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Abstract: Imagine an agent that performs tasks according to different strategies. The goal of
Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by
the agent, by simply observing the agent’s actions and the environmental conditions during a certain
period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner
must be able to build a model of the behavior of the agent. In both settings, the only assumption
is that the learner has access to a training set that contains instances of observed behavioral traces
for each available strategy. This paper studies a machine learning approach based on Probabilistic
Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the
performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba
vacuum cleaner robot), and compare it with a collection of other machine learning approaches.

Keywords: learning from observation; behavioral recognition; behavioral cloning; probabilistic finite
automaton; ambient intelligence; virtual agents

1. Introduction

Modern training, entertainment and education applications make extensive use of autonomously
controlled virtual agents or physical robots. In these applications, the agents must display complex
intelligent behaviors that, until recently, were only shown by humans. Driving simulations, for
example, require having vehicles moving in a realistic way in the simulation, while interacting with
other virtual agents as well as humans. Likewise, computer games require artificial characters or
opponents that display complex intelligent behaviors to enhance the entertainment factor of the games.
Manually creating those complex behaviors is usually expensive. For example, the artificial intelligence
for the two virtual characters in the game Façade [1] took more than five person-years to develop.
Additionally, the required knowledge to create these behaviors is often tacit. In other words, humans
that are proficient in the task at hand have difficulties articulating this knowledge in an effective
manner so that it can be included into the agent’s behavior. For example, when asked how hard to
apply the brakes in a car when approaching a traffic light, most human practitioners would be unable
to find appropriate words to describe the experience. On the other hand, showing how to do it is
much easier.

Another example comes from the United States Department of Defense, which was one of the
first official institutions to recognize the value of intelligent virtual agents that could reliably act as
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intelligent opponents, friendly forces and neutral bystanders in training simulations. The availability of
such agents permitted them to avoid using human experts, a scarce and expensive resource, who had
been used to manually control such entities in past training sessions. Semi-Automated Forces (SAF)
were the first attempt at developing such software agents, where simulated enemy and friendly entities
inhabit the virtual training environment and act to combat or support war-fighters in training sessions.
Recent advances in the closely related area of Computer-Generated Forces (CGF) indicate important
progress in simulating behaviors that are more complex, but at the cost of operational efficiency.
However, CGF models are still very difficult to build, validate and maintain.

An attractive and promising alternative to handcrafting behaviors is to automatically generate
them through machine learning techniques. The problem of automatically generating behaviors
has been studied in artificial intelligence at least from two different perspectives. The first one is
Reinforcement Learning (RL), which focuses on learning from experimentation. The second one is
Learning from Observation (LfO), focusing on learning by observing sample traces of the behavior to
be learned. Reinforcement Learning is by far the better known and studied of the two, but presents
several open problems like scalability and generalization. Furthermore, RL does not lend itself to learn
human-like behaviors, given its inherent nature toward optimization. We believe that LfO offers a
promising and computationally tractable approach to achieve human-like behaviors with high fidelity,
at an affordable cost, and with a reasonable level of generalization. Although LfO has already shown
some success in learning behaviors requiring tacit knowledge, many open problems remain in the field.

Some of the early work on the field refers to a technique called programming by demonstration.
For example, Bauer [2] showed how to make use of knowledge about variables, inputs, instructions
and procedures in order to learn programs, which basically amounts to learning strategies to perform
abstract computations by demonstration. Programing by demonstration has also been especially
popular in robotics [3]. Another early mention of LfO comes from Michalski et al. [4], who define
it merely as unsupervised learning. Gonzalez et al. [5] discussed LfO at length, but provided no
formalization nor suggested an approach to realize it algorithmically. More extensive work on the
more general LfO subject came nearly simultaneously but independently from Sammut et al. [6] and
Sidani [7]. Fernlund et al. [8] used LfO to build agents capable of driving a simulated automobile in
a city environment. Pomerleau [9] developed the Autonomous Land Vehicle in a Neural Network
(ALVINN) system that trained neural networks from observations of a road-following automobile in
the real world. Moriarty and Gonzalez [10] used neural networks to carry out LfO for computer games.
Könik and Laird [11] introduced LfO in complex domains with the State, Operator and Result (SOAR)
system, by using inductive logic programming techniques. Other significant work done under the
label of learning from demonstration has emerged recently in the Case-Based Reasoning community.
For example, Floyd et al. [12] present an approach to learn how to play RoboSoccer by observing
the play of other teams. Ontañón et al. [13] use learning from demonstration for real-time strategy
games in the context of Case-Based Planning. Another related area is that of Inverse Reinforcement
Learning [14], where the focus is on reconstructing the reward function given optimal behavior
(i.e., given a policy, or a set of trajectories). One of the main problems here is that different reward
functions may correspond to the observed behavior, and heuristics need to be devised to consider only
those families of reward functions that are interesting. In this paper, we present an approach to LfO
based on Probabilistic Finite Automata (PFAs). PFAs are interesting because, in addition to learning
a model of the desired behavior, they can also assess the probability that a certain behavior was
generated by a given PFA. For that reason, given a training set consisting of traces with observations
that come from an agent exhibiting different behaviors, PFAs can be used for two different tasks. The
first one is behavioral recognition: a PFA can be trained from the traces of each one of these behaviors
(one PFA per different behavior). Then, given a new, unseen, behavioral trace from another agent,
these PFAs can be used to assess the probability that this new behavior has been produced by each one
of them. Assuming that each PFA is a good model of each of the behaviors of interest, this effectively
corresponds to identifying which of the initial set of behaviors was exhibited by the new agent. The
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second one is behavioral cloning: by training a PFA with the traces corresponding to the desired
behavior, such a PFA can be used to recreate this behavior in a new, unseen, situation. The notion of
BC was first introduced in [15] to refer to a form of imitation learning whose motivation is to build a
model of the behavior of a human.

