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Abstract—A methodology is presented to predict odd-mode 

instability in power amplifiers under output mismatch effects, as 
in the case of amplifiers connected to an antenna. This kind of 
instability is often observed in power-combining configurations, 
due to their symmetry properties. Unlike the single-ended 
situation, there is a cancellation of odd multiples of the oscillation 
frequency at the circuit output, so there is no impact of the load 
impedance values at the sideband frequencies. The odd-mode 
instability depends on the terminations at the fundamental 
frequency and its harmonic terms, and can only be detected 
within the circuit unstable loop, instead of the output plane. Here 
a methodology for the prediction and suppression of odd-mode 
instabilities is presented. Low-pass filtering effects and the use of 
a shorted stub allow the stability analysis to be limited to the 
fundamental-frequency termination. Then, the stability 
boundaries are efficiently determined through bifurcation 
detection inside the unstable loop, using the magnitude and phase 
of the reflection coefficient as the analysis parameters. Results 
have been validated through pole-zero identification and 
experimental measurements.  
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I.  INTRODUCTION  

The instability of power amplifiers (PAs) under termination 
conditions other than 50 , usually due to antenna mismatch 
[1-2], can lead to serious malfunctioning, involving the 
observation of incommensurable oscillations and frequency 
divisions [2]. To guarantee a reliable operation in a variety of 
conditions, some applications impose stable operation even 
under highly reflective loads [3]. In order to achieve this 
requirement, the works [4-5] provide criteria for unconditional 
instability under output mismatch effects, which are applicable 
to single-ended circuits. This stability analysis must be carried 
out under unknown values of the load impedance. Due to its 
frequency dependence, this impedance will be different at the 
fundamental frequency and its various harmonic components, 
mfin, and sideband frequencies, mfin + f, where m is an integer 
and f is a perturbation frequency, to be swept in the stability 
analysis [5]. Under fulfilment of an equivalent of the Rollet’s 
proviso established in [5], the potential instability can be 
detected at the circuit-output reference plane, and due to the 
low-pass filtering action of the output network, the 
consideration of mismatch effects can be limited to inf  and 

the lowest sideband frequencies  f, −fin + f and fin + f, with all 

the rest of components terminated in 50 . The analysis in [5] 
predicts the possible observation of negative resistance at any 
of the three lowest sidebands under passive terminations at the 
other two sidebands, for all the possible values of the 
fundamental-frequency termination o . However, this method 

cannot be applied to circuit exhibiting odd-mode instabilities, 
often observed in circuits with symmetries, such as power 
combining PAs. This is because there is no observability of 
these instabilities at the circuit-output reference plane, due to 
their mathematical cancellations with right-hand side (RHS) 
zeroes [6]. They can only be detected through a stability 
analysis performed at the internal circuit nodes, under 
variation of the output impedance terminations at mfin. The 
odd-mode instability often involves a subharmonic oscillation 
due to the influence of the input signal on the critical circuit 
frequencies, which are shifted to the divided-by-two frequency 
[7]. Here an efficient methodology for the detection of this 
kind of instability will be presented, taking into account the 
influence of the input power. The method will be illustrated 
through its application to a power-combining amplifier at 
fin = 1.5 GHz, which has been manufactured and measured. 

II. ANALYSIS METHOD 

Let a circuit exhibiting symmetries, such as the one in 
Fig. 1, be considered. Under an odd-mode oscillation at the 
frequency af , all the intermodulation products of the form 

(2 1)in amf n f  , where m and n are integers, will exhibit 180º 
phase shift in equivalent nodes and branches of the two sub-
amplifiers, and will inherently cancel out at the circuit output. 
Despite this, the antenna impedance can affect the circuit odd-
mode stability since it will alter the termination impedance at 
mfin, which will give rise to a change in the steady-state 
solution oX  about which the circuit is linearized in the 

