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Abstract

The Schwarzian-Newton method can be defined as the minimal method for solving
nonlinear equations f(x) = 0 which is exact for any function f with constant Schwarzian
derivative; exactness means that the method gives the exact root in one iteration for
any starting value in a neighborhood of the root. This is a fourth order method which
has Halley’s method as limit when the Schwarzian derivative tends to zero. We obtain
conditions for the convergence of the SNM in an interval and show how this method
can be applied for a reliable and fast solution of some problems, like the inversion of
cumulative distribution functions (gamma and beta distributions) and the inversion of
elliptic integrals.

2000MSC: Primary 65H05; Secondary 33B20, 33E05.

1 Introduction

The problem of inverting functions is one of the central problems in numerical analysis, with
uncountable applications. There exists a vast literature on numerical methods for solving
nonlinear equations and many different methods with different properties are available; partic-
ularly, there is a considerable interest in building high order methods with the highest possible
efficiency index [13].

The study of non-local convergence properties is, however, not so common. But without a
knowledge of these properties, the use of fast numerical methods will require accurate initial
estimations in order to guarantee convergence. There is, in addition, the general rule that
the higher the convergence rate, the more unpredictable the method will be when accurate
initial approximations are not available. This is probably one of the reasons why high order
methods are not so common in applications; bisection, secant and Newton’s methods are the
most popular followed closely by Halley’s method (order 3) and other third order variants.

∗The author acknowledges financial support from Ministerio de Economı́a y Competitividad (project
MTM2012-34787)
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The ideal situation would be that of a high order method with good and manageable
non-local convergence properties; however, there is little (if any) information on the non-local
behaviour of methods of order larger than three, particularly concerning verifiable conditions
for convergence in an interval. In this article, we propose the Schwarzian-Newton (SNM) which
can defined as the minimal method for solving nonlinear equations f(x) = 0 which is exact for
any function f with constant Schwarzian derivative, meaning that the method gives the exact
root in one iteration for any starting value in a neighborhood of the root. This is a fourth
order method which has Halley’s method (HM) as limit when the Schwarzian derivative tends
to zero. As happens for the HM [9, 11], the SNM has a simple geometrical interpretation in
terms of osculating curves.

The SNM will be proven to converge (monotonically) in less iterations that Halley’s method
(HM) for functions with negative and monotonic Schwarzian derivative (decreasing in the direc-
tion of the converging sequence). For positive Schwarzian derivative, the SNM also converges
under similar monotonicity conditions, while the HM may not converge. We obtain conditions
for the convergence of the SNM in an interval and show how this method can be applied for
a reliable and fast solution of some problems, like the inversion of cumulative distribution
functions (gamma and beta distributions) and the inversion of elliptic integrals.

2 The Schwarzian-Newton method: definition, geometric

interpretation and convergence properties

Let f be sufficiently differentiable. Our aim is to solve f(x) = 0. We write

f ′′(x) +B(x)f ′(x) = 0, B(x) = −f ′′(x)/f ′(x), (1)

which is a second order ODE that we can transform to normal form by setting

Φ = exp

(
1

2

∫
B

)
f =

f√
|f ′|

(2)

This leads to
Φ′′ +ΩΦ = 0 (3)

with

Ω = −1

4
B2 − 1

2
B′ =

1

2

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

=
1

2
{f, x} (4)

where {f, x} is the Schwarzian derivative of f with respect to x.
As is well know, the application of Newton’s method to the function Φ leads to the HM [3]:

xn+1 = g(xn) = xn − Φ(xn)

Φ′(xn)
= xn − f(xn)

f ′(xn)−
f ′′(xn)

2f ′(xn)
f(xn)

. (5)

This is a third order method. This is easy to check by considering that if Φ(α) = 0 then
Φ′′(α) = 0 (provided Ω is bounded at α), and then g′(α) = g′′(α) = 0.
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An improvement in the order of convergence can be obtained by integrating approximately
the differential equation (3) (or the associated Riccati equation), similarly as in [12]. This gives
a fourth order fixed point method.

We start from the Riccati equation satisfied h′(x) = 1 + Ω(x)h(x)2, h = Φ/Φ′. Now let α
such that h(α) = 0 (and then f(α) = 0) and assume for the moment that Ω(x) > 0, we have:

x− α =

∫ x

α

h′(t)

1 + Ω(t)h2(t)
dt ≈ 1√

Ω(x)
arctan(

√
Ω(x)h(x)). (6)

where the approximation consists in taking Ω(x) constant in the integration. From this, we
obtain an approximation for α. We can iterate these approximations and obtain the fixed point
method xn+1 = g(xn) with

g(x) = x− 1√
Ω

arctan

(√
Ω
Φ

Φ′

)
, (7)

where
Φ

Φ′
=

f

B

2
f + f ′

=
f

f ′ − f ′′

2f ′
f

.