The perspective provided by our work is general enough to deal with significant applications
such as masquerade detection in computer intrusion, analysis of the task performed by the user in
some e-learning activity, classification and prediction of the user behavior in a web user interaction
process and, more generally, Activity Recognition (AR). The aim of AR is to recognize the actions
and tasks of one or several agents taking as input a sequence of observations of their actions and the
state of the environment. Most research in AR concentrates on the recognition of human activities.
One goal of Human Activity Recognition (HAR) is to provide information on a user’s behavior that
allows computing systems to proactively assist users with their tasks (see [16] for a detailed overview
on the subject). Hidden Markov Models are widely used tools for prediction in the context of HAR.
Successful applications of these machines include important applications like speech recognition [17]
and DNA sequence alignment [18].

The remainder of this paper is organized as follows. In Section 2, we introduce our proposed
LfO framework, we explain how this framework can be used for BC and BR, and we propose a set
of evaluation metrics to assess the performance of the approach. Then, in Section 3, we report on the
experiments conducted in the context of a simulated learning environment (a virtual Roomba vacuum
cleaner robot). Finally, concluding remarks and future work ideas are presented in Section 4.

2. Methodology

The key idea in Learning from Observation is that there is a learner that observes one or several
agents performing a task in a given environment, and records the agent’s behavior in the form of traces.
Then, those traces are used by the learner to generalize the observed behavior and replicate it in other
similar situations. Most LfO work assumes that the learner does not have access to a description of
the task during learning, and thus, the features of the task and the way it is achieved must be learned
purely through unobtrusive observation of the behavior of the agent.

Let B be the behavior (by, behavior, we mean the control mechanism, policy, or algorithm that
an agent or a learner uses to determine which actions to execute over time) of an agent A. Our
formalization is founded on the principle that behavior can be modeled as a stochastic process, and
its elements as random variables dependent on time. Our model includes the following variables
(we use the following convention: if X is a variable, then we use a calligraphic X to denote the set of
values it can take, and lower case x ∈ X to denote specific values it takes.): the state X ∈ X of the
environment, the unobservable internal state C ∈ C of the agent and the perceptible action Y ∈ Y that
the agent executes. We interpret the agent’s behavior as a discrete-time process Z = {Z1, ..., Zk, ...}
(which can be either deterministic or stochastic), with state space I = X × C × Y . Zt = (Xt, Ct, Yt)

is a multidimensional variable that captures the state of the agent at time t, i.e, a description of the
environment, the internal state and the action performed at time t.

The observed behavior of an agent in a particular execution defines a trace T of observations:
T = [(x1, y1), . . . , (xm, ym)], where xt and yt represent the specific perception of the environment and
action of the agent at time t. The pair of variables Xt and Yt represents the observation of the agent A.
We assume that the random variables Xt and Yt are multidimensional discrete variables. Under this
statistical model, we distinguish three types of behaviors [19]: Type 1 (that includes strict imitation
behavior) corresponding to a process that only depends on time (independent of previous states and
actions); Type 2 (reactive behavior), where Yt may only depend on the time t, the present state Xt and
the non-observable internal state Ct; and Type 3 (planned behavior) for the case in which the action
Yt depends on the time t, on the non-observable internal state Ct, and on any of the previous states
X1, . . . , Xt and actions Y1, . . . , Yt−1.
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When a behavior does not explicitly depend on time, we say that it is a stationary behavior. In
addition, we distinguish between deterministic and stochastic behavior.

2.1. LfO Models

In this article, we model only stationary behaviors of Types 2 and 3 that do not explicitly depend
on the internal state. Moreover, we limit the “window” of knowledge in the case of planned behavior
to one previous observation (our methodology could be easily extended to allow a larger memory,
with the obvious drawback of an increased number of features). This gives rise to three possibilities
for the current action Yt:

• Yt depends only on current state Xt (Model 1);
• Yt depends on previous and current state: Xt, Xt−1 (Model 2);
• Yt depends on previous and current state: Xt, Xt−1, and on previous action Yt−1 (Model 3).

An example of the kind of information available for each of the three models is presented in
Table 1, where each row represents a training example, and columns represent features. The last
column (Class) is the action to be performed, which is what our models try to predict.

Table 1. Training examples for LfO.

Model 1 Model 2 Model 3

1st Class 1st 2nd Class 1st 2nd 3rd Class

x1 y1 − x1 y1 − − x1 y1
x2 y2 x1 x2 y2 x1 y1 x2 y2
. . . . . . . . . . . . . . . . . . . . . . . . . . .
xm ym xm−1 xm ym xm−1 ym−1 xm ym

Note that some of the actual strategies employed by the agents in our experiments exhibit more
complex dependencies (see Section 3.2), but the model of the behavior learned by our approach is
restricted to one of the three models presented above.

2.2. Machine Learning Tools

We describe in this section the kind of learning machines that we propose for modeling reactive
and planned behaviors. Note that the only information we have is a trace with pairs (state, action): we
do not know if the trace was produced by a deterministic or a stochastic agent, or whether it uses an
internal state. However, we would like to have a mechanism that predicts, in each state, the action
to perform.

If the learned strategy is a deterministic one, this can be done via a classifier, using more or
less features depending on the model (see Table 1). We experimented with a decision tree (DT)
algorithm [20], a probabilistic neural network (PNN) [21], the k Nearest Neighbour (kNN) algorithm,
the RProp algorithm for multilayer feedforward networks [22] and the Naive Bayes (NB) algorithm. On
the other hand, for training stochastic models, we propose the use of PFAs, which we describe below.

