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Abstract

In this paper, we provide an intensive review of the recent developments for semi-parametric

and fully nonparametric panel data models that are linearly separable in the innovation and

the individual specific term. We analyze these developments under two alternative model spec-

ifications: Fixed and random effects panel data models. More precisely, in the random effects

setting we focus our attention in the analysis of some efficiency issues that have to do with the

so-called working independence condition. This assumption is introduced when estimating the

asymptotic variance-covariance matrix of nonparametric estimators. In the fixed effects setting,

to cope with the so-called incidental parameters problem, we consider two different estimation

approaches: profiling techniques and differencing methods. Furthermore, we are also interested

in the endogeneity problem and how instrumental variables are used in this context. In addition,

for practitioners, we also show different ways of avoiding the so-called curse of dimensionality

problem in pure nonparametric models. In this way, semi-parametric and additive models appear

as a solution when the number of explanatory variables is large.[1]
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1 Introduction

In empirical research, the complexity of econometric models has been greatly enriched by the avail-

ability of panel data sets. These data are characterized by the observation of a group of individuals

(households, consumers, countries, and so on) over time, so they allow us to extract some unknown

information about the idiosyncratic characteristics of individuals. From a theoretical point of view,

this double index enables us to specify econometric models that account both for the impact of

unobserved actions of individuals and observable individual characteristics (explanatory variables).

Hence, through the use of panel data econometric models, under some standard assumptions on the

data generating process, it is possible to draw inference on the parameters of interest that otherwise

would be impossible to obtain. As it is often the case in applied econometrics, we are interested in

partial effects of the observable explanatory variables in the population regression (quantile) func-

tion but, following the approach in Chamberlain (1984), when there exists time-invariant or/and

individual invariant omitted latent variables.

In this context, the statistical properties of the estimators of the unknown parameters are going

to depend crucially on the set of assumptions that we are willing to impose on the relationship

between the observable explanatory variables and the unobserved effects in the conditioning set.

On the one hand, we might consider the unobserved individual heterogeneity as statistically inde-

pendent from the observed explanatory variables (the so-called random effects case). Then, the

individual heterogeneity is just another unobserved factor affecting the explanatory variable that is

not systematically related to the observed explanatory variables whose effects are of interest. On

the other hand, in empirical applications, many times this assumption is too strong and therefore

applied researchers prefer to avoid it by allowing for some type of statistical dependence between

individual time-varying heterogeneity and explanatory variables. More precisely, for example, it is

commonly assumed that the expected value of the random heterogeneity term, conditionally on the

set of values of the explanatory variables, is constant and varies only across individuals. This is

the so-called fixed effects model. Under this assumption, if the number of time observations (T ) is

fixed, it raises the incidental parameters issue because when the sample size increases, i.e., when

the number of individuals (N) grows, the number of parameters to be estimated also increases (see

Lancaster (2000) for a survey). The classical law of large numbers or central limit theorems relies

on the assumption that the number of unknown parameters to be estimated remains fixed as the

sample size increases. Therefore, in this case they do not apply straightforwardly (see Neyman

and Scott (1948)). Under this setting, it is clear that standard estimation techniques for random

effects panel data models might result in miss-leading inferential results and hence, more specific

estimation techniques are needed.

If panel data models are linearly separable in the innovation and the individual specific term, a

simple linear transformation can eliminate the random individual heterogeneity from the trans-

formed model (see Anderson and Hsiao (1981)). However, if this relationship is nonlinear there is

no general rule of transformation to eliminate the incidental parameters existence. In this case,
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a specific structure for the nonlinear model needs to be specified in order to find an appropriate

transformation to eliminate the incidental parameters. We refer to Arellano (2003), Baltagi (2013)

or Hsiao (2003) for an intensive review of techniques devoted to estimate panel data models and

Maddala (1987) to obtain good arguments about random versus fixed effects. Finally, although

from the applied point of view fixed effect models seem to be more popular and useful, random

effects models are still important for economics and statistics. For example, in situations where the

researcher is interested in estimating time invariant effects (without using instrumental variables)

which, in general, do not work with fixed effects models.

Nevertheless, the suitable treatment of these unobserved heterogeneity effects is not enough to

guarantee proper statistical properties for the estimators of interest. In most cases, estimation of the

parameters of interest also depends on some statistical restrictions imposed on the data generating

process. However, sometimes these assumptions are too restrictive with respect to functional forms

or densities and the risk of misspecification is high. If this is the case, the resulting estimators

can lead us to missleading inference. In this context, nonparametric panel data models are very

appealing since they do not make too restrictive assumptions on the specification of the model and

they allow data to tailor the shape of the regression function by themselves. However, in some

situations this flexibility presents some drawbacks. First, it can be unable to incorporate prior

information so the resulting estimator for the unknown function tends to have a higher variance term.

Second, it is subject to the so-called curse of dimensionality which practically disables standard

nonparametric methods when the number of explanatory variables is high. In order to solve these

shortcomings, semi-parametric panel data models appear as a reasonable compromise between fully

nonparametric and parametric models. In fact, they enable us to incorporate some prior information

coming from economic theory or past experience by keeping at the same time more flexibility in

the specification of the model. Furthermore, although there is a nonparametric part that shows a

slower rate of convergence, the estimators obtained from the parametric part do exhibit the same

statistical properties as if the whole model would be fully parametric. That is the so-called
√
N -

consistency property, see among others Robinson (1988) or Speckman (1988). For early discussions

on semi-parametric panel data models see Ullah and Roy (1998), while we refer to Ai and Li (2008)

for a review about partially linear and limited dependent nonparametric and semi-parametric panel

data models.

In this paper, we provide an intensive review of the recent developments for semi-parametric and

fully nonparametric panel data models that are linearly separable in the innovation and the indi-

vidual specific term. Furthermore, we analyze these developments under two alternative settings,

the so-called fixed and random effects panel data models. Note that Su and Ullah (2011) focus on

similar modelings, although in this case we include the most recent results and pay special attention

to the so-called incidental parameters problem as well as with endogenous explanatory variables.

Meanwhile, in Chen et al. (2013) this type of models are studied when deterministic trends and

single-index specifications are present.

The rest of the paper is organized as follows. In Sections 2 and 3, we analyze the literature about
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nonparametric panel data models with random and fixed effects, respectively. In Section 4, we focus

on semi-parametric models with random effects. In Section 5, we study the corresponding models

with fixed effects. Section 6 refers to nonparametric and semi-parametric panel data models when

the presence of endogenous explanatory variables is allowed. Finally, Section 7 concludes.

2 Nonparametric panel data models with random effects

The basic nonparametric unobserved effects model can be written, for a randomly drawn cross-

section observation i, as

Yit = m (Zit) + εit, t = 1, · · · , T, (2.1)

where Zit is a q × 1 vector of observable explanatory variables, m(·) is an unknown function that

needs to be estimated, and εit is an unobservable error term. Typically, in panel data analysis the

error term of the model follows a one-way error component structure of the form

εit = µi + vit, t = 1, · · · , T, (2.2)

where vit is referred as the idiosyncratic error term and µi is called the unobserved individual

heterogeneity. Through the paper we will assume the following,

E (Yit|Zi1, · · · , ZiT , µi) = E (Yit|Zit, µi) = m (Zit) + µi. (2.3)

Note that, the first equality establishes the relationship between the dependent variable Y and the

past values of Z. Furthermore, the second equality constrains the regression function to be the sum

of a nonparametric function, m (Zit), plus an unobservable heterogeneity term, µi. Using (2.1) and

(2.2) note that assumption (2.3) can be stated in terms of the idiosyncratic errors as

E (vit|Zi1, · · · , ZiT , µi) = 0, t = 1, · · · , T. (2.4)

Let vi = (vi1, · · · , viT )> be a T × 1 vector. The error vector vi and the heterogeneity term µi are

such that

E
(
viv
>
i

∣∣∣Zi1, · · · , ZiT , µi) = σ2
vIT , E

(
µ2
i

∣∣Zi1, · · · , ZiT ) = σ2
µ, (2.5)

where IT is a T × T identity matrix.

Furthermore, let εi = (εi1, · · · , εiT )> be a T × 1 vector and let E(εiε
>
i ) be a T × T matrix. Under

the assumptions above note that

E(εiε
>
i ) = σ2

vIT + σ2
µıT ı

>
T , (2.6)

and

Ω = E(εε>) = IN ⊗
[
σ2

1ıT ı
>
T /T + σ2

v(IT − ıT ı>T /T )
]

= IN ⊗ V, (2.7)
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where σ2
1 = Tσ2

µ + σ2
v , V = σ2

1ıT ı
>
T /T + σ2

v

(
IT − ıT ı>T /T

)
and ıT is a T -dimensional vector of ones.

Finally note that for a randomly drawn cross-section observation i, the vector of explanatory vari-

ables Zi1, · · · , ZiT is strictly stationary, whereas for fixed t the vector Z1t, · · · , ZNt are independent

and identically distributed (i.i.d.) random variables. In general, the asymptotic behavior of the

estimators that appear in the paper is analyzed in the standard panel data framework where N

tends to infinity and T is fixed. In those particular cases where other asymptotic behavior is needed

it will be pointed out.

All previous assumptions will be common for both random and fixed effects nonparametric panel

data models. Now, to characterize the random effects model, we further assume that

E (µi|Zi1, · · · , ZiT ) = E (µi) = 0. (2.8)

Note that using (2.1) and (2.2), applying assumptions (2.3), (2.4), (2.5) and (2.8) and by the law

of iterated expectations we obtain that

E (Yit|Zi1, · · · , ZiT ) = m (Zit) , t = 1, · · · , T. (2.9)

Hence, the function m (·) and its first order derivatives can be directly estimated through a pooled

standard nonparametric technique. However, the resulting estimator is inefficient given that the

composed error term is serially correlated by the presence of µi in each time period. Hence, it

should be possible to improve the efficiency of the estimator by taking into account the information

contained in the variance-covariance matrix. Among others, in Ullah and Roy (1998), Lin and

Carroll (2000) and Su and Ullah (2007) several nonparametric estimators of m (·) and its derivatives

are considered. Furthermore, and with the aim of achieving efficiency, in Ruckstuhl et al. (2000),

Wang (2003) and Henderson and Ullah (2005) different strategies are proposed to incorporate the

information contained in the disturbances.

2.1 Local linear least-squares versus Nadaraya-Watson estimators

For any z ∈ A, where A is a compact subset in IRq, the basic idea behind the standard nonparametric

estimation of m(z) = E(Yit|Zit = z) is to obtain a smoothed average of the Yit values by taking into

account the values of Zit contained in a small interval around z. In order to understand further

developments, it is useful to start with the analysis of the univariate case, where q = 1. Then,

taking a Taylor expansion of the unknown smooth function m (·) around z, we obtain,

m (Zit) ≈ m(z) +m′(z) (Zit − z) +
1

2
m′′(z) (Zit − z)2 + · · ·+ 1

p!
m(p)(z) (Zit − z)p . (2.10)

The above exposition suggests that we can estimate m(z),m′(z), ...,m(p)(z) by regressing Yit on the

terms (Zit − z)λ, for λ = 0, 1, · · · , p, with kernel weights. Thus, the quantities of interest can be

estimated by minimizing the following criterion function,

N∑
i=1

T∑
t=1

(
Yit − γ0 − γ1(Zit − z)− γ2 (Zit − z)2 − · · · − γp (Zit − z)p

)2
Kh(Zit − z), (2.11)

5



with respect to the values, γ0, · · · , γp, where γ0 = m(z), γ1 = m′(z) and γp = m(p)(z). Let us denote

by γ̂0, · · · , γ̂p the solution to the minimization problem. Then, the above exposition suggests that

m̂(z;h) = γ̂0, m̂′(z;h) = γ̂1 and m̂(p)(z;h) = γ̂p. Note that h is the bandwidth that needs to be

selected empirically and Kh(u) = 1
hK(u/h) is the so-called kernel function that must fulfill the

following conditions,∫
K(u)du = 1,

∫
K2(u)du <∞ and

∫
u2K(u)du <∞. (2.12)

The kernel function is a weight function defined in such way that, for fixed h, it takes values

close to zero when Zit is far away from z. The solution to the problem above is the so-called local

polynomial regression (see Ruppert and Wand (1994), Fan and Gijbels (1995) and Zhan-Qian (1996)

for a detailed description of this technique). As it is pointed out in Ullah and Roy (1998), for p = 0,

(2.11) becomes ∑
it

(Yit − γ0)2Kh (Zit − z) (2.13)

and the value of γ0 that minimizes (2.13) is

γ̂0
.
= m̂NW (z;h) =

∑N
i=1

∑T
t=1Kh(Zit − z)Yit∑N

i=1

∑T
t=1Kh(Zit − z)

. (2.14)

This is the so-called Naradaya-Watson estimator proposed alternatively in Nadaraya (1964) and

Watson (1964). When p = 1 and q > 1, the previous Taylor expansion can be rewritten as

m(Zit) ≈ m(z) + (Zit − z)>Dm(z),

where Dm(z) = vec(∂m(z)/∂z>) is a q × 1 vector of partial derivatives of the function m(z) with

respect to the elements of the q-vector z. Then, as it is suggested in Ullah and Roy (1998), Lin

and Carroll (2000), Ruckstuhl et al. (2000), Henderson and Ullah (2005) and Su and Ullah (2007),

among others, m(z) and its first-order derivatives are estimated by minimizing the following criterion

function

N∑
i=1

T∑
t=1

(
Yit − γ0 − γ>1 (Zit − z)

)2
Kh(Zit − z), (2.15)

where we denote by γ̂ = (γ̂0 γ̂1)> a (1+q)-vector that minimizes (2.15). Thus, the above exposition

suggests m̂(z;h) = γ̂0 and D̂m(z;h) = γ̂1 as estimators for m(z) and Dm(z), respectively.

