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Abstract

An algorithm for computing the incomplete gamma function γ∗(a, z)
for real values of the parameter a and negative real values of the argu-
ment z is presented. The algorithm combines the use of series expan-
sions, Poincaré-type expansions, uniform asymptotic expansions and
recurrence relations, depending on the parameter region. A relative ac-
curacy∼ 10−13 in the parameter region (a, z) ∈ [−500, 500]×[−500, 0)
can be obtained when computing the function γ∗(a, z) with the Fortran
90 module IncgamNEG implementing the algorithm.

1 Introduction

The incomplete gamma function γ∗(a, z) is defined by

∗Former address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098
XG Amsterdam, The Netherlands
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γ∗(a, z) =
z−a

Γ(a)
γ(a, z) =

1

Γ(a)

∫ 1

0
ta−1e−ztdt, (1.1)

where γ(a, z) is the lower incomplete gamma function [15, Eqn. (8.2.1)].
The function γ∗(a, z) is real for positive and negative values of a and z.
Incomplete gamma functions appear in a large number of scientific ap-

plications. For positive values of z, they are related to the central gamma
and chi-squared distribution functions (positive a) and to exponential inte-
grals (negative a). There are numerous application areas for positive z, for
example, [10, 2]. Algorithms and software are available for this parameter
regions [5, 4, 7]. For negative z, the incomplete gamma functions appear,
for instance, in the study of Bose plasmas [9, 8] and in the analysis of the
Helmholtz equation [12, 11]. However, unlike the positive z case, software
to support this case is very limited. Only recently has an algorithm been
constructed for negative z [18] and this is restricted for half-integer values
of a.

In this paper, we describe an algorithm for computing the function
γ∗(a, z) for a real and z < 0. Our algorithm improves the range of computa-
tion of [18] by allowing real values of a. The methods of computation used
in our algorithm are:

a) series expansions, recurrence relations, and uniform asymptotic expan-
sions for a < 0;

b) series expansions and Poincaré-type expansions [14, p. 16] for a > 0.

A Fortran 90 module implementing the algorithm is provided. Numeri-
cal tests show that the relative accuracy is close to 10−13 in the parameter
region (a, z) ∈ [−500, 500] × [−500, 0). This module complements a previ-
ous algorithm for the incomplete gamma function for positive values of the
parameters [7].

2 Methods of computation

We describe the methods of computation used in the algorithm and in the
numerical tests. Details on the region of application of each method are
discussed in Section 4.
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2.1 Recurrence relations

Recurrence relations are useful methods of computation when initial values
are available for starting the recursive process. Also, recurrence relations
can be used for testing the function values obtained by alternative methods.
Usually, the direction of application of the recursion can not be chosen
arbitrarily, and the conditioning of the computation of a given solution fixes
the direction.

The function γ∗(a, z) satisfies the following inhomogeneous recursion [15,
Eqn. (8.8.4)]

zγ∗(a+ 1, z) = γ∗(a, z)−
e−z

Γ(a+ 1)
(2.1)

When both a and z have negative values, replacing (a, z) by (−a−1, −z)

and using the reflection formula Γ(a + 1)Γ(−a) = − π

sin(πa)
in (2.1), we

obtain [17, Eqn. (4.1)]

γ∗(−a− 1,−z) + zγ∗(−a,−z) = −
1

π
sin(πa)ezΓ(a+ 1). (2.2)

We may also combine two first order recursions of (2.1) to obtain the
three-term homogeneous recurrence relation

z(a+ 1)γ∗(a+ 2, z)− (a+ 1 + z)γ∗(a+ 1, z) + γ∗(a, z) = 0. (2.3)

Starting from (2.2), we obtain

γ∗(−a− 2,−z)+ (z+a+1)γ∗(−a− 1,−z)+ z(a+1)γ∗(−a,−z) = 0. (2.4)

An advantage of using the relation in (2.4) is that possible accuracy
problems in the computation of the inhomogeneous term in (2.1) or (2.2)
are avoided.

