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Fitting curves to noisy data points is a difficult problem arising in many scientific and industrial domains. Although polynomial
functions are usually applied to this task, there are many shapes that cannot be properly fitted by using this approach. In this
paper, we tackle this issue by using rational Bézier curves. This is a very difficult problem that requires computing four different
sets of unknowns (data parameters, poles, weights, and the curve degree) strongly related to each other in a highly nonlinear way.
This leads to a difficult continuous nonlinear optimization problem. In this paper, we propose two simulated annealing schemas
(the all-in-one schema and the sequential schema) to determine the data parameterization and the weights of the poles of the
fitting curve. These schemas are combined with least-squares minimization and the Bayesian Information Criterion to calculate
the poles and the optimal degree of the best fitting Bézier rational curve, respectively. We apply our methods to a benchmark of
three carefully chosen examples of 2D and 3D noisy data points. Our experimental results show that this methodology (particularly,
the sequential schema) outperforms previous polynomial-based approaches for our data fitting problem, even in the presence of
noise of low-medium intensity.

1. Introduction

(1) Motivation. This paper deals with the problem of fitting a
collection of noisy data points by means of a rational curve.
This problem arises in several scientific and applied fields. It
is an important issue, for instance, in regression analysis for
statistics and machine learning and in approximation theory
for numerical analysis. It also plays a key role in several
industrial fields, most prominently in reverse engineering.
In its most comprehensive meaning, reverse engineering
consists of obtaining a digital replica of an already existing
physical object or component. This is a typical procedure in
medical and health areas, where noninvasive techniques such
as magnetic resonance imaging (MRI) or computer tomog-
raphy (CT) are commonly used to visualize inner organs
or different parts of the human body for medical check,
diagnosis, and therapy. Reverse engineering is also a com-
mon practice in consumer products, microchips, and other

electronic components for different purposes. For instance,
to analyze how a new device or machine in the market is
built or how a particular component works. Another relevant
application arises in automotive and aerospace industries,
where prototypes are built on clay, foam rubber, wood, and
other materials to help designers and engineers explore new
ideas about shape or size and get a visual insight of a new
part to be designed.This is a challenging task, since nowadays
designs are becoming more and more organic in shape,
making them more difficult to be replicated by computer
from scratch. A typical approach in this regard is to obtain
a set of measurements of the object or workpiece and then
reconstruct it as a 3Dmodel. Typical ways tomeasure include
scanning technologies such as 3D laser scanners, touch
scanners, coordinate measuring machines, light digitizers,
and industrial computer tomography. Typically, the process
yields a cloud of data points, which have to be fitted in order
to recover the topological information of the original model.
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When data come from accurate sources (i.e., with mini-
mal measurement errors) and smooth shapes, curve recon-
struction can be done through well-known curve interpo-
lation techniques such as spline and Bézier curve inter-
polation. This approach is characterized by imposing the
parametric curve to pass through all data points. However,
most reverse engineering applications retrieve data from
scanning, digitizing [1], or some mechanical device, such as
pressuremachines in the shoemaking industry [2], thus being
subjected to measurement errors. In case of high-intensity
noise, interpolation methods tend to fail since they force
the curve to pass through all points, including the noisy
outliers. This undesirable situation can be overcome by data
approximation, where the fitting curve is only required to
be sufficiently close to the original data according to some
prescribed metrics. Owing to its ability to cope with noise
inherent to data in real-world settings, in this paper we will
use a curve approximation method.

Several families of functions can be used for this curve
approximation task. Among them, the free-form para-
metric functions (such as Bézier and B-splines) are the
most common in CAD/CAM (Computer-Aided Design/
Manufacturing), computer graphics and animation, virtual
reality, and other fields. In particular, Bézier curves have
been intensively used in automotive industry for decades.
Mathematically, they are given by a linear combination of
basis functions called the Bernstein polynomials with vector
coefficients called poles or control points. The curve follows
approximately the shape of its control polygon (the collection
of segments joining the poles), and, hence, it reacts to
the movement of its poles by following a push-pull effect.
This nice feature was fundamental for the popularization of
free-form curves for interactive design. Although nowadays
Bézier curves have been mostly deprecated in that field,
being overtaken by themore powerful B-splines, they are still
in use in many other areas. For instance, True Type fonts
use composite curves comprised of quadratic Bézier curves.
Similarly, all Postscript font outlines are defined in terms
of cubic and linear Bézier curves. Other recent applications
include, for instance, robot path planning [3] and the deter-
mination of the airfoil geometry from a given𝐶𝑝-distribution
[4].

A recent paper by the authors addressed the problem of
curve approximation with polynomial Bézier curves [5]. The
method was based on a hybrid scheme combining a popular
single-particle metaheuristic called simulated annealing for
global search and a local search optimizer for further refine-
ment of the global solution. This hybrid scheme was applied
to compute all relevant parameters of the approximating
function with satisfactory results.

Although the polynomial representation is very easy to
deal with (and, therefore, very convenient formany purposes)
it is still limited in some ways. For example, it is well known
that the polynomial-based schemes cannot represent accu-
rately some important shapes such as the conics (e.g., circles,
ellipses, and hyperbolas). A way to overcome this draw-
back is to consider the polynomial curve in homogeneous
coordinates, leading to rational functions (i.e., functions
that are quotients of two polynomials). In this sense, it is

important to remark that conics can be canonically described
as rational functions. Many other complicated shapes can be
dealt with more efficiently if the (more limited) polynomial
scheme is extended to a rational one. It is not a trivial
task, however, since the rational scheme includes additional
degrees of freedom that have also to be computed. As a conse-
quence, our previous method is no longer valid and must be
substantially improved.This is actually the goal of the present
contribution.

(2) Aims and Structure ofThis Paper. In this paper we focus on
obtaining an accurate fitting of a given set of noisy data points
by using a rational Bézier curve. To this aim, we consider
a modification of the standard simulated annealing (SA), a
popular probabilistic method for global optimization based
on thermodynamical principles. In our approach, the basic
SA algorithm is further improved by considering two larger
global optimization schemas.They are applied to compute all
relevant parameters of our curve fitting problem. A typical
shortcoming in this regard is that the accuracy of the model
increases as the number of poles increases, eventually leading
to overfitting. To prevent this undesirable effect, we also
aim to seek a suitable trade-off between data fidelity and
model complexity. To attain this goal we apply the Bayesian
Information Criterion (BIC), a model-selection technique
widely used in the context of information sciences. The basic
idea of BIC is to combine a penalty term with the fitness
function.This penalty term increases with the number of free
parameters of the model, thus penalizing any unnecessarily
large complexity of the model.