Assuming Z>z KzZz is nonsingular, the solution (2.15) in matrix form can be written as

(
γ̂0

γ̂1

)
= (Z>z KzZz)

−1Z>z KzY, where Zz =


1 (Z11 − z)>
...

...

1 (ZNT − z)>

 (2.16)

is a NT×(1+q) matrix, Kz = diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) is a NT×NT diagonal matrix

and Y = (Y11, · · · , YNT )> is a NT -dimensional vector. Then, the local linear least-squares (LLLS)

estimator for m(z) is

γ̂0
.
= m̂LLLS(z;h) = e>1 (Z>z KzZz)

−1Z>z KzY, (2.17)
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where e1 is a (1 + q) selection vector having 1 in the first entry and all other entries 0.

Under the previous assumptions, imposing some smoothness conditions on both m(·) and f(·) and

letting h → 0 in such a way that Nhq → ∞, as N → ∞ and T is fixed, in Kneisner and Li (1996)

it is shown that
√
Nhq (m̂NW (z;h)−m(z)− bNW (z))

d−−−→ N (0, v(z)) (2.18)

and

√
Nhq (m̂LLLS(z;h)−m(z)− bLLLS(z))

d−−−→ N (0, v(z)) . (2.19)

Let Hm(z) be the Hessian matrix of m(·) and let Df (z) be the first order derivative vector of the

density function of q × q and 1× q dimension, respectively, the conditional bias terms are

bNW (z) =
h2

2T
µ2(K)

[
tr (Hm(z)) + 2Dm(z)Df (z)f(z)−1

]
, (2.20)

bLLLS(z) =
h2

2T
µ2(K)tr (Hm(z)) . (2.21)

Based on these results we can highlight that although the asymptotic variance of these two es-

timators is the same, the bias is not. More precisely, the bias of the local linear least-squares

estimator only depends on the curvature of m(·) at z in a particular direction whereas the bias term

of the Nadaraya-Watson estimator emerges mainly from both the curvature of m(·) and the term

Dm(z)Df (z)f(z)−1. Furthermore, it is well-known that the local linear estimator usually exhibits

a better performance near the boundary of the support of the density function; see Fan (1993) for

more details. Note that, under the conditions above, both bias and variance terms converge at the

same rate,
√
Nhq. This makes the comparison of both estimators in terms of relative efficiency

rather difficult because we would need to compare asymptotic mean squared errors. Just to avoid

it, we choose the sequence of bandwidths, h ≡ h(N), in such a way that NTh4+q → 0, as N tends to

infinity. By imposing this rate the variance term dominates the bias asymptotically, and therefore

we can compare variance terms only.

Note that, by assuming just conditional heteroskedastic errors in ε, the variance term takes the

form

v(z) =
σ2
ε (z)R(K)

Tf(z)
, (2.22)

where σ2
ε (z) can be replaced by its consistent estimator, σ̂2

ε = (ı>NTKzıNT )−1ı>NTKz ε̂
2. In this

case, ε̂2 is the vector of nonparametric squared residuals. If in the previous expression we impose

condition (2.5) then the conditional variance-covariance matrix can be written as

e>1 (Z>z KzZz)
−1Z>z KzΩKzZz(Z

>
z KzZz)

−1e1, (2.23)

where Ω is the variance-covariance matrix of the error term defined as in (2.7). Finally, note that

under the assumptions above m̂NW (z;h) and m̂LLLS(z;h) are equally efficient. As we will show in

the following sub-section, a relative efficiency improvement can be made by defining an estimator

that accounts for the compounded error term assumed in (2.2).
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2.2 Local linear weighted least-squares estimator

With the aim of accounting for the variance-covariance assumed in (2.7), under different specifica-

tions of the weighting matrix, in Henderson and Ullah (2005) it is proposed a feasible nonparametric

random effects estimators for the two estimators developed in Lin and Carroll (2000) and an alter-

native version for the estimator introduced in Ullah and Roy (1998).

Following the same lines as in the previous sub-section, it is proposed to obtain estimators for m(z)

and Dm(z) by minimizing the following criterion function with respect to γ,

(Y − Zzγ)>Wz(Y − Zzγ), (2.24)

where γ̂ and Zz are defined as in (2.16). Let Wz be a weighting matrix based on the kernel function

that contains the information of the error structure, in Henderson and Ullah (2005) it is proposed

the following local linear weighted least-squares (LLWLS) estimator for m(z),

γ̂0
.
= m̂LLWLS(z;h) = e>1 (Z>z WzZz)

−1Z>z WzY. (2.25)

The first step of this procedure is to propose a specific form for Wz. Specifically, Lin and Carroll

(2000) use two types of weighting matrices, Wz = K
1/2
z Ω−1K

1/2
z and Wz = Ω−1Kz, whereas in

Ullah and Roy (1998) it is developed an estimation procedure with Wz = Ω−1/2KzΩ
−1/2. Note that

when Ω is a diagonal matrix, these alternative specifications for Wz are the same.

Furthermore, note that (2.25) is an infeasible estimator for m(·) given that Ω depends on some

unknown terms, i.e., σ2
v and σ2

µ. Therefore, in order to get a feasible solution for the minimization

problem (2.24), an estimator for this covariance matrix is necessary. Following this idea and based

on the spectral decomposition of Ω, in Henderson and Ullah (2005) it is developed a local linear

feasible weighted least-squares estimator where the unknown covariance components are replaced

by their consistent estimators.

Let ε̂it = Yit−m̂LLS(Zit;h) be the local linear least-squares residual, in Henderson and Ullah (2005)

it is proposed to estimate the unknown terms of the variance-covariance matrix (2.7) as

σ̂2
1 =

T

N

N∑
i=1

ε̂
2
i· and σ̂2

v =
1

N(T − 1)

N∑
i=1

T∑
t=1

(ε̂it − ε̂i·)2, (2.26)

where ε̂i· = T−1
∑T

t=1 ε̂it. By plugging these consistent estimators into (2.7) it is obtained

Ω̂ = IN ⊗
[
σ̂2

1ıT ı
>
T /T + σ̂2

v(IT − ıT ı>T /T )
]
, (2.27)

where σ̂2
1 and σ̂2

v are defined in (2.26). Then, replacing Ω with Ω̂ in Wz in (2.25), in Henderson

and Ullah (2005) it is proposed the following feasible local linear weighted least-squares (FLLWLS)

estimator

m̂FLLWLS(z;h) = e>1 (Z>z ŴzZz)
−1Z>z ŴzY, (2.28)
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where Ŵz is either K
1/2
z Ω−1K

1/2
z or Ω−1Kz and Ω̂ is th result of plugging (2.26) into (2.7).

In addition, they show that under some standard regularity conditions, for N large and T fixed,

the asymptotic bias and variance of m̂LLWLS(z;h) are bounded by Op(h
2) and Op

(
(Nhq)−1

)
,

respectively, and they hold for m̂FLLWLS(z;h). See Lin and Carroll (2000) for a detailed analysis

of the proof of these results.

Nevertheless, note that Lin and Carroll (2000) and Henderson et al. (2008) demonstrate that these

methods of accounting for the correlation could lead to losses of efficiency in comparison to the work-

ing independence method proposed in Lin and Carroll (2000). Specifically, these authors argue that

higher efficiency is obtained by assuming independence rather than using the correlation structure.

The reason is that since h → 0 asymptotically, the chance of having more than two observations

from the same subject in the local estimation procedure is small. Hence, the observations locally

will came from different subjects, which are assumed to be independent.

2.3 Local linear two-stage least-squares estimator

In order to develop a procedure that enables us to consider the information of the variance-covariance

matrix of the error term for the estimators and, at the same time, to improve the efficiency with

respect to the local linear least-squares (LLLS) estimators, in Ruckstuhl et al. (2000) it is proposed

a two step nonparametric procedure.

More precisely, these authors argue that the slower rate of convergence of the LLLS estimator is due

to the elements of the off-diagonal of Ω−1. To solve it, they propose to estimate a nonparametric

model that only depends on both the unknown function m(·) and the error term that is i.i.d.

Thus, unlike what was proposed in Lin and Carroll (2000) and Ullah and Roy (1998), the intuitive

idea of the approach developed in Ruckstuhl et al. (2000) is to multiply both sides of (2.1) by the

square-root of Ω−1 and add and subtract m(Z) obtaining

Y ∗ = m(Z) + Ω−1/2ε, (2.29)

where Y ∗ = Ω−1/2Y+(I−Ω−1/2)m(Z) and Y ∗ = (Y ∗11, · · · , Y ∗NT )>, m(Z) = (m(Z11), · · · ,m(ZNT ))>

and ε = (ε11, · · · , εNT )> are NT -dimensional vectors. Note that Ω−1/2ε satisfies the independence

condition because it exhibits an identity variance-covariance matrix.

In order to provide feasible estimators of (2.29), in the first step Ruckstuhl et al. (2000) propose to

obtain the LLLS estimator for the unknown functions of (2.1) and the corresponding residual term

that enables us to compute the matrix Ω̂ as in the previous section. Later, in the second stage, they

use this result to compute Ŷ ∗ = Ω̂−1/2Y + (I − Ω̂−1/2)m̂LLLS(Z;h) and regress Ŷ ∗ on Z through

the local polynomial regression method. Thus, these authors provide the following local linear two

step least-squares (LL2SLS) estimator

m̂LL2SLS (z;h) = e>1 (Z>z KzZz)
−1Z>z KzŶ

∗, (2.30)
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where Zz and Kz are defined as in (2.16). Later, in Martins-Filho and Yao (2009) it is used this

two step procedure to propose a local linear estimator in a regression model where the error term

has a non-spherical covariance structure and the regressors are dependent and heterogeneously

distributed.

Alternatively, in Wang (2003) it is shown that the efficiency result obtained in Lin and Carroll (2000)

is a natural consequence of how standard kernel methods incorporate the within-subject correlation

to control the bias, but at the price of ignoring some input from correlated elements within each

individual. In order to consider this information and reduce the variance simultaneously, in Wang

(2003) it is proposed a two-step procedure that achieves asymptotic improvements over the working

independence technique if the covariance is correctly specified.

In order to efficiently use all the correlated data within a subject, the basic idea proposed in Wang

(2003) is as follows: once a data point from one subject is near the estimation point and significantly

contributes to the local estimation, all data points from this subject will be used. To avoid the bias,

the contributions of all these data points except the data point near the local estimation point are

through their residuals. Then, for the nonparametric model (2.1) this two step procedure can be

described as follows:

Step 1. Compute an initial nonparametric estimator for m(z), say m̃(z;h), using for example the

working independence method.

Step 2. Obtain the final estimator for m(z), say m̂(z;h), by solving the following kernel weighted

estimating equation

N∑
i=1

T∑
t=1

Kh(Zit − z)G>i Ω−1
i [Yi −m∗it(γ)] = 0, (2.31)

where Ωi is the variance-covariance matrix (2.7) for the i − th subject while we define Gi to

be a T × (q + 1) matrix with the t− th row to be Z>zit = [1, (Zit − z)] and 0 otherwise. Thus,

the s− th element of m∗it(γ) is Z>zitγ when s = t and the s− th element of m∗it(γ) is m̃(Zis;h)

when s 6= t. Note that γ̂ is defined as in (2.16).

3 Nonparametric panel data models with fixed effects

In this section, we maintain assumptions (2.3), (2.4) and (2.5) about the data generating process

but we replace (2.8) by

E (µi|Zi1, · · · , ZiT ) = µi. (3.1)

This new assumption introduces a relationship of statistical dependence between the heterogeneity

term, µ, and the explanatory variables, Z1, · · · , Zq. Using now (2.1) and (2.2), applying assumptions

(2.3) to (2.5) and (3.1) and by the law of iterated expectations we obtain that

E (Yit|Zi1, · · · , ZiT ) = m (Zit) + µi, t = 1, · · · , T. (3.2)
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Given the specification in (3.2) it is clear that direct estimation of m (·) through standard non-

parametric techniques, as in the previous section, would result in estimators with non-negligible

asymptotic bias. As in the fully parametric case, several estimation methods have been developed

to estimate nonparametric panel data models with fixed effects of the form (3.2); see Hsiao (2003),

Wooldridge (2010) and Baltagi (2013), for example. As we appreciate hereinafter, they can be clas-

sified into two broad approaches. On the one hand, there is a first type of nonparametric estimators

that use differencing transformations to remove the unobserved individual heterogeneity from the

structural model. Thus, the unknown function of the transformed model can be estimated consis-

tently through a direct nonparametric approach. On the other hand, a second type of estimators

based on the spirit of the least-squares dummy variable (LSDV) approach are proposed to estimate

the function of interest, i.e., m(·). In what follows, we review the latest nonparametric literature

based on both approaches. Later, we focus on the resulting estimators for different specifications of

these nonparametric models, i.e., allowing for additive structures of the unknown smooth function

or the presence of time lagged endogenous explanatory variables.

