of the threefire variables (number of fires, number of large fires, area burned) andmean FWI (FWIm) at the
larger scale for EUMED (left pannels) and PWUSA (right pannels) (June–September, 1985–2011). Significant trends are shownfitting
a nonparametric loess curve to the data. For details of theMann–Kendall test results at large andmedium scales see the text and
appendix A.
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EUMED (R2>0.70) (Spain North East, France South
West and East, Italy North, Center and South), and at
PWUSA (R2>0.50) (Northern Cascades, North
Coast, SouthCalifornia) (tables C1 andC2).

At the largest scale (i.e., whole region), relation-
ships were still higher and similar in both regions and
for the three fire variables, albeit with some differ-
ences. All variables were highly predictable (R2:
0.46–0.63) in both regions, except for area burned that
was less predictable in PWUSA (R2: 0.37) (figure 3(c),
tables C1 andC2).

Most of the variability at either provinces/national
forests or subregions was explained by within-season
conditions, with an increase in mean seasonal FWI
resulting in increases in the three fire variables
(figure 4, appendices B and C). The number of days
over the 90th percentile of the FWI (dFWI90) did not
enter in any of the best models, and in many instances
was highly correlated with mean FWI. Antecedent cli-
mate contributed to the models only at a few pro-
vinces/national forests or subregions in both
continents (appendices B and C). When it did,
3-months SPEI contributed positively (a positive
water-balance in spring, i.e., moist conditions, led to
more fires and larger burned areas), while 8-months
SPEI contributed negatively (i.e., autumn through
spring dry conditions led to increased fire activity,
with more fires and larger burned areas). While the
mean contribution of these variables to the models
was small (figure 4), in some cases they contributed
quite markedly. This was mainly due to the high con-
tribution of SPEI8, more so at subregional scale (tables
C1 and C2): for number of fires (e.g., Spain North),
large fires (e.g., Spain East, France South East and
West, Central Italy and Greece), and area burned (e.g.,
France South East andWest) in EUMED, and number
of fires (e.g., North Coast, Central High Plateau), area
burned (e.g., Northern Cascades) and large fires (e.g.,
southern California) in PWUSA. SPEI3 (spring wet
conditions) showed a positive effect on fires only at
EUMED, and more so at the small scale (table B1). At
the scale of whole region (both, EUMED and PWUSA)
no other variable than within-season mean FWI con-
tributed to themodels (tables C1 andC2).

Model performance was not homogeneous across
the areas studied within each continent. We found a
negative relationship, albeit weak, between the R2

values of the best fire–climate models and the long-
term mean FWI of the various areas. This was so for
the number of fires at both scales and continents, and
for area burned at PWUSA small scale and EUMED
subregions (table 1).

4.Discussion

Mean seasonal fire–weather proved critical for fire
activity in both regions, with minor influence of
longer-term antecedent water-balance climatic condi-
tions. Years with higher fire danger FWI values in
summer corresponded to years with increased number
of fires (total and large fires) and area burned, and
vice versa. The rather strong relationship at the largest
scale, with R2 values that explain almost 60% of the
total variance for area burned at EUMED, and above
60% for number of fires and large fires at PWUSA,
indicates thatfire–climate relationships have been very
strong during the nearly three last decades. The
variance explained by our models was comparable to
that obtained in other studies that used a number of

Figure 3.Variance explained (adjustedR2) of the bestfire–
climatemodels of number offires (NF), number of largefires
(NLF), and area burned (AB) at small (a), medium (b) and
large (c) spatial scales for EUMEDandPWUSA. For details of
the contribution ofwithin season FWI and antecedent climate
see appendices B andC.
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variables for characterizing climate controls on fires
(e.g., Trouet et al 2009, Amatulli et al 2013). The fact
that much of the variance in the various fire variables
was explained by themean seasonal FWI implies that a
simple, integrated measure of weather conditions
during the fire season carries substantial information
for anticipating fire activity. These findings are impor-
tant considering the large socio-economic differences
between the two regions, and the contrasted changes
over time occurred during the study period, with
consequent impacts on landscapes, fuels, ignitions
patterns or firefighting, among other. For instance, in
EUMED the dominant trend has been rural exodus,
abandonment, afforestation and concentration of