The structure of this paper is as follows: Section 2
summarizes briefly the previous work in the field. Some
basic mathematical concepts and definitions and the curve
fitting problem from noisy data points with rational Bézier
curves are described in Section 3.Then, the simulated anneal-
ing algorithm is described in detail in Section 4. Section 5
describes all steps of our proposed methodology along with
the two schemas used in this paper. The experimental results
of the application of ourmethod to three illustrative examples
are reported in Section 6. The section also discusses the
robustness of the method in the presence of noise. The paper
concludes with the main conclusions of this work and some
future lines of research.

2. Previous Work

Theproblemof data approximationwith free-form curves has
been a classical subject of research for many years. The first
research works addressing this issue were published in the
60s and 70s and were mostly based on numerical procedures
[6–8]. The classical methods of this period select the free
parameters by inferring some geometric properties from data
in order to meet specific constraints [1, 9, 10]. A major
problem in this regard is to perform data parameterization,
that is, to determine suitable parameter values associatedwith
the data points. Typical choices are the uniform parameter-
ization and the arc-length parameterization. Unfortunately,
classical numerical methods are not able to obtain optimal
solutions in the general case. Subsequent attempts to address
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this problem during the next decades provided solutions for
several particular cases but were not successful in solving
the general problem [9, 11]. More recent methods apply
alternative approaches such as line use error bounds [12],
curvature-based squared distanceminimization [13], or dom-
inant points [14]. Although they perform well, they are still
limited to particular cases and/or require strong constraints
in terms of differentiability or noiseless data, assumptions that
are not reasonable for real-world instances.

Mathematically speaking, curve fitting is usually
addressed as a continuous optimization problem [6, 8, 9].
However, traditional mathematical optimization techniques
have had little success in solving this problem. In the last
few years, the field has taken a new impetus with the
application of several powerful artificial intelligence and soft
computing techniques. Some of these methods are based on
neural networks, such as the standard neural networks [15],
Bernstein basis function networks [16], and Kohonen’s SOM
(Self-Organizing Maps) nets [17]. In some other cases, the
neural approach is combined with partial differential
equations [18]. This scheme has been extended to the more
general functional networks in [19, 20]. More recently,
powerful metaheuristic techniques have been applied to this
problem, including swarm intelligence [21], artificial immune
systems [22], genetic algorithms [23, 24], physics-inspired
thermodynamics [5], cuckoo search [25], support vector
machines [26], firefly algorithm [27], and hybrid techniques
[28, 29]. These methods obtain remarkable results for
polynomial curves, but more complicate shapes (e.g., conics)
are still not properly fitted. This is a good evidence of the
interest and difficulty of this data fitting problem, which is
described in detail in the next section.

3. Description of the Problem

3.1. Basic Concepts and Definitions. In this section we assume
that the reader is familiar with the concept of parametric
curves. Bézier curves are a particular case of free-form para-
metric curves, introduced in the 60s for interactive design
in the automotive industry. A nonrational (i.e., polynomial)
parametric Bézier curve of degree 𝑛 in R𝑑 is given by

B (𝑡) =
𝑛

∑

𝑗=0

b𝑗𝐵
𝑛

𝑗
(𝑡) with 𝑡 ∈ [0, 1] , (1)

where {b𝑗}𝑛𝑗=0 ⊂ R𝑑 are vector coefficients (usually called
poles or control points) and𝐵𝑛

𝑗
(𝑡) are theBernstein polynomials

of index 𝑗 and degree 𝑛, given by

𝐵
𝑛

𝑗
(𝑡) = (

𝑛

𝑗
) 𝑡
𝑗
(1 − 𝑡)

𝑛−𝑗

with (
𝑛

𝑗
) =

𝑛!

𝑗! (𝑛 − 𝑗)!
, 0! = 1.

(2)

Note that in this paper vectors are denoted in bold.The poly-
nomial representation is not powerful enough to represent a
variety of shapes, particularly the conics (e.g., circles, ellipses,

and hyperbolas). One way to overcome this limitation is to
use homogeneous coordinates (see [10, 30] for details). The
basic idea is to consider the projection of the standard poly-
nomial Bézier curve inR𝑑+1, with new poles bℎ

𝑗
.The resulting

curve inR𝑑 is called a rational Bézier curve. Mathematically,
this curve can be described as a quotient of two polynomials,
or as a linear combination of rational basis functions:

C (𝑡) =
𝑛

∑

𝑗=0

b𝑗𝑅
𝑛

𝑗
(𝑡) with 𝑡 ∈ [0, 1] , (3)

where the rational basis functions are defined by

𝑅
𝑛

𝑗
(𝑡) =

𝑤𝑗𝐵
𝑛

𝑗
(𝑡)

∑
𝑛

𝑘=0
𝑤𝑘𝐵
𝑛

𝑘
(𝑡)
, (4)

where 𝑛 is the curve degree and𝑤𝑗 is the last coordinate of the
homogeneous control point bℎ

𝑗
. This set of new scalar param-

eters {𝑤𝑗}
𝑛

𝑗=0
, called weights, provides us with additional

degrees of freedom for better shape approximation. They
also increase the model complexity, however, as we introduce
a new set of parameters that have to be computed as well.

3.2. The Fitting Problem. Let now {Q𝑖}𝑚𝑖=1 be a set of data
points in R𝑑. The problem consists of obtaining the rational
Bézier curve, C(𝑡), of a certain degree 𝑛 providing the best
least-squares fitting of the data points. This leads to a mini-
mization problem of the least-squares error Θ defined as the
weighted sum of squares of the residuals:

Θ =

𝑚

∑

𝑖=1

𝜇𝑖(Q𝑖 −
∑
𝑛

𝑗=0
𝑤𝑗b𝑗𝐵𝑛𝑗 (𝑡𝑖)

∑
𝑛

𝑗=0
𝑤𝑗𝐵
𝑛
𝑗
(𝑡𝑖)

)

2

, (5)

where {𝜇𝑖}
𝑚

𝑖=1
are scalar numbers used in situations when it

may be reasonable to assume that sampled data should not be
treated equally. In order to reflect faithfully themost common
situation in real-world problems, in this paper we will assume
that no information about the problem is available beyond the
data points. This means that all data points must be treated
equally; that is, 𝜇𝑖 = 1, for all 𝑖. Note, however, that our
method is independent on the values of 𝜇𝑖. To represent the
geometrical distribution of the data we need to associate a
parameter 𝑡𝑖 for each input pointQ𝑖. Therefore, our goal is to
obtain the three sets of parameters {𝑡𝑖}

𝑚

𝑖=1
, {𝑤𝑗}
𝑛

𝑗=0
, and {b𝑗}𝑛𝑗=0.

It is obvious that since each blending function in (2) and (4) is
nonlinear in 𝑡, system (5) is also nonlinear. As a consequence,
we have to deal with a multivariate continuous nonlinear
minimization problem. In this paper we solve this problem
by applying two different schemas of the simulated annealing
optimization method, which is described in the next section.

