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Abstract

Accurate and efficient algorithms for the inversion of the cumulative
central beta distribution are described. The algorithms are based on
the combination of a fourth-order fixed point method with good non-
local convergence properties (the Schwarzian-Newtonmethod), asymp-
totic inversion methods and sharp bounds in the tails of the distribu-
tion function.

1 Introduction

The cumulative central beta distribution (also known as the incomplete beta
function) is defined by

Ix(p, q) =
1

B(p, q)

∫ x

0
tp−1(1− t)q−1 dt, (1.1)

where we assume that p and q are real positive parameters and 0 ≤ x ≤ 1.
B(p, q) is the Beta function

∗Former address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098
XG Amsterdam, The Netherlands
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B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
. (1.2)

From the integral representation in (1.1) it is easy to check the following
relation:

Ix(p, q) = 1− I1−x(q, p). (1.3)

In this paper we describe algorithms for solving the equation

Ix(p, q) = α, 0 < α < 1, (1.4)

with p, q given fixed real positive values. In statistical terms, we are com-
puting the quantile function for Ix(p, q).

The beta distribution ia a standard and widely used statistical distribu-
tion which has as particular cases other important distributions like the Stu-
dent’s distribution, the F-distribution and the binomial distribution. There-
fore, the computational schemes for inverting the central beta distribution
can be used to compute percentiles for other distributions related to the
beta. For an example for the F-distribution see [1].

The quantile function is useful, for instance, for the generation of ran-
dom variables following the beta distribution density. In some Monte Carlo
simulations the generation of such random variables are required and a mas-
sive number of inversions of the beta cumulative distribution are needed.
Therefore, it is important to construct methods as reliable and efficient as
possible.

Existing algorithms use some simple initial approximations which are
improved by iterating with the Newton method. In particular, this is the
approach used in the inversion method of the statistical software package
R, which is based on the algorithm of [9] and the succesive improvements
and corrections [4, 2, 3]. In [9], a simple approximation is used in terms of
the error function together with two additional starting value approxima-
tions for the tails; these initial values are refined by the Newton iteration.
As discussed in [4, 2], the Newton method needs some modification to en-
sure convergence inside the interval [0, 1], and further tuning of the Newton
method has been considered in recent versions of this algorithm for R (but
some convergence problem still remain in the present version, as we later
discuss).

In this paper the methods for the computation of the inversion of the
cumulative beta distribution are improved in several directions. In the first
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place, we introduce the Schwarzian-Newton method (SNM) as alternative to
Newton’s method (NM). With respect to Newton’s method the SNM has the
advantage of having order of convergence four instead of two. In addition,
as explained in [10], the SNM has good non-local properties for this type
of functions and it is possible to build an algorithm with certified conver-
gence. In the second place, we analyze initial value approximations (much
sharper than those given in [9]) in terms of asymptotic approximations for
large values of p and/or q, but which also give accurate values for moderate
values; these approximations are given in terms of inverse error functions or
the inverse gamma distribution ([12], [6, §10.5.2], [13, §42.3]). We also pro-
vide improved approximations for the tails obtained from the sharp bounds
described in [11].

An additional direction of improvement of the algorithms is in the se-
lection of the methods of computation of the beta distribution, which are
needed in the application of iterative methods (with Newton, SNM or any
other choice). This is not discussed in this paper, and we leave this topic
for future research. A relatively recent algorithm was given in [5].

2 Methods of computation

We next describe the methods of computation used in the algorithms. First
we describe the SNM method, and discuss how a standalone algorithm with
certified convergence can be built with this method, provided an accurate
method of computation of the beta distribution is available. In the second
place we describe the methods for estimating the quantile function based
on asymptotics for large p and/or q. Finally, we describe sharp upper and
lower bounds for the tails that can be used for solving the problem (1.4) for
α close to zero or 1.

2.1 Schwarzian-Newton method

The Schwarzian-Newton method (SNM) is a fourth order fixed point method
with good non-local convergence properties for solving nonlinear equations
f(x) = 0 [10]. The SNM has Halley’s method as limit when the Schwarzian
derivative of the function f(x) tends to zero.