population in cities (e.g., Viedma et al 2015), while in
PWUSA the dominant trend has been increasing
urbanization (e.g., Syphard et al 2007). National
forests may have been indirectly affected by such
changes, but not their landscapes on a comparable
magnitude to what has happened in EUMED. None-
theless, in some areas a substantial amount of variance
was not explained by climate conditions, thus other
factors (e.g., socio-economic, ignition patterns, fire
management, etc) are also relevant.

Some studies use conversions of FWI values (i.e.,
daily, monthly or seasonal severity ratings) to enhance
the role of high FWI days (Van Wagner 1970). In our
approach, we used raw FWI daily values, without

Figure 4.Average relative contribution (as percentage) of within-season (mean FWI) and antecedent (SPEI3, SPEI8) climatic
conditions to number of fires (NF), number of large fires (NLF), and area burned (AB) at small (a), (b) andmedium (c), (d) spatial
scales, for EUMEDandPWUSA.

Table 1.Results of themodels fitted between theR2 values of the bestfire–climatemodels and the long-termmean
FWI for EUMEDandPWUSA.

Number offires Area burned

Intercept Slope R2 (p) Intercept Slope R2 (p)

Small scale

EUMEDSpanish provinces 0.625 −0.010 0.26 (***) — — n.s

PWUSAnational forests 0.615 −0.008 0.21 (*) 0.680 −0.011 0.42 (**)
Medium scale

EUMED subregions 0.914 −0.015 0.40 (**) 0.782 −0.011 0.15 (*)
PWUSA subregions 1.230 −0.022 0.58 (*) — — n.s
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further additional conversion to daily or monthly
severity values.We tested days over the 90th percentile
of the FWI to account for possible additional effects of
extreme events. Nonetheless, mean FWI seasonal
values and days above the 90th percentile were highly
correlated, and mean FWI values were the best pre-
dictor kept by themodels.

Despite previous reports on the significant role of
antecedent water-balance conditions on fires in both
regions using different approaches (e.g., Keeley 2004,
Gedalof et al 2005, Riley et al 2013, Gudmundsson
et al 2014, Keeley and Syphard 2015,Marcos et al 2015,
Sousa et al 2015), adding this information did not gen-
erally improve our models, except in a few areas in
which such variables proved to be relevant. Negative
water-balance (i.e., dry) conditions from autumn
through spring (SPEI8) were generally more impor-
tant than positive conditions (i.e., moist) in spring
(SPEI3) in contributing to increase fires. The fact that
only in a few areas antecedent water-balance was
important does not permit any generalization with
regard to where (i.e., more or less humid areas) this
was more relevant. For example, increasing negative
SPEI8 in the antecedent months was important for
area burned and number of large fires in southern
France, a rather mesic area, but also for number of
large fires in southern California, a much drier area.
Similarly, while wet conditions in spring (SPEI3) con-
tributed positively to fires in a few areas (e.g., some
Spanish provinces) probably due to increasing fine
fuel load during the summer months, there was no
consistent pattern as to under which dominant cli-
mate conditions this variable was more important.
Notwithstanding, it must be pointed out that the FWI
index also includes drought code as an indicator of
seasonal drought effects, which has a 52-day time lag
in moderate weather conditions (Lawson and Armi-
tage 2008) and correlates well with long-term live-
plant moisture content (e.g., Pellizzaro et al 2007).
This means that FWI partly carries antecedent water-
balance information and that only in a few areas varia-
tions in this were sufficiently important or long in time
to exceedwhatwas embedded in the FWI index.