3.1 Profile least-squares estimators

When we want to estimate directly m (·) in (3.2) we need an estimation procedure that takes into

account the information contained in the unobserved individual heterogeneity. Following the idea of

the least-squares dummy variable approach, a profile least-squares method can be proposed. In this

section, we first analyze this method under the different identification conditions considered in Sun

et al. (2009), Su and Ullah (2011), Gao and Li (2013), and Lin et al. (2014) and show why it is so

important to impose strong identification conditions in this setting. Later, we focus on alternative

feasible forms of the local linear approach according to Li et al. (2013).

Let Y = (Y11, · · · , YNT )>, m(Z) = (m(Z11), · · · ,m(ZNT ))>, v = (v11, · · · , vNT )> vectors of NT ×1

dimension and denote µ = (µ1, · · · , µN )> to be a N -dimensional vector and D = (IN⊗ıT ) a NT×N
dummy matrix. Proceeding as in Section 2.1, we choose an estimator for m(z) that minimizes

(Y −m(Z)−Dµ)>Kz (Y −m(Z)−Dµ) , (3.3)

where Kz is a NT ×NT diagonal kernel weighting matrix.

Let z be an interior point of the neighborhood of Z, replacingm(Z) bym(z), the first-order condition

with respect to m(·) yields the following local constant kernel estimator for m(·),

m̂(z;h) = (ı>NTKzıNT )−1ı>NTKz(Y −Dµ). (3.4)

However, note that µ is not directly observable so this local constant estimator is infeasible. In

order to solve it, we can minimize (3.3) with respect to µ obtaining

µ̂ = (D>KzD)−1D>Kz(Y −m(Z)). (3.5)
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Then, if we substitute (3.5) into (3.3) and rearrange terms we obtain the following (concentrated)

weighted least squares criterion function

(Y −m(Z))>Wz (Y −m(Z)) , (3.6)

where Wz = M(z)KzM(z) and M(z) = INT −D
(
D>KzD

)−1
D>Kz.

Consider again an interior point, z, of the neighborhood of Z. Replacing m(Z) by m(z), the first-

order condition with respect to m(·) in (3.6) yields the following local constant kernel estimator

m̂LCLS(z;h) = (ı>NTWzıNT )−1ı>NTWzY, (3.7)

It is important to highlight that the weighting matrix Wz has been designed to directly remove any

time invariant term in the structural model (3.2). To see this, note that M(z)D = 0. However,

since ıNTm(z) is time invariant and WzıNT ≡ 0, the matrix ı>NTWzıNT is non-invertible so the

resulting estimator of this method is infeasible. See Lin et al. (2014) for a detailed description of

this problem.

To overcome this situation, it is necessary to use a weighting matrix which removes the unobserved

cross-sectional heterogeneity either complete or asymptotically and, at the same time, enables us to

select only those values of Zit close to z. In other words, we need a weighting matrix that enables

ı>NTWzıNT to be invertible and (ı>NTWzıNT )−1ı>NTWzDµ asymptotically negligible. If we assume

that µi is an i.i.d. random variable with zero mean and finite variance, in Lin et al. (2014) it is

suggested to asymptotically remove the individual effects via the proposal of a new weighting matrix

Wz0 that satisfies (ı>NTWz0ıNT )−1ı>NTWz0Dµ = N−1
∑N

i=1 µi = Op(N
−1/2), as N →∞.

Let µ0 = (µ2, · · · , µN )> be a (N − 1)-dimensional vector and denote D0 a NT × (N − 1) matrix of

the form D0 = (−ıN−1, IN−1)> ⊗ ıT , Su and Ullah (2006b), Sun et al. (2009) and Lin et al. (2014)

propose to replace D with D0 in (3.3). Then, considering a local linear instead of a local constant

approximation, the local linear weighted least squares criterion becomes

(Y − Zzγ −D0µ0)>Kz (Y − Zzγ −D0µ0) , (3.8)

where Zz and γ are defined as in (2.16).

As in (3.3), the quantities of interest can be estimated by minimizing the following criterion function

(Y − Zzγ)>Wz0 (Y − Zzγ) , (3.9)

where now the weighting matrix isWz0 = M0(z)>KzM0(z), withM0(z) = INT−D0(D>0 KzD0)−1D>0 Kz,

in such a way that M0(z)D0 = 0. Let γ̂ = (γ̂>0 γ̂>1 )> be a (1 + q) vector of minimizers of (3.9.

Then, the profile local linear weighted least squares estimator is

γ̂PLLLS = (Z>z Wz0Zz)
−1Z>z Wz0Y. (3.10)

Note that although this new weighting matrix enables us to obtain feasible estimators, the resulting

estimator has an extra component in the bias term that comes from the existence of unobserved
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cross-sectional heterogeneity. See Theorem 2.1 in Lin et al. (2014) for the profile local constant

estimator.

In this framework, a standard solution is the estimation of the nonparametric regression under

further strong identification conditions regarded to the individual effects. Specifically, Mammen

et al. (2009) and Su and Ullah (2011) impose
∑N

i=1 µi = 0, while Gao and Li (2013) develop a

profile least-squares method under the condition E (µi) = 0. As it is proved in Sun et al. (2009) for

partially linear models, this stronger identification condition allows us to obtain standard asymptotic

properties in the nonparametric framework and, simultaneously, override the individual effects.

Alternatively, in Li et al. (2013) it is proposed a profile method in which it is not necessary to pay

special attention to the invertibility problem noted in Lin et al. (2014) and Gao and Li (2013). Again,

assuming
∑N

i=1 µi = 0, a profile local linear least-squares method for the nonparametric components

of the regression function is proposed. But, unlike the previous methods, in Li et al. (2013) it is

assumed that µ0 is known and a least-squares procedure for the nonparametric components in β can

be proposed. In this way, the quantities of interest can be estimated by minimizing the resulting

criterion function of a local linear fitting with respect to γ obtaining

γ̂ = (Z>z KzZz)
−1Z>z Kz(Y −D0µ0). (3.11)

As previously, this estimator is not feasible but we can multiply the true model by e>1 (Z>z KzZz)
−1Z>z Kz

and choose the µ0 that minimizes the following criterion function

(Y ∗ −D∗0µ0)> (Y ∗ −D∗0µ0) , (3.12)

where Y ∗ =
(
INT − e>1 (Z>z KzZz)

−1Z>z Kz

)
Y and D∗0 =

(
INT − e>1 (Z>z KzZz)

−1Z>z Kz

)
D0. Thus,

the minimizer of (3.12) is of the form

µ̂PLLLS = (D∗>0 D∗0)−1D∗>0 Y ∗, (3.13)

and replacing µ0 with µ̂PLLLS in (3.11) the profile local weighted linear least-squares estimator is

γ̂PLLLS = (Z>z KzZz)
−1Z>z Kz(Y −D0µ̂PLLLS). (3.14)

Finally, analyzing the asymptotic normality of (3.14), in Li et al. (2013) it is shown that under

standard smoothing conditions, as N →∞ and q = 1,

√
Nh (m̂PLLLS(z;h)−m(z)− b(z)) d−−−→ N

(
0,
σ2(z)R(K)

f(z)2

)
, (3.15)

where m
′′
(z) is the second-order derivative of m(·) with respect to z, ft(·) is the density function

of Zit, f(z) =
∑T

t=1 fz(z) and

b(z) =
h2

2
µ2(K)m′′(z),

σ2(z) =

T∑
t=1

σ2
t (z)ft(z) =

T∑
t=1

Var (vit|Zit = z) ft(z).
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Note that, as we will detail in later sections, these asymptotic properties are similar to the result

obtained in Su and Ullah (2006b) for partially linear panel data models with fixed effects. In fact,

although this profiling technique enables to obtain estimators with a negligible asymptotic bias, in

most cases additional assumptions such as
∑N

i=1 µi = 0 or E(µi) = 0 are needed. Furthermore, in

most part of the estimators quoted previously the asymptotic analysis is performed when both N

and T tends to infinity. Thus, with the purpose of using standard assumptions as the ones used

in the previous sections of this paper and standard asymptotic theory, that is, letting N tends to

infinity and fixed T , in the following sub-section differencing transformations are studied.

3.2 Differencing estimators

As it has been pointed out previously, to overcome the main difficulties of the profile techniques

and to remove the individual effects from the regression model, differencing transformations are

proposed. In this section, we first review the resulting estimators from the first-derivative function

proposed in Mundra (2005) and Lee and Mukherjee (2008). Later, the iterative nonparametric

kernel estimator based on a profile likelihood approach in Henderson et al. (2008) is analyzed.

As in the fully parametric case, there are several transformations from the model of interest which

enable us to remove the heterogeneity of unknown form that does not vary in time. Among the

most popular we consider the first differences and the differences from the mean. First differences

transformation can be understood as the subtraction from time t of (3.2) that of time t− 1, i.e.

Yit − Yi(t−1) = m(Zit)−m(Zi(t−1)) + vit − vi(t−1), i = 1, · · · , N ; t = 2, · · · , T (3.16)

or that of time 1, i.e.,

Yit − Yi1 = m(Zit)−m(Zi1) + vit − vi1, i = 1, · · · , N ; t = 2, · · · , T. (3.17)

On the other hand, differences from the mean implies subtracting from time t the within-group

mean, i.e.,

Yit −
1

T

T∑
s=1

Yis = m(Zit)−
1

T

T∑
s=1

m(Zis) + vit −
1

T

T∑
s=1

vis, i = 1, · · · , N ; t = 1, · · · , T. (3.18)

As the reader can realize, the right-hand side of either (3.16), (3.17) or (3.18) are linear combinations

of m(Zit) for different periods t. As noted in Su and Ullah (2011), this makes the estimation of

m(·) rather cumbersome because m(·) takes the form of an additive function whose elements share

the same functional form.

Assuming m(·) admits some number of derivatives and all assumptions introduced in Section 3 are

fulfilled, in Ullah and Roy (1998) it is proposed to use either first differences or mean deviation

transformations and then, take a linear approximation of the unknown function m(·) around z.

By doing so, they expected that the resulting first-difference and fixed-effects estimators for the
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marginal effects of m(·) (i.e., the partial derivatives of m(z) with respect to z) satisfy the standard

properties of the local linear regression approach. However, as it is proved in Lee and Mukherjee

(2008), this statement is not true because this technique provides estimators with a non-negligible

asymptotic bias.

For the sake of simplicity, let us consider the univariate problem (q = 1) of the first differences

regression model (3.16). By approximating m(·) via a Taylor expansion we obtain

∆Yit = ∆Zitm
′(z) + ∆vit(z), (3.19)

where m′(z) = ∂m(z)/∂z. Let m′′(z) = ∂2m(z)/∂z2, the error of this transformed regression is

∆vit(z) = ∆vit +
1

2
m′′(ξ)

(
(Zit − z)2 − (Zi(t−1) − z)2

)
,

for some ξ ∈ IR between Zit and z.

On the contrary, the transformed regression of the mean deviation (i.e., within-group) expression is

Yit −
1

T

T∑
s=1

Yis =

(
Zit −

1

T

T∑
s=1

Zis

)
m′(z) +

(
vit(z)−

1

T

T∑
s=1

vis(z)

)
, (3.20)

where the corresponding error term is

vit(z)−
1

T

T∑
s=1

vis(z) =

(
vit −

1

T

T∑
s=1

vis

)
+

1

2
m′′(ξ)

(
(Zit − z)2 − 1

T

T∑
s=1

(Zis − z)2

)
.

For the transformed regression models (3.19) and (3.20), Lee and Mukherjee (2008) propose the

following local linear estimators for the first-order derivatives,

m̂′D(z;h) =

∑N
i=1

∑T
t=2Kh(Zit − z)∆Zit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)∆Z2

it

(3.21)

and

m̂′W (z;h) =

∑N
i=1

∑T
t=1Kh(Zit − z)Z̈itŸit∑N

i=1

∑T
t=1Kh(Zit − z)Z̈2

it

, (3.22)

where we denote Ÿit = Yit− (T −1)−1
∑T

s=1,s 6=t Yis. This definition is similar for Z̈it and v̈it. For the

sake of simplicity, when analyzing the asymptotic properties of these estimators Lee and Mukherjee

(2008) use the leave-one-out average in (3.20) instead of the within-group mean.

Let Z = (Z11, · · · , ZNT ) be the vector of observed values of the explanatory variable, under the

conditions established at the beginning of Section 3, these authors obtain the following conditional

bias for these two local linear estimators

E[m̂′D(z;h)−m(z)|Z] =
m′′(z)µ3(z)

2µ2(z)
+Op(h

2) (3.23)
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and

E[m̂′W (z;h)−m(z)|Z] =
m′′(z)[µ1(z)µ2(z) + µ3(z)]

2[µ2
1(z) + µ2(z)]

+Op(h
2), (3.24)

where µj(z) = E(Zit − z)j <∞, for j = 1, 2, 3.

Analyzing these results, we can highlight that these two local linear estimators exhibit a non-

negligible asymptotic bias. More precisely, as it can be seen in (3.21) and (3.22), the non-degenerated

bias is due to the fact that the transformed regression equations are localized around Zit, without

taking into account all other values. Consequently, the distance between Zis and z cannot be

controlled by a fixed bandwidth parameter h so the residual terms of the Taylor approximation

do not vanish. Therefore, it is not possible to assume that ∆vit(z) and ∆vit are close enough so

we can conclude that the local linear regression approach provides inconsistent estimators by the

correlation between the transformed error terms ∆vit(z) and the transformed regressors ∆Zit. The

same can be said for v̈it(z) and Z̈it.

To the best of our knowledge, there are two different strategies to overcome this problem. On the

one hand, Lee and Mukherjee (2008) propose the estimation of a local within transformation that

uses a locally weighted average to remove the fixed effects. On the other hand, Mundra (2005)

develops a direct procedure based on the use of higher-dimensional kernel weights. In the following,

we detail the main particularities of both techniques.

