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A B S T R A C T

Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cel-
lulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an
existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable
chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose
pulp in sulphite pulping processes.

The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been opti-
mised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high
viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-
782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-
molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long
lifetime, wide pH operating range and low fouling issues.

1. Introduction

There is a growing demand for lignocellulosic materials used as
feedstocks for chemical conversion into bio-based polymers, chemicals,
biofuels or energy. Their high availability and low cost and the en-
ergetic demand problem suffered in Europe have placed a heavy em-
phasis on the need for rapid and reliable analysis methods for the
complete characterisation of the aforementioned materials [1–3]. Many
authors are currently working on improvements of all of the steps to
transform lignocellulosic biomass into useful products, including frac-
tionation [4–6], detoxification [7,8], hydrolysis and saccharification
[6,9–11] and fermentation [12,13]. In addition, other factories using
lignocellulosic biomass are being transformed into biorefineries be-
cause they have just some of these processes introduced in the plants. In
this sense, pulp and paper mills are perfect candidates to convert lig-
nocellulosic waste materials into several bio-products within the bior-
efinery concept.

Environmental friendly methods have been recently implemented in
pulp mills to reduce their environmental impact and to compete in the
current market, ensuring sustainable principles. Among the material
valorisation alternatives are (i) sugar fermentation to high value-added
products such as ethanol [14,15], single-cell protein [16–18], phar-
maceuticals, paper pulp, compost or energy; (ii) xylooligomers having

food and pharmaceutical applications; and (iii) chemical products such
as lignin producing vanillin, and furfural, a chemical intermediate for
the manufacture of polymers, furfuryl alcohol or tetrahydrofuran. All
the aforementioned alternatives require an accurate quantitative
method for monosaccharides and sugar-derived compounds analysis.

1.1. Overview of the procedures suitable for the carbohydrate analysis of
lignocellulosic feedstocks

Because a consensus about the complete analysis of lignocellulosic
carbohydrates does not exist, an overview of the main available char-
acterisation techniques for these types of feedstocks is provided. The
main methods reported are displayed in Table 1. An extensive variety of
techniques was found.

Gas chromatography (GC) of alditol acetates constitutes the stan-
dardised method for carbohydrate biomass feedstocks [19]. The first
application of GC to carbohydrates was reported in 1958, and it de-
scribed the separation of fully methylated monosaccharides. GC of al-
ditol acetates is widely used for determining the composition of
monosaccharide mixtures, being better resolved than the other com-
monly used derivatives. In contrast, the current methods for preparing
alditol acetates involve relatively long acetylation times at elevated
temperatures [20] using hazardous reagents. The Gas Chromatography
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Mass Spectrometry (GC–MS) of carbohydrate derivatives has also been
extensively used, but there are some limitations generated by the low
volatility of these derivatives [21]. Paper chromatography (PC) has also
been traditionally applied for carbohydrate quantification in wood
samples [22,23]. Nevertheless, PC and GC have the disadvantage of
requiring extensive sample preparation, resulting in lengthy and te-
dious procedures. Currently, the analysis of monosaccharides and more
complex carbohydrates is often performed by column liquid chroma-
tography (LC) techniques. Normal-phase liquid chromatography
(NPLC), ligand-exchange chromatography (LEC), supercritical fluid
chromatography (SFC) and capillary electrophoresis (CE) have been
reported by Karlsson et al. [24], who developed a method using

hydrophilic interaction liquid chromatography with evaporative light
scattering detection (HILIC-ELSD) to separate monosaccharides in gly-
coprotein.

There are also chromatography techniques such as high-perfor-
mance anion-exchange chromatography with pulsed amperometric
detection (HPAEC-PAD), high-performance size exclusion chromato-
graphy (HPSEC), high-performance liquid chromatographic with at-
mospheric pressure chemical ionisation mass spectrometry (HPLC-
APCI-MS) and reverse phase-high performance liquid chromatography
colorimetric electrode array detection (RP-HPLC-CEAD).

