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Abstract  —  An in-depth investigation of oscillation modes in 

free-running oscillators loaded with multi-resonance networks is 
presented. It focuses on the mechanisms leading to the coexistence 
of stable oscillation modes, which may give rise to uncertainty in 
the physical behaviour. The multiple periodic and quasi-periodic 
solutions are detected and related to the stability properties of the 
dc solution and each of the periodic modes. Two different types of 
Hopf-bifurcation loci enable a global understanding of the circuit 
operation. The investigation is initially carried out with an 
analytical formulation and then extended to harmonic-balance 
simulations. The results have been experimentally validated 
through their application to a HEMT-based cross-coupled 
oscillator, at 0.65 and 2.4 GHz. 

Index Terms — Oscillation modes, stability, bifurcation. 

I.  INTRODUCTION 

A relevant problem in free-running oscillators with multi-
resonance loads, such as crystal oscillators, used as low phase-
noise references [1], or dual-band oscillators [2-3], with 
application in multi-band communication systems, is the 
possible coexistence of stable oscillation modes within certain 
parameter regions. This gives rise to uncertainty in the circuit 
behaviour since either one or another mode may be observed 
depending on the initial conditions. Quasi-periodic solutions in 
which the two modes coexist concurrently are also possible and 
can be exploited in dual-band systems [4-5]. However, the 
complex and ill-understood dynamics of multi-mode oscillators 
may degrade their response and limit its potential applications, 
due to the lack of robustness and/or the onset of undesired 
regimes. This work presents a thorough bifurcation analysis of 
these circuits in the frequency domain, which should provide 
insight into the mechanisms for the generation and stabilization 
of its various operation modes. It focuses on non-concurrent 
periodic oscillation modes, while setting the theoretical basis 
for the quasi-periodic case.  

Due to the complexity of the problem, the initial investigation 
will be based on a simplified model of the active device. This 
will enable an exhaustive analytical study, comprising four 
different aspects: stability analysis of the dc solution, 
calculation and stability analysis of the individual oscillation 
modes and bifurcation detection. Such comprehensiveness 
would be virtually impossible with numerical techniques. Once 
the instability phenomena have been identified, it will be 
possible to derive criteria ensuring that the periodic oscillation 
modes are stable in disjoint ranges of tuning parameter(s). The 
test-bench load network is chosen to illustrate the existence of 
these disjoint regions, which, as will be shown, are due to the 

intersection of the primary Hopf-bifurcation loci [6-8] of the 
individual oscillation modes. A demonstrator based on HEMT-
based cross-coupled oscillator at 0.65 and 2.4 GHz has been 
manufactured and measured.  

II. ANALYTICAL INVESTIGATION OF BIFURCATION BEHAVIOUR 

The active device and the multi-resonance network will be 
respectively modelled with the voltage-dependent current 
i(v) = av + bv3, where a < 0, b>0, and the admittance function 
YL(j). The poles of the dc regime are the roots of the 
characteristic equation: a + YL(s) = 0. For illustration, the 
circuit in Fig. 1(a) has been considered. When reducing a from 
0.02 -1 [Fig. 2(a)], each crossing of a pair of complex-
conjugate poles through the imaginary axis corresponds to a 
primary Hopf bifurcation (H) [6]. There are three crossings: 
Hp1, Hp2 and Hp3, at the respective frequencies f1 = 4 GHz, 
f2 = 0.65 GHz and f3 = 1.3 GHz, which suggests the presence of 
three oscillation modes. To calculate the modes, the nonlinear 
current will be excited with a periodic voltage, which provides 
the describing function Y(V)=a+3/4bV2. The steady-state 
oscillation condition is:  
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where m refers to the oscillation mode. In Fig. 2(b), the three 
periodic oscillation modes are represented versus a (periodic 
curves C1, C2 and C3) The a values at which these curves are 
generated agree with Hp1, Hp2 and Hp3. A Hopf bifurcation is 
supercritical if the generated curve exists only after the critical 
pair of complex-conjugate poles has crossed the imaginary axis 
to the right-hand side (RHP), as Hp1 and Hp2. If the periodic 
curve exists before the crossing of the critical poles to the RHP, 
it will be subcritical, as Hp3. Let the dc solution have k unstable 
poles before the pole crossing. According to the Central 
Manifold Theorem (CMT) [6], in the supercritical case, the 
newly generated solution will have k unstable canonical poles 
(with frequencies comprised between 0 and m/2). In the 
subcritical case, it will contain k+1 unstable poles. Thus, in the 
neighborhood of Hp1, Hp2 and Hp3, the periodic solutions (in C1, 
C2 and C3, respectively) should have 0, 2 and 3 unstable poles. 
The unstable curves may become stable if under a further 