PFAs were introduced in the 1960s by Rabin (see [23]) and are still used in several fields of science
and technology for modeling stochastic processes in applications such as DNA sequencing analysis,
image and speech recognition, human activity recognition and environmental problems, among others.
The reader is referred to the work of Dupont et al. [24] for an overview of the basic properties of PFAs
and a presentation of their relation with other Markovian models.

Formally, a PFA is a 5-tupleA = (Σ, Q, φ, ι, γ), where Σ is a finite alphabet (that is, a discrete set of
symbols), Q is a finite collection of states, φ : Q× Σ×Q −→ [0, 1] is a function defining the transition
probability (i.e., φ(q, a, q′) is the probability of emission of symbol a while transitioning to state q′ from
state q), ι : Q −→ [0, 1] is the initial state probability function and γ : Q −→ [0, 1] is the final state
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probability function. In addition, the following functions, defined over words α = (a1, . . . , am) ∈ Σ∗

and state paths π = (q1, . . . , qm) ∈ Q∗, must be probability distributions (Equation (1) when using
final probabilities and Equation (2) otherwise):

PA(α, π) = ι(q1)

(
m−1

∏
i=1

φ(qi, ai, qi+1)

)
γ(qm) (1)

P̂A(α, π) = ι(q1)
m−1

∏
i=1

φ(qi, ai, qi+1) (2)

This implies in particular that the two following functions are probability distributions over Σ∗:

PA(α) = ∑
q,q′

ι(q)φ(q, α, q′)γ(q′) (3)

P̂A(α) = ∑
q,q′

ι(q)φ(q, α, q′) (4)

Note that PA(α) is the probability of generating word α and P̂A(α) is the probability of generating
a word with prefix α. Here, φ(q, α, q′) is the extension of function φ to words with the obvious meaning:
the probability of reaching state q′ from state q while generating word α (the reader is referred to the
work of Dupont et al. [24] for a detailed explanation of Equations (3) and (4)). In many real situations,
we are interested in PFAs with no final probabilities, and in this case we use Equation (4).

2.3. Training a Probabilistic Finite Automaton

We propose to train a PFA A = (Σ, Q, φ, ι, γ) to model an unknown behavior by observing its
trace T. To this end, we define the alphabet Σ of automaton A to be the set of all actions Y that the
agent can perform. The state space Q depends on the model: it is either X (Model 1), or X × X
(Model 2) or X ×Y ×X (Model 3).

Training the automaton A from a trace [(x1, y1), (x2, y2), . . . , (xm, ym)] consists of determining the
transition probability function values {φ(q, a, q′) | q, q′ ∈ Q, a ∈ Σ} and the initial probability values
{ι(q) | q ∈ Q} (we opted for a model with no final probabilities). For any state q ∈ Q, let ]q be the
number of occurrences of symbol q in trace T. In the case of Model 1, ]q = |{i ∈ 1, m | xi = q}|, for
Model 2, if q = (x, x′), then ]q = |{i ∈ 2, m | xi−1 = x, xi = x′}|, and for Model 3, if q = (x, y, x′), then
]q = |{i ∈ 2, m | xi−1 = x, yi−1 = y, xi = x′}| . Similarly, we define ](q, a) and ](q, a, q′) for a ∈ Σ and
q, q′ ∈ Q as follows:

Model 1:
q = x, a = y, q′ = x′,

](q, a) = |{i ∈ 1, m | xi = x, yi = y}|,

](q, a, q′) = |{i ∈ 1, m− 1 | xi = x, yi = y, xi+1 = x′}|.

Model 2:
q = (x′′, x), a = y, q′ = (x, x′),

](q, a) = |{i ∈ 2, m | xi−1 = x′′, xi = x, yi = y}|,

](q, a, q′) = |{i ∈ 2, m− 1 | xi−1 = x′′, xi = x, xi+1 = x′, yi = y}|.

Model 3:
q = (x′′, y′′, x), a = y, q′ = (x, y, x′),

](q, a) = |{i ∈ 2, m | xi−1 = x′′, xi = x, yi−1 = y′′, yi = y}|,
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](q, a, q′) = |{i ∈ 2, m− 1 | xi−1 = x′′, xi = x, xi+1 = x′, yi−1 = y′′, yi = y}|.

Note that, in the case of Models 2 and 3, ](q, a, q′) is zero by definition if the last element of state q
is different than the first element of state q′. Next, we estimate the values of ι and φ with the following
formulas (we use Laplace smoothing to avoid zero values in the testing phase for elements that never
appeared in training):

ι(q) :=
]q + 1

m + |Q| , φ(q, a, q′) :=
](q, a, q′) + 1
]q + |Q| × |Σ|

It is easy to see that P(a | q), the probability of performing the action a when in state q, defined as
∑q′∈Q φ(q, a, q′), becomes (](q, a) + |Q|)/(]q + |Q| × |Σ|) (see [24] for a survey on learnings PFAs).