2.2 Series expansion

A series expansion for γ∗(a, z) is given by [15, Eqn. (8.7.1)]

γ∗(a, z) =
1

Γ(a)

∞∑

k=0

(−z)k

k!(a+ k)
. (2.5)
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As pointed out in [1] and discussed later (see Section 3), this series proves
to be very useful computationally. In this form the series cannot be applied
when a = −n, n = 1, 2, . . . and special care needs to be exercised when
a = −n+ ǫ and ǫ is small. In this case, it is convenient to rewrite the series
as

γ∗(−n+ ǫ, z) = zn
Γ(1 + n− ǫ)

n!

sinπǫ

πǫ
+

1

Γ(−n+ ǫ)

∞∑

k=0,k 6=n

(−z)k

k!(−n + ǫ+ k)
.

(2.6)
Using (2.6) the series can be computed as ǫ → 0 and we obtain in the

limit the result [15, Eqn. (8.4.12)]

γ∗(−n, z) = zn. (2.7)

2.3 Uniform asymptotic expansion for a < 0

When a and z have large negative values, it is convenient to use the uniform
asymptotic expansion described in [17], where the error function is used as
main approximant. Replacing (a, z) with (−a, −z) we have

γ∗(−a,−z) = za

{
cos(πa)−

√
2a

π
e

1

2
aη2 sin(πa)

[√
2

a
F

(
η

√
a

2

)
+

1

a
Ta(η)

]}
,

(2.8)
where η is defined by

1

2
η2 = λ− 1− log(λ), λ =

z

a
, sign(η) = sign(λ− 1). (2.9)

The choice of the sign is based on the similarity of the graphs of the η-
function (a parabola) and of the λ-function (a convex function for λ > 0,
with its zero-minimum at λ = 1, and with the shape of a parabola).

As commented in [17], it is also useful to consider the normalized function
γ̃a(z) defined by the relation

γ∗(−a,−z) = za cos(πa) + sin(πa)Γ(a)ez γ̃a(z), (2.10)

giving

γ̃a(z) = −
a

πΓ∗(a)

[√
2

a
F

(
η

√
2

a

)
+

1

a
Ta(η)

]
. (2.11)
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Using (2.10) in the inhomogeneous recursion, (2.2), we obtain

− γ̃a+1(z) +
z

a
γ̃a(z) +

1

π
= 0. (2.12)

In (2.8) and (2.11), F (z) is Dawson’s integral

F (z) = e−z2
∫ z

0
et

2

dt = −1

2
i
√
πe−z2erf iz,

where erf is the error function.
Dawson’s integral can be computed using a continued fraction represen-

tation. In our algorithm, we use the representation given in [3, Eqn. (13.1.13b)].
This continued fraction works very well for small and large values of z.

The function Ta(η) in (2.8) and (2.11) has an asymptotic expansion in
negative powers of a

Ta(η) ∼
∞∑

n=0

(−1)n
Cn(η)

an
, (2.13)

where the coefficients, Cn(η), may be obtained starting from the differential
equation satisfied by Ta(η):

d

dη
Ta(η) + aηTa(η) = a (f(η)Γ∗(a)− 1) , (2.14)

with f(η) and Γ∗(a) given by

f(η) =
η

λ− 1
, Γ∗(a) =

√
a/(2π)eaa−aΓ(a). (2.15)

Substituting the asymptotic expansion (2.13) into (2.14) and using the
expansion of the reciprocal gamma function

1

Γ∗(a)
∼

∞∑

n=0

γn

an
, a −→ ∞, (2.16)

it is possible to find the following relations for the coefficients Cn(η)

C0(η) =
1

λ− 1
−

1

η
, ηCn(η) =

d

dη
Cn−1(η) + γnf(η), n ≥ 1. (2.17)

When |η| is small (λ → 1) the removable singularities in the repre-
sentations of the coefficients Cn can be a source of problems in numerical
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computations. In [17] Maclaurin expansions for the coefficients C0, . . . , C6

were used to generate the values given in Table 4.1 in that reference. In the
present algorithm we use a different approach. Instead of expanding each
coefficient, Cn(η), we expand the function Ta(η) of (2.13) in powers of η:

Ta(η) =

∞∑

n=0

ωnη
n. (2.18)