Given a function f(x) with positive derivative (in our case f(x) =
Ix(p, q) − α), it is easy to prove that Φ(x) = f(x)/

√

f ′(x) satisfies the
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differential equation

Φ′′(x) + Ω(x)Φ(x) = 0, Ω =
1

2
{f, x}, (2.1)

where {f, x} is the Schwarzian derivative of f(x) with respect to x:

{f, x} =
f ′′′

f ′

−
3

2

(

f ′′

f ′

)2

. (2.2)

The SNM is obtained from the approximate integration of the Riccati
equation h′(x) = 1 + Ω(x)h(x)2, h(x) = Φ(x)/Φ′(x) under the assumption
that Ω(x) is approximately constant. In the case of negative Schwarzian
derivative (which will be the case for the beta distribution) the iteration
function can be written as:

g(x) = x−
1

√

|Ω|
arctanh

(

√

|Ω|h(x)
)

. (2.3)

We discuss two implementations: a direct implementation, which gives a
convergent algorithm for p, q > 1 and an implementation with an exponential
change of variables, which is more easy to handle for the rest of cases.

2.1.1 The direct implementation

It is proved in [10] that if Ω(x) has one and only one extremum at xe ∈ I
and it is a maximum, then if Ω < 0 the SNM converges monotonically to
the root of f(x) in I starting from x0 = xe. We will use this result for the
cumulative central beta distribution, when the parameters p and q are larger
than 1. In this case, the function Ω(x) (the Schwarzian derivative of f(x)
with a factor 1/2) is given by

Ω(x) =
(p− 1)(q − 1)

2x(1− x)
−

1

4

p2 − 1

x2
−

1

4

q2 − 1

(1− x)2
. (2.4)

It is possible to show that for p > 1 and q > 1, the function Ω(x) in (2.4)
is negative in (0, 1) and has only one extremum (which is a maximum) in
that interval. The extremum of Ω(x) is at

xe =
1

3∆1/3

(3pq + 3p2 + 6p)∆1/3 −∆2/3 + 3pq
(

(p+ q)2 + 8(p + q) + 12
)

(p + q)2 + 2(p + q)
,

(2.5)
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where

∆= pq
{

108(p − q)(p+ q + 1) + 27(p2q + p3 − q2p− q3) + 3
√
3(p + q)

(p + q + 2)
√

(p + q + 2)(27q + 54 + q2p+ 18pq + 27p + p2q)
}

.

Then, the fixed point method is (2.3) with Ω(x) given by (2.4) and

h(x) =
f(x)

1

2

(

−
p− 1

x
+

q − 1

1− x

)

f(x) +
xp−1(1− x)q−1

B(p, q)

,

where f(x) = Ix(p, q)− α.

2.1.2 The exponential implementation

When p and/or q are smaller than 1, it is possible to make a change of
variables in order to obtain a negative Schwarzian derivative and simpler
monotonicity properties. In particular, with the change of variables

z(x) = log

( x

1− x

)

, (2.6)

we obtain that Φ(z) = f(z)/

√

ḟ(z) (where the dot represents the derivative

with respect to z) satisfies Φ̈(z) + Ω(z)Φ(z) = 0, where

Ω(z) =
1

4

(

−(p+ q)(p+ q − 2)x2(z) + 2(p+ q)(p − 1)x(z) − p2
)

. (2.7)

The function Ω(z) has its extremum at ze = log(xe/(1 − xe)), xe =
(p− 1)/(p+ q − 2). When p and/or q smaller than 1, Ω(z) can be either be
monotonic or it can have a minimum. Convergence of the SNM can be guar-
anteed, in this case, using the following results [10]: a) if Ω(z) is negative
and decreasing in the interval I = [a, α], then the SNM converges mono-
tonically to α for any starting value z0 ∈ [a, α]; b) if Ω(z) is negative and
increasing in the interval I = [α, b], then the SNM converges monotonically
to α for any starting value z0 ∈ [α, b].

The case p = q = 1 is of course trivial. Apart from this, there are three
different cases to be considered:

a) p ≤ 1, q > 1: the function Ω(z) is decreasing. In this case, the SNM
uses as starting point a large negative value (in the z variable).
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b) p > 1, q ≤ 1: the function Ω(z) is increasing. In this case, the SNM
uses as starting point a large positive value (in the z variable).

c) p < 1, q < 1: the extremum of Ω(z) at ze is reached and it is a mini-
mum. In this case, we use the sign of the function h(z) at ze to select
a subinterval for application of the SNM, according to the previous
results. The function h(z) is given by

h(z) =
f(x(z))

−
1

2

p− qez

1 + ez
f(x(z)) +

ezp

B(p, q)(1 + ez)p+q

. (2.8)

When this sign is negative, the SNM uses a large positive value (in the
z variable), otherwise the SNM uses a large negative value.