In other words, the method consists in computing the solutions of h̃′(x) = 1 + Ω(xn)h̃(x)
2

passing through the point (xn, h(xn)) and then computing xn+1 from h̃(xn+1) = 0.
For the case Ω < 0, and using arctan(

√
A)/

√
A = arctanh(

√
−A)/

√
−A when A < 0, we

can write:

g(x) = x− 1√
|Ω|

arctanh

(√
|Ω| Φ

Φ′

)
. (8)

The iteration functions (7) and (8) define the SNM, xn+1 = g(xn); we observe that the
SNM has the HM as limiting case for {f, x} → 0.

Remark 1 The SNM is exact for functions with constant Schwarzian derivative because the
approximate integration in (6) becomes exact in this case. In this sense, it is the analogous to
the standard Newton method, which is exact for functions with constant ordinary derivative;
this is why we call it Schwarzian-Newton method.

A straightforward computation shows that the SNM satisfies: g′(α) = g′′(α) = g′′′(α) = 0
while g(4)(α) = 2Ω′(α) (where f(α) = 0); this implies, denoting the errors by ǫk = xk − α:

ǫn+1 =
Ω′(α)

12
ǫ4n +O(ǫ5n).

Therefore, this is a fourth order method involving third order derivatives. The same would be
true, for example, for a fourth order Newton-like method (for example of the type considered
in [7]); the essential difference will be in the good non-local convergence properties of the SNM
(see Theorem 4 and Corollary 1).

The SNM is related to the method described in [12], which is a method for computing
zeros of functions which are solution of second order differential equations. Differently, the
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SNM can be applied to the inversion of any function provided the Schwarzian derivative can
be computed; therefore, it requires that the first three derivatives of the function are available.

As we mentioned, the SNM can be interpreted as an improvement of the HM. Next we
study in more detail the connection of the SNM with the HM, particularly with respect to
their geometrical interpretation.

2.1 Geometrical interpretation of the Halley and Schwarzian-Newton

methods

For brevity, let us denote

tan(λ, x) =
1√
λ
tan(

√
λx) =





1√
λ
tan(

√
λx) , λ > 0,

x , λ = 0,
1√
−λ

tanh(
√
−λx) , λ < 0,

(9)

and similarly for the inverse function arctan(λ, x) = arctan(
√
λx)/

√
λ. In terms of this, the

SNM reads

g(x) = x− arctan



1

2
{f, x}, f

f ′ − f ′′

2f ′
f


 (10)

It is easy to check that the more general functions for which the Schwarzian derivative is
constant are

h(x) =
tan(λ, x) +A

B tan(λ, x) + C
, (11)

with {h, x} = 2λ. This can be checked by direct integration of the differential equation {h, x} =
2λ, λ constant.

In particular, the most general function with zero Schwarzian derivative derivative is

h(x) =
x+A

Bx+ C
, (12)

which is the set of functions for which the HM is exact. This is consistent with the fact that
the SNM has the HM as limiting case when {f, x} → 0.

Precisely because the HM is exact for functions of the type (12), a way to obtain the HM for
computing the roots of f(x) = 0 is by considering an osculating curve. We have the following
well-known result:

Theorem 1 Let h(x) as in (12) and define y(x) = h(x−xn), the HM (5) is obtained by setting
y(xn) = f(xn), y

′(xn) = f ′(xn), y
′′(xn) = f ′′(xn) and y′′′(xn) = f ′′′(xn) (thus determining

the three constants) and obtaining xn+1 from y(xn+1) = 0. The three constants are given by

A =
2f(xn)f

′(xn)

D(xn)
, B = −f ′′(xn)

D(xn)
, C =

2f ′(xn)

D(xn)
(13)

where
D(xn) = 2f ′(xn)

2 − f(xn)f
′′(xn) (14)
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Because of this result, the HM is also known as the method of tangent hyperbolas [11].
Similarly, because the most general function for which the SNM is exact is (11), an alter-

native way of construction of the method in terms of osculating curves becomes available, as
the next theorem shows.

