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Abstract

This paper introduces a new memetic optimization algorithm called MeSA (Memetic Simulated
Annealing) to address the data fitting problem with local-support free-form curves. The pro-
posed method hybridizes simulated annealing with the COBYLA local search optimization
method. This approach is further combined with the centripetal parameterization and the
Bayesian information criterion to compute all free variables of the curve reconstruction prob-
lem with B-splines. The performance of our approach is evaluated by its application to four
different shapes with local deformations and different degrees of noise and density of data points.
The MeSA method has also been compared to the non-memetic version of SA. Our results show
that MeSA is able to reconstruct the underlying shape of data even in the presence of noise
and low density point clouds. It also outperforms SA for all the examples in this paper.
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1 Introduction

This paper deals with the problem of data approximation with free-form parametric functions.
Examples of this problem range from digital reconstruction of the boundary of a physical model
with free-form surfaces [23] to the use of geometric modeling tools for computer-aided design
and manufacturing [6, 25]. A way to address this problem is to use local-support splines,
which are piecewise parametric functions defined on intervals with the end points called knots.
Unfortunately, the high dependence of nonlinear interactions among the numerous parameters
makes spline fitting a very complicated problem. Furthermore, although the quality of the
reconstruction increases if the knots are treated as free variables, so does the problem difficulty
[5, 8]. In fact, classical mathematical optimization tools fail to solve the whole problem at
once, so they usually pre-compute a data parameterization; then, a closely interlinked knot
vector is found through classical optimization methods. A lot of variations to this approach
have been proposed: from threshold-driven knot insertion/removal [18], to exploit knowledge
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about the data and the inclusion of subjective parameters. Although a variety of shapes can
be reconstructed with these methods, the general case is beyond their limits as the fitness
landscape is full of valleys and local minima, were classical methods tend to get stuck [3].

Recent advances in nature-inspired evolutionary algorithms have made it possible to per-
form data fitting successfully in some particular cases. References [11, 14, 15, 21] report data
fitting with global-support curves by using differential evolution, artificial immune systems, bat
algorithm, and simulated annealing, respectively. Other examples with local-support curves
can be found in [7, 30, 31]. In this context, this work introduces a new memetic optimization
algorithm called MeSA (Memetic Simulated Annealing) to address the data fitting problem
with local-support free-form curves. Our approach is based on the hybridization of simulated
annealing with the COBYLA local search optimization method. This approach is further com-
bined with the centripetal parameterization and the Bayesian information criterion to compute
all free variables of the curve reconstruction problem with B-splines.

This paper is organized as follows: Section 2 provides the basic mathematical background
about the problem. The fundamentals about simulated annealing are described in Section 3,
while Section 4 describes our new memetic approach in detail. Section 5 outlines the method-
ology used in this paper for data fitting with B-splines. Finally, we present four representative
examples an a comparative analysis with the non-memetic simulated annealing method in Sec-
tion 6. The paper closes with the main conclusions and some future work in the field.

2 Mathematical Background

In this section we introduce the main mathematical concepts about the parametric B-spline
curves along with the problem we want to solve. From now on, vectors are denoted in bold.

2.1 Parametric B-spline Curves

Mathematically, a parametric B-spline curve C(t) C R? of order p is a piecewise function
expressed as:

C(t) = Y PN, (1) (1)
=0

where t € [a, 5] represents the curve parameter, {P;}, are the control points of the curve,
and {N;,(t)}, are the so-called B-spline basis functions of order p defined on a knot vector
U = {up = a,u1,u2, ..., Untp = B}, comprised of non-decreasing real numbers u; called knots.
The B-spline basis functions N; ,,(t) can be computed through the Cox de-Boor recursive formula
(see [2] for details):

t—uj WUjyp — T
Njp(t) = ———Njp1(t) + —F——Nj1-1(t) (2)
3:p Uirp1 —u; P Uity — Uit i+Ll,p
for p > 1, while for p = 1 we have:
1 if w;, <t<u,; .
Nia(t) = { 0 otherilvise ol G=0,.,ntp-1) (3)

In this paper we consider the case of B-spline curves clamped at the end points, based of
repeating the end knots as many times as the order, ie., up = -+ = up—1 = a, and up41 =
-++ = Un4p = B. In this case, the curve interpolates the end control points, a valuable property
in several real-world applications. Without loss of generality, we can assume that [«, 5] = [0, 1].
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2.2 Data Fitting

Let {Qx},_; 5 be a set of points in RY. Our goal consists of finding a B-spline curve C(t)
approximatiﬁg the given data with high fidelity while trying to keep the model complexity as low
as possible. Because the curve is parametric, our method must perform data parametrization,
i.e., finding the {¢x}x associated with the original data. Then, we have to compute the control
points {P;}; as well as the knots {u;}; and, finally, deal with the model complexity: how to
minimize the number of free parameters of the system.