Trends in fire danger (mean FWI) during the per-
iod analyzed were non-significant, except in a few sub-
regions in both EUMED and PWUSA. However,
positive trends in fire danger have been reported in
both EUMED (Venäläinen et al 2014) and PWUSA
(Abatzoglou andKolden 2013). This is probably due to
the shorter period analyzed and different areas of
reference, which signals to the sensitivity of trend ana-
lysis to the varying database. Trends in fire activity
have also been variable among both regions and sub-
regions within them. We found a clear decreasing
trend at EUMED (for the three variables and both at
large and medium scales), consistent with other stu-
dies (San-Miguel-Ayanz et al 2013). By contrast, in
PWUSA, trends in fires were generally not significant,
except in some subregions. While a number of studies

have found an increase in number of fires and the area
burned (Keeley et al 1999) and in the frequency of large
fires in the Western USA (Dennison et al 2014), the
different periods used and the fact that our data only
considered national forests can explain these apparent
contradictions.

Despite contrasted trends in both regions, we
found significant fire–climate relationships across
scales and for the various fire variables. Relationships
were detected at the smaller scale investigated, but the
R2 of the relationships generally increased with a
growing area of study. We argue that the variability of
fire and climate data becomes attenuated as the level of
aggregation increases, hence allowing the relationship
to emerge more clearly. Aggregating areas has short-
comings since it is possible that trends in the areas
aggregated at a higher level might differ from one
another, and what is true at the larger level may not
necessarily apply at a lower level of aggregation (Par-
isien et al 2011). Therefore, each level of aggregation
needs to be evaluated on its own.

Our results also document that, in general, the
goodness of fit of the models (the R2) tended to
decrease across areaswithin a region for some fire vari-
ables (i.e., number of fires and area burned) and at cer-
tain scales. The pattern was such that followed a
climatic gradient, suggesting that areas with lower
long-term mean FWI (i.e., milder climatic conditions
during the summer) were more responsive to year-to-
year changes in climate than those with higher values
(i.e., more severe climatic conditions during summer).
Similar results have been reported by other authors in
both regions (e.g., Vázquez and Moreno 1995, Trouet
et al 2009,Dimitrakopoulos et al 2011). Even if the pat-
terns across the climatic gradient were weak (e.g., not
all variables, not all scales), this is partially consistent
with the fuels-moisture limitations hypothesis (Pausas
and Ribeiro 2013, Parks et al 2014). The net result is
reduced predictability at the more severe end of the
gradient. A saturating performance of FWI index in
the upper end of its spectrum of values could also play
a role, but that needs further investigation.

The fire–climate relationships that emerged were
rather similar, even if weaker in PWUSA at medium
scale, and particularly for area burned at the largest
scale. While both regions are to a certain degree com-
parable, the fact that we have covered a wider long-
itudinal gradient in EUMED (with all fires) and greater
latitudinal gradient in PWUSA (only national forest
fires) could account for some of the differences. At
EUMED we explored more areas that are not that
extreme, so the models performed better. The greater
latitudinal gradient in PWUSA implies that we cov-
ered areas with substantial differences in climate. Sev-
eral studies have pointed the differential impact of
climate on fires across the western US (Gedalof
et al 2005, Littell et al 2009, Stavros et al 2014) and
between forested and non-forested landscapes (Abat-
zoglou and Kolden 2013, Keeley and Syphard 2015).
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Large scale atmospheric circulation patterns exhibit a
pivot point in California, shifting south or north on
decadal time-scales that may cause changes in the spa-
tial association of climatic variations and fire activity
(Westerling and Swetnam 2003, Trouet et al 2006).
The longer fire season in southern California, and
hencemore diverse set of atmospheric drivers, in addi-
tion to increased human ignitions compared to the
northwest (Miller et al 2012), likely contributes to
weaken climate–fire linkages (Trouet et al 2009, Abat-
zoglou and Kolden 2013). Moreover, the significant
role of local conditions such as Santa Anawinds in area
burned in southern California (Keeley and
Zedler 2009, Moritz et al 2010, Jin et al 2014), but not
in northern California and Oregon, is causing a much
greater inter-annual variability that was not fully
accounted for in ourmodels.