4. Simulated Annealing

One of the major trends in global optimization during the
last few decades has been to build algorithms trying to
mimic certain efficient optimization patterns observed in
natural processes. As a result, a series of very powerful
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nature-inspired optimization algorithms (e.g., particle swarm
optimization, genetic algorithms, or ant colony optimization)
have been devised. Very often, they provide better solutions
than previous traditional mathematical algorithms to several
hard optimization problems. Although they are very diverse,
all of them share two common features: to be inspired by real-
world observation and to search for solutions in a stochastic
way. Most of them are also derivative-free, meaning that
they can be applied to problems where it is not possible to
compute the derivatives of the objective function (or they
are very expensive computationally). In this paper we apply
simulated annealing, one of themost popular nature-inspired
optimization algorithms.

4.1. Background. The simulated annealing (SA) is a nature-
inspired metaheuristic optimization algorithm introduced
by Kirkpatrick et al. in the context of combinatorial opti-
mization [31]. The algorithm is inspired in the annealing
process in metallurgy, where metals are heated at very high
temperatures and then slowly cooled down to reach a state
of lower energy. During the process, atoms tend to move
to configurations that minimize the system energy even if
during such migration certain configurations rise the system
overall energy (when it stabilizes for a fixed temperature, we
call it thermal equilibrium). Such moves are more prominent
at the beginning of the process than at the end, when
the particles loose thermal mobility in order to polish the
system inner structure to finally produce a better metal. As a
result, themetals become stronger andwith better properties,
specially if the process is conducted several consecutive times
(a process called reannealing).

The original SA algorithm is an advanced interpretation
of the Metropolis-Hastings algorithm [32] to generate sam-
ple states of a thermodynamic system, showing the deep
connections between statisticalmechanics and combinatorial
optimization. Given an initial (usually random) state in the
solution domain, the algorithm iteratively perturbs it. When-
ever a better solution is found, the change is always accepted;
otherwise, it is accepted only with a certain probability.
This probability is higher at the beginning (mimicking what
happens in the thermodynamic process at high temperatures)
than at the end. In other words, this idea of slow cooling is
translated as a slow decrease of the probability of accepting
such worse solutions. So essentially the system evolves from
a free exploration of the search space at initial stages to a
stochastic hill-climbing at latter stages.

Since its publication the algorithm has received a lot of
attention from the scientific community, with many real-
world applications in themost diverse fields, ranging from the
classical NP-hard combinatorial travelling salesman problem
[33] to the minimization of highly multimodal real-valued
functions [34]; see [35] for an in-depth review of several
simulated annealing applications.

4.2. The Algorithm. The simulated annealing algorithm was
originally designed to compute a good approximation of
the global optimum of a fitness function (usually called the
system energy) within a problem domain D, assumed to be
continuous in this paper. Each point x ∈ D is a state of some

physical system. Given an initial (usually random) state x0,
the goal of the SA is to obtain the state with the minimum
energy (associated with the best solution of the optimization
problem). In our case, we have a real-valued function𝑓 : D ⊆

R𝑑 → R that we want to minimize. The algorithm performs
an iterative process; at each iteration step, a new state xnew is
generated from the current one, xold, through a neighborhood
function, denoted by N : D → D, that is, xnew = N(xold).
Let now 𝑓old ≡ 𝑓(xold), 𝑓new ≡ 𝑓(xnew) be their associated
energies, respectively.The algorithm probabilistically decides
betweenmoving the system to the new state xnew or staying in
current state xold. This new state is chosen with a probability
functionP : D×D → [0, 1], called the acceptance function,
which depends on two factors as follows:

(i) on one hand, on the difference between their energy
values, Δ = 𝑓old − 𝑓new,

(ii) on the other hand, on a global parameter called
temperature, denoted by 𝑇, which varies according to
a strictly decreasing function T : R+ → R+ called
the cooling function.

The probability function is not arbitrary, but must comply
with certain requirements. One of them is that P > 0 if
Δ < 0, meaning that the system may move to the new state
even if it is worse (has a higher energy) than the current one.
The primary goal of this condition is to prevent stagnation
(when the system gets trapped in the neighborhood of local
optima, leading to premature convergence). Under the same
condition Δ < 0, we also impose that P → 0 as 𝑇 → 0,
while P → 𝜂 > 0 otherwise. Basically, these conditions
state that, for sufficiently small values of 𝑇, the system
will increasingly promote “downhill” changes (i.e., changes
leading to lower energy values) and avoid “uphill” changes.
In other words, the lower the temperature is, the easier it is
to reject a worse solution. In fact, in the particular case 𝑇 =
0, the procedure will only allow downhill moves, meaning
that the algorithm reduces to a greedy search algorithm.
Another desirable feature is to promote small uphill moves
over large ones. This effect can be obtained by modulating
the probability as a function of the parameter Δ so that
P decreases as Δ increases. Under these conditions, the
temperature 𝑇 becomes a critical parameter in describing the
evolution of the system, as its value determines the sensitivity
of the system to energy variations.

In this paper, we consider the classical acceptance func-
tion derived from the Metropolis-Hastings sampling algo-
rithm, first introduced byMetropolis et al. in [32] as aMonte-
Carlo method to simulate the creation of new states in a
thermodynamic system and given by

P (Δ) =
{{

{{

{

1 if Δ ≤ 0

exp(−Δ
𝑇
) otherwise,

(6)

where 𝑇 represents the system temperature at the iteration
where xnew has been generated. With this function, a bet-
ter candidate solution is always accepted, but even worse
solutions have a chance to be accepted. It is clear that
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Require: (Initial Parameters)
(1) Initial Temperature 𝑇0
(2) Schedule Criteria S𝑐
(3) Stopping Criteria SC
(4) Neighbourhood functionN:D → D

(5) System Energy 𝑓:D ⊆ R𝑑 → R

(6) Cooling ScheduleT: R+ → R+ (strictly decreasing function)
(7) 𝑇 ← 𝑇0 ⊳ Temperature initialization
(8) Randomly select start state x0 ∈ D
(9) xold ← x0
(10) repeat ⊳ External loop: stopping criteria
(11) repeat ⊳ Internal loop: thermal equilibrium
(12) xnew ← N(xold) ⊳ New state generated
(13) 𝑓old ← 𝑓(xold) ⊳ Energy evaluation of current state
(14) 𝑓new ← 𝑓(xnew) ⊳ Energy evaluation of new state
(15) Δ ← 𝑓old − 𝑓new
(16) if Δ < 0 then ⊳ Acceptance criterion
(17) xold ← xnew
(18) else
(19) Randomly compute 𝑢 ∈ Rand(0, 1) ⊳Metropolis procedure
(20) if 𝑢 ≤ exp(−Δ/𝑇) then ⊳ Equation (6)
(21) xold ← xnew
(22) end if
(23) end if
(24) until S𝑐 == true
(25) 𝑇 ← T(𝑇) ⊳ Temperature update
(26) until SC == true
(27) return xnew ⊳ Best final solution

Algorithm 1: Simulated annealing.