stability analysis, where oX  represents the vector of harmonic 
components of the circuit state variables. This situation in 
which the stability properties depend on the termination at mfin 
but are independent on the terminations at the sideband 
frequencies at mfin+f can also be interpreted as a failure of the 
proviso established in [5] (an extension of Rollet’s proviso to 
the sideband-impedance problem). This is because the odd-
mode instability will be observed even if the sideband 
frequencies are terminated in open or short circuits at the PA 
output [5]. 
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The odd-mode stability analysis under output mismatch 
effects will depend on the termination impedances at mfin. 
However, due to inherent filtering effects, only the lower 
harmonic components will have an impact on these properties. 
To limit this impact to the fundamental frequency only, a 180º 
shorted stub at 2fin will be introduced in parallel with the final 
50 Ohm load (the load that will undergo changes under the 
mismatch effects), which will eliminate the influence of the 
impedance terminations at the even harmonic terms. On the 
other hand, in practical applications one can expect a limited 
influence of the termination at the third harmonic component 
3fin, since the power level of this spectral line is usually much 
lower than that at fin. Thus, the stability properties will mostly 
depend on the fundamental-frequency termination o . The 
analysis test-bench is shown in Fig. 1, where harmonics |m|>1 
are terminated in 50 Ohms due to their limited influence.  
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Fig. 1. Test-bench power amplifier based on a CLY5 transistor (RO4003C: 
r=3.38, h=0.5 mm). The original value of the stabilization resistor is 
Rs = 170 . The small-signal current source is introduced to evaluate the 
limit-oscillation conditions at an incommensurable frequency f or a 
subharmonic frequency fin/2 (which needs the consideration of the phase in). 

Under the above assumptions, pole-zero identification [6] 
would be applicable to detect the odd-mode instability under 
variations of o . This requires a connection of the small-
signal source in parallel between the two circuit branches, 
since, in any other position (between one node and ground, for 
instance), a constant complex impedance ( o ) at the sideband 
frequencies would not represent a physical behavior. Such an 
analysis would require a sweep in the perturbation frequency 
(going from 0 to fin in periodic regimes), for each steady-state 
solution obtained through a double sweep in the amplitude and 
phase of o . Then, pole-zero identification should be applied 
to all the transfer functions resulting from this double sweep. 
The identification interval 0 to fin should be, in general, 
divided into smaller intervals, so this analysis will be 
computationally demanding. Instead, the aim here will be to 
obtain directly the boundary between stable and unstable o  
values by tracing the bifurcation loci in the Smith Chart. 

The Hopf-bifurcation locus [7-8] will provide the 
boundary of the load-impedance region for which the circuit 
exhibits an incommensurable oscillation. At the steady-state 
oscillation, the total admittance function YT, or current-to-
voltage ratio, is equal to zero at all the circuit nodes. On the 
other hand, at the limit oscillation condition, the oscillation 
amplitude tends to zero. Taking these two conditions into 
account, the Hopf locus will be obtained by introducing a 
small-signal current source at the frequency f inside the 
potentially unstable loop (Fig. 1). Here it will be connected 

between equivalent device nodes of the two subcircuits. For 
each Pin, the stability boundary is given by: 

 ( , , ) 0,      ( , , , ) 0o o o T o o o AGH X Y X f      (1) 

where 0H   is the whole set of harmonic-balance (HB) 
equations, acting as an inner tier, and ,o o   are the magnitude 

and phase of o . The steady-state solution oX  depends on 

o  and the limit oscillation condition, YT = 0, is evaluated 
with the conversion-matrix approach.  

 The analysis based on (1) should start with a global 
exploration of the Smith Chart, in order to provide a suitable 
initial value to the optimization/calculation procedure. This is 
done with a simple graphical technique that takes advantage of 
the bounded nature of o  and o . The perturbation frequency 
f is swept between 0 and fin and, for each f, a double sweep is 
performed in ,o o  , so as to cover the full Smith Chart. For 

each triplet f, ,o o  , the total admittance YT is calculated as the 
ratio between the current delivered by the small-signal source 
and the voltage across its terminals YT = Itest/(V1 ̶ V2). To fulfill 
YT = 0, there must be changes of sign in both the real and 
imaginary parts of YT under variations of ,o o  , which is 
easily evaluated by simple inspection. (An example is 
presented in Fig. 2). Initial values for the optimization should 
be close to YT = 0, and this situation may be found in one or 
several regions of the Smith Chart. This initial value (or 
values) should be introduced in system (1), which will provide 
an initial Hopf-locus point , ,i i i

o o f  . Then the whole locus 
will be efficiently traced through continuation, by sweeping 

o  around i
o  and solving (1) to obtain: ( ), ( )o o of   . There 

will be one Hopf locus for each Pin.  