2.4. Evaluation Metrics

In the case of BR, the goal is to identify which was the strategy employed by an agent A using the
learning trace T = [(x1, y1), . . . , (xm, ym)] that the agent produced. To this end, we train a PFA Ak for
each available planned strategy, we compute the value PAk (α, πM) and return argmaxk{PAk (α, πM)},
where α = (y1, . . . , ym) and πM = (qM

1 , . . . , qM
m ). The value of qM

i depends on the amount M of
memory used: q1

i = xi for Model 1, q2
i = (xi−1, xi) for Model 2 and q3

i = (xi−1, yi−1, xi) for Model 3.
In practice, we use the values PAk (α, πM) to measure the distance between the behavior B

exhibited by agent A (through the learning trace T) and the behavior B′ of the strategy modeled by
automaton Ak by computing the negative log-probability:

RM
Ak
(T) = − 1

m
log PAk (α, πM) (5)

This value can be interpreted as a Monte Carlo approximation of the crossed entropy between
behaviors B and B′, known in the literature as Vapnik’s risk (see [19]). Obviously, maximizing
PAk (α, πM) is the same as minimizing RM

Ak
(T) and for practical reasons (in order to avoid underflow

and because adding is faster than multiplying), we use distances instead of probabilities.
In the case of BC, we are interested in assessing the quality of the models proposed (that is, we

would like to know how well does the cloned agent behave on previously unseen data). For this
purpose, we use two different metrics, which we detail below.

Predictive Accuracy. This is a standard measure for classification tasks. LetM be the model
trained by one of the learning algorithms using the trace obtained by observing an agent A (that
follows a certain strategy) on a fixed set of maps. This model can be either deterministic (in which
case, there is only one possible action at any point in time) or stochastic (the action is chosen randomly
according to some probability distribution).

Now, let T = [(x1, y1), . . . , (xm, ym)] be the trace of the agent A on a different previously unseen
map. The predictive accuracy AccM(T) is measured as follows:

AccM(T) = 1
m ∑m

i=1 ](M, T, i), ](M, T, i) =

{
1, if M([xi−1, yi−1, ]xi) = yi

0, otherwise
(6)

whereM([xi−1, yi−1, ]xi) represents the action predicted by the modelM for the state xi, possibly
knowing previous state and action. IfM is a stochastic model,M([xi−1, yi−1, ]xi) is a random variable
over Y with the probability distribution {P(a | q)}a∈Y , where q = xi for Model 1, q = (xi−1, xi) for
Model 2 and q = (xi−1, yi−1, xi) for Model 3.

Monte Carlo Distance. To assess the adequacy of a modelM in reproducing the behavior of an
agent A, we propose a Monte Carlo-like measure based on estimating the crossed entropy between
the probability distributions associated with both the modelM and the agent A. More concretely, let
T = [(x1, y1), . . . , (xn, yn)] be a trace generated (the model predicts the next action, but the next state is
given by the actual configuration of the map; in the case that it is impossible to perform a certain action
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because of an obstacle, the agent does not change its location) according to modelM on a fixed map
(different than the one used in training), and let T′ = [(x′1, y′1), . . . , (x′m, y′m)] be the trace generated by
the agent on the same map. We define the Monte Carlo distance between modelM and agent A as
follows (estimated through traces T and T′):

H(T, T′) = − 1
n

n

∑
i=1

log

[
1
m

m

∑
j=1

I{o′j}(oi)

]
(7)

where oi = ([xi−1, yi−1, ]xi, yi) and o′i = ([x′i−1, y′i−1, ]x′i , y′i) (depending on the model used, we may
store into our observations information about previous state and action). Here, I{o′j}means the indicator

function of set {o′j}. The previous measure in Equation (7) is obviously empirical. For large enough
traces, it approximates the true cross entropy between the behavior corresponding to modelM and
the behavior exhibited by agent A. Using Laplace smoothing, the previous formula becomes:

H(T, T′) = − 1
n

n

∑
i=1

log

[
∑m

j=1 I{o′j}(oi) + 1

m + |Q| × |Y|

]
(8)

3. Experiments

We have run our experiments with a simulator of a simplified version of a Roomba (iRobot,
Bedford, MA, USA), which is a series of autonomous robotic vacuum cleaners sold by iRobot
(According to the company’s website (http://www.irobot.com), iRobot Corporation is an American
advanced technology company founded in 1990 by Massachusetts Institute of Technology roboticists.
More than 14 million home robots have been sold worldwide. Roomba was introduced in 2002). The
original Roomba vacuum cleaner uses a set of basic sensors in order to perform its tasks. For instance,
it is able to change direction whenever it encounters an obstacle. It uses two independently operating
wheels that allow 360 degree turns in place. Additionally, it can adapt to perform other more creative
tasks using an embedded computer in conjunction with the Roomba Open Interface.

3.1. Training Maps

The environment in which the agent moves is a 40 × 60 rectangle surrounded by walls, which
may contain all sorts of obstacles. For testing, we have randomly generated obstacles on an empty
map. Below, we briefly explain the six maps used in the training phase (they are visually represented
in Figure 1). Each of them is meant to represent a real-life situation, as indicated by their title.

• Empty Map. The empty map consists of a big empty room with no obstacles.
• Messy Room. The messy room simulates an untidy teenager bedroom, with all sorts of obstacles

on the floor, and with a narrow entry corridor that makes the access to the room even more
challenging for any “hostile intruder”.

• The Office. The office map simulates a space in which several rooms are connected to each other
by small passages. In this case, obstacles are representing big furniture such as office desks or
storage cabinets.

• The Passage. The highlight of this map is an intricate pathway that leads to a small room.
The main room is big and does not have any obstacle in it.

• The Museum. This map is intended to simulate a room from a museum, with the main sculpture
in the center, and with several other sculptures on the four sides of the room, separated by
small spaces.

• The Maze. In this map, there are many narrow pathways with the same width as the agent.
It also contains a little room, which is difficult to find.

http://www.irobot.com
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Empty Map Messy Room The office

The Passage The Museum The Maze

Figure 1. Training Maps, where obstacles are shown in black. The starting position of the vacuum
cleaner is shown in red.