(6) meets all required conditions for a proper acceptance
function indicated above. It also provides an adequate trade-
off between exploration and exploitation: at initial stages (i.e.,
higher temperatures) the algorithm explores the search space
while at latter stages it resembles a hill-climbing algorithm,
with the difference that now there is always the possibility to
accept a worse state.

The corresponding pseudocode of the simulated anneal-
ing algorithm used in this paper is shown in Algorithm 1. A
typical execution begins with a randomly chosen state (x0, 𝑓0)
and an initial (very high) temperature 𝑇0. The algorithm
generates new states, according to N, at each iteration
and probabilistically decides whether or not the new state
is accepted according to the probability P. According to
the pseudocode, the algorithm can be summarized as the
interaction between two cycles: the external one controls
the temperature updating and the inner one performs the
Metropolis procedure for a given outer iteration. The tem-
perature 𝑇 is updated through the cooling function T only
when the thermal equilibrium is reached. This workflow is
repeated until a stopping criterion is met. Classical stopping
criteria are as follows: the system reaches a state good enough
for the specific application, the method reaches a prescribed
number of iterations, or the solution does not improve after a
prescribed number of consecutive iterations. Note that both
the cooling schedule criterion (line 24) and the stopping
criterion (line 26) can be defined in many different ways,

depending on the problemat hand. In this sense, these criteria
can be either variables or functions or even rules. In our
implementation it is assumed that they are Boolean functions
that return true or false depending on whether or not the
given conditions for each particular problem are met. The
specific conditions used for our problem are explained in
Section 5.

5. The Proposed Method

5.1. Overview of theMethod. Asdiscussed above, our problem
consists of reconstructing the underlying shape of a given
set of noisy data points by using a rational Bézier curve.
This implies solving a nonlinear least-squares minimiza-
tion problem while simultaneously minimizing the required
number of free parameters. Solving this problem requires
computing four different sets of unknowns: data parameters,
poles, weights (represented in this section by vectors p, w,
and b, resp.), and the curve degree, 𝑛. Our approach to
tackle this issue is a hybrid strategy combining classical
methods (least-squares minimization), modern stochastic
methods (simulated annealing), and information science
metrics (Bayesian Information Criterion (BIC)).

Before explaining how our method works, let us intro-
duce the following notation: from now on, we will use the
subindex (⋅)𝑤 when searching for the curve weights, (⋅)𝑝
when searching for the curve parameters, and (⋅)𝑤,𝑝 when
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Take next value of n within its range

n SA-LSQ BIC Best Θ
Best nΘ

Degree
determination

n SA LSQ
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(p,w)
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w SAR
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wR
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wR
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w0, p0

pB wR, pB wR, pR

wR, pR

Figure 1: Workflow of the proposed method described in three layers (from upper to lower layer): the general workflow; decomposition of
the SA-LSQ procedure; the two different SA schemas introduced in this paper: all-in-one schema (top) and sequential schema (bottom).

searching for both parameters and weights. Thus, SA𝑝 stands
for simulated annealing applied to parameter search, 𝑓𝑤,𝑝
means the objective function with domain of definition y =
(w, p) ∈W ×D ⊂ R𝑛+1 × [0, 1]𝑚, and so on. The superindex
(⋅)
𝐵 denotes the search for a nonrational Bézier curve and (⋅)𝑅

stands for a rational one. Hereafter, considerW = (0, 100]
𝑛+1

and D = [0, 1]
𝑚. Without loss of generality, we can also

assume that 𝑤0 = 𝑤𝑛 = 1, 𝑡1 = 0, and 𝑡𝑚 = 1.
Figure 1 shows the main steps of our method. Basically,

it consists of four major tasks: data parametrization, weight
computation, data fitting, and degree determination. Upper
part of this figure summarizes the method: we initially set
a range for the curve degree 𝑛; then, for each value of this
parameter 𝑛 within that range, we apply a combination of
simulated annealing and least-squares optimization (box SA-
LSQ) to perform the first three tasks and compute the data
parameters, weights, and poles of the best fitting rational
Bézier curve for this value of 𝑛. Then, the BIC value of
the resulting curve (corresponding to the last task, degree
determination) is obtained (box BIC). At its turn, the SA-LSQ
can be decomposed into two steps (middle layer of Figure 1):
SA performs data parameterization and weight computation
(see Section 5.2 for details), while LSQ is used to compute the
poles (see Section 5.3). This combination of SA and LSQ is
repeated iteratively until no further improvement is reached.
In this paper, we introduce two different SA schemas, shown
graphically in the lower layer of Figure 1: the sequential

schema and the all-in-one schema. They are explained in
detail in the next section.

5.2. Data Parameterization and Weight Computation. In
this step we perform two different (but intertwined) tasks:
data parameterization and weight computation. The former
consists of obtaining a discrete association between the set
of parameters {𝑡𝑖}

𝑚

𝑖=1
and the noisy data points {Q𝑖}𝑚𝑖=1 to be

fitted, while the latter computes the weights. Both tasks are
performed simultaneously by using the simulated annealing
approach described in the previous section.The input for the
SA method is given by the following:

(i) the curve degree, 𝑛,
(ii) initial random parameter vectors p0, w0, and b0,
(iii) the energy function, given by (5),
(iv) a neighborhood function (described in Section 5.2.1),
(v) a cooling schedule (described in Section 5.2.2),
(vi) a stopping criterion (described in Section 5.2.3).

In this work, two different simulate annealing schemas are
considered: the sequential schema and the all-in-one schema.
Basically, the former calculates the different sets of unknowns
of our optimization problem in a sequential way (i.e., only
some parameters are initially computed and subsequently
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used to compute the remaining parameters), while the latter
computes all unknowns at once. Let us analyze them in detail.

Using the notation introduced above, the sequential
schema (SEQ) begins by finding the best nonrational Bézier
fitting curve through SA𝐵

𝑝
, then it performs the following

sequence iteratively:

SA𝑅
𝑤
󳨀→ SA𝑅

𝑝
. (7)

until there is no further improvement in the final solution
of either SA procedure in comparison with the previous
one. Each routine takes the preceding solution as an input
parameter. The schema can be summarized as follows (see
also the lower layer of Figure 1, where the numbers in red
indicate the different steps of the algorithm):

(1) Apply the SA𝐵
𝑝
with a random initial guess p0 ∈ D

to find a non-rational Bézier curve that fits the data
better. Let p𝐵 be the resulting solution.

(2) Search for a rational Bézier curve through SA𝑅
𝑤
with

a random initial guess w0 ∈ W and fixed parameters
(p𝐵). Let (w𝑅, p𝐵) be the resulting solution.

(3) Apply the SA𝑅
𝑝
optimization with p𝐵 as the initial

guess and fixed weights w𝑅. Let (w𝑅, p𝑅) be the
resulting solution.