There are semi-quantitative, qualitative and quantitative non-
chromatographic techniques, also summarised in Table 1, such as

Nomenclature

HPLC High performance liquid chromatography
GC Gas chromatography
GC–MS Gas chromatography–mass spectrometry
PC Paper chromatography
LC Liquid chromatography
NLPC Normal phase liquid chromatography
LEC Liquid exchange chromatography
SFC Super fluid chromatography
CE Capillary electrophoresis
HILIC-ELSD Hydrophilic interaction liquid chromatography with

evaporative light scattering detection
HPAEC-PAD High performance anion exchange chromatography

with pulsed amperometric detection
HPSEC High performance size exclusion chromatograph
HPLC-APCI-MS High performance liquid chromatographic with at-

mospheric pressure chemical ionisation mass spec-
trometry

RP-HPLC-CEAD Reverse phase-high performance liquid chromato-
graphy colorimetric electrode array detection

FT-Raman Fourier transform raman spectroscopy
FTIR Fourier transform infrarred spectroscopy
NMR Nuclear magnetic resonance
HPLC-RIDHigh performance liquid chromatography with refractive

index detector
SSL Spent sulphite liquor
LS Lignosulphonate
DNS 3,5-dinitrosalicylic acid
HMF 5-hydroxymethylfurfural
WSSL Weak spent sulphite liquor
TSSL Thick spent sulphite liquor
LCBR Lignocellulosic biorrefineries
CP Crude pulps
BP Bleached pulps
HWDK Hardwood dissolving krafp pulp
TMP Thermomechanic pulp
HWPK Hardwood paper kraft pulp
SWA Softwood aspen
HWE Hardwood eucalypt
HWP Hardwood parkia

Table 1
Review of analytical techniques to carbohydrates and degradation products determination in lignocellulosic feedstocks.

Sample Technique Detector References

Chromatographic techniques for sugar and derived products analysis
wood and pulp samples GC MS [19,39–41]

Gas Chromatography Mass Spectrometry
lignocellulosic feedstocks HPAEC PAD [26,42–45]

High Performance Anion Exchange Chromatography Pulsed Amperometric Detection
eucalypts, corn cob, brewery's spent grain HPSEC MS [26,44]

High Performance Size Exclusion Chromatography Mass spectrometry
standard mixtures HILIC ELSD [25]

Hydrophilic Interaction Liquid Chromatograph Evaporative Light Scattering
Detection

wood kraft black liquors HPLC-APCI MS [46]
High Performance Liquid Chromatography with Atmospheric
Pressure Chemical Ionisation

Mass Spectrometry

food plants RP-HPLC CEAD [47]
Reverse Phase High Performance Liquid Chromatography Colorimetric Electrode Array

Detection
lignocellulosic feedstocks HPLC RID [1,22,25–38]

High Performance Liquid Chromatography Refractive Index Detector
softwood, hardwood species & kraft liquors HPLC UV [48–50]

High Performance Liquid Chromatography Ultraviolet detector
eucalypt extracts, bagasse hydrolysates & orange juice

samples
HPLC DAD [33,43,51]
High Performance Liquid Chromatography Diode Array Detector

Non-Chromatographic techniques for sugar and derived products analysis
eucalyptus nitens,trabutii, camaldulensis, globulus FT-Raman [52]

Raman Spectroscopy
softwood and hardwood hydrolysates FTIR [48,53,54]

Fourier Transform Infrared Spectroscopy
wood and spent liquors NMR [17]

Nuclear Magnetic Resonance
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Fourier transform Raman spectroscopy (FT-Raman), Fourier transform
infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) to
identify functional groups and empirical and structural formulas.

Among the analytical techniques highlighted in Table 1, HPLC
coupled with refractive index detector (RID) is the most promising,
rapid and reliable analytical technique for the sugar quantification of
lignocellulosic hydrolysates. In addition, an overview of the chroma-
tographic columns suitable for sugars, acids and furfurals was also
carried out. Among the chromatographic columns used within the
HPLC analysis technique, Bio-Rad columns were previously used for the
neutral sugar, uronic, furan derivative and organic acid quantification
of softwoods and hardwoods [1,12,20–22], hydrolysates [22–25] and
other types of lignocellulosic feedstocks [21,25–30]. Lead Pb+2 col-
umns are better candidates in the case of monosaccharide character-
isation, as are hydrogen H+ columns in the case of acids and furfurals
[31]. Nevertheless, such columns do not resist too much under acidic
conditions. In this paper, other columns based on lead Pb+2 and hy-
drogen H+ were tested and proposed as the best options for the
quantitative analysis of lignocellulosic carbohydrates.