3.2. Agent Strategies

In our experiments, the simulation time is discrete, and, at each time step, the agent can take
one out of these four actions: up, down, left and right, with their intuitive effect. The agent perceives
the world through the input variable X having four different binary components (up, down, left,
right), each one of them identifying what the vacuum cleaner can see in each direction (obstacle, no
obstacle). We have designed a series of strategies with different complexities. When describing a
strategy, we must define the behavior of the agent in a certain situation (its state Xt) that depends on
the configuration of obstacles in its vicinity (prefix RND is used for stochastic strategies).

• WALK. The agent always performs the same action in a given state. As an example, a possible
strategy could be to go Right whenever there are no obstacles, and Up whenever there is only
one obstacle to the right (stationary deterministic behavior of Type 2, it only depends on current
state Xt).

• RND_WALK. In this strategy, the next move is selected randomly from the set of available moves.
For example, an agent that has obstacles to the right and to the left can only move Up or Down,
but there is no predefined choice between those two (stationary stochastic behavior of Type 2,
it only depends on current state Xt).

• CRASH. In this strategy, the agent should perform the same action as in the previous time step
(if possible). Whenever it encounters a new obstacle in its way, the agent must choose a certain
predefined action. Therefore, it needs to have information about its previous action in order to
know where to move (stationary deterministic behavior of Type 3, it depends on current state Xt

and previous action Yt−1).
• RND_CRASH. This strategy allows the agent to take a random direction when it crashes with an

obstacle. The main difference with the RND_WALK is that in RND_CRASH the agent does not
change direction if it does not encounter an obstacle in its way (stationary stochastic behavior of
Type 3, it depends on current state Xt and previous action Yt−1).

• ZIGZAG. It consists of different vertical movements in two possible directions, avoiding the
obstacles. It has an internal state that tells the robot if it should advance towards the left or the
right side with this vertical movements: it initially goes towards the right side, and once it reaches
one of the right corners, the internal state changes so that the robot will start moving toward the
left side (stationary deterministic behavior of Type 3, it depends on current state Xt, previous
action Yt−1 and internal state Ct).

• RND_ZIGZAG. This strategy is similar to the previous one, with the only difference that, once
it reaches a corner, the internal state could either change its value or not, and this is randomly
assigned (stationary stochastic behavior of Type 3, it depends on current state Xt, previous action
Yt−1 and internal state Ct).
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3.3. Trace and Performance Evaluation

We work with an agent represented by a simplified version of a Roomba robot. In our
implementation, although it is possible for the agent to start anywhere, the traces we generate are
always with the agent starting in the top-left corner of the map. We use the strategies explained in
Section 3.2 and the maps described in Section 3.1. For each of the six strategies, we have generated six
traces of 1500 time steps (one for each map) and merged them together into one single trace, which
was used as training data.

3.4. Behavioral Recognition Experimentation

In order to determine whether our approach leads to a correct identification of the agent’s strategy,
we performed the following experiment. First, we generated 100 random maps (each of them having
a total of 150 obstacles). Then, we generated a family of traces (each of them of 1500 time steps)
for each pair strategy/map: (Ti

n)i∈{1,...,100},n∈{1,...,6} and we computed the log-normalized distance
RM
Am

(Ti
n) between the observation trace Ti

n and the automaton Am (see Equation (5)). The average
value RM

m,n = ∑100
i=1 RM

Am
(Ti

n)/100 of these distances is reported in Table 2, in the (m, n)-th cell.

Table 2. Distance matrix.

R1
m,n values (Model 1)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 8.4267 9.2504 7.3178 7.8728 8.9871 9.0486
RND_WALK 8.9414 3.9751 4.3265 3.8846 4.6463 4.6070
CRASH 8.4996 6.5079 4.7726 5.8376 4.3072 4.3743
RND_CRASH 8.4245 4.1331 3.9854 3.4244 4.3935 4.3924
ZIGZAG 9.1459 7.1087 5.3849 5.8159 3.9715 3.9815
RND_ZIGZAG 9.1683 7.1035 5.4043 5.7853 3.9563 3.9591

R2
m,n values (Model 2)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 9.7283 9.8276 8.5274 8.7760 9.7278 9.7654
RND_WALK 9.8016 4.9923 6.4832 5.8042 6.0120 6.0783
CRASH 9.8502 8.0886 6.8461 7.4848 6.4688 6.5510
RND_CRASH 9.8487 5.6960 6.1228 5.2204 6.3857 6.4331
ZIGZAG 9.8663 8.1203 7.8902 8.4213 5.5873 5.6445
RND_ZIGZAG 9.8681 8.1002 7.8278 8.3599 5.5506 5.5981

R3
m,n values (Model 3)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 11.7101 11.8912 10.5335 10.7006 11.8687 11.8792
RND_WALK 11.8415 7.1282 8.8885 8.2754 8.2794 8.3277
CRASH 11.8359 11.4252 8.4840 9.0659 8.1677 8.2454
RND_CRASH 11.8261 10.7019 7.5571 6.5445 7.8168 7.8871
ZIGZAG 11.8808 11.2667 9.2245 9.6458 6.7169 6.8174
RND_ZIGZAG 11.8824 11.2563 9.1614 9.5850 6.6728 6.7602

Our system classifies the testing task represented by column n as being generated by the
automaton Ak such that k = argminm RM

m,n (minimizing distance maximizes trace probability).
The smallest value of each column is marked in bold.

Analysis of the results indicates that the PFA recognition system is able to correctly identify
the three random strategies (RND_WALK, RND_CRASH and RND_ZIGZAG). However, the system
most often fails when recognizing the respective underlying deterministic strategies (WALK, CRASH

and ZIGZAG). In addition, note that the deterministic versions of the random behaviors CRASH

and ZIGZAG are not confused with each other but each of them is most of the times classified by
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the system as its corresponding non-deterministic version (CRASH is classified as RND_CRASH and
ZIGZAG as RND_ZIGZAG for all three models). Moreover, WALK is, on average, correctly classified by
Models 2 and 3.