In order to remove the unobserved individual heterogeneity and, at the same time, propose esti-

mators that take into account all the values of the regressors involved in the estimation, in Lee

and Mukherjee (2008) it is proposed to follow a differencing strategy that uses the locally weighted

average of Zit, for a given z, to remove the fixed effects. Let

Z̃i· =
T∑

s=1,s 6=t
Wis(z)Zis, (3.25)

where Wis(z) is a kernel weight of the form

Wis(z) =
Kh(Zis − z)∑T

r=1,r 6=tKh(Zir − z)
. (3.26)

We define Ỹi·(z) and ṽi·(z) in a similar way as the locally weighted averages of Yit and vit(z),

respectively.

Note that
∑T

s=1,s 6=tWis(z)µi = µi because it holds Wis(z) ≥ 0 and
∑T

s=1,s 6=tWis(z) = 1 for any z.

Then, if we subtract such local averages from (3.2) and denote Y ∗is = Yis − (T − 1)−1
∑T

s=1,s 6=t Yis

and Z∗is = Zis − (T − 1)−1
∑T

s=1,s 6=t Zis, the functions of interest can be estimated as the values of

β that minimize the following criterion function,

N∑
i=1

T∑
s=1,s 6=t

(Y ∗is − Z∗isγ)2Kh(Zis − z), (3.27)
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since it is assumed that Wis(z) ≥ 0 and
∑T

s=1,s 6=tWis(z) = 1, for any z, so
∑T

s=1,s 6=tWis(z)µi = µi.

Let us denote by γ̂ the value of γ that minimizes (3.27). Proceeding as in other previous local

constant regression problems,

γ̂
.
= m̂′LWA(z;h) =

∑N
i=1

∑T
s=1,s 6=tKh(Zis − z)Z∗isY ∗is∑N

i=1

∑T
s=1,s 6=tKh(Zis − z)Z∗2is

. (3.28)

Under the same conditions as in (3.23) and (3.24), in Lee and Mukherjee (2008) it is shown that

this local weighted linear estimator m̂′LWA(z;h) has the following conditional bias and variance

E[m̂′LWA(z;h)−m(z)|Z] =
h2

2

(
m′(z)f ′(z)

f(z)

)(
κ4 − κ2

2

κ2

)
+ op(h

2) (3.29)

and

V ar(m̂′LWA(z;h)−m(z)|Z) =
1

NTh3

(
σ2

f(z)

)(
ϕ2

κ2
2

)
+ op

(
1

NTh3

)
, (3.30)

where κj =
∫
zjK(z)dz, for j = 2, 4, and ϕ2 =

∫
z2K2(z)dz.

Looking at these results, we can point out that both conditional bias and variance terms tend to

zero as h → 0 and NTh3 → ∞, when both N and T tends to infinity. Therefore, m̂′LWA(z;h) is

a consistent estimator for m′ (z). However, note that the variance term is of order Op
(
1/NTh3

)
.

This makes the rate of convergence of this estimator rather slow with respect of the standard rate

of convergence of these family of estimators that would be of order Op (1/NTh).

Another way to overcome this problem is to use a higher-dimensional kernel weight. As it is

suggested in Mundra (2005), the bias associated to (3.21) can be removed by considering a lo-

cal approximation around the pair (Zit, Zi(t−1)) obtaining the following first-difference local linear

estimator

m̂FLL(z;h) =

∑N
i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1))∆Zit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z)∆Z2

it

. (3.31)

As the reader can appreciate, these procedures are very appealing as they provide estimators for

local marginal effects in a framework of differencing models. However, they are unable to identify

the function m(·). In this context, in Henderson et al. (2008), to estimate m(·), a nonparametric

kernel estimator is proposed based on an iterative profile likelihood approach. More precisely, in

their paper they propose the following differencing transformation in (3.2)

Yit − Yi1 = m(Zit)−m(Zi1) + vit − vi1, i = 1, · · · , N ; t = 2, · · · , T. (3.32)

In order to estimate m(z), following Wang (2003) and Lin and Carroll (2006), in Henderson et al.

(2008) it is proposed a profile likelihood approach. In fact, the likelihood function for the i-th

individual is defined as

Li(·) = L(Yi,mi) = −1

2
(Ÿi −mi +mi1ı(T−1))

>Σ−1(Ÿi −mi +mi1ı(T−1)), (3.33)
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where Ÿi = (Ÿi2, · · · , ŸiT ), for Ÿit = Yit − Yi1, mi = (m (Zi2) , · · · ,m (ZiT ))>, mi1 = m (Zi1) and

ı(T−1) is a (T − 1)× 1 unit vector. Let v̈i = (v̈i2, · · · , v̈iT )> be a (T − 1)-dimensional vector. Note

that, under (2.5) the variance-covariance matrix of v̈it = vit−vi1, Σ = Cov(v̈i|Zi1, · · · , ZiT ), is equal

to Cov(v̈i), in such a way that

Σ = σ2
v(IT−1 + ıT−1ı

>
T−1) and Σ−1 = σ−2

v (IT−1 − ıT−1ı
>
T−1/T ). (3.34)

Defining Li,tm = ∂Li(·)/∂mit, where mit = m(Zit), the unknown function m(z) can be estimated

by solving the following first-order condition

0 =

N∑
i=1

T∑
t=1

Kh(Zit − z)Git(z, h)Li,tm
(
Yi, m̂(Zi1), · · · , m̂(z) + {(Zit − z)/h}m̂′(z), · · · , m̂(ZiT )

)
,

where Git(z;h) =
[
1 ((Zit − z)/h)>

]>
.

Based on this structure, Henderson et al. (2008) develop an iterative procedure. Specifically, let

m̂[`−1](z) be the current estimator at the [` − 1]th step, in the next step they propose to estimate

m̂[`](z) = α̂0(z), by choosing (α̂0 α̂1) as the minimizers of

N∑
i=1

T∑
t=1

Kh(Zit − z)Git(z;h)Li,tm
(
Yi, m̂[`−1](Zi1), · · · , α̂0 + ((Zit − z)/h)>α̂1, · · · , m̂[`−1](ZiT )

)
= 0. (3.35)

This procedure will iterate till convergence. Note that as it is pointed out in Henderson and

Parmeter (2015) the actual derivative of m(z) for a particular explanatory variable requires you to

divide α̂1(z) by the bandwidth for that particular explanatory variable. Under the assumption that

hr ∼ N−1/(4+q), for r = 1, · · · , q, and by defining κ =
∫
K2(u)du and κ2 =

∫
u2K(u)du, as N →∞

in such way that hr → 0 and Nh1 · · ·hq →∞, they obtain

√
Nh1 · · ·hq

(
m̂(z)−m(z)−

q∑
r=1

h2
rbr(z)

)
d−−−→ N (0, κq/Ω(z)) , (3.36)

where Ω(z) = −
∑T

t=1 ft(z)E
(
∂2Li(·)
∂m2

it

∣∣∣Zit = z
)

and br(z) is a bounded and continuous function that

is the solution to

br(z) =
κ2

2
mrr(z) +

1

Nσ2
v

T∑
t=1

T∑
s 6=t

dtsft(z)E

(
∂2Li(·)
∂mit∂mis

br(Zis)

∣∣∣∣Zit = z

)
/Ω(z)

where dts = 1 if t = 1 or s = 1, and dts = −1 otherwise.

Similarly to other nonparametric estimators developed for differencing models, this iterative estima-

tor has the advantage of completely removing the unobserved individual heterogeneity. However, it

is true that the estimator does not achieve the optimal rate of convergence for this type of nonpara-

metric estimators. Alternatively, other authors propose consistent estimators for the m(·) function
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in this context of differencing models. On the one hand, Baltagi and Li (2002) use the series approx-

imation to estimate the nonparametric component. On the other hand, Qian and Wang (2012) pro-

pose a two step procedure for a partially linear model with fixed effects. As we will detail in Section

5, in the first step the fully nonparametric component, i.e., m(Zit, Zi(t−1)) = m(Zit) −m(Zi(t−1)),

is estimated using a multivariate nonparametric estimator. Later, in the second stage they turn

to the marginal integration technique proposed originally in Linton and Nielsen (1995). Note that

the marginal integration method presents some awkward features such as its high computational

cost. Specifically, to obtain an estimator of this type we must compute O(NT 3h1/2) operations,

i.e., if we have to make NT 2 regressions each one requires O(NTh1/2) operations. Therefore, other

estimation techniques may be preferred.

3.3 Nonparametric additive panel data models

As it has been already pointed out previously, nonparametric smoothing regression techniques

have been intensively used in the last few decades since they enable us to consider some hidden

features of the data that cannot be captured by a predetermined parametric model. However, they

exhibit an important drawback: The curse of dimensionality. That is, the rate of convergence of

nonparametric estimators slows down as the number of explanatory variables enlarges. Nevertheless,

there are situations where the researcher needs to handle a large number of these variables. In these

cases, it is recommended to estimate m(·) in (2.1) by imposing the additional additivity restriction

m (Zit) =

q∑
j=1

mj (Zjit) . (3.37)

In the random effects setting (see assumptions (2.1), (2.2) and (2.3) to (2.8)), direct application of

standard backfitting (see Hastie and Tibshirani (1990)) or marginal integration techniques (see Lin-

ton and Nielsen (1995)) provides consistent estimators for m(·) and the additive functions. However,

if we introduce the fixed effects setting, (i.e., replacing (2.8) by (3.1)) the estimator that results from

applying these techniques does not exhibit the same desirable statistical properties as in the random

effects case. In Mammen et al. (2009) it is considered the estimation of a nonparametric additive

panel data model under different forms of the unobserved heterogeneity and for two asymptotic

frameworks: N →∞ and T fixed and both N,T →∞. In order to do so, they rely heavily on the

smoothed backfitting approach introduced in Mamen et al. (1999).

The nonparametric model that they propose to estimate presents mainly three differences with

respect to the fixed effects panel data model introduced at the beginning of this Section. First,

the additivity restriction (3.37) is introduced in the model. Second, temporary effects are also

considered. Third, among the explanatory variables there can be included time lagged values of Yit.

Then, the model to estimate is

Yit =

q∑
j=1

mj(Zjit) + ηt + µi + vit, i = 1, · · · , N ; t = 1, · · · , T. (3.38)
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Note that we denote by ηt the temporal effects. Just to understand the estimation technique

we will introduce some more details in the characterization of the explanatory variables Zit. In

Mammen et al. (2009) it is assumed that Zit has a density on [a, b] = [a1, b1] × · · · × [aq, bq]. The

conditional density of Zit given that Zit lies in [a, b] is denoted by ft . For simplicity of notation,

a1 = · · · = aq = 0 and b1 = · · · = bq = 1. Thus [a, b] = [0, 1]q. Estimation of m1 (·) , · · · ,mq (·)
will be considered on [0, 1]. We denote by n the number of explanatory variables Zit ∈ [0, 1]q for

i = 1, · · · , N , t = 1, · · · , T . The numbers nt and ni are respectively the number of Zit ∈ [0, 1]q for

fixed t and the number Zit ∈ [0, 1]q for fixed i. The one- and two-dimensional marginals of f t are

denoted by f tj (Zj) or f tj,k (Zj , Zk), respectively. The one- and two-dimensional marginals of f i are

denoted by f ij (Zj) or f ij,k (Zj , Zk), respectively. Also, we put f (Z) =
∑T

t=1 (dt/d) f t (Z) , fj (Zj) =∑T
t=1 (dt/d) f tj (Zj), and fj,k (Zj , Zk) =

∑T
t=1 (dt/d) f tj,k (Zj , Zk). Finally, let dt = P (Zit ∈ [0, 1]q)

and dT =
∑T

t=1 dt.