 One common case of odd-mode instability is the frequency 
division by 2, associated with flip bifurcations [7-8]. This 
phenomenon occurs when the input signal shifts the circuit 
natural frequency to one half the input frequency: fa  fin/2, 
which is often associated with a parametric instability. This 
evolution involves the merging of a pair of complex-conjugate 
poles at fa into two pairs of complex-conjugate poles at fin/2, in 
order to preserve the system dimension [7]. At the division 
threshold, the subharmonic-oscillation amplitude will tend to 
zero, so the flip bifurcations can be detected by setting the 
frequency of the small-signal current source to fin/2. Because 
this perturbation frequency (fin/2) and the input frequency are 
commensurable, the phase shift between the input source and 
the current source is a relevant analysis variable [9]. For the 
bifurcation detection, one can set the phase of the current 
source to zero and consider the input-source phase in . The 
mathematical conditions for the flip bifurcation are: 

        ( , , , ) 0,        ( , , , ) 0o o o in T o o o inH X Y X        (2) 

 Unless a modified conversion-matrix analysis [9,10] is 
applied, the above analysis must be carried out with HB at the 
fundamental frequency fin/2, due to the frequency 
commensurability. The initial value(s) is obtained through 3 
nested sweeps, in the input-source phase in, varied between 0 
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and 360º, and in ,o o  , to cover the full Smith Chart. Once an 

initial point , ,i i i
o o in    has been obtained, the flip locus will 

be obtained through continuation, by sweeping the phase o  

around i
o , and solving (2) to obtain: ( ), ( )o o in o    . In 

amplifiers composed of several stages, the above methodology 
should be applied at each stage, and covering all the possible 
oscillation modes resulting from the circuit symmetry.  
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Fig. 2. Graphical method to obtain initial values. (a) Admittance diagram. (b) 
Region of points with Re(YT)<0 and |Im(YT)| 10-3 -1 for Pin = 6 dBm. (c) For 
Pin = 10 dBm. (d) For Pin = 15 dBm. 

III. APPLICATION TO A MISMATCHED AMPLIFIER 

The above method has been applied to the circuit in Fig. 1. 
In the absence of mismatch effects, this amplifier is stable for 
all the Pin values, as verified with pole-zero identification 
[1,3,6]. On the other hand, the amplifier does not exhibit even-
mode instabilities under mismatch effects, as verified with the 
method in [5]. The purpose here will be to predict the possible 
odd-mode instability under output mismatch effects. The 
admittance plots ( , , , )T o o oY X f   never cross the negative 
real semi-axis, so no incommensurable oscillation should be 
expected. The same analysis has been performed for the 
function ( , , , )T o o o inY X    , which provides several crossings 
of the negative real semi-axis [Fig. 2(a)], indicating the 
possible fulfillment of the flip-bifurcation condition (2). 
Actually, processing the data in Fig. 2(a) it has been possible 
to obtain the o values giving negative conductance 
(Re(YT)<0), with a magnitude of the imaginary part |Im(YT)| 
below 10-3 -1 at different Pin values, represented with squares 
in Fig. 2(b-d).  

Using an initial value from Fig. 2(a), the flip bifurcation 
loci in Fig. 3 have been obtained, where each locus 
corresponds to a different Pin. Because the amplifier is stable 
in matched conditions, the stable region corresponds to the 

outside of the flip loci. For low Pin, the locus does not enter 
the Smith Chart, so there is unconditional stability. From 
Pin   5 dBm, the locus crosses the Smith Chart, so the 
amplifier is potentially unstable under mismatch effects. Due 
to the natural reduction of the negative resistance from certain 
signal amplitude, one should expect the loci to escape from the 
Smith Chart from a given Pin value. The loci corresponding to 
the various Pin values considered in Fig. 2 have also been 
represented in that figure, in a red solid line. The unstable 
region contains a subset of the points with negative real part of 
YT and low magnitude of the imaginary part. Note that the 
negative real part and positive-slope resonance of YT do not 
constitute a general instability condition. However, the limit 
steady-state oscillation condition in (1) and (2) is rigorous and 
should be fulfilled at any circuit node at the stability boundary. 
Because this condition only depends on the load value o at fin, 
all the possible implementation of this load should give rise to 
the same kind of behavior, either stable or unstable. This has 
been validated for two different o values, one at each side of 
the flip-bifurcation locus obtained for Pin = 15 dBm (in a solid 
red line in Fig. 3), indicated as t1 and t2 in Fig. 3. They are 
relatively close to the stability boundary to evaluate the degree 
of accuracy. Fig. 4(a) presents the results of an independent 
stability analysis based on pole-zero identification when t1 
and t2 are implemented with an RL series network. Fig. 4(b) 
presents the results of the parallel-RL implementation. Poles 
of the t1 (t2) load are represented with blue (red) crosses. 
With the two different implementations, the load t1 is stable 
and the load t2 is unstable, in agreement with results from (2).  