Once the SNM is applied to find the root zr in the z-variable, the corre-

sponding x-value will be given by xr =
ezr

1 + ezr
.

2.1.3 Discussion

We have constructed two methods of order four which are proven to converge
with certainty for the initial values prescribed. The method has, in addition,
good non-local properties, which means that few iterations are needed for
a good estimation of the inverse (typically from 2 to 4 for 20 digits), even
without accurate starting values. The exceptions are the tails (α very close
to 0 or 1), but we will discuss later how to deal with these cases.

Because the convergence is guaranteed, no special precaution is needed
to ensure that the interval [0, 1] in the original variable is not abandoned, as
happened with earlier versions of the algorithm given in [9] (see [4]) and as it
is still happens for some values in the latests R version of this algorithm. For
instance, the R command qbeta(alpha,600,1.1) does not converge properly
if alpha∈ (6.9 10−35, 1.4 10−20). Our method avoids this type of problems.

The performance of the method can be improved by considering initial
approximations, which we are discussing next.

2.2 Asymptotic inversion methods

The algorithm considered in [9], which is the basis of the R implementation,
uses an approximation in terms of the inverse error function, which works
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reasonably away from the tails. However, this simple approximation does
not give more than two accurate digits, except by accident.

Much more accurate initial approximations (some of them also in terms
of error functions) can be obtained from asymptotics for large p and/or q.
These are accurate approximations for large and not so large p and/or q, as
we later discuss.

This section is based on the results given in [12] and [13, §42.3].

2.2.1 Inversion using the error function

We start with the following representation

Ix(p, q) =
1
2
erfc

(

−η
√

r/2
)

−Rr(η), (2.9)

where we write p = r sin2 θ, q = r cos2 θ with 0 < θ < π/2 and η is given by

− 1
2
η2 = sin2 θ log

x

sin2 θ
+ cos2 θ log

1− x

cos2 θ
. (2.10)

When we take the square root for η, we choose sign(η) = sign(x−sin2 θ),
this means sign(η) = sign(x− p/(p + q)). In this way, the relation between
x ∈ (0, 1) and η ∈ (−∞,∞) becomes one-to-one.

Using this representation of Ix(p, q), we solve the equation in (1.4) first
in terms of η. When r = p+ q is a large parameter, the asymptotic method
will provide an approximation to the requested value of η in the form

η ∼ η0 +
η1

r
+

η2

r2
+

η3

r3
+ . . . . (2.11)

The algorithm for computing the coefficients ηi, i = 0, 1, 2, . . . can be
summarized as follows

1. The value η0 is obtained from the equation

1
2
erfc

(

−η0
√

r/2
)

= α. (2.12)

2. With η = η0, equation (2.10) is inverted to obtain a first approximation
to the value of x. For inverting this equation, it seems convenient to
write it in the form

xp(1− x)q =

(p

r

)p(q

r

)q

e−rη2/2. (2.13)
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3. With these values of η0 and x, the coefficient η1 is given by

η1 =
log(f(η0))

η0
, (2.14)

where f(η) =
η sin θ cos θ

(x− sin2 θ)
.

4. Higher-order coefficients ηj , j = 2, 3, . . . can be obtained in terms of
x, η0, η1, sin θ and cos θ. As an example, the coefficient η2 is given by

η2 =
1

12η30c
2s2(s2 − x)2

(

s6η20 − η20x
2 − s4η20 − η20s

8 +

12s6c2 − 12s2c2η1η
3
0x+ 12s2c2η1η

3
0x

2 − 6η20s
2c2η21x

2 +

12η20s
4c2η21x+ 2η20xs

2 + 2η20xs
6 − 6η20s

6c2η21 +

12s2c2η20x
2 − 12s2c2η20x− 2η20xs

4 − η20x
2s4 +

η20x
2s2 − 24s4c2x+ 12s2c2x2

)

,

(2.15)

where s = sin θ, c = cos θ.

5. With these coefficients in the expansion (2.11), a value for η is ob-
tained. Then, the inversion of (2.10) will provide the final asymptotic
estimation of the x-value.