The local constant smooth backfitting estimator m̂1, · · · , m̂q for the functions m1, · · · ,mq proposed

in Mammen et al. (2009) is based on kernel smoothing. Using the following modification of a

convolution kernel,

Kh(u, v) =


K[h−1(u−v)]∫ 1

0 K[h−1(ω−v)]dω
if u, v ∈ [0, 1]

0 else

the estimators for m1, · · · ,mq, µ1, · · · , µN and η1, · · · , ηT are defined as minimizers of a smoothed

least squares criterion,

N∑
i=1

T∑
t=1

∫ Yit − q∑
j=1

m̂j(uj)− η̂t − µ̂i

2

Kh1(u1, Z1it) · · ·Khq(uq, Zqit)du1 · · · duq, (3.39)

under the following constraints ∫
m̂j (Zj) f̂j (Zj) dZj = 0, (3.40)

N∑
i=1

(ni/n) µ̂i = 0. (3.41)

The functions f̂j (·) are the following kernel density estimators based on the explanatory variables

f̂j (Zj) = n−1
N∑
i=1

T∑
t=1

1 (Zit ∈ [0, 1]q)Khj (Zj − Zjit) . (3.42)

Based on (3.39) note that the estimators only use the values of the Y variable in the smoothing

if the corresponding values of the explanatory variables lie in [0, 1]q. By using derivatives of the

20



criterion function (3.39) one gets that the minimizers (estimators) must fulfill

m̂j(Zj) = m̃j(Zj)−
T∑
t=1

nt
n
η̂t
f̂ tj (Zj)

f̂j(Zj)
−

N∑
i=1

ni
n
µ̂i
f̂ ij(Zj)

f̂j(Zj)
−
∑
` 6=j

∫
m̂`(Z`)

f̂j`(Zj , Z`)

f̂j(Zj)
dZ`, (3.43)

η̂t = η̃t −
q∑
j=1

∫
m̂j(Zj)f̂

t
j (Zj)dZj , t = 1, · · · , T, (3.44)

µ̂i = µ̃i −
q∑
j=1

∫
m̂j(Zj)f̂

i
j(Zj)dZj , i = 1, · · · , N, (3.45)

where m̃j , η̃j , µ̃i are the following marginal estimators

m̃j(Zj) =
1

n

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Khj (Zj , Zjit)Yit/f̂j(Zj), (3.46)

η̃t =
1

nt

N∑
i=1

1(Zit ∈ [0, 1]q)Yit, (3.47)

µ̃i =
1

ni

T∑
t=1

1(Zit ∈ [0, 1]q)Yit, (3.48)

and the functions f̂jk, f̂
t
j , f̂

i
j are the estimators for the kernel density of the form

f̂jk (Zj , Zk) =
1

n

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Khj (Zjit − Zj)Khk(Zkit − Zk), (3.49)

f̂ tj (Zj) =
1

nt

N∑
i=1

1(Zit ∈ [0, 1]q)Khj (Zjit − Zj), (3.50)

f̂ ij(Zj) =
1

ni

T∑
t=1

1(Zit ∈ [0, 1]q)Khj (Zjit − Zj). (3.51)

For the sake of clarity, we reproduce here the algorithm for calculating the local constant smoother

given in Mammen et al. (2009), p. 448. In fact, our aim here is to estimate the function mj (·)
at some given points Z0

j . Equations (3.43), (3.44) and (3.45) suggest an iterative calculation of

estimators. Application of (3.43) for j = 1, · · · , q can be used to update m̂j . In each application

one plugs the current values of m̂k, j 6= k, and of both µ̂i and η̂t into the right-hand side of (3.43).

Afterwards, one uses (3.44) and (3.45) for updates of µ̂i and η̂t. Again this is done by using the

actual values of m̂j on the right-hand side of the equation. Let us call these iterative values m̂
[a]
j ,

µ̂
[a]
i and η̂

[a]
t where a is the number of cycles of the algorithm that has been applied. The starting

values are denoted by m̂
[0]
j , µ̂

[0]
i and η̂

[0]
t . The steps of the algorithm are:

Step 1. Set a = 0 and calculate the smoothing weights around Z0
j .
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Step 2. With these weights compute f̂j

(
Z0
j

)
, f̂jk

(
Z0
j , Z

0
k

)
, for k 6= j, f̂ ij

(
Z0
j

)
, f̂ tj

(
Z0
j

)
, m̃j

(
Z0
j

)
,

µ̃i, η̃t. Then set m̂
[a]
j

(
Z0
j

)
= m̃j

(
Z0
j

)
, µ̂

[a]
i = µ̃i and η̂

[a]
t = η̃t.

Step 3. For j = 1, · · · , q

m̂
[a+1]
j

(
Z0
j

)
= m̃j

(
Z0
j

)
−

T∑
t=1

nt
n
η̂

[a]
t

f̂ tj (Z
0
j )

f̂j(Z0
j )
−

N∑
i=1

ni
n
µ̂

[a]
i

f̂ ij(Z
0
j )

f̂j(Z0
j )
−

∑
`<j

∫
m̂

[a+1]
` (Z`)

f̂j`(Z
0
j , Z`)

f̂j(Z0
j )

dZ` −

∑
`>j

∫
m̂

[a]
` (Z`)

f̂j`(Z
0
j , Z`)

f̂j(Z0
j )

dZ`. (3.52)

Step 4. For t = 1, · · · , T ,

η̂
[a+1]
t = η̃t −

q∑
j=1

∫
m̂

[a+1]
j (Zj)f̂

t
j (Zj)dZj . (3.53)

Step 5. For i = 1, · · · , N ,

µ̂
[a+1]
i = µ̃i −

q∑
j=1

∫
m̂

[a+1]
j (Zj)f̂

i
j(Zj)dZj . (3.54)

Step 5 If a predetermined convergence criterion is fulfilled, stop. Otherwise set a to a+ 1 and go

to Step 3.

The local constant estimator, m̂j , exhibits a complicated bias. In order to avoid this problem, in

Mammen et al. (2009) it is proposed to use local linear estimators. Then, intercepts m̂1, · · · , m̂q,

slopes m̂1, · · · , m̂p, and both individual and time effects, µ̂1, · · · , µ̂N and η̂1, · · · , η̂T , are defined as

minimizers of

N∑
i=1

T∑
t=1

∫ Yit − q∑
j=1

m̂j(uj)−
Zjit − uj

hj
m̂j
j(uj)− η̂t − µ̂i

2

×Kh1(u1, Z1it) · · ·Khq(uq, Zqit)du1 · · · duq, (3.55)

under the following constraints∫
m̂j (Zj) f̂j (Zj) dZj +

∫
m̂j
j (Zj) f̂

j
j (Zj) dZj = 0, (3.56)

N∑
i=1

(ni/n) µ̂i = 0. (3.57)

By changing accordingly the steps of the algorithm proposed previously for the local constant

estimator we obtain estimators for mj that under the conditions established in Section 3 and some
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additional conditions detailed in Mammen et al. (2009) we obtain that, as both T and N tends to

infinity in such a way that T 3/2N−1+δ → 0 for some δ > 0,

(dTN)2/5 (m̂j(zj ;h)−mj(zj)− bj(zj))
d−−−→ N (0, υj(zj)) (3.58)

where

bj(zj) = c2
j

1

2
µ2(K)m′′j (zj),

υj(zj) =
σ2

fj(zj)cj

∫
K2(u)du

and

cj = (dTN)1/5hj + o(1).

3.4 Nonparametric dynamic panel data models with fixed effects

In the previous section we have analyzed a rather complex situation where lagged endogenous

explanatory variables and additive models are allowed for in a fixed effects context. However, the

need of considering some dynamics in fixed effects panel data models appears of great interest even

if the curse of dimensionality is not present. More precisely, we consider the following fixed effects

nonparametric panel data model

Yit = m(Yi(t−1), Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (3.59)

where Zit is a q×1 vector of explanatory variables, Yi(t−1) a scalar lagged dependent variable, µi the

cross-sectional heterogeneity and vit the error term. All assumptions introduced at the beginning

of Section 3 still hold here but with the additional assumption of the presence of lagged endogenous

variables as explanatory variables.

Using a first difference transformation to remove the fixed effect we obtain

∆Yit = m(Yi(t−1), Zit)−m(Yi(t−2), Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T. (3.60)

Note that after this differencing transformation the error term ∆vit has the form of moving average

process of order 1, MA(1), that, in general, is correlated with the explanatory variable Yi(t−1).

Therefore, in this setting, the conventional kernel estimation based on marginal integration or

backfitting procedures does not provide consistent estimators for m (·).

In this framework, in Su and Lu (2013) it is developed an iterative estimator that is based on a local

polynomial regression technique. Let Ui(t−2) = (Yi(t−2) Z>i(t−1))
> and assume Ui(t−2) has a positive

density on ϕ, ft−2(·), where ϕ denotes a compact set on IRq+1. Then, since ∆vit is (conditionally)

mean-independent of Ui(t−2), by the law of iterated expectations the following conditional moment

condition can be obtained

E
[
∆vit|Ui(t−2)

]
= 0, (3.61)
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and then

E
[
∆Yit −m(Yi(t−1), Zit) +m(Yi(t−2), Zi(t−1))|Ui(t−2)

]
= 0. (3.62)

Rearranging terms in (3.62) we obtain,

m(u) = −E
[
∆Yit|Ui(t−2) = u

]
+ E

[
m(Ui(t−1))|Ui(t−2) = u

]
= rt|t−2(u) +

∫
m(u)ft−1|t−2(u|u)du, for t = 3, · · · , T, (3.63)

where rt|t−2(u) = E
[
∆Yit|Ui(t−2) = u

]
, ft−1|t−2(·|·) is the conditional density function of Ui(t−1)

given Ui(t−2) and u is the mean value of u.

For the sake of simplicity, let us denote by ρt−2 = P (Ui(t−2) ∈ ϕ) and ρ =
∑T

t=3 ρt−2, so if we

multiply both sides of (3.63) by ρt−2/ρ and use the fact that
∑T

t=3 ρt−2/ρ = 1 we get

m(u) = r(u) +

∫
m(u)f(u|u)du. (3.64)

Under certain regularity conditions (3.64) can be rewritten as

m = r + Am, (3.65)

where A is a bounded linear operator defined as Am(u) =
∫
m(u)f(u|u)du.

Therefore, from (3.65) we can intuitively conclude that the estimator for the parameter of interest

m(·) can be defined as a solution to a second order Fredholm integral equation in an infinite

dimensional Hilbert space. However, since both r and Am(u) are not directly observable, the

resulting estimator for (3.65) is infeasible and an iterative procedure is needed. In this situation, in

Su and Lu (2013) it is proposed a plug-in estimator for m̂(·) that is the solution to

m̂ = r̂ + Âm̂, (3.66)

where r̂ and Â are nonparametric estimators obtained from a local polynomial regression of pth

order. In particular, r(u) can be estimated as the solution to the following criterion function,

N∑
i=1

T∑
t=3

−∆Yit −
∑

0≤|j|≤p

γ>j ((Ui(t−2) − u)/h)j

2

Kh(Ui(t−2) − u)1(Ui(t−2) ∈ ϕ), (3.67)

where |j| ≡
∑q

i=1 ji and γ stacks the γj’s (0 ≤ |j| ≤ q) that minimizes (3.67) in lexicographic order

(with γ0 indexed by 0 ≡ (0, · · · , 0) in the first position, the element with index (0, 0, · · · , 1) next,

etc.). Also, note that let j0 + j1 + · · ·+ jq = k,

∑
0≤|j|≤p

≡
p∑

k=0

k∑
j0=0

· · ·
k∑

jq=0

.

Analogously, Âm(u) is defined as the resulting estimator for Am(u) when −∆Yit is replaced by

m(Ui(t−1)) in the problem to minimize (3.67). However, note that a feasible estimator for Â needs
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to observe the m(·) function. In that case, in Su and Lu (2013) it is proposed to resort to the sieve

method and, after obtaining m̂(u), to replace it in the final regression to estimate. See Chen (2007)

for an intensive revision of the sieve method.

Let h! =
∏q
r=0 h

2
r and ||h||2 =

∑q
r=0 h

2
r , under certain standard smoothing conditions, Su and Lu

(2013) also establish the uniform consistency and the asymptotic normality of the plug-in estimator

when N → ∞, T is fixed, ||h|| → 0, Nh!/logN → ∞ and N ||h||4h! → c ∈ [0,∞]. However, before

proceeding to the analysis of the asymptotic behavior of this plug-in estimator it is necessary to

emphasize that this estimator only uses those observations of Ui(t−2) that lie in a compact set ϕ on

IRq+1. Thus, allowing Ui(t−2) to have a non-compact support facilitates the study of the asymptotic

peculiarities of these estimators. In this context, they obtain that for the local linear estimator

√
NTh!(m̂(u;h)−m(u)− (I − A)−1B(u))

d−−−→ N (0, υ(u)) , (3.68)

where A is a Hilbert-Schmidt operator and for µ2(K) =
∫
v2K(v)dv andRq+1(K) =

[∫
K(v)2dv

]q+1
,

B(u) =
1

2

q∑
r=0

h2
rµ2(K)

∂2m(u)

∂u2
r

,

υ(u) =
σ2(u)

f(u)
Rq+1(K),

σ2(u) =
T∑
t=3

ρt−2

ρ
σ2
t−2(u)ft−2(u)

and σ2
t−2(u) = E(v2

it|Ui(t−2) = u) + E(v2
i(t−1)|Ui(t−2) = u).

Note that the asymptotic variance of this iterative estimator has a similar structure to that presented

by a conventional local polynomial estimator for m(Ui(t−1) in ∆Yit = m(Ui(t−1))−m(Ui(t−2))+∆vit,

when m(Ui(t−2)) is observed. In addition, as regards to the asymptotic bias, we can see that

it shows significant variations with reference to the standard results. Specifically, this iterative

estimator presents an additional operator, (I − A)−1, which reflects the cumulative bias of the

iterative process.

Furthermore, in Su and Lu (2013) it is noted that, although consistency and asymptotic normality of

the resulting estimator are shown, it is possible to propose an oracle efficient estimator. That is, an

iterative estimator that exhibits the same asymptotic properties as if the iterations were evaluated

at the true parameter (function) values. Note that this concept of oracle efficiency is different from

the standard concept of efficiency. As long as Yi(t−1) and Zit are compactly supported variables and

the density function is bounded away from zero to the union of their supports (ϕ), they propose

to use the infra-smoothing kernel estimator obtained previously as an estimator for m(Yi(t−1), Zit).

Then, once m̂(Yi(t−1), Zit) is known, we can perform a local polynomial regression of ∆Y ∗it on

m(Yi(t−2), Zi(t−1)), where ∆Y ∗it = ∆Yit − m̂(Yi(t−1), Zit). Finally, note that since the error process

is not invertible, it is not possible to apply a similar procedure as in Xiao et al. (2003) and Su and

Ullah (2006a) to provide more efficient estimators via the use of the MA(1) structure of this model.
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4 Semi-parametric panel data models with random effects

As we have just shown, nonparametric panel data models are very appealing since they do not make

too restrictive assumptions on the model specification and they allow data to tailor the shape of the

regression function by themselves. However, as it has been pointed out in the introduction, in some

situations this flexibility presents some shortcomings. To solve them, semi-parametric panel data

models appear as a reasonable compromise between fully nonparametric and parametric models.