variation of the parameter the originally unstable poles cross to 
the left-hand side (LHP).  
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Fig. 1 (a) Simple circuit for the analytical study. (b) Experimental oscillator. 

The stability analysis of each periodic oscillation mode will 
be carried out linearizing the active device about each periodic 
mode m, with the incremental describing function [9], 
YI = a+3/2Vm

2, and making the passive network depend on the 
complex frequency s. This provides the following characteristic 
equation: 

23 / 2 ( ) 0  m La bV Y s  (2) 

This equation considers a real voltage Vm, so it intrinsically 
leaves out the pole at zero, associated with the oscillation 
autonomy. The resulting poles are shown in Fig. 2(c). The curve 
C1 is always stable, whereas C2 and C3 are originally unstable. 
However, when further reducing a, the RHP poles in C2 and C3 
cross to the LHP in different secondary Hopf bifurcations (from 
periodic regime) [6,7], at the point Hs1 of C2 and the points Hs2 
and Hs3 of C3 [Fig. 2(c)]. At a secondary Hopf bifurcation, a 
quasi-periodic solution arises from zero amplitude of the 
newly-generated oscillation component. These quasi-periodic 
solutions will be calculated exciting the nonlinear function 
i(v)  with the two-tone signal Vmcosmt + Vncosnt, where m 
and n are incommensurate, and neglecting the intermodulation 
products [5]. A quasi-periodic solution at m, n will fulfil:  
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Fig. 2 Analytical investigation. (a) Poles of the dc solution. (b) Periodic and 
quasi-periodic solution curves, the latter generated at Hs1,Hs2,Hs3. (c) Poles of 
the periodic solutions. (d) Validation of the coexistence of modes 1 and 2 with 
an independent transient analysis.  

Three modes have been detected, so there are three possible 
combinations of m, n values. Once m and n have been 
obtained from (a), subsystem (b) and (c) can be analytically 
solved in Vm

2 and Vn
2. The quasi-periodic solutions have been 

included in Fig. 2(b) and their onset (from zero value of the 
newly generated oscillation components) agrees with the 
predictions of the pole analysis in Fig. 2(c). At a secondary 
Hopf bifurcation the stability properties of the bifurcating 
periodic solution are transferred to the generated quasi-periodic 



one, following a rule analogous to the one in primary Hopf 
bifurcations [6]. The three bifurcations Hs1, Hs2 and Hs3 are 
subcritical and give rise to unstable quasi-periodic solutions (in 
agreement with [5]), with 1, 3 and 1 unstable canonical poles, 
respectively. Despite their instability, these solutions have a 
fundamental impact on the circuit behaviour. For a<a(Hs1), the 
two periodic oscillations at f1 = 4 GHz and f2 = 0.65 GHz, are 
stable. Both may be physically observed, depending on the 
initial values, as verified with independent transient analyses in 
a commercial simulator [Fig. 2(d)], for a = −0.04 -1. Good 
agreement is found despite the one-harmonic approximation in 
the analytical study.  

For a global comprehension of the stability properties, the 
primary and secondary Hopf bifurcation loci will be calculated 
versus a and the capacitor c1. The primary Hopf loci are 
obtained by setting mV  to zero in the equations (1) and solving 
for a and c1. The Hopf locus associated with a periodic solution 
at m, from which an oscillation at n is generated, is obtained 
by sweeping c1 and solving the following system, for a and Vm, 
at each step: 

  2

2

( ) 0,   ( ) 0 

( , 0, ) 3 / 4 ( ) 0

( , 0, ) 3 / 2 ( ) 0

i r
L m L n

r r
T m n m m L m

r r
T m n n m L n

Y j Y j

Y V V j bV a Y j

Y V V j bV a Y j

 

 

 

 