(4) Repeat (2)-(3) iteratively until there is no improve-
ment in the resulting solution.

In general, the energy function for the simulated annealing
procedures SA𝑅 in steps (2) and (3) above is that in (5).
However, a different energy function is required for the
nonrational case in step (1), SA𝐵, given by

Θ =

𝑚

∑

𝑖=1

𝜇𝑖(Q𝑖 −
𝑛

∑

𝑗=0

b𝑗𝐵
𝑛

𝑗
(𝑡𝑖))

2

(8)

that corresponds to the case 𝑤𝑗 = 1 for all 𝑗.
The all-in-one schema (AIO) corresponds to the mini-

mization of functional

𝑓𝑤,𝑝 :W ×D 󳨀→ R, (9)

where for each state vector (w, p) we compute 𝑓(w, p) as the
least-squares solution of (5) through SA𝑅

(𝑝,𝑤)
.

5.2.1. Neighborhood Function. The neighborhood function is
one of the key components of the SA algorithm. Further-
more, its role becomes even more important for multimodal
optimization problems, where the objective function is of
the many local peaks surrounded by deep valleys type. This
is exactly what happens in this paper. There are several
alternatives for the neighborhood function. A very popular
choice is the fast neighborhood function, which builds the new
solution by modifying the previous one in steps proportional
to the system temperature:

xnew = xold + 𝑇 ⋅ k, (10)

where k ∈ D is a random vector holding ‖k‖2 = 1. This
is one of the tested functions in [5] but it required another
support function (a local search method) in order to exploit
the neighborhood of a solution. In this paper we remove
the supporting local method by maintaining two sets of
controlling parameters: firstly, the global real temperature
following the classical SA temperature. Then, the algorithm
builds a second set of virtual temperatures (one for each
spatial dimension) that are restarted at the beginning of each
inner cycle. The resulting equation becomes

xnew = xold + T ⊙ k, (11)

where ⊙ represents the Hadamard product of two vectors and
Thas all its components set to the current system temperature
at the beginning of each outer cycle. Thus, whenever xnew is
accepted through the acceptance criterion, we compute the
absolute difference between the old and new solutions. For
each component that behaves better than the previous one in
the comparison, we update the corresponding component on
T according to the cooling schedule.The proposedmethod is
based on the Adaptive Simulated Annealing (ASA) algorithm
but there is one key difference: our method does not require
computing the gradient of the function. A further analysis
about the performance of this neighborhood function for the
third example of our benchmark is described in Section 6.3.
The reader is kindly referred to that section for further details
on this issue.

5.2.2. Cooling Schedule. By the cooling schedule we refer to
a triplet (𝑇0, 𝑇,T) accounting for the selection of the initial
temperature, the temperature parameter, and the cooling
function (T), respectively, along with the thermal equilibrium
criterion. The cooling schedule governs the pace at which
the temperature is updated during the execution of the
SA. Therefore, its choice is of primary importance for the
good performance of the algorithm. Because of this reason,
numerous cooling schedules have been proposed over the
years, such as the linear schedule, the logarithmic schedule,
and many others. A very common one is the power schedule,
given by 𝑇new = 𝛼

𝑘
𝑇0, where typically 0.9 < 𝛼 < 0.99

and 𝑘 > 0 is a scalar parameter. Another popular schedule
is the Boltzmann schedule, given by 𝑇new = 𝑇0/ log(𝑘).
Finally, we also consider the fast schedule, governed by the
law 𝑇new = 𝑇0/𝑘, which provided a good balance among
simplicity, speed, and good performance for other data fitting
problems [5]. In this paper we considered initially the power,
Boltzmann, and fast schedules. However, our computational
experiments showed that the fast schedule provides more
visually appealing results and runs faster than the other two
alternatives. Since these are two particularly valuable features
in the context of data fitting, we eventually selected the fast
schedule as the best choice for this work.

The cooling schedule needs to accomplish two additional
goals. On one hand, the starting temperature needs to be
sufficiently high in order to let the algorithm freely explore the
search spaceD but not somuch that the system behaves like a
random search for a large number of iterations. On the other
hand, the cooling function must perform a slow reduction
of the system temperature to prevent premature convergence.
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These goals are achieved by letting the acceptance function to
initially accept worse states frequently, which in turn requires
high temperatures. There is not known general way to select
a good starting temperature for all problems. A common
practice consists of selecting a very high temperature to
rapidly cool the system after a certain proportion of worse
solutions are accepted (this is called the acceptance ratio);
then, begin to slowly cool the system, thus beginning with the
proper SA algorithm. Another common technique consists
of spending most of the computation time in running fast
sample runs of the entire algorithm for different starting
temperatures in order to determine the ideal temperature:
one that promotes better solutions but still manages to
explore the space avoiding local minima. This last practice
was proposed in [36] as a way to avoid wasting computation
time when running the SA. In [35] there is a brief, although
insightful, overview of the different approaches on how to
select the initial temperature.

In order to select the initial temperature we have dis-
carded the time-consuming restarting strategy used in our
previous work in favor of the method presented in [37]. It
consists of setting an acceptance ratio, 𝜒0, and determining,
through an iterative algorithm, a compatible starting temper-
ature. Among the several possible ways to define 𝜒0, in this
work we choose the classical one of the quotient between the
number of bad transitions accepted and the attempted ones,
already proposed in [38]. According to this definition, we set
𝜒0 = 0.8, a typical value in previous literature in the field.

5.2.3. Stopping Criteria. Similar to the choice of the initial
temperature, there is not a general set of stopping conditions
suitable for all problems. There are, however, two common
practices: the first one is to set a maximum number of
iterations; the second one is to stop the execution of the
algorithm when the system is frozen, that is, when no new
solutions (either better or worse states) are accepted for a
predefined number of iterations. Since the former can waste
a lot of computation time with no further improvements on
the solution, in practice the stopping criterion is often a com-
bination of the two. In our implementation, the algorithm
stops whenever one of the following conditions is met: either
𝑛𝑓eval > 1000 ⋅ 𝜉 or ♯[𝜕(Δ global)] = 10 ⋅ 𝜉, where 𝑛𝑓eval denotes
the total number of evaluations of the energy function, 𝜉
denotes the number of free parameters of the system, and
𝜕(⋅) denotes the lack of changes of the mean variation of the
energy function.

5.2.4. Further Improvements. In addition to the previous
SA components, three other important modifications of the
original SA algorithm have been included in our approach:

(i) We improve the memory capacities of the method
through elitism: the best state from the current iter-
ation is encoded as a vector (x𝑀best, 𝑓

𝑀

best) and stored
in a temporal buffer. Obviously, this “best so far”
solution is updated whenever a better solution is
achieved during SA execution. We remark however
that this (x𝑀best, 𝑓

𝑀

best) vector is not used to drive the SA
execution; instead, it is only used as a memory effect,

with the role to (possibly) improve the convergence
rate with respect to the standard (nonelitist) version
of SA.