In fact, they enable us to incorporate some prior information coming from economic theory or past

experience by keeping at the same time more flexibility in the specification of the model. Among

the most popular semi-parametric panel data model we consider here the so-called partially linear

models.

Instead of (2.1), the basic partially linear unobserved effects model can be written, for a randomly

drawn cross-section observation i, as

Yit = X>it β +m (Zit) + εit, t = 1, · · · , T, (4.1)

where Xit and Zit are vectors of explanatory variables of d × 1 and q × 1 dimension, respectively,

β is a d× 1 vector of unknown parameters and m(·) is an unknown smooth function. Both objects

need to be estimated and εit is an unobservable error term. Typically, the error term of the model

follows a one-way error component structure as in (2.2). Furthermore, instead of (2.3), now we

assume

E (Yit|Xi1, · · · , XiT , Zi1, · · · , ZiT , µi) = E (Yit|Xit, Zit, µi) = X>it β +m (Zit) + µi. (4.2)

Note that, this first equality establishes the relationship between Y and the past values of both Z

and X, whereas the second one establishes that the regression function is the sum of a parametric

term, X>it β, a nonparametric function, m(Zit), and an unobservable heterogeneity term µi. Using

(4.1) and (2.2), the assumption in (4.2) can be stated in terms of the idiosyncratic errors as

E(vit|Xi1, · · · , XiT , Zi1, · · · , ZiT , µi) = 0, t = 1, · · · , T. (4.3)

Let vi = (vi1, · · · , viT )> be a T × 1 vector. The error vector vi and the heterogeneity term µi are

such that

E
(
viv
>
i

∣∣∣Xi1, · · · , XiT , Zi1, · · · , ZiT , µi
)

= σ2
vIT , E(µ2

i |Xi1, · · · , XiT , Zi1, · · · , ZiT ) = σ2
µ. (4.4)

As in the fully nonparametric case, under the assumptions above and since the observations are

independent in i and j, the variance-covariance matrix of the composed error term has the standard

form as in (2.7). Finally, to characterize the random effects model, instead of (2.8) we assume

E(µi|Xi1, · · · , XiT , Zi1, · · · , ZiT ) = E(µi) = 0. (4.5)

Note that using (4.1) and (2.2), under assumptions (4.2), (4.3), (4.4) and (4.5) and by the law of

iterated expectations,

E (Yit|Xi1, · · · , XiT , Zi1, · · · , ZiT ) = X>it β +m (Zit) , t = 1, · · · , T. (4.6)
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Given the previous result, root-N consistent estimation of the parameters of interest, β, is possible

through the use of standard techniques in partially linear models (see Robinson (1988) and Speck-

man (1988) among others). Then, following Li and Stengos (1996) and Li and Ullah (1998) the

unknown function m(·) is removed from (4.1) by taking the conditional expectation on Zit in (4.1)

and assuming that E (εit|Zit) = 0,

E (Yit|Zit) = β>E (Xit|Zit) +m (Zit) , t = 1, · · · , T. (4.7)

Then, subtracting (4.7) from (4.1) we obtain

Yit − E(Yit|Zit) = β> (Xit − E(Xit|Zit)) + εit. (4.8)

Once the unknown term m (Zit) has been removed we can estimate the parameters of interest, β,

by using a standard OLS techniques and then

β̂OLS = (X̃>X̃)−1X̃>Ỹ , (4.9)

where X̃ is a NT ×d matrix whose typical row element is X̃it = Xit−E(Xit|Zit), and Ỹ is a NT ×1

vector whose typical row element is of the form Ỹit = Yit − E(Yit|Zit).

Note that both E(Xit|Zit) and E(Yit|Zit) are unknown terms, and therefore (4.9) is an infeasible

estimator. To overcome this problem, we typically substitute the unknown quantities by their

estimators, i.e.

X̂it = Ê(Xit|Zit) =
1

NThq

N∑
j=1

T∑
s=1

XjsKh(Zit − Zjs)/f̂h (Zit) , (4.10)

Ŷit = Ê(Yit|Zit) =
1

NThq

N∑
j=1

T∑
s=1

YjsKh(Zit − Zjs)/f̂h (Zit) , (4.11)

f̂h(Zit) =
1

NThq

N∑
j=1

T∑
s=1

Kh(Zit − Zjs). (4.12)

For the sake of simplicity, let us denote f̂h (Zit) = f̂it. Replacing the unknown conditional expecta-

tions in (4.9) by their respective nonparametric estimators in (4.10)-(4.12) we obtain

β̃FOLS =

(
N∑
i=1

T∑
t=1

(
Xit − X̂it

)(
Xit − X̂it

)>)−1 N∑
i=1

T∑
t=1

(
Xit − X̂it

)(
Yit − Ŷit

)
. (4.13)

As in other applications of kernel regression, the estimators X̂it and Ŷit cause technical difficulties

owing to the random denominator, f̂it, that can be small. In order to avoid it, we trim out small

values of f̂ as it is done for example in Powell et al. (1989). For a constant b > 0 define Îit =

1
(∣∣∣f̂it∣∣∣ > b

)
, where 1(·) is the usual indicator function; so the feasible ordinary least-squares (FOLS)

estimator for β can be written as

β̂FOLS =

(
N∑
i=1

T∑
t=1

(
Xit − X̂it

)(
Xit − X̂it

)>
Îit

)−1 N∑
i=1

T∑
t=1

(
Xit − X̂it

)(
Yit − Ŷit

)
Îit. (4.14)
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Under standard regularity conditions that include those assumed at the beginning of Section 4,

h, b→ 0, as N tends to infinity, in Li and Ullah (1998) it is shown the following result,

√
N(β̂FOLS − β)

d−−−→ N
(
0,Φ−1ΣΦ−1

)
, (4.15)

where Φ = 1
T

∑T
t=1E(X̃itX̃

>
it f

2
it) and Σ = 1

T 2

∑T
t=1

∑T
s=1E(vitvisX̃itX̃

>
isf

2
itf

2
is). It can be shown

that

Φ̂ =
1

NT

∑
i

∑
t

(
Xit − X̂it

)(
Xit − X̂it

)>
Îit

and

Σ̂ =
1

NT

∑
i

∑
t

Îit

(
Xit − X̂it

)
Ω̂it

(
Xit − X̂it

)>
are consistent estimators of Φ and Σ, respectively. Note that Ω̂it is the it-th component of the

matrix in (2.27).

Also, this estimation strategy can be extended to other types of situations of interest such as models

where endogenous or lagged dependent variables are allowed as explanatory variables. As we will

state in Section 6, in Li and Stengos (1996) it is proposed an instrumental variable (IV) method

to solve the endogeneity problem. Later, in Kneisner and Li (2002) it is analyzed a dynamic semi-

parametric panel data model and, under the assumption that the error term is serially uncorrelated,

it is shown that it is possible to obtain a
√
N -consistent estimator for β adapting the previous

weighted density problem to this dynamic case.

Unlike other results such as those in Li and Stengos (1996), in Kneisner and Li (2002) it is proposed a

two step local linear method to estimate the smooth function m (·). By subtracting the (estimated)

fully parametric part in both terms of (4.1) we have that

Yit −X>it β̂FOLS = m(Zit) +X>it (β − β̂FOLS) + εit. (4.16)

Given that β̂FOLS = β + Op

(
1√
N

)
, we can write the previous equation such as a standard non-

parametric problem, i.e.,

Yit −X>it β̂FOLS = m(Zit) + ε∗it, (4.17)

where ε∗it = X>it (β−β̂FOLS)+εit. Then, m(Zit) can be consistently estimated through standard non-

parametric regression techniques. We refer to Kneisner and Li (2002) for the asymptotic properties

of this type of estimators.

An alternative approach is introduced in Fan and Huang (2005). The main idea in this paper is to

transform a semi-parametric problem into a nonparametric one. This is done by subtracting the

parametric component to both terms in (4.1). Then,

Yit −X>it β = m(Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T (4.18)
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If β were known, then m(·) can be estimated by a standard local linear regression problem. Then,

let γ̂0 and γ̂1 be the minimizers of

N∑
i=1

T∑
t=1

(
(Yit −X>it β)− γ0 − γ>1 (Zit − z)

)2
Kh(Zit − z). (4.19)

We suggest as estimators for m(z) and Dm(z) = vec(∂m(z)/∂z>), m̂(z;h) = γ̂0 and D̂m(z;h) = γ̂1,

respectively,

γ̂0 = (1, 0q)(D
>KzD)−1D>Kz(Y −Xβ) = S(Y −Xβ) (4.20)

and

γ̂1 = (0ıq)(D
>KzD)−1D>Kz(Y −Xβ), (4.21)

where 0q and ıq are q-vectors of zeros and ones, respectively, S = (1, 0q)(D
>KzD)−1D>Kz is a

so-called smoothing matrix, Kz = diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) is a NT × NT weighting

kernel matrix, X = (X11, · · · , XNT )> is a NT × d matrix and D is a NT × (1 + q) matrix such as

D =


1 (Z11 − z)>
...

...

1 (ZNT − z)>

 .
However, because β is a vector of unknown parameters that need to be estimated, we can replace

m(Zit) with m̂(Zit;h) = γ̂0 in (4.18), so the regression function to estimate now is of the form

Ŷit = X̂>it β + ε∗it, i = 1, · · · , N ; t = 1, · · · , T, (4.22)

where (Ŷ11, · · · , ŶNT )> = (INT − S)Y , (X̂11, · · · , X̂NT )> = (INT − S)X, and (ε∗11, · · · , ε∗NT )> =

(INT − S)ε + (INT − S)m(Z), where m(Z) = (m(Z11), · · · ,m(ZNT ))> and INT is an identity

NT ×NT matrix.

We denote by β̂FLSS as the feasible semi-parametric least-squares estimator for (4.22) of the form

β̂FLSS =
(
X̂>X̂

)−1
X̂>Ŷ , (4.23)

whereas the local linear estimator for m(·) is written as

m̂FLSS(z;h) = (1, 0q)(D
>KD)−1D>K(Y −Xβ̂). (4.24)

These results are standard in semi-parametric partially linear models (see Robinson (1988) and

Speckman (1988)): The presence of nonparametric components, typically estimated at nonpara-

metric rates, does not affect the rate of convergence of β̂OLS , β̂FOLS and β̂FLSS that is fully

parametric (
√
N -consistency). It is also interesting to note that both OLS and FOLS estimators

exhibit the same asymptotic variance that is, in both cases, regardless the fact that nonparametric

29



components are either estimated or taken at its true values, the asymptotic variance is the same.

That is the so-called oracle efficiency property. However, it is true that they do not achieve the

semi-parametric efficiency bounds (see Chamberlain (1992)) due to the one-way error component

structure that they ignore. In Li and Ullah (1998) it is suggested that the use of the structure of

the variance-covariance matrix Ω can be of interest in order to achieve this efficiency bound. As

in the parametric case, they propose a feasible generalized least-squares (FGLS) semi-parametric

estimator for β.

As an estimator for Ω̂ they propose

σ̂2
v = σ̂2 − σ̂2

µ and σ̂2
1 = T σ̂2

µ + σ̂2
v ,

where σ̂2 = 1
NT

∑N
i=1

∑T
t=1 ε̂

2
itf̂it and σ̂2

µ = 1
NT (T−1)

∑N
i=1

∑T
t=1 ε̂itε̂isf̂itf̂is and

ε̂it = (Yit − Ŷit)− (Xit − X̂it)
>β̂FOLS . (4.25)

If we replace the unknown terms by these estimators in (2.7), the FGLS estimator for β is

β̂FGLS =
(

(X − X̂)>Ω̂−1(X − X̂)Î
)−1 (

(X − X̂)Î
)>

Ω̂−1(Y − Ŷ ), (4.26)

where (X − X̂)Î is a matrix of NT × d dimension with a typical row element (Xit − X̂it)
>Îit and

Y − Ŷ is a vector of dimension NT × 1. Under some standard regularity conditions that include

the assumptions established at the beginning of Section 4 in Li and Ullah (1998) it is shown that

√
N(β̂FGLS − β)

d−−−→ N
(
0,Φ−1ΣΦ−1/T

)
, (4.27)

where Φ = 1
T

∑T
t=1E(X̃itΩitX̃

>
it f

2
it), Σ = 1

T 2

∑T
t=1

∑T
s=1E(εitεisX̃itΩitX̃

>
it f

2
itf

2
is) and Ωit is the it−th

element of the Ω matrix defined in (2.7).

As the reader can realize, this estimator achieves the semi-parametric efficiency bound for this type

of problem. The estimation strategy developed in Robinson (1988) can be easily extended to other

contexts within the framework of partially linear panel data models. However, it is true that the

presence of heteroscedastic errors in the model of interest complicates this procedure considerably.

In this context, You et al. (2010) propose an alternative method to obtain consistent nonparametric

estimators that take into account the one-way error component structure and allow for unequal

error variances, i.e., heteroscedastic errors.