1.2. Framework and objectives

This research contemplates the development of suitable and effi-
cient analysis procedures to quantify monosaccharides and other deri-
vative compounds of woody biomass generated in a pulp mill. The main
components of the lignocellulosic residue provided from a sulphite pulp
mill were analysed. Once the pulp is formed, subsequent wood diges-
tion under acidic conditions produces lignin and hemicellulose, which
pass through the residual aqueous phase. The spent sulphite liquor

(SSL) is a renewable source containing a large proportion of lignin in
the form of lignosulphonates, depolymerised hemicelluloses, acids,
tannins and furfurals [4]. Nevertheless, the characterisation of the SSL
can introduce problems due to the acidic and corrosive nature of the
liquor, caused by the residual SO2 content that reduces the column
lifetime. Additionally, the high lignosulphonate (LS) concentrations
presented in the SSL cause fouling problems. The columns must be
subjected continuously to cleaning and regenerating cycles because of
the high viscosity and sticky properties of the LS. Another issue in-
herent to carbohydrate characterisation is the separation of the sugar
peaks. Wood monosaccharides have a quite similar structure, and
therefore much effort is needed to achieve a correct separation of the
five major monosaccharides dissolved in the lignocellulosic hydro-
lysates. Additionally, SSL samples have a strong brown colour, which
makes them difficult to analyse colorimetrically, i.e., total or reducing
sugars by phenol-sulphuric and 3,5-dinitrosalicylic acid (DNS)
methods.

Based on the study of the state of the art and the problems sur-
rounding the sulphite process, this research attempts to find the best
chromatographic methods to efficiently analyse lignocellulosic feed-
stocks, products and waste streams. The available Bio-Rad columns and
other cross-linked columns such as SH 1011Shodex and CHO-782
Transgenomic were tested and corroborated. The alternatives checked
were suitable for sugar and derived-sugar inhibitor separation and
quantification. Because the use of the sugar-rich residues generated in
the pulp mill is very important within the biorefinery concept, the
present work establishes efficient and fast HPLC methods for wood
derivative quantification. Sugars such as hexoses (D-glucose, D-mannose
and D-galactose), pentoses (L-arabinose and D-xylose) and deoxyhexoses

Fig. 1. Methodological approach for total carbohydrate analysis of lignocellulosic samples.
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(L-fucose); furfurals, such as furfural and 5-hydroxymethylfurfural
(HMF); and aliphatic acids, such as acetic acid, levulinic acid and
formic acid, were measured by HPLC/RID.

This paper achieves the complete carbohydrate characterisation of
lignocellulosic feedstocks, cellulose pulps and residual hydrolysates.
Four chromatographic columns under several conditions were studied
to establish the most suitable methods to separate all wood-derived
sugars and related compounds in lignocellulosic biomass, which is the
most abundant natural feedstock on earth.

2. Materials and methods

2.1. Chromatography system

The HPLC system used was a Shimadzu Prominence LGE-UV (low-
pressure gradient system) equipped with a CMB-20A control system, a
DGU-20-A5 inline degasser channel, an LC20AD isocratic pump, and an
SIL-20AHT auto sampler with thermostatic cooling (samples held at
4 °C), a CTO-20ASVP column oven and an RID-10A refractive index
detector. Four cationic exchange columns were employed: (i) two lead
Pb+2 columns: Aminex HPX-87P, Bio-Rad Inc. (300 mm × 7.8 mm, 9-
μm particle size) in combination with a Micro-Guard column and a
Transgenomic CHO-782 column (300 mm× 7.8 mm, 7-μm particle
size) coupled with a Micro-Guard column and (ii) two hydrogen H+

columns: Bio-Rad Aminex HPX-87H (300 mm × 7.8 mm, 9-μm particle
size) with a Micro-Guard cartridge and a Shodex SH-1011
(300 mm× 8 mm, 6-μm particle size) with a Micro-Guard pre-column.
Monosaccharides were quantified using Lead Pb+2 columns and acids,
and furfurals were quantified using Hydrogen H+ columns.

2.2. Reagents and standards

HPLC-grade D(+)-glucose, D(+)-galactose, D(+)-xylose, L(+)-ara-
binose, D(+)-mannose, formic acid, acetic acid and furfural were from
Panreac (Barcelona, Spain). Levulinic acid was from Fluka Analytical-
Sigma Aldrich (Steinheim, Germany). 5-Hydroxymethyl-2-furaldehyde
(HMF) and L(−)-fucose were from Sigma Aldrich (Steinheim,
Germany). Sodium hydroxide pellets and sulphuric acid were from
Panreac (Barcelona, Spain).