Theorem 2 Let h(x) as in (11) and define y(x) = h(x − xn), the SNM (10) is obtained
by setting y(xn) = f(xn), y′(xn) = f ′(xn), y′′(xn) = f ′′(xn) and y′′′(xn) = f ′′′(xn) (thus
determining the four constants) and obtaining xn+1 from y(xn+1) = 0. The constant λ is
given by

λ = Ω(xn), Ω(x) =
1

2
{f, x} (15)

and the other three constants A, B and C are as in Theorem 1.

Proof. The four conditions on y(x) give

f(xn) =
A
C , f ′(xn) =

C −AB
C2

f ′′(xn) = −2
B(C −AB)

C3 , f ′′′(xn) =
2
C4 (3B

2 + λC2)(C −AB)
(16)

The method is obtained by setting y(xn+1) = 0, which gives

xn+1 = g(xn) = xn − arctan(λ,A).

and this function g(x) will be the same as (10) if

1

A
=

f ′(xn)

f(xn)
− f ′′(xn)

2f ′(xn)
,

and

λ =
1

2

{
f ′′′(xn)

f ′(xn)
− 3

2

(
f ′′(xn)

f ′(xn)

)2
}
,

which is immediate to check using (16).
And using these last two relations together with (16) we readily obtain the coefficients. �

2.2 Non-local convergence properties of the Schwarzian-Newton method

Before analyzing the non-local convergence properties of the SNM, we recall a result of con-
vergence in an interval for the HM, which is limiting case of the SNM.

Theorem 3 Let f with f ′ 6= 0 and f ′′′ continuous in an interval J and let α ∈ J such that
f(α) = 0. Then, if {f, x} < 0 in J the HM converges monotonically to α for any starting value
x0 ∈ J .

Proof. Let us consider that f ′ > 0 (if f ′ > 0 we can proceed with the substitution f → −f). As
discussed before, the HM is equivalent to the application of Newton’s method to the function
Φ = f/

√
f ′. We notice that

Φ′′(x) = −1

2
{f, x}Φ(x)
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and because we are assuming that {f, x} < 0 then Φ(x)Φ′′(x) > 0 for all x ∈ J \ {α}.
On the other hand, because f ′ > 0 then Φ′ > 0. Indeed, f ′ > 0 implies that Φ(x) < 0 if

x < α and Φ(x) > 0 if x > α (and the same for Φ′′(x) > 0 because Φ(x)Φ′′(x) > 0 for all
x ∈ J \ {α}). Then Φ′(α) > 0 and because Φ′′(x) > 0 for x > α and Φ′′(x) < 0 for x < α we
have Φ′(x) > 0 for all x ∈ J .

Therefore, Φ is strictly increasing in J and Φ(x)Φ′′(x) > 0 for all x ∈ J \ {α}, which
guarantees monotonic convergence of the Newton method to the zero α of the function Φ. �

For an alternative formulation and proof of the Theorem 3 see [9]. Similar results and
geometrical proofs for other related third order methods can be found in [1].

From the proof of Theorem 3, it is clear that in the case of positive Schwarzian derivative
it is not possible to guarantee convergence in an interval because the convexity properties of
Φ are opposite to those which guarantee convergence of the Newton method. Contrarily, we
will see that conditions of non-local monotonic convergence can be found for the SNM both
for positive and negative Schwarzian derivative, but we will need an additional monotonicity
condition.

Remark 2 From now on, we will consider that the hypotheses of theorem 3 (f ′ 6= 0 and f ′′′

continuous in an interval J and with α ∈ J such that f(α = 0)) hold in the subsequent results.

Before proving the convergence theorems for the SNM it is important to analyze the be-
havior of the function h(x) = Φ(x)/Φ′(x) depending on the sign and monotonicity properties
of the Schwarzian derivative.

Lemma 1 Under the hypotheses of Remark 2, the following holds:

1. If {f, x} > 0 h(x) is strictly increasing when it is defined and it may have one or two
singularities (one smaller and one larger than α).

2. If {f, x} < 0, h(x) is strictly increasing if |h(x)| < |Ω(x)|−1/2, Ω(x) = 1
2{f, x} and

strictly decreasing if |h(x)| > |Ω(x)|−1/2 (when it is defined). h(x) as at most one zero
and at most one singularity.

3. Let {f, x} < 0 and decreasing (increasing) in J . If x− is such that h′(x−) < 0 then
h′(x) < 0 and h(x) 6= 0 for all x ∈ J greater (smaller) than x−.

The proof of Lemma 1 follows easily from graphical arguments. We give the proof in the
Appendix.

Using the these properties of the function we can now prove results for the convergence of
the SNM in intervals.