 

Fig. 3. Evolution of the flip locus obtained with (2) versus Pin. The loci only 
cross the Smith Chart in a certain Pin interval. 

To determine the Pin interval with potential instability in an 
efficient manner, one can take into account the particular 
shape of the loci in Fig. 3. All the loci cross the boundary of 
the Smith Chart, so one can expect the locus to be tangent to 
this chart at the limits of the unstable Pin interval. This should 
be obtained for a magnitude of the reflection coefficient 

1o  . The locus of Pin and o values fulfilling the flip-

bifurcation condition under 1o   is expressed as: 

  
( , 1, , , ) 0

( , 1, , , ) 0
o o o in in

T o o o in in

H X P

Y X P

  

  

 

 
 (3) 
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For Pin values such that the flip locus in (2) crosses the unit 
Smith Chart, there will be at least two o fulfilling (3) (Fig. 3). 
This is shown in Fig. 5, where the phase o at the intersection 
points with the Smith Chart [calculated with (3)] has been 
represented versus Pin. At the boundaries of the unstable Pin 
interval there will only be one o, since the locus is tangent to 
the Smith Chart. To stabilize the circuit under mismatch 
effects, the resistor Rs connected between the two amplifier 
branches will be reduced from its original value (170 ).As 
expected (Fig. 5) the locus (3) decreases in size with Rs and 
eventually vanishes, due to the damping effect of this parallel 
resistor. For Rs<120 , the amplifier should be stable for all 
the Pin values. 
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Fig. 4 Validation of the flip locus corresponding to Pin = 15 dBm with two 
different implementations of t1 and t2 in Fig. 3. (a) RL-series 
implementation. Poles of the t1 (t2) load are represented with blue (red) 
crosses. (b) RL-parallel implementation. Poles of the t1 (t2) load are 
represented with blue (red) crosses. 

The PA has been measured for two Rs values (150  and 
100 ) and different positions of a triple-stub tuner, used to 
enable the load variation [Fig. 6(a)]. With Rs = 150 , the 
circuit is stable for the measured loads A and B and exhibits a 
frequency division by two for the loads C and D. See the 
spectra corresponding to B and C in Fig. 6(b) and 6(c). The 
low amplitude of the subharmonic spectral line is due to the 
near cancellation of this frequency component at the circuit 
output, due its odd-mode nature. The region of the unstable 
loads is in very good correspondence with the analysis in Fig. 
3. With Rs = 100  the circuit is stable for all the load values 
[E,F,G,H are shown in Fig 6(a)] and all the Pin values, in 
agreement with Fig. 5.  
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Fig. 5. Calculation of the unstable Pin interval using the locus in (3). The limit 
of this interval correspond to the edge points of the locus. The calculation has 
been repeated for different values of the stabilization resistor Rs.  

Fig. 6 Measurements for different positions of a triple-stub tuner. (a) The 
loads A,B,C,D correspond to tests under Rs = 150 . The loads E,F,G,H 
correspond to tests under Rs = 100 . (b) Spectrum for Rs = 150  and load B. 
(c) Spectrum for Rs = 150  and load C.  

IV. CONCLUSION 

A method has been presented to predict odd-mode instabilities 
in power amplifiers under output mismatch effects. It is based 
on tracing of the Hopf- and flip-bifurcation loci on the Smith 
Chart of the fundamental-frequency termination. The loci are 
calculated from a limit oscillation condition, evaluated at the 
unstable odd-mode loop. Initial values are efficiently obtained 
through a graphical method. Very good results have been 
obtained in the validation with pole-zero identification and 
with measurements.  
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