2.3. Samples

Twenty industrial samples of spent liquor, weak spent sulphite li-
quors (WSSL) before the evaporation step and thick spent sulphite li-
quors (TSSL) after the multiple-effect evaporation step were analysed.
In addition, the solid feedstock (Eucalyptus globulus timber) and

dissolved pulps were also analysed.
All samples were previously diluted to be within the detection limits

and at the same time to adjust the pH. Then, the samples were cen-
trifuged at 5000 rpm and filtered through 0.22 μm filters. Fig. 1 de-
scribes the main stages carried out in this research for the complete
carbohydrate characterisation of the solid biomass (wood & pulps) and
liquid hydrolysates (WSSL & TSSL).

3. Results and discussion

3.1. HPLC-RID methods for sugars, weak acids and furans

A preliminary stage in the pulp and paper (P & P) mill transforma-
tion into lignocellulosic biorefineries (LCBR) is to perform an accurate
analysis of the lignocellulosic streams generated throughout the pro-
cess. Therefore, four methods have been developed by testing four
chromatographic columns. The optimal conditions have been obtained
based on the literature [31,35,36], experimental work carried out in the
laboratory, and the threshold limit values shown in Table 2.

The flow, pressure, temperature and injection volume were opti-
mised. The mobile phase was fixed in ultrapure water (HPX-87P and
CHO-872 columns) and 0.005 M H2SO4 (HPX-87H and SH1011 col-
umns). The mobile phase flow, injection volume and column oven
temperature were optimised. Such chromatographic parameters sig-
nificantly affect the residence times and peak resolution. The long-
itudinal diffusion of the solute in the mobile phase and low mass
transfer between the solute and the mobile phase might contribute to
band broadening. Nevertheless, a compromise solution was found for
each method, giving good peak separation at acceptable retention
times.

The calibration curves are shown in Fig. 2. An external standard
method was used in all cases. A lineal adjustment force through zero
with regression factors (R2) up to 0.999 was obtained. Standards were
prepared in the range of 0.1–3 g/L for furfural, HMF and methanol;
from 0.1 up to 10 g/L for acetic, levulinic and formic acids; and in the
range of 0.5–20 g/L for sugars.

Ligand exchange is the preferred method for the separation of the
tested columns using deionized water (sugars separation) or diluted
sulphuric acid (acids and furfurals separation) as the eluent. The ne-
gatively charged hydroxyl groups on the carbohydrate molecule in-
teract with the positively charged loaded metal groups.
Monosaccharides are eluted by the polar water eluent mobile phase,
which competes for sites on the metal ion. Other secondary mechanisms
are also involved in the separation of carbohydrates, including size
exclusion and normal phase partitioning.

Table 3 shows the main results. The HPX-87P and CHO-782Pb

Table 2
Operating guidelines and specifications of the tested columns.

HPX-87P CHO-782Pb HPX-87H SH-1011

Resin ionic form Lead Lead Hydrogen Hydrogen
Support Sulfonated divinyl benzene-

styrene copolymer
Poly styrene-divinylbenzene
copolymer

Sulfonated divinyl benzene-
styrene copolymer

Poly styrene-divinylbenzene
copolymer

Max. Pressure 1500 psi 1100 psi 1500 psi 725 psi
Max. Flow 1 mL/min 0.7 mL/min Unknown f(Pmax) 1.5 mL/min
Max Temp. 85 °C 95 °C 65 °C 95 °C
Mobile phase Ultrapure Water Ultrapure Water 0.005 M H2SO4 0.005 M H2SO4

pH range 5–9 1–14 1–3 0–14
Guard column Micro-guard cartridge 125–0119 CARBOSep CHO-99-2354 Micro-guard cartridge 125-0129 SH-G SUGAR
Cleaning solvent (reverse

column)
30% CH3CN in water, 4 h, 25 °C,
0.2 mL/min

50% CH3CN in water 0.1 mL/min
65 °C

65 °C, 0.2 mL/min 1 mL/min 0.005 M H2SO4, 15 min
1) 4 h 5% CH3CN in 0.005 M
H2SO4