Theorem 4 Under the hypotheses of Remark 2, the following holds:

1. Let {f, x} be decreasing in I = [a, α] ⊂ J . If {f, x} < 0 in J then the SNM converges
monotonically to α for any starting value x0 ∈ [a, α]. If {f, x} > 0 in part of the interval,
the same is true if, in addition, the SNM iteration satisfies g(a) > a.

2. Let {f, x} be increasing in I = [α, b] ⊂ J , If {f, x} < 0 in J then the SNM converges
monotonically to α for any starting value x0 ∈ [α, b]. If {f, x} > 0 in part of the interval,
the same is true if, in adddition, the SNM iteration satisfies g(b) < b.

6



Proof. We prove the case 1.a. The case 1.b is proved in a similar way.
First we have to prove that the SNM is defined for all x ∈ [a, α]. For this, we need

|Ω(x)h(x)2| < 1 in [a, α] (so that the arctanh function in Eq. (8) is defined); but this is
necessarily so, because if there existed a x− such that |h(x−)| > |Ω(x−)|−1/2 then h′(x−) < 0,
and because {f, x} < 0, Lemma 1 guarantees that h(x) 6= 0 for all x > x−, in contradiction
with the fact that h(α) = 0, x− < α.

The monotonic convergence follows from the fact that the method consists in computing
the solution of

h̃′(x) = 1 + Ω(xn)h̃(x)
2 (17)

passing through the point (xn, h(xn)), where h(x) = Φ(x)/Φ′(x) satisfies

h′(x) = 1 + Ω(x)h(x)2 , (18)

and then computing the next iteration xn+1 from h̃(xn+1) = 0. Now, given xn ∈ [a, α) and
because Ω(x) < Ω(xn) for xn < x ≤ α, the graph of the solution of (17) lies above the graph

of h(x), which is solution of (18); as a consequence the function h̃ crosses the x-axis before
h(x) does. Therefore xn+1 < α, but also xn < xn+1 because h(xn) < 0 and this implies
that xn+1 = g(xn) > xn. We have a monotonically increasing sequence bounded by α and
converging to α which is the only fixed point of g(x) in J .

For Ω(x) > 0 the same proof is valid except for the fact that we must guarantee that h(x)
is defined for all x in (a, α), for which we need that no value x∞ ∈ (a, α) exist such that
Φ′(x∞) = 0. But because h(x) is monotonically increasing for Ω(x) and there are no zeros
of h(x) in (a, α), if such value x∞ existed h(x) = Φ(x)/Φ′(x) would change sign at x∞ an
therefore h(a) > 0; in that case g(a) < a. Therefore, if g(a) > a, h(x) is defined for all x in
(a, α) (and also in x = a because we are assuming that g(a) is defined). �

As corollary of the previous theorem we have:

Corollary 1 Under the hypotheses of Remark 2, if {f, x} has one and only one extremum at
xe ∈ J and it is a maximum, then

1. If {f, x} is negative the SNM converges monotonically to α starting from x0 = xe

2. If (xe−α)(xe− g(xe)) > 0 the SNM converges monotonically to α starting from x0 = xe.

Observe that the the second result does not depend on the sign of {f, x}.

We end this section with a comparison of the convergence properties of the HM and the
SNM. We wrote the SNM xn+1 = g(xn) as g(x) = x− arctan(Ω(x), h(x)); the HM corresponds
to g(x) = x− arctan(0, h(x)). And because arctan(λ, 1) is decreasing as a function of λ > −1,
we have, when g(x) is real, that

| arctan(Ω(x), h(x))| > | arctan(0, h(x))| if Ω(x) < 0

and
| arctan(Ω(x), h(x))| < | arctan(0, h(x))| if Ω(x) > 0

As a consequence

7



Theorem 5 The steps of the SNM (xn+1 − xn) are of the same sign and greater (smaller) in
absolute value than those for HM when {f, x} is negative (positive).

For the case of negative {f, x} this means that, when Theorem 4 and Corollary 1 hold, the
HM also converges monotonically. This is as expected on account of Theorem 3. And even
more interestingly:

Corollary 2 If {f, x} < 0 in J and {f, x} is decreasing in I = [a, α] ⊂ J (or increasing
in I = [α, b] ⊂ J), f(α) = 0, the SNM converges monotonically to α (within a prescribed
accuracy) in less iterations than the HM for any x0 ∈ I.

Contrarily, for the case of {f, x} > 0 the steps of the SNM are smaller in absolute value
than those of the HM. In this case, there are no convergence results for the HM in an interval;
the HM may not converge. For instance, considering the trivial case of computing the root
of f(x) = tan(x) in (−π/2, π/2) the SNM is exact because {f, x} is constant (Ω(x) = 1 and
h(x) = tan(x) and g(x) = x− arctan(tan(x)) = 0,) while the HM is given by g(x) = x− tan(x)
and gives values outside (−π/2, π/2) if x0 is close to ±π/2.