Using (2.10) we can derive the following expansion or small values of |η|:

x= s2 + sc η +
1− 2s2

3
η2 +

13s4 − 13s2 + 1

36sc
η3 +

46s6 − 69s4 + 21s2 + 1

270s2c2
η4 + . . . ,

(2.16)

where s = sin θ, c = cos θ. For larger values of |η|, with η < 0, we rewrite
(2.10) in the form x(1− x)µ = u, where

µ = cot2 θ, u = exp
[

(−1
2
η2 + s2 ln s2 + c2 ln c2)/s2

]

, (2.17)

and for small values of u we expand

x=u+ µu2 +
3µ(3µ + 1)

3!
u3 +

4µ(4µ + 1)(4µ + 2)

4!
u4 +

5µ(5µ + 1)(5µ + 2)(5µ + 3)

5!
u5 + . . . .

(2.18)
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A similar approach is possible for positive values of η, giving an expansion
for x near unity. In that case we have the equation xν(1− x) = v, where

ν = tan2 θ, v = exp
[

(−1
2
η2 + s2 ln s2 + c2 ln c2)/c2

]

, (2.19)

and we have the expansion

1− x= v + νv2 +
3ν(3ν + 1)

3!
v3 +

4ν(4ν + 1)(4ν + 2)

4!
v4 +

5ν(5ν + 1)(5ν + 2)(5ν + 3)

5!
v5 + . . . ,

(2.20)

The approximations to x obtained in this way will be used for starting
the SNM for obtaining more accurate values of x.

2.2.2 Inversion using the incomplete gamma function

In this case, we start from

Ix(p, q) = Q(q, ηp) +Rp,q(η), (2.21)

where Q(a, x) is the incomplete gamma function ratio.
The parameter η is given by

η − µ log η + (1 + µ) log(1 + µ)− µ = − log x− µ log(1− x), (2.22)

where µ = q/p and x have the following corresponding points:

x = 0 ⇐⇒ η = +∞ x = 1/(1 + µ) ⇐⇒ η = µ, x = 1 ⇐⇒ η = 0. (2.23)

So, for x ∈ (0, 1) we have sign(η − µ) = −sign(x− 1/(1 + µ)).
For the representation in (2.21) we assume that p is the large parameter,

and we will obtain approximations to the value of η in the form

η ∼ η0 +
η1

p
+

η2

p2
+

η3

p3
+ . . . , p → ∞. (2.24)

We follow similar ideas as in §2.2.1. The value of η0 can be obtained by
solving

Q(q, η0p) = α. (2.25)

The inversion of Q(a, x) can be done by using our inversion algorithm
described in [7].
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Then, a value x0 is obtained by solving (2.22) for x. With x0 and η0 we
compute

η1 =
log φ(η0)

1− µ/η0
, (2.26)

where φ(η) is given by φ(η) =
η − µ

1− x(1 + µ)

1
√

1 + µ
.

Other coefficients ηj, j = 2, 3, . . . can be obtained in terms of µ, x0, η0
and η1.

To compute x from equation (2.22) we can use the inversion algorithm for
computing x when in (2.10) η is given. This follows from µ = q/p = cot2 θ
and from writing (2.22) in the form

sin2 θ

(

µ− η + µ log
η

µ

)

= sin2 θ log
x

sin2 θ
+ cos2 θ log

1− x

cos2 θ
. (2.27)

This equation can also be written as

xp(1− x)q =

(p

r

)r

eq(1+log η)−pη . (2.28)

2.3 Interval estimation for the tails

Sharp lower and upper bounds for the solution x of the equation (1.4) in the
lower (α → 0) and upper (α → 1) tails of the distribution function can be
obtained by using fixed point iterations xn+1

l = gl(x
n
l ) and xn+1

u = gu(x
n
u),

respectively, where the iteration functions gl(x) and gu(x) for the lower tail
are given by [11]

gl(x) =
(

αB(p, q) (p− (p+ q)x) (1− x)−q
)1/p

, (2.29)

and

gu(x) =













αpB(p, q)
(

1 +
(p+ q)

(p+ 1)
x+

(p+ q)(p + q + 1)

(p+ 1)(p + 2)
x2

)

(1− x)q













1/p

. (2.30)

The starting value of the fixed point iterations is x = 0. The solution
x of the equation (1.4) satisfies xl < x < xu. These bounds of x can
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be used as starting values for the SNM. Notice that, because a lower and
an upper bound is obtained we have an estimation of the error for these
approximations that can be used to decide if they are accurate enough.