2) 12 h 30% CH3CN in 0.005 M
H2SO4
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columns separate the major sugars adequately. The major C6 sugars,
such as glucose, galactose and mannose, and major C5 sugars, such as
xylose and arabinose, could be integrated and separated in both the
standards and liquor samples. The HPX-87H and SH-1011 columns are
suitable to analyse cellobiose and sugars such as glucose, xylose and
arabinose qualitatively. However, a quantitative approximation value
of only xylose could be calculated by means of those columns because
the peaks of galactose, mannose, and xylose co-eluted at the same time.
In this case, it can be assumed that the peak is mostly xylose, the major
sugar presented in the WSSL and TSSL samples. In addition, the HPX-
87H and SH-1011 columns are capable of the analysis of acetic, formic
and levulinic acids, as well as methanol and ethanol. Furfural and HMF
are separated mainly by an SH1011 column because it has lower de-
tection limits. In the case of using HPX-87H, good regression factors
could be obtained at concentrations higher than 0.2 g/L; however, the
furan con-centration in SSL is under 0.2 g/L in most cases.

It can be concluded that CHO-782Pb and SH-1011 are the most
adequate for measuring monosaccharides and other hydrolysis by-

products in the studied samples. CHO-782Pb operates at a wider pH
range in comparison to HPX-87P. Taking into account that the liquor
samples are acidic (pH = 1–3), working with the HPX-87P column, it is
necessary to neutralise the sample, which can interfere in the liquor
analysis (soluble sugars might precipitate and not be detected). Of the
hydrogen-based columns, SH-1011 is preferred because of the detection
limits, regression coefficients and wider pH interval. In addition, the
fouling of lead ionic columns (CHO-782Pb and HPX-87H) occurs fre-
quently, increasing the pressure system, making cleaning and re-
generation protocols necessary to take care of the columns over their
lifetime. Depending on the components of interest, it is preferable to
analyse with SH-1011 or HPX-87H, which provide more information on
separating acids, furfurals, alcohols and some major monosaccharides
and avoid the fouling problems.

A correct separation of organic aliphatic acids, alcohols and fur-
furals is possible with the SH-1011 column. The only concern is in the
sugar separation. Xylose, the major pentose contained in Eucalyptus
globulus and consequently the SSL, co-eluted with mannose and

Fig. 2. Calibration curves for sugars, acids, methanol and furfurals.

Table 3
Standards and method conditions.

Column Components Standards Retention R2 Method Conditions

(g/L) times (min)

HPX 87P Sugars 0.5–5 25.01–33.07 0.99940–0.99993 0.3 mL/min ultrapure water, 79 °C, 20 μL, 940 psi
CHO-782Pb Sugars 0.2–10 22.07–35.70 0.99984–0.99999 0.3 mL/min ultrapure water, 68 °C, 20 μL, 453 psi
HPX-87H Sugars 0.1–10 9.21–13.66 0.99936–0.99988 0.5 mL/min H2SO4 0.005 M, 30 °C, 20 μL, 975 psi

Acids 0.2–10 17.48–21.64 0.99925–0.99998
Alcohols 0.2–10 22.67–25.26 0.99950–0.99953

SH-1011 Sugars 0.2–10 13.33–18.04 0.99922–0.99992 0.5 mL/min H2SO4 0.005 M, 60 °C, 20 μL, 198 psi
Acids 0.2–1.0 21.03–24.11 0.99931–0.99998
Alcohols and Furfurals 0.5–5 27.36–66.46 0.99980–0.99997
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galactose, and the only solution is to consider this peak as only xylose.
For all these reasons, both the CHO-782 and SH-1011 columns are re-
commended in this work as the most adequate solutions for the se-
paration of monosaccharides and low molecular weight organic deri-
vatives in lignocellulosic samples.

3.2. WSSL and TSSL characterisation

Twenty samples of industrial liquors were analysed: weak spent
sulphite liquors (WSSL) collected at the inlet of the evaporation plant
and thick spent sulphite liquors (TSSL) collected at the end of the plant.
The average results of sugars, organic acids and furfurals in g/L of the
twenty samples collected are shown in Table 4. The heterogeneity of
the liquor samples depends on many factors such as the wood used as
raw material and the cooking conditions (residence time, pressure and
temperature reached all over the process).The results do not depend
strongly on the chromatographic method applied in every single case.
The best average values are obtained using the two proposed methods,
with the CHO-782Pb and SH-1011 columns. Comparing the results of
Table 4 with those of other authors, similar results were obtained, and
therefore the chromatographic methods tested are adequate for these
types of samples. Total monosaccharide contents in the range of
29.1–43.2 g/L for WSSL and 75.6–145.2 g/L for TSSL; total acid con-
tents in the range of 8.2–10.3 g/L for WSSL and 4.2–12.6 g/L for TSSL;
and total furfural contents in the range of 0.1–0.2 g/L in WSSL and
lower than 0.06 g/L in TSSL were found in the literature [15,55,56].
The industrial liquor samples collected registered total monosaccharide