3 Applications

3.1 Unimodal cumulative distribution functions

We consider two examples of functions defined as

f(x) =

∫ x

a

ρ(x), x ∈ [a, b],

with ρ(x) > 0 and normalized in such a way that f(b) = 1. In this case f(x) is a cumulative
distribution function with probability density function ρ(x). We call this unimodal if ρ(x) has
only one relative extremum in [a, b] and it is a maximum. This functions f(x) have a sigmoidal
shape with an inflection point at the maximum of ρ(x).

Let us recall that in the set of functions with constant negative Schwarzian derivative, we
find functions with a sigmoidal behavior, as is the case of tanh(x); and as we discussed earlier,
the SNM can be interpreted in terms of osculating curves with sigmoidal form for approximating
the inversion problem. This seems adequate for these type of cumulative distributions and
provides a first hint regarding why the method can be particularly useful in these cases.

We provide some examples of application of the method for cumulative distributions such
as the central gamma and beta distributions. As we will see, the indications that the method
could have good global convergence properties will be confirmed. We start with the case of the
central gamma distribution.

3.1.1 The central gamma distribution

As in [10] we denote

P (a, x) =
γ(a, x)

Γ(a)
, Q(a, x) =

γ(a, x)

Γ(a)
(19)
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where

γ(a, x) =

∫ x

0

ta−1e−tdt, Γ(a, x) =

∫ +∞

x

ta−1e−tdt.

P is the lower tail gamma distribution and Q is the upper tail; we have P +Q = 1, P ∈ [0, 1],
Q ∈ [0, 1]. P is increasing, Q decreasing and they are both sigmoidal functions with inflection
point at x = a− 1. Close to this inflection point (particularly for large a) the values of P and
Q are similar.

The problem is either to invert P (a, x)− p = 0 or Q(a, x) − q = 0 (q = 1 − p); for obvious
reasons, it is better numerically to invert the first equation when p < 1/2 and the second in
the other case. This is particularly important when p (or q) is very small. We take as function
problem f(x) = P (a, x)− p or f(x) = q −Q(a, x) (which have the same derivatives). In both
cases we have

f ′′(x) +B(x)f ′(x) = 0, B(x) = 1 +
1− a

x

Considering the transformation (2) we arrive at

Φ′′(x) + Ω(x)Φ(x) = 0, Φ(x) = ex/2x(1−a)/2f(x), (20)

where

Ω(x) = −1

4

(
1 + 2

1− a

x
+

a2 − 1

x2

)
=

1

2
{f, x} (21)

We consider a > 0, starting with the case a ≥ 1. The case a = 1 is trivial and exact for our
method (Ω constant).

We observe that for a ≥ 1 Ω(x) < 0 for all x > 0 and therefore we are in the case of negative
Schwarzian derivative. Indeed Ω(0+) < 0, Ω(+∞) < 0 and

Ω′(x) =
1

2x3 (x(1 − a) + a2 − 1).

Therefore the only relative extrema is at xm = a + 1 and it is a maximum, where Ω(xm) =
−(4(1 + a))−1 < 0.

Then, the fixed point method is (8) with Ω(x) given by (21) and

Φ(x)

Φ′(x)
=

f(x)

1

2

(
1 +

1− a

x

)
f(x) +

e−xxa−1

Γ(a)

where f(x) = P (a, x) − p or f(x) = q −Q(a, x).
Convergence is monotonic starting from x0 = xm = a+ 1 (see Corollary 1).
It is instructive to compare the performance of the SNM with HM. We know, from Corollary

2, that the SNM will converge (within a prescribed accuracy) in no more iterations than HM,
furthermore, it has larger order of convergence. In addition, the SNM is exact for a = 1 and
therefore it is also extremely efficient for values of a close to 1.

We also provide graphical evidence of the superiority of the SNM by plotting the osculating
curves at x = xm (see Figure 1); as the figure shows, the osculating curve for the SNM is much
closer to the function P (a, x) than the corresponding curves for the Newton method and the
HM.

9
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Figure 1: Left: plot of the function P (a, x) for a = 30 (solid line), together with the osculating
curve at x = a + 1 for the SNM method (dashed line); the horizontal lines P = 0.05 and
P = 0.95 are are also shown (dotted lines). Right: plot of P (a, x) for a = 30 (solid line) and
the osculating curves at x = a + 1 for the SNM (dashed), HM (circles) and Newton method
(dotted).