(ii) We add a new operator, related to the domain of
the problem, to work in combination with the neigh-
borhood function. This extra functionality checks
whether a new generated solution goes outside the
search domain of the problem and sends it back
into the search space whenever it goes away. To this
purpose, we apply the classical cast back operator,
a widely accepted routine in numerical methods.
Suppose that the SA returns a new solution xnew
outside the problem domainD, obtained from a pre-
vious solution xold withinD. The cast back procedure
replaces xnew by a new value xcb given by the convex
combination: xcb = 𝛼Proj(xnew) + (1 − 𝛼)xold, where
Proj(⋅) is the operator that projects any point outside
the domain onto its closest point on the boundary of
D and 𝛼 is a uniform random number in the interval
(0, 1). This procedure returns a new point xcb that is
well within the search domain while simultaneously
ensuring that the probability of the boundary is not
increased by this operator.

(iii) Finally we improve the cooling schedule with extra
conditions for the thermal equilibrium. In our imple-
mentation, the inner cycle stops if the value of 𝜒0 is
reached after 𝜉 iterations.

These new features improve the performance of our approach
significantly in terms of computational time and quality of
results.

5.3. Data Fitting. With the parameterization and weights cal-
culated in previous steps, we compute the curve coefficients
{b𝑗}
𝑛

𝑗=0
. Using (3), (5) can be rewritten as

[
[
[
[

[

R𝑇
0
R0 ⋅ ⋅ ⋅ R𝑇

𝑛
R0

.

.

.
.
.
.

.

.

.

R𝑇
0
R𝑛 ⋅ ⋅ ⋅ R𝑇𝑛R𝑛

]
]
]
]

]

[
[
[
[

[

b0
.
.
.

b𝑛

]
]
]
]

]

=

[
[
[
[

[

QR0
.
.
.

QR𝑛

]
]
]
]

]

, (12)

where R𝑗 = (𝑅
𝑛

𝑗
(𝑡1), . . . , 𝑅

𝑛

𝑗
(𝑡𝑚))
𝑇 represents the column

vector of rational basis functions given by (4) at the best
parameter values, Q = (Q1, . . . ,Q𝑚) is a row vector, and
(⋅)
𝑇 represents the transpose of a vector or matrix. System

(12) is overdetermined, meaning that no analytical solution
can be obtained. Instead, we solved it numerically through
least-squares minimization. If R+ denote the generalized
inverse (also known asMoore-Penrose pseudoinverse) ofR =
(R𝑖)
𝑇, P = R+Q is the least-squares solution of this data

fitting problem. From a computational point of view, it can
be obtained by either LU decomposition or singular value
decomposition (SVD). In this work, we have used the SVD
solver from the popular numerical programMatlab.

5.4. Degree Determination. The three previous steps assumed
a given degree for the rational fitting curve. However, the
optimal degree is problem-dependent, and therefore we need
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a method to compute it. This is not an easy task. It is well
known that increasing the number of poles increases the
accuracy of the model, because we have more degrees of free-
dom to adjust the data. However, this process can eventually
lead to overfitting. In order to prevent this undesirable effect,
some kind of trade-off between these two competing factors
(the accuracy of the fitting and the complexity of the model)
is required. To address this issue, in this paper we compute
the Bayesian Information Criterion (BIC) for the resulting
model. The BIC is an information criterion providing a good
compromise between data fidelity and model complexity
[39]. This is done by introducing a penalty term for complex
models into the target function:

BIC = 𝜁 log (Θ) + 𝜉 log (𝜁) , (13)

where Θ, 𝜁, and 𝜉 refer to the energy function, number
of sampled points, and the number of free parameters,
respectively. Note that, fixing 𝜁 and 𝜉, the BIC behaves like the
error function and if we fix a value of Θ and 𝜁, the criterion
penalizes those models with a higher number of parameters.
Therefore, BIC provides us with a powerful procedure to
compute the optimal value for the degree of the fitting curve.
It always corresponds to the parameter value 𝑛 with the
smallest value for the BIC.

6. Experimental Results

In this section, we analyze the performance of our method by
applying it to a benchmark of three illustrative examples of 2D
and 3D noisy data points.These examples have been carefully
chosen so that they exhibit challenging features such as self-
intersections or strong changes of slopes and curvatures.
The first two examples correspond to real-world instances
so that we can replicate the usual conditions of real-world
applications, including the presence of noise of low-medium
intensity. The last one is an academic example designed to
analyze the effect of different levels of noise on our method.
For each example, we report the results of three different
schemas used for comparative purposes: nonrational, ratio-
nal all-in-one, and rational sequential. Finally we analyze
the robustness of the method in the presence of noise by
comparing each schema against the same data perturbedwith
different levels of noise for the last example.

Regarding the implementation issues, all the experiments
were run on a AMD-FX-4100 Quad-Core Processor at
3600Mhz with 8GB DDR3 RAM running Linux 3.14.x LTS
kernel andMATLAB 2012a. For each dataset and schema, the
experiment has been executed 26 times. Then, 20 executions
are finally selected (after removing the three bast and three
worst executions) to provide statistical evidence for the
results presented and assert the experiment reproducibility.

Table 1 reports our results for each dataset and experi-
ment.The following items are arranged (in columns): dataset
examined, the type of curve reconstructed (NR: nonrational;
R: rational), the schema executed for rational curves (AIO:
all-in-one; SEQ: sequential), the total number of calls to
the energy function in the best case (represented by 𝑛𝑓eval),
the best and average BIC, the number of poles for the best
BIC (represented by 𝑛pol), and the relative mean error for

each component (𝑥mean, 𝑦mean, and 𝑧mean). When used, the
acronym N.A. stands for not applicable. The logo, shoe, and
torus names refer to the scanned logo, shoe profile, and curve
on a torus datasets described below, respectively.The number
after torus refers to the signal-to-noise ratio (SNR) applied.
For the nonrational examples, a local search was performed
in order to refine the SA solution. Our results show the good
performance of the method even in highly noisy situations,
which are the common case in real-world applications.

6.1. Example 1: A Scanned Logo. The first example corre-
sponds to the shape of a digitally scanned logo. The dataset
consists of a set of 190 noisy 2D data points, represented
by black × symbols in Figure 2. The figure shows our
experimental results for the three cases analyzed: nonrational
case (top), the all-in-one rational case (middle), and the
sequential rational case (bottom).The figures on the left show
the reconstructed points, represented as red empty circles.
On the right, the best fitting curve is displayed as a red solid
line. This example has been chosen because it represents
a common real-world scenario: a scanned figure with the
typical noise introduced during the scanning process. In
addition to the high-intensity noise (clearly visible in all
instances of Figure 2), this shape is also challenging because
it includes difficult geometric features, such as several self-
intersections and strong changes of slope and curvature.