To compute the coefficients, ωn, we use the differential equation for Ta(η)
given in (2.14). Substituting the expansion (2.18) into (2.14) and using the
coefficients dn in the expansion

η

λ− 1
=

∞∑

n=0

dnη
n, d0 = 1, d1 = −1

3
, d2 =

1
12
, (2.19)

we obtain
ω1 = a (Γ∗(a)− 1) , (2.20)

and, for general ωn, the recursion relation

ωn = −n+ 2

a
ωn+2 + dn+1Γ

∗(a), n = 0, 1, 2, . . . . (2.21)

If we write
ωn = αnΓ

∗(a), n = 0, 1, 2, . . . , (2.22)

we have the recursion

αn = −n+ 2

a
αn+2 + dn+1, n = 0, 1, 2, . . . . (2.23)

Then, we choose a positive integer N , put αN+2 = αN+1 = 0, and
compute the sequence

αN , αN−1, . . . , α1, α0 (2.24)

from the recurrence relation (2.23).
Because (see (2.20) and (2.22))

1

Γ∗(a)
= 1−

1

a
α1, (2.25)

we have

Ta(η) ≈
a

a− α1

N∑

n=0

αnη
n (2.26)

as an approximation for Ta(η).
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2.4 Poincaré-type expansion for a > 0

A Poincaré-type expansion that is useful for large |z| and valid for all a
bounded can be obtained using the relation of γ∗(a, z) to the Kummer func-
tion M(a, b, z),

γ∗(a, z) =
1

Γ(a+ 1)
M(a, 1 + a,−z), (2.27)

and the expansion given in [13, Eqn. (13.7.1)].
The resulting expression is given by

γ∗(a,−z) ∼
ez

zΓ(a)

∞∑

n=0

(1− a)n

zn
. (2.28)

2.5 Numerical quadrature

For a > 0, it is also possible to use numerical quadrature to compute the
function γ∗(a, z). Starting from (1.1) we replace z by −z

γ∗(a,−z) =
1

Γ(a)

∫ 1

0
ya−1ezydy,

We can then use a quadrature rule to compute this integral to the desired
accuracy. One approach is to consider a change of variable that transforms
this integral into one that may be computed effectively using the trapezoidal
rule. A suitable case for this is when the integrand decays as a double
exponential in the real line (see [16] and [6, §5.4]).

We can obtain such an integral representation by using the change of

variables r = log
(

y
1−y

)
. Then,

γ∗(a,−z) =
1

Γ(a)

∫ ∞

−∞

(1 + e−r)−(a+1)ez(1+e−r)−1

e−rdr, (2.29)

and writing r = sinh(t), we arrive at

γ∗(a,−z) =
1

Γ(a)

∫ ∞

−∞

φ(t)a+1ezφ(t)e−r(t)cosh(t)dt, (2.30)

where φ(t) = (1 + e−r(t))−1.
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The integrand of (2.30) then has double exponential behaviour as |t| →
+∞ which is suitable for the application of the trapezoidal rule. For nu-
merical use, the integral should conveniently truncated by choosing only a
finite interval of integration.

We note here that this quadrature approach is not used in the final
version of the algorithm as faster methods are available. However, it does
provide a useful method for testing purposes.

3 Numerical testing and performance

For a < 0, we tested the performance of the uniform asymptotic expansion
over a wide range of parameters using the normalized gamma function γ̃a(z)
defined in (2.11) and the recurrence relation given in (2.12). Using 108 ran-
dom points over the region of the (z, a)-plane [−1000, 0) × [−1000, 0], we
obtained an accuracy ∼ 10−14 in the whole region with the exception of the
strips |a| < 4.5 and |z| < 1.5. The range of computation of the γ∗(a, z) is
more limited due to overflow/underflow problems in double precision arith-
metic, as can be seen in Figure 1. Function values underflow (overflow) in
standard IEEE double precision arithmetic for large positive (negative) val-
ues of a. For that reason, we have limited the rest of the tests to the region
of the (z, a)-plane [−500, 0)× [−500, 500].