For 0 < a < 1 the relative extremum xm = a + 1 of Ω(x) is no longer a maximum but a
minimum; Ω(x) is decreasing for x < xm and increasing for x > xm. We can maintain the
previous iteration function but we can no longer use as starting value x0 = xm; instead, we will
have monotonic convergence starting from either large enough x or small enough x, depending
on the value of p. Additionally, Ω(x) becomes positive for small enough x and the resulting
algorithm becomes slightly more complicated.

A way round is to consider a change of variables so that the transformed function has the
same properties as before: negative Schwarzian derivative and only one extremum (a maximum)
at most. In particular, we can consider the changes

z(x) =

{
xm/m, m > 0
log(x), m = 0,

(22)

as done in [4]. In this new variable, the function f(z) = f(x(z)) (x(z) the inverse function of

z(x)) is such that Φ(z) = f(z)/

√
ḟ(z) satisfies Φ̈(z)+Ω(z)Φ(z) = 0 where dots mean derivative

with respect to z and

Ω(z) = − 1
4x2m (x2 − 2(a− 1)x+ a2 −m2),

Ω̇(z) = 1
2 ẋx

−2m−1((m− 1)x2 + (2m− 1)(1− a)x+m(a2 −m2))
(23)

(see [4], section 4). Two interesting cases are m = 1/2 and m = 0; the case m = 1 (z(x) = x)
was considered before.

10



For m = 1/2, Ω(z) is negative for all x > 0 (and then z > 0) if a ≥ 1/2, with a maximum
at x =

√
a2 − 1/4 (z = 2(a2 − 1/4)1/4)). The situation is then similar as before and we can

perform the inversion with starting value corresponding to this maximum if a ≥ 1/2.
For m = 0 (z(x) = log x), Ω(z) is negative for all x > 0 (and z ∈ (−∞,+∞)) if a > 0.

The only extremum corresponds to x = a − 1, that is ze = log(a − 1). For a < 1, Ω(z) is
strictly monotonic in R (because ze /∈ R) and it is decreasing. Therefore, considering a value
of z < logα (f(α) = 0), convergence is guaranteed. For a > 1, Ω(z) is negative and with a
maximum at z = log(a−1), and then the convergence properties are similar to the case m = 1.

Therefore, combining the case m = 1 for a ≥ 1 with m = 0 for a ∈ (0, 1) (m = 1/2
for a ≥ 1/2 is also possible) we have a reliable and fast method of inversion of the gamma
distribution.

A recent algorithm for the inversion of the gamma distribution can be found in [8]. The
approach was to compute sufficiently accurate initial approximations, depending on the range of
parameters in order to ensure convergence for a high order Newton method. The SNM provides
a simpler and efficient method of computation with guaranteed convergence, particularly for
not to small p or q = 1 − p; for instance, when 0.1 < p < 0.9, three iterations are enough for
20 digits accuracy starting with x0 = a − 1. The use of the starting values considered in [8]
can, of course, improve the performance, particularly for small p or q.

The noncentral gamma distributionQµ(x, y) (which becomes the central distributionQ(µ, y)
for x = 0) can also be inverted using the SNM. In particular, in [8] we applied this method
for inverting Q1/2(x, y) = q, both with respect to x with y fixed and with respect to y with x
fixed, where

Q1/2(x, y) =
1

2

(
erfc(

√
y +

√
x) + erfc(

√
y −

√
x)
)
.

3.1.2 The central beta distribution

As another example of the inversion of cumulative distributions, we consider the cumulative
beta distribution

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt, x ∈ [0, 1], B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (24)

with complementary function Jx(a, b) = 1−Ix(a, b). The problem is to invert f(x) = Ix(a, b)−p
(or f(x) = q − Jx(a, b), q = 1− p).

In this case we have

B(x) = −a− 1
x + b− 1

1− x ,

Ω(x) =
(a− 1)(b− 1)
2x(1− x)

− 1
4
a2 − 1
x2 − 1

4
b2 − 1
(1− x)2

.