Determining the influence of variability and
change in climate on fires in the past is important for
projecting future climate change impacts (Bowman
et al 2014, Moritz et al 2014). Nonetheless, attributing
changes in fires to climate is difficult due to role of
confounding factors that affect fire–climate relation-
ships (Cramer et al 2014). When using long-term data
series for the analysis of climate–fire relationships, stu-
dies should use proper analytical procedures or con-
sider the role of other fire-drivers (fuels, landscape, fire
management, etc) (Littell et al 2009). Relating year-to-
year changes in fires to similar changes in the climate-
related variables permits arguing that, in such a short
period of time and at the spatial scales investigated
here, climate with its underlying weather is the main
variable that could significantly change. If at the smal-
ler scale it is still conceivable that certain changes from
one year to the next could meaningfully affect this
relationship (Miller et al 2009, Brotons et al 2013, Price
et al 2015), it is most unlikely that significant changes
would affect the relationship at the largest scale inves-
tigated. For instance, landscapes are dynamic through
time, but significant changes in landscape hazard from
year to year due to human activities are unlikely. Simi-
lar temporal framing can be assumed for other drivers,
like changes in ignitions patterns or on fire manage-
ment, whichmay take years to unfold.While the effect
of the other drivers is difficult to quantify, on such a
small temporal window it can be assumed to be much
smaller than that of weather/climate. Actually, this
implicit assumption is used by the fire services, whose
alerts use a scale of indices that only change due to
weather, despite trends through time in other non-cli-
mate variables affecting fires.

While extrapolating these relationships to a future
with more severe regional conditions due to global
warming (Westerling et al 2011, Bedia et al 2014)must
be made with caution, it would signal to a clear impact
of climate change on fires, at least before changes in
fires or other drivers can significantly affect current
landscapes and vegetation. Our findings are important
in a context of forecasting large scale climate patterns

(Quesada et al 2012), as a basis to anticipate fire-seaso-
nal severity. Since the range of FWI studied is quite
large, this supports arguing that in some areas an
increase in average FWI in the next decades or so, as a
consequence of climate change, can result in increased
fire activity. Our results also suggest that as the climate
becomes more severe due to global warming, fires in
these regions are likely to become less predictable, a
finding that can have important implications for
futurefire prevention and planning.

5. Conclusion

Fire activity in EUMED and PWUSA at the three scales
investigated was largely explained by within seasonal
climate and, in amuch lesser extent, by antecedent 3 to
8 months water-balance climatic conditions. Mean
seasonal FWI was the most important variable,
whereas antecedent water-balance did not contribute
much to the models, except in a few areas. In any case,
when they did, negative water-balance (i.e., drought)
in the antecedent 8 months was more important, and
contributed to increase fire activity. Despite differ-
ences among the two regions in land-use history,
management and type of territory used (whole terri-
tory at EUMED, only national forests at PWUSA), the
relationships were similar in both regions, albeit
weaker, notably for area burned at the whole region
level, in PWUSA probably due to the wider latitudinal
gradient covered. The relationships tended to increase
with the area of aggregation. The rather large variance
explained by some of the models indicates that large-
scale seasonal forecast could help anticipating the fire
season in the investigated areas. The R2 of the models
for some fire-variables decreased in both regions as the
long-term mean FWI of the area increased. That is, in
areas with lower long-term mean FWI (i.e., less
amenable conditions for fires), fires weremore suscep-
tible to change with climate variability across the years
than in areas with higher long-term mean FWI values
(i.e., more amenable to fires). Provided that this trend
reflects varied sensitivity to climate under more severe
conditions, that would imply a reduced predictability
of fire risk with climate change and consequent
increases inmean seasonal FWI.
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