In Table 3, we present the confusion matrix. This is a specific table layout that allows the
visualization of the performance of a supervised learning algorithm (see [16]). The numerical
value CM

m,n placed in the (m, n)-th cell of this matrix is the empirical probability of the n-th task
to be classified as the m-th task, that is, the percentage of the learning traces produced using strategy n
that are recognized as being produced by strategy m. More precisely,

CM
m,n =

|{i ∈ {1, . . . , ntests} | m = argmink RM
Ak
(T̄i

n)}|
ntests

The diagonal of this matrix reflects the empirical probabilities of right classification and the sum
of the other rows different from the diagonal element is the probability of error.

Table 3. Confusion matrix.

C1
m,n values (Model 1)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 0.71 0.00 0.00 0.00 0.00 0.00
RND_WALK 0.12 0.99 0.10 0.00 0.00 0.01
CRASH 0.03 0.00 0.20 0.00 0.03 0.04
RND_CRASH 0.01 0.01 0.63 0.99 0.10 0.09
ZIGZAG 0.13 0.00 0.03 0.01 0.39 0.24
RND_ZIGZAG 0.00 0.00 0.04 0.00 0.48 0.62

C2
m,n values (Model 2)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 0.28 0.00 0.04 0.01 0.01 0.01
RND_WALK 0.05 1.00 0.24 0.01 0.00 0.00
CRASH 0.24 0.00 0.21 0.01 0.03 0.03
RND_CRASH 0.42 0.00 0.43 0.97 0.03 0.01
ZIGZAG 0.01 0.00 0.01 0.00 0.18 0.05
RND_ZIGZAG 0.00 0.00 0.07 0.00 0.75 0.90

C3
m,n values (Model 3)

9000/1500 obs WALK RND_WALK CRASH RND_CRASH ZIGZAG RND_ZIGZAG

WALK 0.27 0.00 0.03 0.01 0.01 0.01
RND_WALK 0.05 1.00 0.01 0.00 0.00 0.00
CRASH 0.07 0.00 0.20 0.01 0.03 0.02
RND_CRASH 0.60 0.00 0.64 0.98 0.01 0.01
ZIGZAG 0.01 0.00 0.02 0.00 0.16 0.03
RND_ZIGZAG 0.00 0.00 0.10 0.00 0.79 0.93

We observe that this second table confirms the conclusions of the first one, with one notable
exception: Models 2 and 3 seem to be more prone to confuse the WALK strategy with RND_CRASH,
while Model 1 is the one with highest rates of success. Note that the percentage of right classification
is not negligible for deterministic strategies of Type 3 (around 0.20 in the case of CRASH for all three
models, and between 0.16 and 0.39 for ZIGZAG).

3.5. Behavioral Cloning Experimentation

As in the case of BR, we used a single trace containing 9000 time steps for each strategy to train
our models. For testing, we used the same set of 100 randomly generated maps.
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3.5.1. Predictive Accuracy

The numbers in the three tables of Table 4 represent average values of the predictive accuracy (see
Equation (6)) computed for each of the randomly generated maps. Note that the only stochastic model
is the PFA.

Table 4. Predictive accuracy for the generated maps (higher is better).

Model 1 PFA DT PNN KNN RProp NB

WALK 0.977 0.925 0.924 0.925 0.452 0.504
RND_WALK 0.276 0.276 0.275 0.276 0.270 0.253
CRASH 0.571 0.629 0.629 0.626 0.561 0.336
RND_CRASH 0.388 0.398 0.392 0.394 0.381 0.381
ZIGZAG 0.485 0.478 0.478 0.475 0.454 0.456
RND_ZIGZAG 0.485 0.467 0.468 0.464 0.442 0.447

Average 0.530 0.529 0.528 0.527 0.427 0.396

Model 2 PFA DT PNN KNN RProp NB

WALK 0.288 0.516 0.079 0.124 0.448 0.078
RND_WALK 0.270 0.276 0.269 0.272 0.267 0.267
CRASH 0.509 0.612 0.570 0.578 0.547 0.328
RND_CRASH 0.391 0.419 0.411 0.421 0.392 0.370
ZIGZAG 0.522 0.554 0.556 0.543 0.504 0.460
RND_ZIGZAG 0.528 0.584 0.558 0.574 0.513 0.451

Average 0.418 0.493 0.407 0.419 0.445 0.326

Model 3 PFA DT PNN KNN RProp NB

WALK 0.288 0.079 0.080 0.119 0.080 0.071
RND_WALK 0.267 0.276 0.267 0.271 0.278 0.271
CRASH 0.702 0.815 0.705 0.725 0.758 0.563
RND_CRASH 0.923 0.945 0.909 0.929 0.930 0.929
ZIGZAG 0.881 0.960 0.885 0.910 0.871 0.836
RND_ZIGZAG 0.880 0.961 0.882 0.930 0.876 0.815

Average 0.657 0.673 0.621 0.647 0.632 0.581

Analyzing the results, we can see that our hierarchy of models behaves as expected: Type 3
behavior is very well captured by Model 3 (the one that uses information about both previous state
and previous action), while Type 2 deterministic behavior is better explained by Model 1 (in which we
only take into account the current state). Note that, even though, intuitively, the more info we have
the best we can predict, in the case of Type 2 behavior, using this extra information can do more harm
than good. Another anticipated result that was experimentally confirmed is that Model 1 would be
very good in predicting the WALK strategy because the agent always performs the same action in a
given state. A surprising conclusion that can be drawn is that, while RND_WALK should be the most
unpredictable strategy of all, in the case of Models 2 and 3, most of our classifiers have even worse
accuracy for the WALK strategy. It is worth noting the high accuracy rates of Model 3 for RND_CRASH,
RND_ZIGZAG and ZIGZAG, all Type 3 strategies. Furthermore, this model gives somewhat lower but
still satisfactory prediction rates for the CRASH strategy.