    

    

      (4) 

The Hopf loci (Fig. 3) divide the plane in regions with 
different qualitative behavior. At the self-intersection point of 
the primary Hopf locus (X1), there are two pairs of poles j2f1 
and j2f2 on the imaginary axis. Above (below) this point, the 
oscillation at f1 (f2) is generated when crossing this locus from 
the non-oscillation region. In each case, this will be the only 
stable solution until reaching the secondary Hopf locus (see 
arrows at f1 and f2). The primary Hopf loci must intersect to 
ensure regions with a single stable periodic mode. The 
boundary between the regions with a single stable periodic 
solution at f1 (or f2) and two stable periodic solutions at f1 and f2 
have been calculated with an independent transient analysis, 
with the results superimposed with asterisks.   
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Fig. 3 Bifurcation analysis. Regions in which the periodic modes at f1 and f2 
exist as single stable solutions are bounded by the primary (dots) and secondary 
(circles) Hopf loci. Results from transient simulations are superimposed with 
asterisks (*). 

III. APPLICATION TO A CROSS-COUPLED OSCILLATOR 

A dual-frequency cross-coupled oscillator [Fig, 1(b)] has 
been designed as a demonstrator. The tuning parameters are the 
varactor capacitance and the drain voltage VDD, although a 
different parameter could be used in a more advanced design. 
The gate voltage has been purposely avoided due to the 
structural occurrence of hysteresis. Two odd-mode resonances 
are obtained, at f1 = 0.65 GHz and f2 = 2.4 GHz. The primary 
Hopf loci have been traced by connecting a small signal current 
source between the drain nodes of the two transistors and 
imposing a zero value of the total input admittance, which 
constitutes a limit oscillation condition [7]: Yss(VDD,c1,m) = 0, 
where m = 1,2 refers to the oscillation mode. The two primary 
Hopf bifurcation loci have been traced in Fig. 4, with 
measurement points superimposed. 

 

 
Fig. 4 Hopf loci of the oscillator in Fig. 1(b), dividing the plane into regions 
with different qualitative behavior. Measurements have been superimposed. 

For very low VDD, there is no oscillation, as in the case of Fig. 
3 for big a values. When increasing VDD the circuit oscillates at 
f1 (f2) above (below) the point X. Above X, there is initially only 
one stable solution at f1. When crossing the primary Hopf locus 
at f2, a second mode arises at f2. It is initially unstable but 
becomes stable when crossing the secondary Hopf bifurcation 
locus. This locus has been calculated introducing into the circuit 
an auxiliary generator at AG = 2 = 2πf2 [7] to obtain the 
steady-state oscillation, with 7 harmonic terms, and a small-
signal current source at an incommensurate frequency f, both 
connected between the drain nodes of the two transistors. The 
secondary Hopf bifurcation locus is obtained by solving the 
outer-tier system: 
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where (a) is a HB equation and (b) is a conversion-matrix 
equation. The loci divide the parameter plane into a region 
without oscillation, two regions with single stable oscillations 
and a more complex region (inside the secondary Hopf locus) 
where two stable oscillations coexist and even give rise to stable 
quasi-periodic modes. Within the single-stability regions, a 
robust experimental behavior was obtained (Fig. 5), even under 



significant changes of the initial conditions. No special care has 
been taken to reduce the harmonic content in this proof-of-
concept oscillator. Moreover, it is well-suited for a future 
analysis of the synchronization of the oscillations [6], their 
stability [10], phase noise [11] and other possible applications 
[12-14].    
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Fig. 5 Measurements of the HEMT based oscillator using a microstrip coupled-
line coupler. (a) Spectra of the two modes at 0.65 and 2.4 GHz. (b) 0.65 GHz: 
VDD=0.29 V, VGG=-0.6 V. (c) 2.4 GHz: VDD=0.22 V, VGG=-0.6 V.  

 
IV. CONCLUSION 

A detailed theoretical study of the behavior of multi-mode 
oscillators has been presented, evidencing the mechanisms for 
an undesired coexistence of oscillation modes. A criterion to 
isolate the modes in disjoint regions of the turning-parameter 
plane has been derived and experimentally demonstrated with 
a cross-coupled oscillator at 0.65 and 2.4 GHz.    
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