More precisely, in You et al. (2010) it is considered a one-way error component structure with

heterocedasticity in the idiosyncratic error of the following form

εit = µi + σ(Zit)vit, i = 1, · · · , N ; t = 1, · · · , T, (4.28)

where σ2
v = 1 is assumed without loss of generality so the variance-covariance matrix of the error

term is written as

Ω = E(εε>) = σ2
µIN ⊗ (ıT ı

>
T ) + diag

(
σ2(Z11), · · · , σ2(ZNT )

)
. (4.29)
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With this complex variance-covariance structure, we would need an estimator for each error vari-

ances and therefore the previous procedures cannot be used directly. In You et al. (2010) it is

developed a semi-parametric weighted least-squares estimator for β based on those previous results.

Specifically, they propose to estimate both the variance of the error term and the error structure

and, later, use this information to obtain an efficient semi-parametric estimator. More precisely,

assuming that Zit is a scalar, in You et al. (2010) the following residuals are used

ε̂it = Yit −X>it β̂FLLS − m̂FLLS(Zit;h), (4.30)

and because E(εitεis) = σ2
µ, when t 6= s, and E

(
ε2it
∣∣Zit) = σ2

µ + σ2(Zit), consistent estimators for

σ2
µ and σ2(·) can be written as

σ̂2
µ =

1

NT (T − 1)

N∑
i=1

T∑
t=1

T∑
t6=s

ε̂itε̂is and σ̂2(z) =
N∑
i=1

T∑
t=1

ωit(z)ε̂it − σ̂2
µ, (4.31)

where ωit(z) is some weight function of the local linear estimator such that

ωit(z) =
(Nh)−1K((Zit − z)/h) (Ak2(z)− (Zit − z)Ak1(z))

Ak0(z)Ak2(z)−A2
k1(z)

and Aks(z) = 1
Nh

∑N
i=1

∑T
t=1K

(
Zit−z
h

)
(Zit − z)λ, for λ = 0, 1, 2.

Consequently, the estimator for Ω−1 is given by Ω̂−1 = blockdiag(Σ̂−1
1 , · · · , Σ̂−1

N ), where

Σ̂−1
i = diag

(
σ̂−2(Zi1), · · · , σ̂−2(ZiT )

)
−

(
σ̂−2
µ +

T∑
t=1

σ̂−2(Zit)

)−1 (
σ̂−2(Z11), · · · , σ̂−2(ZiT )

)>
×

(
σ̂−2(Z11), · · · , σ̂−2(ZiT )

)
.

Replacing Ω with Ω̂, the feasible weighted least-squares semi-parametric estimator (WSLSE) is

β̂WLSS =
(
X>(INT − S)>Ω̂−1(INT − S)X

)−1
(X(INT − S))> Ω̂−1(INT − S)Y. (4.32)

under the conditions established in Section 2 they show that, as N →∞,

√
N(β̂WLSS − β)

d−−−→ N
(
0,Σ−1

3

)
, (4.33)

where Σ3 = limN→∞N
−1
∑N

i=1E(v>i Ω−1
i vi), let Ωi the i − th element of the Ω matrix defined in

(2.7) and vi = (vi1, · · · , viT )> is a T × 1 vector.

5 Semi-parametric panel data models with fixed effects

In this section we are interested in statistical techniques that provide
√
N -consistent estimators

of the parameters β in (4.1) when the relationship between the heterogeneity term µi and the

explanatory variables Xi1, · · · , XiT , Zi1, · · · , ZiT is modeled as

E(µi|Xi1, · · · , XiT , Zi1, · · · , ZiT ) = µi. (5.1)
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Then, using (4.1) and (2.2), under assumptions (4.2), (4.3), (4.4) and (5.1) and by the law of iterated

expectations we obtain that

E (Yit|Xi1, · · · , XiT , Zi1, · · · , ZiT ) = X>it β +m (Zit) + µi, t = 1, · · · , T. (5.2)

By comparing (4.6) and (5.2) we realize that direct application of the statistical estimation tech-

niques applied for the random effects case provide asymptotically biased estimators of the parame-

ters of interest. As an alternative, we will use similar instruments to those already used in Section

3. More precisely, we will distinguish between the so-called profiling techniques and the differencing

methods. Finally, as in the fully fixed effects nonparametric case, we will also consider the problem

when the nonparametric object is of high dimension and hence some restriction of additivity is

needed to cope with the curse of dimensionality. Profiling techniques in this context have been in-

troduced in Su and Ullah (2006b) and Zhang et al. (2011). On the other side, differencing techniques

have been originally proposed in Baltagi and Li (2002) and Qian and Wang (2012). The former

paper proposes to estimate m (·) using series estimators whereas the latter use marginal integration

techniques. Finally, we analyze the proposal of Ai et al. (2014) to ameliorate the dimensionality

problem related to the explanatory variables through the estimation of an additive version of the

semi-parametric regression model as in (3.37).

In Su and Ullah (2006b) it is proposed to profile both the heterogeneity term and the nonparametric

part to consistently estimate the parameter vector β. Let Y = (Y11, · · · , YNT )> be a NT × 1 vector

and X = (X11, · · · , XNT )> a matrix of NT × d dimension. Furthermore, let µ0 = (µ2, · · · , µN )>

be a (N − 1)-dimensional vector and Dd = (IN ⊗ ıT )d a NT × (N − 1) dimensional matrix, where

d = (−ıN−1IN−1)> is a N × (N − 1) matrix, the standard locally weighted linear least squares

regression to estimate the quantities of interest in (4.1) can be written in matrix form as

(Y −Ddµ0 −Xβ − Zzγ)>Kz(Y −Ddµ0 −Xβ − Zzγ), (5.3)

where Kz = diag(KH(Z11−z), · · · ,KH(ZNT −z)) is a NT ×NT matrix, KH(z) = |H|−1K(H−1z),

K (·) is a kernel function, |H| is the determinant of the bandwidth matrix H and Zz is a NT×(1+q)

matrix of the form,

Zz =


1

(
H−1(Z11 − z)

)>
...

...

1
(
H−1(ZNT − z)

)>
 .

The above exposition suggests as estimators for m(z) and Dm(z) = vec(∂m(z)/∂z>), m̂(z;H) = γ̂0

and D̂m(z;H) = γ̂1, respectively,

m̂(z;H) = S(z)(Y −Ddµ0 −Xβ), (5.4)

where s(z) = e>1 S(z) for S(z) = (Z>z KzZz)
−1Z>z Kz, and e = (1, 0q)

> is a (1 + q) × 1 selection

matrix.
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Then, by replacing (5.4) in the following optimization problem

(Y −Ddµ0 −Xβ −m(Z))> (Y −Ddµ0 −Xβ −m(Z)) , (5.5)

the minimizers of (5.5) can be written as

β̂FPL = (X∗>M∗dX
∗)−1X∗>M∗dY

∗, (5.6)

µ̂FPL = (D∗>d D∗d)
−1D∗>d (Y ∗ −X∗β̂FPL), (5.7)

where D∗d = (INT −S)Dd, Y
∗ = (INT −S)Y , X∗ = (INT −S)X, M∗d = INT −D∗d(D∗>d D∗d)

−1D∗d, for

Si = (s(Zi1), · · · , s(ZiT )) being a T × T smoothing matrix. Note that by identification conditions

µ̂1 = −
∑N

i=2 µ̂i.

Under some standard conditions, in Su and Ullah (2006b) it is obtained the asymptotic distribution

of these estimators as N →∞ and T is fixed,

√
N(β̂FPL − β)

d−−−→ N
(
0,Φ−1ΩΦ−1

)
, (5.8)

where X̃it = Xit−E(Xit|Zit), Φ =
∑

tE(X̃it(X̃it−T−1
∑T

s=1 X̃is)
>) and Ω =

∑T
s=1

∑T
t=1E(vitvisX̃it(X̃is−

T−1
∑T

`=1 X̃i`)
>).

Recently, in Zhang et al. (2011) it is proposed an empirical maximum likelihood estimator for β.

This estimator is of the same form as the so-called feasible profile likelihood estimator in Su and

Ullah (2006a). In the former paper, and based in the first-order conditions of (5.6), it is proposed

the following auxiliary random vector to meet E(ηi(β)) = 0 when β is unknown,

ηi(β) = X∗>i M∗di(Y
∗
i −X∗i β), (5.9)

where X∗i = (X∗i1, · · · , X∗iT )>, M∗di = (M∗di1 , · · · ,M
∗
diT

)> and Y ∗i = (Y ∗i1, · · · , Y ∗iT )> are T×1 vectors.

The log-likelihood function is

`(β) =

N∑
i=1

log(Nρi). (5.10)

with the constraints

ρi ≥ 0, i = 1, · · · , N, (5.11)
N∑
i=1

ρi = 1, (5.12)

N∑
i=1

ρiηi (β) = 0. (5.13)

To find the values ρ1, · · · , ρN , we maximize the log-likelihood function (5.10) subject to the con-

straints (5.11) to (5.13). Using the Lagrange multiplier method, we obtain

ρi =
1

N

1

1 + λ>(β)ηi(β)
, i = 1, · · · , N, (5.14)
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and substituting (5.14) into (5.10) we obtain

`(β) = −
N∑
i=1

log
(

1 + λ>(β)ηi(β)
)
, (5.15)

where λ(β), the Lagrange multiplier, is determined by

1

N

N∑
i=1

ηi(β)

1 + λ>(β)ηi(β)
= 0.

Now, we define the value of β that maximizes (5.15) as the maximum empirical likelihood estimator

(MELE) of β, i.e.

β̂MELE =

(
N∑
i=1

X∗>i M∗diX
∗
i

)−1 N∑
i=1

X∗>i M∗diY
∗
i , (5.16)

so from this expression they obtain

µ̂MELE = (D∗>d D∗d)
−1D∗>d (Y ∗ −X∗β̂MELE), (5.17)

m̂MELE(z;H) = s(z)(Y −Ddµ̂MELE −Xβ̂MELE). (5.18)

Note that as it is pointed out by these authors, the maximum empirical likelihood estimator β̂MELE

is identical to the profile likelihood estimator β̂FPL in Su and Ullah (2006b). In addition, following

standard conditions and similar definitions as in Su and Ullah (2006b), in Zhang et al. (2011) it is

obtained

√
N(β̂MELE − β)

d−−−→ N
(
0,Φ−1ΛΦ−1

)
, (5.19)

as N tends to infinity, where Φ =
∑N

i=1E
(
X̃it(X̃it − T−1

∑T
s=1 X̃is)

>
)

and Λ = E(X̃>i ΩiX̃i)
>, for

X̃i = (X̃i1, · · · , X̃iT )> and X̃it = Xit − E(Xit|Zit).

An alternative approach to the so-called profiling methods are the differencing techniques. Using

the first differences transformation in (4.1) we obtain

∆Yit = ∆X>it β +m(Zit, Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T, (5.20)

where m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)). Estimation of β, as it is suggested in Li and Stengos

(1996), can be implemented by conditioning (5.20) in
(
Zit, Zi(t−1)

)
. Assuming E

(
∆vit|Zit, Zi(t−1)

)
=

0,

E
(

∆Yit|Zit, Zi(t−1)

)
= β>E

(
∆Xit|Zit, Zi(t−1)

)
+m(Zit, Zi(t−1)). (5.21)

Then subtracting (5.21) to (5.20) we obtain,

∆Yit − E
(

∆Yit|Zit, Zi(t−1)

)
= β>

(
∆Xit − E

(
∆Xit|Zit, Zi(t−1)

))
+ ∆vit, (5.22)
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where β can be estimated using the standard FOLS technique, where conditional expectations are

replaced by conventional nonparametric estimators (see (4.9)-(4.12) for details).

However, as it is pointed out in Baltagi and Li (2002) this technique presents some weaknesses.

On the one hand, taking conditional expectations on (Zit, Zi(t−1)) implies having to deal with

the curse of dimensionality problem. In that case, it is necessary to estimate the nonparametric

regression of ∆Yit−E(∆Yit|Zit, Zi(t−1)) on ∆Xit−E(∆Xit|Zit, Zi(t−1)) by the kernel method. This

estimator has to be defined on IR2q rather than IRq. On the other hand, and although these

authors suggest how to estimate m(Zit, Zi(t−1)), they ignore the additive structure of (5.20) and

do not provide a nonparametric estimator for m(Zit). In this framework, Baltagi and Li (2002)

develop an estimation method based on the series approach which enables us to impose the additive

structure characteristic of first differences regression models and propose a nonparametric estimator

for m(Zit). Alternatively, in Qian and Wang (2012) it is presented a method based on marginal

integration techniques to provide an estimator for this smooth function allowing for the presence of

some endogenous explanatory variables.

If m(·) is a two times differentiable function twice differentiable in the interior of its support A,

being A a compact subset in IRq, and E[m′′(z)] = E[∂2m(z)/∂z2] < ∞, the unknown function

m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)) belongs to the class of additive functionsM (m ∈M). Then,

with the aim of taking into account the restriction that both additive functions share the same

functional form, Baltagi and Li (2002) propose to approximate m(z) through the series ρL(z) of

L× 1 dimension, where L = L(N).

Note that, as Baltagi and Li (2002) emphasize, the approximation function ρL(z) has to meet a

number of special features for the series method that can be summarized in the following

i) ρL(z) ∈M,

ii) as far as L increases, there is a linear combination of ρL(z) that may approximate any m ∈ M
arbitrarily well in mean square error.

In this way, ρL(z) approximates m(z) and ρL(Zit, Zi(t−1)) = ρL(Zit) − ρL(Zi(t−1)) approximates

m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)), where

ρL(Zit, Zi(t−1)) =


ρ1(Zit)− ρ1(Zi(t−1))

ρ2(Zit)− ρ2(Zi(t−1))
...