Due to the constraints imposed on the boundary knots, we can assume that C(t1) = Q;
and C(tyr) = Q. As a result, the equation to minimize in a least-squares sense is given by:

M—1
E =

(4)
k=2 2

Qi — Y PiNiy(t)
i=0

where ||.||2 indicates the Euclidean norm. Note that when the order of the curve, the data
parameterization, and the knot vector are known, Eq. (4) becomes a simple linear system.
However, in many real-world problems, such values cannot be obtained directly from the data;
instead, they have to be fully computed. In such a case, the least-squares minimization problem
(4) becomes highly nonlinear, continuous, and multivariate. In addition, the computation of
the knot vector has been proved to be a non-convex and multi-modal optimization problem
[2, 20]. To overcome such difficulties we propose an optimization schema that deals with each
sub-problem sequentially: firstly, data parameterization; then, knot vector and control points
computation; and, finally, model complexity.

3 Simulated Annealing

The simulated annealing (SA) is a thermodynamics-inspired metaheuristic algorithm originally
proposed by Kirkpatrick et al. in 1983 to solve large-scale combinatorial optimization problems
[19]. The algorithm was inspired by the annealing process of a physical system, a technique
where a material (typically a metal) is subjected to a process of heating and then controlled slow
cooling in order to improve the material inner structure and hence, to increase its toughness.
The optimal configuration for the system is reached at the state of minimal energy.

In its most basic form, the SA algorithm identifies the state (through its energy) of a physical
system with the function to be minimized. In resemblance to the annealing physical process,
the method tries to achieve the optimum (state of minimal energy) from an arbitrary initial
solution (initial state). At the beginning, the system is exposed to very high temperatures so
that the particles can move freely. The temperature is then slowly decreased in order to let
the particles adopt a more stable configuration. At the final stages there is almost no particle
movement, as the system is near the state of minimal energy in which the particles find the
most stable configuration.

The original SA algorithm is based on the Metropolis-Hastings algorithm [22] to generate
sample states of a thermodynamic system. Given an initial (usually random) state in the
solution domain, the algorithm iteratively perturbs it. If a better solution is found, the change
is always accepted; otherwise, it is accepted only with a certain probability. This probability
is higher at the beginning that at the end. In this way, this idea of slow cooling translates
into that of a slow decrease of the probability of accepting such worse solutions. As a result,
the system evolves from a free exploration of the search space at the beginning to a stochastic
hill-climbing at latter stages.
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3.1 The Algorithm

The SA algorithm is designed to minimize a real-valued fitness function (usually called the
system energy) f : D C R? — R, within a problem domain D, assumed to be continuous
in this paper. Each point x € D is a state of the physical system. Given an initial (usually
random) state xg, the algorithm performs an iterative process; at each iteration step, a new
state Xpew 1S generated from the current one, x4, through a neighborhood function, denoted
by M : D — D, ie., Xpew = N(Xota). Let now forg = f(Xotd), fnew = f(Xnew) be their
associated energies, respectively. The algorithm probabilistically decides between moving the
system to the new state X,., or staying in the current state x,;4. This new state is chosen
with a probability function P : D x D — [0, 1], called the acceptance function, which depends
on two factors: (1) the difference A = foiq — fnew Of the energy values; and (2) a global
parameter called temperature, denoted by T, which varies according to a strictly decreasing
function ¥ : R* — R™ called the cooling function.

In addition, two more conditions are required. The first one is that B > 0 if A < 0,
meaning that the system may move to the new state even if it is worse than the current one.
This condition is imposed with the goal to prevent stagnation (when the system gets trapped in
the neighborhood of local optima, leading to premature convergence). The second one is that
the lower the temperature, the easier to reject a worse solution. In fact, in the particular case
T = 0, the procedure will only allow downhill moves, meaning that the algorithm reduces to a
greedy search algorithm. The interested reader is referred to [16] for further details about the
algorithm and the corresponding pseudocode.

4 MeSA: Memetic Simulated Annealing

Memetic algorithms were originally introduced as an enhancement for genetic-driven meta-
heuristics by introducing the idea of individual learners potentially able to refine some members
of a population [9], thus mimicking more closely the domain-specific processes of the universal
Darwinian theory (incorporate knowledge of the problem). Nowadays, the memetic optimiza-
tion approach has been applied with varying grades of success to a wide range of metaheuristic
optimization techniques beyond the genetic algorithms paradigm. Some illustrative examples
of memetic approaches can be found, for instance, in [7, 12, 13, 15, 24].