We notice that the approximation for the lower tail used in [9] (and also
in the R implementation) is just gl(0) = gu(0). Our approximation is more
accurate and provides upper and lower bounds.

For the upper tail, the iteration functions are the same as before, but
with p and q interchanged (by using (1.3)). The bounds are then given for
1− x.

3 Numerical testing

In this section we illustrate the use of the different methods with numerical
examples which will help in deciding how to combine the methods in order
to obtain fast reliable algorithms (which are described in section 4).

3.1 Initial values obtained with the asymptotic approxima-

tions

In Tables 1 and 2 we show examples of the accuracy obtained in the com-
putation of |Ix(p, q)− α| /α with x the values provided by the asymptotic
approximations (before iterating the SNM). 1

The asymptotic methods provide relatively good initial values even for
quite small values of p and q: using 107 random points in the region (p, q, α) ∈
(0.5, 1.5)× (0.7, 1.5)× (0, 1) we have tested that a relative accuracy better
than 0.06 was obtained when computing |Ix(p, q)− α| /α with x, the asymp-
totic approximations obtained using the error function. With these initial
values, not more than two iterations of the SNM are needed to obtain an
accuracy better than 5.0 10−13. The function Ix(p, q) is computed in the
iterations of the SNM by using a continued fraction representation

Ix(p, q) =
xp(1− x)q

pB(p, q)

(

1

1+

d1

1+

d2

1+

d3

1+
. . .

)

, (3.1)

where

1In Table 1 the accuracy 5.6 10−16 corresponds to the case Ix(3, 3) = 0.5: because of
the symmetry, x should be 0.5 (exact), and η defined in (2.10) becomes 0, the same as η0
in (2.12). This explains why that result in the table becomes so small.
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α p = 4 p = 3 p = 2

10−6 6.3 10−4 1.6 10−3 1.8 10−3

10−3 3.2 10−4 1.6 10−3 4.5 10−3

0.1 2.7 10−4 4.0 10−4 1.9 10−3

0.3 2.9 10−5 3.9 10−6 5.9 10−5

0.5 2.9 10−5 5.6 10−16 2.9 10−5

0.7 2.6 10−5 1.7 10−6 1.2 10−5

0.9 2.2 10−4 4.5 10−5 2.9 10−5

0.999 4.5 10−6 1.6 10−6 3.2 10−7

0.99999 2.9 10−8 1.8 10−8 6.2 10−9

Table 1. Relative errors |Ix(p, q)− α| /α for r = p + q = 6 using the estimates provided

by the asymptotic inversion method with the error function.

d2m=
m(q −m)x

(p+ 2m− 1)(p + 2m)
,

d2m+1 =− (p+m)(p+ q +m)x

(p+ 2m)(p + 2m+ 1)
.

(3.2)

For the computation of the Beta function B(p, q), it is convenient, in
particular when p and q are large, to use the following expression in terms
of the scaled gamma function Γ∗(x):

B(p, q) =
√
2π

√

1

p
+

1

q





p
p

p+q q
q

p+q

p+ q





p+q
Γ∗(p)Γ∗(q)

Γ∗(p + q)
, (3.3)

where Γ∗(x) is defined as

Γ∗(x) =
Γ(x)

√

2π/x xxe−x
, x > 0. (3.4)

The function Γ∗(x) is computed using the function gamstar included in
a previous package developed by the authors [8].

3.2 Initial values obtained in the tails of the distribution

function

The interval estimations in the tails of the central beta distribution function
by using the fixed point iterations of §2.3, can be also used for providing
starting values of the SNM. This will be particularly useful for quite small
values of the parameters p and q, where the asymptotic method cannot be
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α µ = 0.1 µ = 0.5 µ = 2

10−6 8.1 10−5 2.2 10−4 4.0 10−4

10−4 3.3 10−4 2.3 10−5 2.2 10−4

0.1 2.4 10−4 1.9 10−4 2.5 10−5

0.3 1.3 10−4 1.4 10−4 3.6 10−5

0.5 7.8 10−5 9.8 10−5 3.2 10−5

0.7 3.9 10−5 6.1 10−5 2.4 10−5

0.9 1.1 10−5 2.3 10−5 1.1 10−5

0.999 1.0 10−7 3.0 10−7 2.2 10−7

0.99999 1.0 10−9 3.2 10−9 2.9 10−9

Table 2. Relative errors |Ix(p, q)− α| /α for p = 7 and several values of µ = q/p using

the estimates provided by the asymptotic inversion method with the incomplete gamma

function.

applied. It is important to note that when the value of the parameters p or
q are close to 0, the inversion of Ix(p, q) becomes problematic in the lower
(when p → 0) or upper (when q → 0) tail of the cumulative distribution
function, because of the particular shape of the functions.