As the reader can see from the figures, the method is able
to recover the general shape of the data points with good
accuracy.This is a very remarkable result because the original
data points are highly noisy. Best results correspond to the
sequential rational schema, while the nonrational and the
AIO rational schemas perform almost similarly in this case.
This fact is clearly visible in the topmost loop of the figures
in right column, best fitted through the sequential schema
(bottom figure). These visual results are in good agreement
with the numerical results reported in Table 1. The best and
average BIC for the sequential schema are approximately
−770 and −701, respectively, while they are both −691 for the
nonrational schema and −661 and −658 for the AIO rational
schema. Note also that the three methods obtain the same
optimal number of poles 𝑛pol = 13. In other words, the good
accuracy of our method is not at the expense of a very large
number of free variables.

6.2. Example 2: Shoe Profile. The second example corre-
sponds to a shoe profile obtained from a pressure-mechanical
method without filtering, leading to a set of 400 three-
dimensional noisy data points. Figure 3 shows our experi-
mental results. The interpretation of this figure is similar to
that of previous example and, hence, it is omitted here to
avoid redundant information. Once again, the best fitting is
obtainedwith the sequential rational schema, although in this
case, the visual and numerical results are closer for the two
rational schemas and significantly worse for the nonrational
one. Note also that we obtained a similar parameter value,
𝑛pol = 24, for the number of poles in all cases.

6.3. Example 3: Curve on a Torus. Last instance in our
benchmark corresponds to an academic example. It has been
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Table 1: Experimental results on the three examples in our benchmark for the simulated annealing schemas discussed in this paper.

Model Statistical results
Dataset Type Schema 𝑛𝑓eval BIC (best) BIC (avg) 𝑛pol 𝑥mean 𝑦mean 𝑧mean

logo NR 10010 −691.913 −691.830 13 0.0005 0.0001 N.A.
logo R AIO 4208 −661.908 −658.804 13 0.0002 0.0003 N.A.
logo R SEQ 13031 −770.212 −701.338 13 0.0001 0.0001 N.A.
shoe NR 16624 2915.200 3020.101 24 0.0191 0.0152 0.0076
shoe R AIO 6648 2098.859 2470.634 24 0.0012 0.0061 0.0053
shoe R SEQ 20202 1996.226 2289.712 24 0.0024 0.0061 0.0052
torus NR 18546 −2204.821 −2301.567 20 1.06𝑒 − 05 1.23𝑒 − 05 2.12𝑒 − 05

torus R AIO 1529 −6067.465 −6001.324 21 6.42𝑒 − 06 5.39𝑒 − 06 4.32𝑒 − 06

torus R SEQ 5286 −7798.643 −7796.846 20 1.48𝑒 − 06 1.48𝑒 − 06 1.35𝑒 − 06

torus10 NR 13276 4307.409 4390.492 17 0.0311 0.0342 0.0458
torus10 R AIO 3768 4354.618 4414.523 19 0.0300 0.0304 0.0401
torus10 R SEQ 23119 4341.604 4381.367 17 0.0312 0.0323 0.0402
torus20 NR 12027 3887.839 4991.823 20 0.0222 0.0201 0.0364
torus20 R AIO 3778 3474.463 3479.345 20 0.0130 0.0137 0.0181
torus20 R SEQ 45775 3446.804 3465.673 20 0.0128 0.0139 0.0182
torus30 NR 16174 3033.538 3561.901 20 0.0109 0.0094 0.0172
torus30 R AIO 5546 3060.624 3066.298 20 0.0097 0.0089 0.0151
torus30 R SEQ 48511 3021.939 3035.634 20 0.0098 0.0089 0.0148
torus40 NR 11015 6662.487 6700.738 40 0.0183 0.0144 0.0346
torus40 R AIO 5111 2740.208 2788.422 20 0.0074 0.0073 0.0094
torus40 R SEQ 53640 2708.680 2729.980 20 0.0074 0.0072 0.0096
torus50 NR 14101 2386.160 2501.900 25 0.0057 0.0059 0.0076
torus50 R AIO 4205 2357.285 2408.811 21 0.0054 0.0053 0.0076
torus50 R SEQ 45206 2344.050 2378.280 20 0.0055 0.0052 0.0076
torus60 NR 12052 3574.142 4713.190 20 0.0179 0.0121 0.0340
torus60 R AIO 4012 2116.800 2145.321 20 0.0041 0.0045 0.0620
torus60 R SEQ 45191 2051.304 2080.235 20 0.0031 0.0033 0.0038
torus70 NR 8860 3574.142 3866.889 21 0.0058 0.0057 0.0116
torus70 R AIO 4205 2210.012 2284.590 21 0.0039 0.0040 0.0054
torus70 R SEQ 45797 1963.317 1995.759 20 0.0038 0.0039 0.0056
torus80 NR 14100 3574.142 3934.296 25 0.0038 0.0044 0.0052
torus80 R AIO 4002 1814.950 2008.400 21 0.0032 0.0036 0.0044
torus80 R SEQ 13366 1803.356 1931.721 20 0.0032 0.0036 0.0043
torus90 NR 14100 1828.028 1981.534 25 0.0031 0.0041 0.0048
torus90 R AIO 4204 1671.145 1799.627 21 0.0030 0.0030 0.0042
torus90 R SEQ 13350 1654.944 1786.873 20 0.0030 0.0031 0.0044

carefully designed to analyze the performance of our method
against noise of different intensities. To this aim, we consider
the parametric:

𝑥 (𝑡) = [7 + 2 cos (5𝑡)] cos (2𝑡)

𝑦 (𝑡) = [7 + 2 cos (5𝑡)] sin (2𝑡)

𝑧 (𝑡) = 3 sin (5𝑡)

𝑡 ∈ [0, 2𝜋] ,

(14)

which corresponds to a curve on a torus. We consider a set
of 202 three-dimensional data points with uniform sampling
in the interval domain [0, 2𝜋]. This dataset, labelled as torus

in Table 1, is then perturbed with additive white noise of
different intensities, modulated by a signal-to-noise ratio
(SNR) ranging from 10 (very high intensity) to 90 (low
intensity), with step-size 10. The corresponding datasets are
labelled as torusN, where 𝑁 indicates the SNR intensity.
The simulation results with our method for the resulting
10 datasets are reported in the last 10 horizontal blocks of
Table 1. Some important observations can be obtained from
the numerical data in the table. The most important one is
that the sequential rational schema outperforms the others in
terms of BIC value, meaning that it provides the best trade-
off between accuracy and complexity for all instances in this
example. According to our results, the optimal number of
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Experimental results for Example 1: left: reconstructed points (red circles); right: best fitting curve (red solid line); top: nonrational
case; middle: AIO rational case; bottom: sequential rational case. In all cases, 𝑛pol = 13.

poles for this example is 𝑛pol = 20 in all cases, except for
the instance torus10, which corresponds to a case of very
high noise intensity. In other words, this schema is able to
capture the optimal number of poles in cases of noise of low
and medium intensity. Furthermore, the method fits the data
points very accurately. For instance, the relative fitting error
for the noiseless case is as good as 10−6 for each coordinate.
These striking results are visually confirmed in Figure 4.
Note, for instance, the very good fitting for the sequential
rational schema (bottom row).