In this paper we propose a memetic variant of the simulated annealing algorithm that
performs solution refinement by means of the constrained optimization by linear approzimations
(COBYLA) local search procedure. The proposed optimization framework is described in
Algorithm 1. Our memetic approach can be divided into three closely intertwined phases:
information gathering, cooling, and local learning. About the information gathering phase, a
remarkable feature of recent developments for memetic optimization is the inclusion of problem
knowledge during the generation of the initial population [10]. Our MeSA approach learns the
temperature parameter by initially exploring the fitness landscape via the LearnParameters
process. The method generates a random population within the search space and sets the initial
temperature to 0.8 times the worst energy transition.

During the cooling phase, the general SA schema is applied to compute the knots. It consists
of two nested loops. The main or outer loop, labeled in the literature as the annealing or cooling
loop, controls the temperature update process and the stop criterion. In our implementation,
the stop criterion consists of running the outer loop for a predefined number of iterations
Nouter- Let k be the outer iteration index from now on. The method keeps track of two control
parameters, the acceptance (T%¢) and generation (79¢") temperatures, which are initialized
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Algorithm 1: MeSA: Memetic Simulated Annealing (by linear approximations)

Input: An intial guess xg, the function to optimize f, lower and upper bounds 1, u
Output: The final solution x
T§¢ «— LearnParameters(f,1, u)
x — xp and fx — f(x)
T(lC « Tél(!
Tgen — Té]en
while The System is not Frozen do
while Thermal Equilibrium is not Reached do
Xnew < ‘J?(x) and fnew — ,f(xnew)
if A(frew, fx, T%¢) then
| X ¢ Xpew and ,fx — fnew
end
end
x < LocalLearning(x,l,u) and fx <« f(x)
T{lC — S’(IC(T(SIC)
T9en _ ggen (TG(]P")
end
return x

during the information gathering phase and subsequently updated during the cooling phase as:

k Nou,ter
achievement of thermal equilibrium system state at a given temperature. Similarly to the outer
loop, our implementation runs the inner loop N;pner iterations. During the inner loop, the new
candidate solutions, 91 : x «+— x + Ax, are generated according to the inverse u-law function
[27] given by:

Tge k -
TUTES — —0_ and g9 . T — ( outer ) , respectively. The inner loop mimics the

- L Ll —1
Ax=g ' @@= witn g;'y)= T 0 sigy)
where the ® symbol represents the element wise vector multiplication, p = 101°97"" and
y € U%([~1,1]). See [29] for a more detailed discussion on this search procedure. Then, the
law governing the probability of accepting a given transition follows the modified Metropolis

A -1
criterion [22]: 2 < min {1, (1 + exp (Ta{ ))
k

At the end of each inner loop , i.e. when the thermal equilibrium for a given temperature
has been reached, the algorithm performs a local search procedure with the last accepted point
as an initial guess. This is called the local learning phase. This local search is performed via
the COBYLA algorithm with a budget of Njcq; function evaluations.

5 The Proposed Method

As described in Section 2.2, our problem consists of finding the best B-spline fitting curve
to a given set of (possibly noisy) data points while keeping the complexity of the model as
low as possible. To do so, we need to compute a suitable parameterization of the data, the
optimal number of knots along with their location, and the B-spline control net. We solve
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Shape Parameters o  Method | E BIC NMSE, NMSE,
MeSA | 0.0029422 -64.777  0.99988  0.99974

Elephant 208 35 SA | 0.0081525 147.21  0.99911  0.99972
Camnel - 5o MeSA | 00012596  9.968  0.99993  0.99992
SA | 0.0027904 172.24  0.99984  0.99983

MeSA | 0.0008605 79.845  0.99992  0.99991

Beetle 208 60 "gA | 00059450 481.88  0.99946  0.99935
MeSA | 0.058327  1187.7  0.99991  0.99993

Bell 752 40 gp 0.0700  1325.25 0.99981  0.99991

Table 1: Numerical fitting errors for MeSA and SA on the four examples in our benchmark.

all those problems by combining four different techniques: the centripetal method for data
parameterization, our memetic simulated annealing (MeSA) method — based on hybridizing
simulated annealing with the COBYLA local optimization method — along with least-squares
minimization for the determination of the knot vector and the control points respectively, and
finally, BIC (Bayesian information criterion) for model selection.

The centripetal parameterization is one of the most popular data parametrization methods
[4], as it takes into account both the distribution of data and sharp turns. It is given by:

k
>IQ; - Q;l®
ti=0 and =" fork=2,..., M. (5)
1
Z|Qj*ijl|2

<.
[
N}

In this paper, we counsider cubic B-spline curves (although our method is actually independent
on the order of the fitting curve). Now, assuming a given parameterization and the number of
knots, the only unknowns in (4) are the control points and the knot vector. To compute the
knots, we apply the MeSA algorithm, where each state is given by the following representation
scheme: x € (0,1)7, where o refers to the number of free (i.e., not-clamped) knots. The
elements in x are then sorted to conform to the ordered structure of the knot vector. Finally,
our fitness function is taken as f = E. Regarding the parameter tuning, it is as follows:
Nouter = 500, Nipner = 50, Nipear = 200,0 € {1,...,70}. We use the same parameter setup
for the non-memetic SA approach, used here for comparative purposes. However, we increase
the number of iterations as Noyter = 1000, Nipner = 100 for the non-memetic version to allow
this simpler (and arguably slower) version to reach convergence. Once the knots are obtained,
the control points can be computed by linear least-squares minimization of the functional F,
leading to an overdetermined linear system that can be solved by standard numerical methods.