In Table 3 we show the relative errors 1 − xl/x and 1 − xu/x obtained
with the lower and upper bounds, respectively, for the solution x of the
equation (1.4) for small values of p, q and α. The bounds (computed in the
examples using Maple) are obtained with just three iterations of the fixed
point methods of §2.3. We have also tested that for small values of p and q,
the bounds provide in all cases reasonable approximations for starting the
SNM, no matter if the value of α is small. Besides, even for not so small
values of p and q, the bounds provide very accurate estimations when α is
very small. In some cases, these estimations could be even better than the
estimations of the asymptotic method.

3.3 Performance of the SNM for small values of the param-

eters

We have tested that the scheme for the SNM, as described in §2.1 when
the parameters p and q are both small, also provides a good uniform accu-
racy in the computation: using 107 random points in the region (p, q, α) ∈
(0.1, 0.5)× (0.1, 0.7)× (0, 1) we have tested that a relative accuracy better
than 4.8 10−13 was obtained when computing |Ix(p, q)− α| /α. The maxi-
mum number of iterations of the SNM was 3.
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α p = 0.3 p = 0.4
q = 0.4 q = 0.3

10−7 (LB) −1.2 10−22 −5.9 10−17

(UB) 7.8 10−49 1.1 10−49

10−5 (LB) −5.4 10−16 −5.9 10−12

(UB) 1.3 10−48 5.6 10−36

10−3 (LB) −2.5 10−9 −5.9 10−7

(UB) 8.5 10−29 5.6 10−21

Table 3. Relative errors 1− xl/x and 1− xu/x obtained with the lower (LB) and upper

(UB) bounds for the solution x of the equation (1.4).

3.4 Efficiency testing

As we have shown in §3.1, the asymptotic method provides very accurate
initial values for starting the SNM even for small values of the parameters p
and q. But apart from accuracy, an important feature of any computational
scheme is also efficiency. So, we have compared whether the combined use of
the asymptotic approximations plus iterations of the SNM is more efficient
or not than the sole use of the SNM. In Table 4 we show CPU times spent by
20000 runs of the inversion algorithm for different values of p, q and α using
three methods of computation: a) asymptotic inversion method using the
error function for estimating the initial value plus iterations of the SNM;
b) asymptotic inversion method using the gamma function for estimating
the initial value plus iteration of the SNM; c) iterations of the SNM with
starting values obtained as discussed in §2.1. In all cases the SNM is iterated
until the solution of equation (1.4) is obtained with an accuracy near full
double precision.

The results in Table 4 and additional testing for other parameter values,
indicate that the sole use of the SNM is efficient in all cases for the inversion
of the cumulative central beta distribution, but specially when the values of
the parameter α are neither very small nor near to 1.

A different scenario arises when the solution of equation (1.4) is com-
puted with an aimed accuracy better than 10−8 (single precision). In this
case, just using the approximations provided by the asymptotic expansions
will be enough to obtain such an accuracy for a wide range of parameters.
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α Method p = 4 p = 50, p = 100, p = 150, p = 300,
q = 3 q = 60 q = 80 q = 1.0 q = 400

10−6 M1 0.22 0.29 0.22 0.4 0.20
M2 0.31 0.39 0.31 0.22 0.33
M3 0.32 0.34 0.34 0.39 0.38

10−4 M1 0.22 0.23 0.19 0.36 0.22
M2 0.34 0.34 0.31 0.33 0.33
M3 0.25 0.27 0.28 0.27 0.33

0.3 M1 0.19 0.16 0.17 0.20 0.17
M2 0.31 0.28 0.30 0.19 0.30
M3 0.11 0.19 0.20 0.19 0.17

0.7 M1 0.20 0.17 0.16 0.23 0.18
M2 0.33 0.28 0.30 0.23 0.30
M3 0.16 0.19 0.19 0.16 0.19

0.999 M1 0.17 0.17 0.17 0.14 0.16
M2 0.25 0.28 0.28 0.16 0.33
M3 0.25 0.27 0.28 0.16 0.27

Table 4. CPU times (in seconds) for 20000 runs of the inversion algorithm using dif-

ferent methods. M1: Asymptotic inversion method using the error function +SNM; M2:

Asymptotic inversion method using the gamma function +SNM; M3: SNM. The SNM is

iterated until the solution of equation (1.4) is obtained with an accuracy near full double

precision.
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4 Proposed algorithms

Based on the previous numerical experiments of §3, we conclude that if
the precision required is not very high, the initial approximations given by
asymptotics or by the tail estimations could be sufficient in a large range of
the parameters. However, for higher precision the use of the SNM must be
prevalent.

This leads us to suggest two different schemes for computing the solution
x of the equation (1.4).

SCHEME 1. Algorithm for the inversion of the cumulative central beta
distribution with an accuracy near double precision:

If α ≤ 0.01

For p < 0.3, use the upper bound of §2.3 as solution of the
equation (1.4).

For 0.3 < p < 1, use the SNM as described in §2.1 using as
starting values the bounds of §2.3.

For 1 < p < 30 and q < 1, use the SNM, using as starting values
the bounds of §2.3.

For p > 30 and q < 0.5, use the SNM, using as starting values
the bounds of §2.3.

For p > 30, 0.5 < q < 5: a) if α > 0.0001 use the SNM, using as
starting values the approximation provided by the uniform
asymptotic expansion in terms of the gamma function; b) if
α < 0.0001 use the SNM, using as starting values the bounds
of §2.3.

In other cases, use the SNM as described, using as starting val-
ues the approximations provided by the uniform asymptotic
expansion in terms of the error function in other cases.

When 0.01 < α ≤ 0.5

For 1 < q < 5 and p > 50, use the SNM, using as starting val-
ues the approximations provided by the uniform asymptotic
expansion in terms of the incomplete gamma function.

For p > 30 and q > 30, use the SNM, using as starting val-
ues the approximations provided by the uniform asymptotic
expansion in terms of the error function.

In other cases, use the SNM as described in §2.1.
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For 0.5 < α < 1, use the relation (1.3) and apply the previous steps
to solve 1− x in I1−x(q, p) = 1− α.

SCHEME 2. Algorithm for the inversion of the cumulative central beta
distribution with an accuracy near single precision:

If α ≤ 0.01

For p < 0.5, use the upper bound of §2.3 as solution of the
equation (1.4).

For 0.5 < p < 1, use the SNM as described in §2.1 using as
starting values the bounds of §2.3.

For 1 < p < 30 and q < 1, use the SNM, using as starting values
the bounds of §2.3.

For p > 30 and q < 0.5, use the SNM, using as starting values
the bounds of §2.3.

For p > 30, 0.5 < q < 5: a) if α > 0.0001 use the SNM, using as
starting values the approximation provided by the uniform
asymptotic expansion in terms of the gamma function; b) if
α < 0.0001 use the SNM, using as starting values the bounds
of §2.3.

In other cases, use the SNM as described in §2.1 using as starting
values the approximations provided by the uniform asymp-
totic expansion in terms of the error function in other cases.

When 0.01 < α ≤ 0.5

For 1 < q < 3, p > 160 and α > 0.1, use the approximation
provided by the uniform asymptotic expansion in terms of
the incomplete gamma function as solution of the equation
(1.4).

For p > 30 and q > 30, use the approximation provided by the
uniform asymptotic expansion in terms of the error function
as solution of the equation (1.4).

In other cases, use the SNM as described in §2.1.
For 0.5 < α < 1, use the relation (1.3) and apply the previous steps

to solve 1− x in I1−x(q, p) = 1− α.

5 Conclusions

We have presented methods for the inversion of cumulative beta distribu-
tions which improve previously existing methods. We have described how
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the Schwarzian-Newton method provides a standalone method with certified
convergence which is in itself an efficient method, even without accurate ini-
tial estimations (except at the tails). In addition, we have discussed how to
improve the efficiency by estimating the quantile function using asymptotics
for large p and/or q and by considering sharp upper and lower bounds for
the tails. These initial estimations are considerably more accurate than the
simple approximations used in some standard mathematical software pack-
ages (like R) and, combined with the fourth order SNM, provide efficient
and reliable algorithms for the inversion of cumulative beta distributions.
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