On the other hand, as expected, the BIC increases as the
noise level increases, meaning that the method is affected by
the noise intensity, but not drastically. In fact, the method is

very resilient against noise, as it still yields very reasonable
relative fitting errors of order 10−2 for high-intensity noise
(for instance, of SNR = 10) and 10−3 for SNR = 30. For
example, the visual quality of the fitting is clearly visible
for the case SNR = 50, as shown in Figure 5. We remark,
however, that in this case, the nonrational and AIO rational
schemas require extra parameters to obtain their best fitting.
Note, for instance, that 𝑛pol = 25 for the nonrational schema
in this example. This effect can be explained by the fact that
the nonrational curve has less degrees of freedom because
no weights are available. As a consequence, more poles are
usually required to compensate this limitation. But even in
this case, the value of this parameter is lower or equal to 25.
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Figure 3: Experimental results for Example 2: left: reconstructed points (red circles); right: best fitting curve (red solid line); top: nonrational
case; middle: AIO rational case; bottom: sequential rational case. In all cases, 𝑛pol = 24.

This result is a clear indication of the effectiveness of our
proposal to use BIC to keep the dimension of the problem
as low as possible and to prevent overfitting.

This third example has also been used to illustrate the
good performance of our neighborhood function, described
in Section 5.2.1. Figure 7 shows two graphical examples of
the evolution of the BIC for the rational all-in-one schema
versus the number of evaluations of the fitness function, given
by the parameter 𝑛𝑓eval. The pictures display the examples
torus and torus50 from Table 1, corresponding, respectively,
to the noiseless case (top) and the noisy case with SNR = 50
(bottom). Both pictures show the evolution of the maximum,
mean, and minimum BIC in a color-coded representation

(in blue, green, and red, resp.). These BIC values have been
obtained with our method from 20 executions out of 26
executions after removing the three best and three worst
results for each case. As the reader can see, our neighborhood
function allows the method to escape from local minima,
a situation that happens particularly at earlier stages of
the evolution, associated with an intensive exploration of
the search space. Two temporal windows have also been
included in the pictures to enlarge these initial stages by
zooming for better visualization. After this initial period, the
BIC decreases slower and the fitting error reaches a plateau
where the exploitation phase becomes dominant. Finally,
convergence to the optimal values (marked by the vertical
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Figure 4: Experimental results for Example 3 (without noise): left: reconstructed points (red circles); right: best fitting curve (red solid line);
top: nonrational case; middle: AIO rational case; bottom: sequential rational case.

magenta line) is achieved and the fitting error does no longer
improve. These pictures clearly show that the method is
well suited for multimodal problems, being able to escape
from local minima, thus preventing premature convergence
to happen.

7. Conclusions and Future Work

In this paper we introduce two new simulated annealing
schemas for continuous optimization. They are applied to
obtain the rational Bézier curve that fits better a given set
of noisy data points in the least-squares sense. This is a very
difficult problem that requires computing four different sets
of unknowns: data parameters, poles, weights, and the curve
degree. Besides, these free variables are strongly related to
each other in a highly nonlinear way. This leads to a diffi-
cult continuous nonlinear optimization problem that cannot

be decomposed into several independent subproblems. To
address this challenging issue, we propose an optimization
method combining classical methods (least-squares mini-
mization), modern stochastic methods (simulated anneal-
ing), and information science metrics (Bayesian Informa-
tion Criterion (BIC)). The simulated annealing algorithm is
applied to perform data parameterization and to determine
the weights of the poles of the fitting curve. This is done by
using two different schemas: the all-in-one schema, which
computes both sets of unknowns together simultaneously,
and the sequential schema, which computes each set of
unknowns in sequence, using the previous set of computed
variables as the new input. The least-squares minimization
is used to calculate the poles of the fitting curve. Finally,
we apply the BIC to determine the optimal degree of the
best rational Bézier fitting curve. This methodology has been
applied to a benchmark of three illustrative examples of 2D
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Figure 5: Experimental results for Example 3 (with SNR = 50): left: reconstructed points (red circles); right: best fitting curve (red solid line);
top: nonrational case; middle: AIO rational case; bottom: sequential rational case.

and 3D noisy data points.These examples have been carefully
chosen so that they exhibit challenging features such as self-
intersections or strong changes of slopes and curvatures.
The first two examples correspond to real-world instances
that replicate the usual conditions of real-world applications,
including the presence of noise of low-medium intensity.The
last one is an academic example designed to analyze the effect
of different levels of noise on our method.

Our computational experiments on the proposed bench-
mark show that our method is very suitable for the given
data fitting problem. From the two schemas proposed, the
sequential one performed particularly well in all instances,
although the AIO schema also provides very good fitting
results for our examples. These good numerical results are
not obtained at the expense of a large number of variables.
On the contrary, the application of the BIC allows to obtain
models with a remarkable low number of free variables, even

for difficult shapes with complicated features and noise. We
also compared our results with our previous method with
nonrational curves in [5]. The new rational method clearly
outperforms our previous approach for all instances of our
benchmark. Our experiments with different levels of noise on
the last example also show that the method is robust against
noise of low to medium intensity.

The main limitations of our approach concern its perfor-
mance in situations of high-intensity noise. Figure 6 shows
our results for the third example with noise of SNR = 10.
In general, our method is able to capture the tendency of
the data even under these strongly adverse conditions, but
some problems may arise in the neighborhood of the initial
and last poles of closed curves. In particular, the continuity
of such curves at that point cannot be assured. This situation
is not critical at all; it can readily be avoided by introducing
additional constraints in our problem. However, as expected,
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Figure 6: Experimental results for Example 3 (with SNR = 10): left: reconstructed points (red circles); right: best fitting curve (red solid line);
top: nonrational case; middle: AIO rational case; bottom: sequential rational case.

the performance of the method is affected by the noise
intensity, meaning that some kind of preprocessing (such as
filtering)might be advisable in highly noisy environments for
real-world applications.

Future work can be divided into three main directions.
Firstly, we want to extend the general methodology to other
families of curves well suited for data fitting. Also, the exten-
sion of this method to both nonrational and rational surfaces
is part of our futurework.On the other hand, wewish to apply
this approach to other related engineering areas, such as robot
path planning. Finally, we want to apply the methodology to
differentmultiobjective engineering problems and improve its
performance by taking advantage of the massive parallelism
capabilities of general-purpose computing on graphics pro-
cessing units (GPGPU).
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