(25)

For the moment let us consider a > 1 and b > 1. Because Ω(0+) = −∞, Ω(1−) = −∞
and Ω(x) is differentiable in (0, 1), it has at least one extremum in (0, 1). Now we check that
when a and b are greater that one there is exactly one extremum and it is is a maximum; in
addition, Ω(x) is negative in (0, 1). This means that, similarly as in the case of the gamma
distribution, convergence of the SNM can be guaranteed by choosing as starting value the value
of x corresponding to this maximum.
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That Ω(x) is negative follows from the observation that the equation Ω(x) = 0 does not
have real roots if a > 1 and b > 1. This is easy to check by writing

Ω(x) = −1
4

P (x)
x2(1 − x)2

, P (x) = Dx2 + Ex+ F,

D = (α+ β)(α + β + 2), E = −(2α2 + 2αβ + 4α), F = α(α+ 2)

where α = a− 1 and β = b − 1. The discriminant is ∆ = E2 − 4DF = −2αβ(α + β + 2) < 0
and therefore there are no real roots.

For proving there is only one relative extremum, we compute Ω′(x)

Ω′(x) = 1
2x

−3(1− x)−3Q(x), Q(x) = Gx3 +Hx2 + Ix+ J,
G = (α+ β)(α + β + 2), H = −3(α2 + αβ + 2α),
I = 3α2 + αβ + 6α, J = −α(α+ 2)

Then, by Descartes rule of signs we see that Q(x) has either 1 or 3 real roots. But if it had 3
roots then Q′(x) should have two real roots. But it is easy to check that the equation Q′(x) = 0
does not have real roots when α > 0, β > 0.

The real root xm of Q(x) (which gives the abscissa of the maxima of Ω(x)) can be computed
using standard formulas for solving the cubic equation Q(xm) = 0.

Same as for the gamma distribution, the changes of variable in [4] can be used to deal with
other parameter cases. For instance, with the change z(x) = log(x/(1 − x)) we arrive to

Ω(z) =
1

4
(−(a+ b)(a+ b− 2)x(z)2 + 2(a+ b)(a− 1)x(z)− a2) (26)

which is always negative for x ∈ [0, 1] (a and b are positive). For a < 1, b < 1 Ω(z(x)) has
a minimum at xm = (a − 1)/(a + b − 2), for a > 1 and b > 1 there is a maximum at xm,
while for the rest of cases the function is Ω is monotonic (for x ∈ [0, 1]) . The analysis of the
monotonicity properties is more simple than in the previous case without change of variables.
Furthermore, it appears that in some cases this alternative method is more effective [6].

3.2 The incomplete elliptical integral of the second kind

In the previous two examples we considered functions with negative Schwarzian derivative,
which is the case of simpler application of the SNM (see Theorem 4 and Corollary 1). But if it
becomes positive, the SNM can be also applied if the monotonicity properties of the Schwarzian
derivative are available.

As an example of this, we consider the inversion of

f(x) = E(sin(x),m) − pE(1,m) =

∫ x

0

√
1−m2 sin2 t dt− pE(1,m) (27)

with respect to x, where x ∈ [0, π/2], 0 ≤ m ≤ 1, p ∈ [0, 1]. The function is increasing in the
interval [0, π/2] and f(0)) = −pE(1,m) < 0, f(π/2) = (1− p)E(1,m) > 0, therefore it has one
and only one zero in this interval.

The inversion of this function was recently considered in [2, 5]; we later discuss the advan-
tages of our approach.
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Proceeding as before we have

Ω(x) =
m2

4

m2 cos4 x+ (m2 − 4) cos2 x+ 2(1−m2)

(1−m2 sin2 x)2
(28)

Differently to the previous cases, Ω(x) changes sign and Ω(x) < 0 if x < xc(m) while
Ω(x) > 0 if x > xc(m) where

xc(m) = arccos



√

4−m2 −
√
9m4 + 16(1−m2)

2m2


 .

This means we should use (7) when x > xc(m) and (8) when x < xc(m) (or the general iteration
function (10)). As a function of m, xc(m) is increasing with xc(0) = π/4 and xc(1) = π/2.

Differentiating,

Ω′(x) = −m2 sinx cosx

2

3m2(2 −m2) cos2 x+ 3m4 +m2 − 4

(1 −m2 sin2 x)3
(29)

Therefore we have Ω′(x) = 0 at x = 0, x = π/2 and at xe if m > 2/
√
7 with

cos2 xe =
3m4 +m2 − 4

3m4 − 6m2 = 1− 7m2 − 4

3m2(2 −m2)
.

It is easy to see that xe < xc and therefore Ω(xe) < 0 and Ω(x) reaches its minimum at x = xe.
In the other case, when m ≤ 2/

√
7, Ω(x) is monotonically increasing in (0, π/2).

Therefore, considering Theorem 4 for m ≤ 2/
√
7 the SNM converges monotonically to the

root, starting with x0 = g(π/2), where

g(π/2) =
π

2
−
√
2(1−m2)

m
arctan

(
mE(1,m)(1− p)√

2(1−m2)

)
.