The functional E does not contain any information about the model complexity, so the
model might (potentially) be affected by overfitting. This is a common problem when approxi-
mating data with B-splines, as F decreases as the number of knots increases. To overcome this
limitation, we compute the modified BIC (Bayesian information criterion) cost [26], given by:

BIC = Mlog(E) + ¢ log(M) (6)

where ( represents the total number of free parameters of the problem and log(.) represents the
natural logarithm function. As a general rule, the model with the lower BIC is preferred.
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Figure 1: Reconstruction of the elephant shape: (1) best fitting curve (o = 35); (r) BIC vs. o.

To measure the goodness of the fit, we also compute the normalized mean square error
NMSE (7) for each spatial component. The NMSE is given by:

2

Q: — Q;

NMSE; =1 — ||[—= =i
SEi H@mean(@;«k)

(7)

where Q] represents the reconstructed point associated with Q,;, and ¢ represents the spatial
component (z and y in our examples). Note that the NMSE values vary between —oo and 1;
the closer to one, the better the fit.

6 Experimental Results

To assess our MeSA method, we consider four datasets of synthetic shapes (elephant, camel,
beetle, and bell) from [1, 28], depicted as black dots on the left of Figs. 1-4. The datasets
consist of 104, 102, 104, and 376 points, respectively (only 124 are drawn for the bell example
for better visualization). The figures also show the best fitting curve (blue solid line) obtained
with the MeSA method according to the BIC. To this aim, Figs. 1-4 (right) show the evolution
of the BIC value against 0. A total of 26 independent runs are executed for each o value. The
three best and worst runs are then removed to provide statistical evidence for the results and
assert the experiment reproducibility. The mean BIC value is displayed as a red solid line,
while the minimum and maximum values are represented by the lower and upper dashed lines.
The deviation area is filled up with a gray tone for better visualization. From the figures and
the numerical results, the best value for ¢ is determined and used for the fitting curves in Figs.
1-4 (left). Note that all shapes present difficult geometric features, such as strong changes of
slope and curvature. Still, our method is able to reconstruct the general shape of the data
with good accuracy, as confirmed visually in those figures. Table 1 summarizes our numerical
results. The following data are reported (in columns): the shape, number of free parameters,
best value for o, the method used, and the E, BIC, and NMSE (for z and y) fitting errors. For
further assessment, the results for the MeSA method are compared with those of a standard
implementation of the (non-memetic) SA. As shown in Table 1, our method outperforms SA
for all shapes in our benchmark and others not included here because of limitations of space.



Carlos Loucera et al. / Procedia Computer Science 108C (2017) 1364—1373

800 . . . . ;

: : : : — mean

TOO | romemmeeebe e . H
: : : : = 71 deviation

B00 -\ T

T

400N\

BIC

]
200

100t S e T

Figure 2: Reconstruction of the camel shave: (1) best fitting curve (o = 50); (r) BIC vs. o.
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Figure 3: Reconstruction of the beetle shape: (1) best fitting curve (o = 60); (r) BIC vs. 0.

7 Conclusions and Future Work

In this paper, we present a new memetic optimization algorithm called MeSA that hybridizes
simulated annealing with the COBYLA local optimization method. This approach is further
combined with the centripetal parameterization and the Bayesian information criterion to solve
the curve reconstruction problem to a given set of data points. Our curve fitting model is based
on local support splines to take advantage of their ubiquitousness in the CAD/CAM field. We
have illustrated the excellent performance of our algorithm in representing a variety of shapes
with local deformations and different degrees of noise and density of data points. The MeSA
method has also been compared to the non-memetic version of SA. Our results show that MeSA
outperforms SA for all the examples in this paper.

Regarding the implementation issues, all computations have been carried out on an
Intel i7-7600 quad-core processor with 16GB of RAM. The source code has been imple-
mented by the authors in the native programming language of MATLAB, v.2014b. We also
used the COBYLA implementation in the NLopt library [17]. All the simulations took less than
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Figure 4: Reconstruction of the bell shape: (1) best fitting curve (¢ = 40); (r) BIC vs. o.

30 seconds. Future work includes the comparison with other optimizations schemes reported in
the literature, as well as the extension of the proposed methodology to surface fitting.
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