contents in the range of 26.7–36.5 for WSSL and 185–214 g/L for TSSL;
total acid contents in the range of 8.75–9.61 g/L for WSSL and
8.19–8.28 g/L for TSSL; and total furfural contents between
0.43–0.52 g/L for WSSL and 0.20–0.27 g/L for TSSL.

3.3. The complete carbohydrate analysis through the pulp mill by HPLC/
RID

The final standards and sample chromatograms are presented in
Fig. 3. Peaks 1–13 correspond to (1) cellobiose, (2) glucose, (3) xylose,
(4) galactose, (5) fucose, (6) arabinose, (7) mannose, (8) formic acid,
(9) acetic acid, (10) levulinic acid, (11) methanol, (12) HMF, and (13)
furfural. Biorad HPX-87P and Transgenomic CHO-782Pb columns were
adequate to separate the sugars. The major C6 sugars, such as glucose,
galactose and mannose, and major C5 sugars, such as xylose and ara-
binose, could be integrated and separated from mixed standards and
liquor samples. Biorad HPX-87H and Shodex SH-1011 columns are not
the best choice for sugar quantification since the peaks of galactose,
mannose, and xylose co-eluted and overlapped, and it was only possible
to assume that the peak belonged to xylose, the major sugar of the SSL
samples. Nevertheless, HPX-87H and SH-1011 separate furfurals and
carboxylic acids. Furfural and HMF are separated mainly by the
SH1011 column because it has lower detection limits.

Once the methods were performed and optimised for the spent li-
quors (SSL), Eucalypt hardwood (HW), crude pulps (CP), and bleached
pulps (BP) were analysed with the selected columns: Shodex SH1011
and Transgenomic CHO-782.

Table 4
Results of sugars, intermediates and inhibitors in SSL.

WSSL Col. HPX-87Pa Col. CHO-782b Col. HPX-87Hc Col. SH-1011d

Cellobiose (g/L) – 2.24 ± 0.18 – 2.36 ± 0.90
Glucose (g/L) 4.53 ± 1.63 4.12 ± 0.72 1.67 ± 0.45 2.35 ± 0.72
Xylose (g/L) 23.6 ± 9.69 15.6 ± 3.05 26.2 ± 3.87 25.0 ± 6.23
Galactose (g/L) 3.70 ± 1.67 2.93 ± 0.89 – –
Arabinose (g/L) 3.07 ± 1.88 1.53 ± 0.60 1.02 ± 0.89 1.67 ± 0.39
Mannose (g/ L) 1.56 ± 1.66 1.45 ± 0.87 – –
Fucose (g/L) – 1.10 ± 0.59 – 0.63 ± 0.08
Formic acid (g/L) – – 0.032 ± 0.005 0.029 ± 0.002
Acetic acid (g/L) – – 9.56 ± 1.53 6.93 ± 1.87
Levulinic acid (g/L) – – 0.0154 ± 0.003 0.0123 ± 0.001
Methanol (g/L) – – 2.03 ± 0.38 0.5542 ± 0.10
HMF (g/L) – – <DL 0.022 ± 0.01
Furfural (g/L) – – 0.43 ± 0.014 0.170 ± 0.06