A PFA is the best option when predicting the behavior of WALK and ZIGZAG strategies (both in
their deterministic and stochastic versions) using a minimal amount of memory. In addition, although,
intuitively, a stochastic model should be better than a deterministic one in describing the behavior of a
random process. According to the predictive accuracy metric, the advantage of using PFAs apparently
has to do more with the amount of memory used and not with the nature of the underlying process.
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3.5.2. Monte Carlo Distance

Predictive accuracy, however, is not a very good metric for BC when behaviors are
non-deterministic. Consider, for example, the extreme case of cloning a random agent. Using the
predictive accuracy metric, the highest accuracy a learning agent could expect is 0.25 (if there are four
possible actions), even when the behavior is perfectly cloned. Thus, the Monte Carlo distance metric is
a more adequate metric when comparing stochastic behaviors.

We used the same set of 100 randomly generated maps. For each of the classifiers (DT, PNN, KNN,
RProp, NB) and, for each of the six predefined strategies (WALK, RND_WALK, CRASH, RND_CRASH,
ZIGZAG, RND_ZIGZAG), we generated the trace T produced by an agent whose next action is
dictated by the classifier on each of the randomly generated maps (each trace would contain at most
1500 observations). Note that, since the strategy is a learned one, it could happen that the action
suggested by the model is not feasible (for example, the model says to go up even if there is an
obstacle in that direction). Therefore, one may end up having empty traces (marked by a dash in
Table 5). On the other hand, we generated the trace T′ of each of the six predefined strategies on those
maps (in this case, all traces have 1500 observations). In Table 5, we present the average of H(T, T′)
for each pair classifier/strategy (see Equation (8)). For stochastic models, the next action, instead
of being predefined, is obtained by sampling according to the probability distribution given by the
trained model.

Table 5. Monte Carlo distance between original and cloned behavior (lower is better).

Model 1 PFA DT PNN KNN RProp NB

WALK 0.854 0.866 0.962 0.866 4.836 4.797
RND_WALK 2.487 5.130 5.062 5.062 - -
CRASH 3.012 2.599 2.599 2.574 3.119 5.572
RND_CRASH 3.067 3.853 3.762 3.823 3.343 3.767
ZIGZAG 2.261 3.497 3.608 3.497 3.316 4.324
RND_ZIGZAG 2.357 3.506 3.591 3.506 4.354 4.354

Average 2.340 3.242 3.264 3.221 3.794 4.563

Model 2 PFA DT PNN KNN RProp NB

WALK 6.165 7.072 7.274 6.718 6.159 6.033
RND_WALK 5.385 6.886 6.958 7.189 7.538 7.575
CRASH 5.538 6.460 5.408 5.760 4.817 -
RND_CRASH 4.750 5.157 5.602 5.757 4.912 -
ZIGZAG 4.818 4.191 4.501 4.336 - 7.663
RND_ZIGZAG 4.759 4.502 4.727 4.544 4.524 7.683
Average 5.236 5.711 5.745 5.718 5.590 7.239

Model 3 PFA DT PNN KNN RProp NB

WALK 6.961 8.082 7.953 7.524 6.955 6.830
RND_WALK 6.940 7.894 7.941 7.983 7.978 8.348
CRASH 6.000 4.797 6.924 6.685 5.613 5.613
RND_CRASH 5.470 4.986 6.324 5.325 5.708 -
ZIGZAG 5.914 4.561 5.324 4.903 5.871 8.460
RND_ZIGZAG 5.845 4.220 5.416 4.934 5.234 8.459

Average 6.188 5.757 6.647 6.226 6.227 7.542

According to this metric, PFAs are globally the best tool when less information is used
(Models 1 and 2), being outperformed by DTs in the case in which the model of the learner also
takes into consideration the previous action (Model 3). Note that PFAs are mostly better than other
classifiers when learning random strategies. One surprising conclusion that can be drawn is that NB
seem to be the best tool for the WALK strategy when the learner is allowed to use knowledge about the
past (Models 2 and 3).



Sensors 2016, 16, 958 13 of 16

Finally, for each model, each strategy and each machine learning tool, we report the number
of times the given tool was the best one. Since we have 100 different maps, this number is always
between 0 and 100. In the case of equal Monte Carlo distance score, we assigned a corresponding
fraction to each of the ‘winning’ models. For example, if there are three tools with the same score, each
of them receives 1/3 points for that particular map (therefore, we end up having real numbers other
than integers).

Table 6 confirms PFAs as being the best tool in the case of Model 1, this time even for the CRASH

strategy. In the case of Model 2, it is the best overall tool and the most reliable one for random strategies.
In addition, note that the frequency with which it returns the best score is very close to the NB one for
WALK and to the DT one for ZIGZAG. Again, it is the the third model where its use does not pay off,
being outperformed by DTs when the strategy to be cloned is of Type 3.

Table 6. Empirical distribution of the winning tool (smallest Monte Carlo distance).