It turns out that 0 < g(π/2) < π/2 for m ∈ (0, 1), p ∈ (0, 1).
If m > 2/

√
7, we also have monotonic convergence to the root α starting from x0 = g(π/2)

if α ≥ xe; contrarily, if α < xe we have monotonic convergence starting from x0 = g(0), because
Ω(x) would be decreasing between 0 and α. We have

g(0) =

√
2

m
arctanh

(
mpE(1,m)√

2

)
.

For m > 2/
√
π the SNM will converge monotonically with one of the two starting values

x0 = g(0) or x0 = g(π/2). It does not seem easy to determine a priori which of the two is
the correct selection, except in some cases. For example if g(0) > g(π/2), g(π/2) is the best
option. Even when this fact is not determined a priori, one can build a very efficient algorithm
using these starting values.

The value g(0) turns out to be a good approximation for not to large values of p and it
is generally better than g(π/2). The reason for this is that Ω(x) has slower variation near
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x = 0 than near x = π/2. We have observed that considering g(0) as starting value instead of
g(π/2) is the best option when g(0) < g(π/2) and p not too large (say, p < 0.8). This can be
complemented with a simple approximation when m is very close to 1 (say m > 0.95) using
that E(sinx, 1) = sinx).

Using these approximations as starting values, we have checked that a relative accuracy
close to 10−25 can be obtained with only two iterations, and that the accuracy is better than
10−40 in two iterations if m is smaller than 0.8. This is clearly better than the 10−10 accuracy
in three iterations of [2]. Notice, in addition, that our algorithm quadruplicates the number
of exact digits in each iteration while the algorithm in [2] uses Newton-Raphson, which only
duplicates it. In [5] alternative methods are discussed which use accelerated bisection improved
with the Halley method; our algorithm does not need acceleration because it is a fast high order
method from the start (faster than Halley method).

Similar ideas can be used for the inversion of other incomplete elliptic integrals. In partic-
ular, the case of the incomplete elliptic integral of the first kind is very similar.

Appendix: proof of Lemma 1

Proof. We know that h′(x) = 1 + Ω(x)h(x)2 and the first two statements concerning the
monotonicity are obvious.

For the case Ω(x) > 0 the function is always increasing when it is defined, and necessarily
the zeros and singularities interlace. But because there is only one zero of h(x) in J there can
be two singularities of h(x) at most.

For the case Ω(x) < 0, h(x) is increasing in a region symmetric around the x-axis (|h(x)| <
|Ω(x)|−1/2) and decreasing outside that region. Then, if it has a zero α it is increasing at the
zero, and it is easy to check by graphical arguments that h(x) can not cross the x-axis again for
x > α or x < α. Similarly, proceeding with h̄ = −Φ′(x)/Φ(x) and because Φ′′+Ω(x)Φ(x) = 0,
we have h̄′ = Ω + h̄, which also increasing in a band around the x-axis. Following the same
argument as before, h̄ as one zero at most. Therefore h(x) has one singularity at most.

As for the third item, we consider the case of decreasing {f, x}; the second case is analogous.
We prove that h(x) is decreasing when it is defined for x > x− and therefore that h(x) 6= 0 (h(x)
is necessarily increasing at its zeros, as the second statement of this theorem confirms). Because
h′(x−) < 0, there are two possibilities: either h(x−) > |Ω(x−)|−1/2 or h(x−) < −|Ω(x−)|−1/2.
We start with the first case:

1. If h(x−) > |Ω(x−)|−1/2 = λ(x−), then h(x) is decreasing at x = x− and will remain
decreasing for x > x− with h(x) > λ(x). The reason for this is that λ(x) is decreasing in J
and then there can not exist a value xc > x− such that h(xc) = λ(xc) (and then h′(xc) = 0).
Indeed, because h(x−) > λ(x−), then h(x−

c ) > λ(x−

c ) and therefore h′(xc) ≤ λ′(xc) < 0,
contradicting the fact that h′(xc) = 0.

2. If h(x−) < −λ(x−) then, because −λ(x) is increasing, h(x) will remain negative and
decreasing (|h(x)| increasing) as long as it is continuous. It may happen that h(x) has a vertical
asymptote at certain x∞ > x− such that h(x−

∞
) = −∞ (x∞ would be a zero of Φ′(x)). In

that case, if h(x) is defined for x > x∞ we would have h(x+
∞
) = +∞ and h(x) would remain

positive and decreasing in the rest of the interval (we are in the case discussed before). �
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