TSSL Col. HPX-87Pa Col. CHO-782b Col. HPX-87Hc Col. SH-1011d

Cellobiose (g/L) – 23.0 ± 1.87 – 16.0 ± 3.04
Glucose (g/L) 27.6 ± 10.8 23.8 ± 7.29 9.36 ± 3.38 14.9 ± 2.21
Xylose (g/L) 114 ± 16.7 138 ± 17.1 145 ± 13.7 164 ± 19.4
Galactose (g/L) 17.8 ± 3.94 22.8 ± 7.22 – –
Arabinose (g/L) 17.5 ± 7.75 12.7 ± 4.20 1.98 ± 0.23 11.4 ± 1.22
Mannose (g/L) 9.05 ± 8.72 10.8 ± 6.45 – –
Fucose (g/L) NM 10.1 ± 7.75 – 3.68 ± 0.40
Formic acid (g/L) – – 0.341 ± 0.071 0.228 ± 0.090
Acetic acid (g/L) – – 7.79 ± 1.27 5.03 ± 0.90
Levulinic acid (g/L) – – 0.151 ± 0.03 0.111 ± 0.02
Methanol (g/L) – – 3.63 ± 1.43 1.04 ± 0.16
HMF (g/L) – – <DL 0.13 ± 0.05
Furfural (g/L) – – 0.20 ± 0.05 0.12 ± 0.09

a Method: 0.3 mL/min H20, 79 °C, 20 μL,940psi.
b Method: 0.3 mL/min H2O, 68 °C, 20 μL,450psi.
c Method: 0.5 mL/min 0,05 M H2SO4, 30 °C,20 μL,975psi.
d Method: 0.5 mL/min 0,05 M H2SO4, 60 °C,20 μL,198psi.
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The monosaccharide composition is presented in Fig. 4a. Fig. 4b
shows a comparison with different paper-grade [58,59,63] or dissol-
ving-grade pulps [64,65] produced from hardwood or softwood.
HWDK, SWDK, TMP, HWPK were hardwood dissolving grade from the
kraft process, softwood dissolving grade from the kraft process, and
thermomechanical pulp (the worst quality) and hardwood paper grade
from the kraft process, respectively. It can be observed that glucan is
the predominant homopolymer in all types of pulp regardless of their
quality. However, TMP barely reaches 64.4% of the total carbohydrates
because of the high amount of lignin that still remains in the pulp.

Fig. 4c shows a comparison between different softwood [1] and
hardwood [25,61] species. SWA, HWE and HWP were softwood Aspen,
hardwood Eucalyptus and hardwood Parkia, respectively. It should be
noted that Fig. 4c does not show any content higher than 70% w/w
because lignin is not graphed. Only the carbohydrate fraction (hemi-
cellulose and cellulose) was considered. It can be assumed that the
chromatographic methods evaluated in this research are also suitable
for the wood and pulp carbohydrate quantification. These methods
were successfully applied within different lignocellulosic samples:
wood, pulp and bleached pulps [60,11], detoxified liquors [62,63],
weak and thick liquors [64], paper and dissolving grade liquors
[65,66].

4. Conclusions

The analysis of sugar and other decomposition products from cel-
lulose and hemicellulose quantification have always been a complex
issue, especially in the case of acid sulphite pulping samples, because of
the acidic nature of the samples, their high viscosity, colour, high
amount of suspended solids, adhesive properties of the lig-
nosulphonates and heterogeneity. In this study, four chromatographic
methods for separating monosaccharides, organic acids and furfurals in
the effluent streams of a sulphite pulp mill have been developed.

The results showed that these methods are able to analyse not only
the wastewater streams but also the feedstock and main product of the
factory in a quick and reliable way. Such methods permit the analysis of
the following compounds: cellobiose, glucose, xylose, galactose, arabi-
nose, mannose and fucose; levulinic, formic, and acetic acids; HMF and
furfural.

The structures of the sugars and their physico-chemical properties
are quite similar, which posed a challenge for separating the C5 and C6
peaks. The best integration of the sugar results was obtained with HPX-
87P Bio-Rad and CHO-782Pb Transgenomic columns. The HPX-87H
Bio-Rad and SH-1011 Shodex columns, which operate with diluted
sulphuric acid as the mobile phase, were also demonstrated to be more
adequate to separate low molecular weight chain acids, alcohols and

Fig. 3. (a) Chromatogram of monosaccharides passed through the HPX-87P column; (b) chromatogram of the SSL using the HPX-87P column; (c) sugars, acids and furfurals standards in
the HPX-87H column; (d) chromatogram of the SSL using the CHO-782 column; (e) chromatogram of the SSL using the SH 1011 column; (f) chromatogram of wood and pulp hydrolysates
using the CHO-782 column.
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furfurals in the samples studied. This work recommends the CHO-
782Pb and SH-1011 columns because of their longer lifetimes, wider pH
operating ranges and lower fouling effects in comparison with the HPX-
87P and HPX-87H columns.
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