Model 1 PFA DT PNN KNN RProp NB

WALK 31.50 22.50 21.50 22.50 1.00 1.00
RND_WALK 99.00 1.00 0.00 0.00 0.00 0.00
CRASH 43.30 10.30 10.30 10.30 24.30 1.50
RND_CRASH 63.33 3.00 5.00 4.33 21.00 3.33
ZIGZAG 95.17 0.92 0.92 0.92 0.92 1.17
RND_ZIGZAG 93.17 1.50 1.50 1.50 1.17 1.17

Average 70.91 6.54 6.54 6.59 8.06 1.36

Model 2 PFA DT PNN KNN RProp NB

WALK 29.95 21.25 4.70 5.12 7.95 31.03
RND_WALK 58.67 16.50 16.00 4.50 2.17 2.17
CRASH 9.50 22.00 22.33 8.83 37.17 0.17
RND_CRASH 31.00 24.00 7.50 4.50 33.00 0.00
ZIGZAG 26.50 30.50 17.33 22.33 1.67 1.67
RND_ZIGZAG 34.33 15.92 8.92 17.08 22.08 1.67

Average 31.66 21.69 12.80 10.39 17.34 6.12

Model 3 PFA DT PNN KNN RProp NB

WALK 31.12 16.83 8.28 5.45 8.37 29.95
RND_WALK 49.00 15.50 10.00 5.50 15.00 5.00
CRASH 13.00 50.00 12.33 10.33 7.17 7.17
RND_CRASH 11.67 37.17 10.67 20.67 19.83 0.00
ZIGZAG 7.42 39.67 11.42 28.42 11.42 1.67
RND_ZIGZAG 8.67 47.67 9.17 22.17 10.67 1.67

Average 20.15 34.47 10.31 15.42 12.08 7.58

4. Conclusions

4.1. Discussion

Three of the major open challenges in Learning from Observation are (1) devising training regimes
that address the particularities that make LfO different from supervised learning (namely that LfO
violated the i.i.d. assumption) [25]; (2) devising approaches to handle long-range variable interactions
(actions depending on past states); and (3) devising performance metrics that adequately characterize
the performance of LfO agents. The work presented in this paper (in addition to being a general
probabilistic framework that can handle both Behavior Recognition and Behavioral Cloning) constitutes
a contribution to several of those challenges.

Specifically, we presented an empirical study showing the learning performance of PFAs under
different assumptions over the amount of past memory used for learning, showing that considering
past states can significantly improve learning performance when long-range dependencies exist.
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However, when learning behaviors where such long-range dependencies do not exist, considering past
states actually hinders performance. Additionally, building on our previous work [19], we showed
how traditional supervised performance metrics, such as classification accuracy, are not enough to
capture the performance of LfO agents, and proposed a metric based on Vapnik’s risk.

Concerning experimental results for Behavior Recognition, we have shown that our approach
using PFAs correctly identifies tasks performed by the agent whenever those tasks have a certain
random component. The inference technique is based on the greatest likelihood probability value
generated by the PFAs of the model. One of the strengths of our approach is that it captures the
stochastic aspect of behaviors. On the other hand, we observed that this technique has difficulties
in distinguishing between a certain strategy and a similar strategy perturbed with some degree
of randomness.

Concerning Behavioral Cloning, we compared our approach against supervised learning
classifiers that predict the action of the agent in a given state (deterministic models). Then, we
trained a PFA to estimate the probabilities of the agent’s actions in a given state (a stochastic model). In
both cases, we measured the predictive accuracy on new unseen data: supervised learning approaches
seemed to perform better according to classification accuracy. However, when comparing the trace
of the learned strategy with the trace of the original agent on a randomly generated map using a
Monte Carlo distance metric, we could experimentally check that PFAs had actually learned a better
model of the agent’s behavior in general. This highlights both the need to use appropriate models to
learn certain behaviors (e.g., stochastic models for stochastic behaviors), and the use of appropriate
performance metrics for the evaluation of LfO algorithms.

4.2. Future Work

A major challenge in both behavior recognition and behavioral cloning approaches, such as the
ones explored in this paper, is determining the amount of ‘memory’ that the learning agent should
have access to in order to model the behavior at hand. In our experimental results, we have seen that,
for behaviors that only require considering the current state, using Model 1 (which only considers
the current state) results in better learning performance. More complex models (like Models 2 and 3
considered above) allow learning more complex behaviors, but they should be used only if necessary.
Devising strategies for determining the amount of past memory required to learn a task remains an
open problem, which we plan to address in our future work.

Concerning scalability, the major computational limitation of the proposed learning machines is
the amount of memory required by the trained automaton. A possible solution we plan to investigate
in our future work is to employ only a small number of non-observable internal states. Another
possible approach is the use of some notion of context learning [26] in order to reduce the number of
possible states.

We also plan to extend this methodology to handle continuous state and action spaces. This would
allow modeling more realistic Type of robots, which can perform rotations of different angles and
whose position is represented by real values on the map. This would allow us to consider behaviors
such as the outward-moving spiral of the Roomba robot. Future work also contemplates the usage of
probabilistic transducers to take into account the input-output (state-action) nature of the observations
composing the learning traces in the observation scenario.
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Abbreviations

The following abbreviations are used in this manuscript:

PFA Probabilistic Finite Automaton
SAF Semi-Automated Forces
CGF Computer-Generated Forces
RL Reinforcement Learning
LfO Learning from Observation
ALVINN Autonomous Land Vehicle In a Neural Network
SOAR State, Operator And Result
DNA DeoxyriboNucleic Acid
AR Activity Recognition
HAR Human Activity Recognition
BR Behavioral Recognition
BC Behavioral Cloning
DT Decision Tree
kNN K-Nearest Neighbor
NB Naive Bayes
PNN Probabilistic Neural Network
MICINN Ministerio de Ciencia e Innovación
NSF National Science Foundation
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