The series expansions of Section 2.2 have been tested against a Maple
implementation using 30 digits accuracy for a < 0 in the regions (z, a) ∈
[−500, 0)× [−5, 0] and (z, a) ∈ [−1.5, 0)× [−500, 0]. The maximum relative
error obtained was ∼ 10−13, although a large number of terms are needed
for computing the series when |z| is large. In this case, a more efficient
method of computation is to combine the use of recurrence relations and
uniform asymptotic expansions. In particular, we compute first the normal-
ized gamma function γ̃ã(z) for a value of the parameter ã within the range of
validity of the uniform asymptotic expansion and then take few steps in the
backward direction of the recursion (2.12). The function γ∗(a, z) is finally
computed using (2.10).

As already mentioned in Section 2.2, we need to be careful in the com-
putation when a is close to an integer i.e., a = −n+ ǫ where ǫ is small. To
avoid loss of accuracy both in the series expansions and when computing the
coefficients with the trigonometric functions in (2.8), the input argument,
a, is defined as a quadruple precision real variable in our implementation.

For a positive, testing is made by comparing the available methods
of computation: series expansions (2.5), numerical quadrature (2.30) and
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−800 −700 −600 −500 −400 −300 −200 −100 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

z

a

Figure 1: Overflow/underflow limitations in double precision arithmetic in
the region (z, a) ∈ (−800, 0) × (−500, 500) when computing the function
γ∗(a, z). The points correspond to values of the variables for which the
computation either overflows or underflows.

Poincaré-type expansions (2.28). An accuracy close to 10−14 is obtained in
the region (z, a) ∈ [−500, 0)× [0, 500] using the series expansion. Numerical
quadrature works also accurate over the whole region with the exception of
a-values close to zero, where there is some loss of accuracy in the computed
function values. As in the case of a < 0, the series expansion needs a large
number of terms when |z| is large, which makes the use of the Poincaré-type
expansion more efficient for |z| > 50.

Figure 2 shows the CPU time used by the Fortran version of the algo-
rithm in evaluating the function at 50,000 values of a and z on a 2GHz Intel
Core i5-43100 under Windows 7 Professional. As we can see, the times are
quite uniform across the whole range.

4 Computational scheme

From the results obtained in the previous section we may state a stable
computational scheme for evaluating the function γ∗(a, z) as follows

1. For a > 0,

If z < −50, compute the function using the Poincaré-type expan-
sion (2.28).
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Figure 2: CPU time spent by the algorithm as a function of the variables a
and z. The times shown correspond to 50000 function evaluations.
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Figure 3: Methods for computation of the γ∗(a, z) function used in the final
algorithm. UAE is the uniform asymptotic expansion of Section 2.3. The
recursion relation is given in Eq. (2.12).

Otherwise, compute using the series expansion (2.5).

2. For a < 0,

If a = −n, n ∈ N, use the expression given in (2.7).

Otherwise,

If a > −5 or z > −1.5,

If z > −100, use the series expansion (2.5) or the expression
(2.6) if a = −n+ ǫ and ǫ is small.

Otherwise, use the uniform asymptotic expansion (2.8) and
the recursion relation given in (2.12).

Otherwise, compute the function using the uniform asymptotic
expansion (2.8).

The different methods of computation used in the algorithm, with the
exception of the method for a = −n, n ∈ N, are shown in Figure 3. The
domains of computation are established following a compromise between
efficiency and accuracy: we choose the most accurate method, and where
two methods are equally accurate in a certain parameter region, we choose
the fastest.

The resulting algorithm improves the range of computation of the algo-
rithm presented in [18]. Thompson’s algorithm considers the computation
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of the lower incomplete gamma function for negative real values of the ar-
gument z and half-integer values of the parameter a using a function Sn(z),
n integer and z > 0, related to the lower incomplete gamma function by
γ(n + 1/2,−z) = i(−1)nezzn+1Sn(z). The relation of the function Sn(z)
to the γ∗(a, z) is then given by Sn(z) = Γ(n + 1/2)e−zγ∗(n + 1/2,−z).
Precomputed values in Maple to initiate analytic continuation are used in
Thompson’s algorithm which, in the implementation available in [18], seems
to be restricted to z values in the interval [0, 200]. Our approach extends the
range of computation to real values of the parameter a and larger negative
values of the argument z, and it does not depend on values precomputed in
Maple.
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