ρL(Zit)− ρL(Zi(t−1))

 . (5.23)

For any scalar or vector function W (z), EM(W (z)) denotes an element which belongs toM and that

is the closest function to W (z) among all the functions inM. Denote P = (ρL11, · · · , ρLNT ) a NT ×L
matrix, where ρLit = ρL(Zit, Zi(t−1)). For the sake of simplicity, let us define θ(z) = E(X|Z = z)

and m(z) = EM(θ(z)) so the expression (5.20) can be written in matrix form as

∆Y = ∆Xβ +M + ∆v, (5.24)
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where ∆Y and M are NT -dimensional vectors with a typical element ∆Yit and m(Zit, Zi(t−1)),

respectively. This is similar to ∆X and ∆v.

Multiplying both sides by P = P (P>P )−1P> and subtracting the resulting expression from (5.24),

∆Y −∆Ỹ = (∆X −∆X̃)β + (M − M̃) + (∆v −∆ṽ), (5.25)

where ∆Ỹ = P∆Y = Pγ∆Y , and γ∆Y = (P>P )−1P>∆Y . This definition is similar for M̃ , ∆X̃

and ∆ṽ.

Thus, the least-squares estimator for β is defined as

β̂ =
(

(X − X̃)>(X − X̃)
)−1

(X − X̃)>(Y − Ỹ ), (5.26)

whereas for the smooth function m(z) they propose m̂(z) = ρL(z)>γ̂, where

γ̂ = (P>P )−1P>(Y −Xβ̂). (5.27)

Under standard conditions of the series approach, in Baltagi and Li (2002) it is established that

defining ξit = Xit −W (Zit), where W (Zit) = EM(θ(Zit)),

√
N(β̂ − β)

d−−−→ N
(
0,Φ−1ΩΦ−1

)
, (5.28)

where Φ = T−1
∑T

t=1E(ξitξ
>
it ) and Ω = T−1

∑T
t=1E

(
σ2

∆v(Xit, Zit)ξitξ
>
it

)
, being σ2

∆v(Xit, Zit) =

E
(
∆v2

it|Xit = x, Zit = z
)
.

We refer to the appendix in Baltagi and Li (2002) for the proofs of these results. Finally, note that

they extend these results to the situation in which endogenous explanatory variables are allowed.

As we will see in Section 6, they use a semi-parametric regression model with instrumental variables

to avoid the endogeneity problem and to provide consistent estimators.

An alternative approach to Baltagi and Li (2002) can be found in Qian and Wang (2012). In this

paper, they propose an estimator for the nonparametric component, m(·), that does not suffer from

the curse of dimensionality. Let ∆Y ∗it = ∆Yit −∆X>it β̂, where

β̂ =

(
N∑
i=1

T∑
t=1

∆X̂it∆X̂
>
it

)−1 N∑
i=1

T∑
t=1

∆X̂it∆Ŷit, (5.29)

where X̂it = Xit − Ê
(
Xit|Zit, Zi(t−1)

)
and Ŷit = Yit − Ê

(
Yit|Zit, Zi(t−1)

)
and

Ê
(
Xit|Zit, Zi(t−1)

)
=

1

NThq

N∑
j=1

T∑
s=1

XjsKh(Zit − Zjs)Kh(Zi(t−1) − Zjs)/f̂h
(
Zit, Zi(t−1)

)
, (5.30)

Ê
(
Yit|Zit, Zi(t−1)

)
=

1

NThq

N∑
j=1

T∑
s=1

YjsKh(Zit − Zjs)Kh(Zi(t−1) − Zjs)/f̂h
(
Zit, Zi(t−1)

)
, (5.31)

f̂h(Zit, Zi(t−1)) =
1

NThq

N∑
j=1

T∑
s=1

Kh(Zit − Zjs)Kh(Zi(t−1) − Zjs). (5.32)
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Then, (4.1) can be written as

∆Y ∗it = m(Zit, Zi(t−1)) + ∆v∗it, i = 1, · · · , N ; t = 2, · · · , T. (5.33)

where ∆v∗it = ∆vit − (β̂ − β)>∆Xit. However, as it has been pointed out before, the estimation of

m(·) is cumbersome due to the fact that m(Zit, Zi(t−1)) is an additive function.

In Qian and Wang (2012) it is proposed a non-iterative method based on the marginal integration

technique. More precisely, they develop a two step procedure in which they first use conventional

multivariate nonparametric techniques such as the Nadaraya-Watson or the local linear regression,

and later the function m(·) is obtained through the marginal integration of the previous estimator.

Thus, using the local linear regression procedure to estimate m(Zit, Zi(t−1)), Qian and Wang (2012)

propose to solve the following locally weighted linear least-squares problem for α,

N∑
i=1

T∑
t=2

(
∆Y ∗it − α− (Zit − z1)>γ0 − (Zi(t−1) − z2)>γ1

)2
KH(Zit − z1)KH(Zi(t−1) − z2), (5.34)

where z1 and z2 are points in the interior of the support of f(·).

Let α̂ be a minimizer of (5.34), the estimator for m(Zit, Zi(t−1)) is of the form

m̂(z1, z2;H) = α̂ = e>1 (Z>z KzZz)
−1Z>z Kz∆Y

∗, (5.35)

where now Kz and Zz are N(T − 1)×N(T − 1) and N(T − 1)× (1 + 2q) matrices, respectively, of

the following form

Kz = diag
(
KH(Z12 − z1)KH(Z11 − z2), · · · ,KH(ZNT − z1)KH(ZN(T−1) − z2)

)
and

Zz =


1 (Z12 − z1)> (Z11 − z2)>

...
...

...

1 (ZNT − z1)> (ZN(T−1) − z2)>

 .
Note that if our interest is the estimation of the partial derivatives of m(·), i.e. Dm1(z) =

vec(∂m(z1, z2)/∂z>1 ) and Dm2(z) = vec(∂m(z1, z2)/∂z>2 ), it would be enough to minimize (5.34)

for γ0 and γ1. Thus, we could propose as estimators for γ0 and γ1, vec(D̂m1(z1;H)) = γ̂0 and

vec(D̂m2(z2;H)) = γ̂1, respectively. However, since the objective of these authors is to provide an

estimator for the unknown function, m(Zit), they propose to integrate marginally the estimated

function m̂(z1, z2), i.e.,

m̂(z1;H) =

∫
m̂(z1, z2)q(z2)dz2, (5.36)

where q(·) is a predetermined density function.

With the aim of avoiding strict usual identification restrictions of the marginal integration tech-

nique, such as the assumption
∫
m(z1)q(z1)dz1 = 0 proposed in Hengartner and Sperlich (2005),
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or numerical integration methods such as Simpson’s or Trapezoidal rules, Qian and Wang (2012)

develop an alternative strategy. In particular, they propose to generate i.i.d. samples of the q(·)
distribution as Z∗k , for k = 1, · · · , NT , and compute

m̂MC(z1;H) =
1

NT

N∑
k=1

m̂(z1, z
∗
k). (5.37)

As it is emphasized in Qian and Wang (2012), if NT is large enough m̂MC(·) approximates consid-

erably well to m̂(·) and we choose q(·) to be the density function of Zit, the sample version of (5.35)

can be used rather than (5.36), i.e.,

m̂S(z1;H) =
1

N(T − 1)

N∑
i=1

T∑
t=1

m̂(z1, Zit). (5.38)

Under standard conditions of the marginal integration technique, these authors show that the

nonparametric estimator (5.38) behaves asymptotically equal to (5.36) when q(·) is the density

function of Zit, bounded and twice differentiable and when it satisfies
∫
m(z1)q(z1) = 0. Thus, they

obtain

N2/(4+q)(m̂S(z1;H)−m(z1)−B(z1))
d−−−→ N (0, V (z1)) , (5.39)

where

B(z1) =
1

2
µ2(K)

(
tr(HHm(z1))−

∫
tr(HHf (z2))q(z2)dz2

)
,

V (z1) =
σ2Rq(K)

T |H|1/2

(∫
q2(z2)

f2(z1, z2)
q(z2)dz2

)
,

σ2 = T−1
∑T

t=2 σ
2
t and Hm(z1) is the Hessian matrix of m(·) evaluated at z1.

Analyzing in detail these asymptotic results, in Qian and Wang (2012) it is pointed out that if Zit

is i.i.d. across t, as well as for i, and q(·) = f(·), the asymptotic variance takes the conventional

form σ2Rq(K)

T |H|1/2 f(z1)−1. In addition, when Zit is accurately predictable by Zi(t−1) the conditional

density function f(z1|z2) is close to zero, except in a small neighborhood of z2, and this method

can fail. Finally, note that if m̂(z1, z2) is estimated using the Nadaraya-Watson kernel smoothing

the asymptotic variance remains without change but the asymptotic bias is different. See Qian and

Wang (2012) for further details.

However, note that despite the great advantages offered for the empirical analysis by the procedures

above, the dimensionality problem characteristic of the nonparametric models is unsolved. As we

have stated previously, when the dimension of the nonparametric component is large we have to

deal with the curse of dimensionality. In order to avoid the slower rates of convergence of these

nonparametric estimators, a possible solution is to analyze an additive alternative expression for

m(·). More precisely, substituting (3.37) into (4.1) we obtain,

Yit = X>it β +m1(Z1it) + · · ·+mq(Zqit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (5.40)
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where now m(·) = (m1(·), · · · ,mq(·)) is a vector of unknown functions to estimate and the remaining

components are defined as in (4.1).

In this context, in Ai et al. (2014) it is proposed to combine the polynomial spline series approxi-

mation with the profile least-squares procedure to obtain a semi-parametric least-squares dummy

variables (SLSDV) estimator for the parametric component, and a series estimator for the nonpara-

metric term. Under very weak conditions, these authors show that the semi-parametric least-squares

dummy variables estimator is asymptotically normal and the series estimator achieves the optimal

rate of convergence of the nonparametric regression. Later, with the aim of obtaining estimators

that exhibit the oracle efficiency property, a two step local polynomial procedure is developed based

on a series method that makes it possible to impose the additive structure of the m(·) function.

Since the nonparametric smoothing spline technique is beyond the scope of this study, we refer to Ai

et al. (2014) for a detailed analysis of the proposed procedure and the study of the main asymptotic

properties of the resulting estimators.

6 Semi-parametric panel data models with endogeneity

As we have already remarked in the fully nonparametric case, there exists many applied problems

where it is necessary to include lagged dependent variables as explanatory variables. Furthermore,

the presence of endogeneity is also frequent in applied econometrics. In order to solve these problems

in most part of cases it is common to use instrumental variables techniques. For example, in Li and

Stengos (1996) and Baltagi and Li (2002) it is considered the estimation of partially linear dynamic

panel data models using instrumental variables (IV) methods.

6.1 Endogenous partially linear panel data models with random effects

Consider the partially linear panel data model introduced in Section 4 with the random effects speci-

fication. Instead of assuming E (υit|Xit, Zit, µi) = 0, we are willing to assume only E (υit|Zit, µi) =

0. In this context, in Li and Stengos (1996) it is developed an IV technique that follows the proposal

in Robinson (1988). Thus, these authors use a kernel estimation method with the aim of removing

m(·) before proposing an estimator for β. Taking conditional expectations given Zit in both sides

of (4.1) and subtracting the resulting expression from (4.1), the regression model to estimate is

Yit − E(Yit|Zit) = (Xit − E(Xit|Zit))> β + εit, i = 1, · · · , N ; t = 1, · · · , T (6.1)

and assuming there is a vector of instruments, Wit ∈ IRd, which holds E(εit|Zit,Wit) = 0 and

E(XitW
>
it ) 6= 0, the endogeneity problem can be avoided using the IV approach, i.e.,

β̂IV = (W̃>X̃)−1W̃>Ỹ , (6.2)
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where W̃ and X̃ are NT × d matrices whose typical row element is W̃it = Wit − E(Wit|Zit) and

X̃it = Xit − E(Xit|Zit), respectively, whereas Ỹ is a NT -dimensional vector whose typical row

element is Ỹit = Yit − E(Yit|Zit).

However, as in Li and Ullah (1998), the conditional expectations E(Wit|Zit), E(Xit|Zit), and

E(Yit|Zit) are some unknown terms that can be replaced with their consistent estimators, i.e.,

Ŵit, X̂it, and Ŷit, respectively, to obtain feasible IV estimators for the parametric component of

(4.1). Thus, in Li and Stengos (1996) it is proposed the following feasible IV estimator

β̃FIV =

(
N∑
i=1

T∑
t=1

(
Wit − Ŵit

)(
Xit − X̂it

)>) N∑
i=1

T∑
t=1

(
Wit − Ŵit

)
(Yit − Ŷit), (6.3)

where

Ŵit = Ê(Wit|Zit) =
1

NThq

N∑
j=1

T∑
s=1

WjsKh(Zit − Zjs)/f̂h(Zit)

and X̂it, Ŷit and f̂h(Zit) are defined as in (4.10), (4.11) and (4.12), respectively.

As it has been pointed out in Section 4, in order to avoid the technical difficulties owning to the

random denominator, f̂it, we trim out again small values of f̂it. Then, for a constant b > 0, we define

Îit = 1(
∣∣∣f̂i∣∣∣ > b), where 1(·) is the usual indicator function. Therefore, the feasible IV estimator for

β can be written as

β̂FIV =

(
N∑
i=1

T∑
t=1

(
Wit − Ŵit

)(
Xit − X̂it

)>
Îit

)
N∑
i=1

T∑
t=1

(
Wit − Ŵit

)
(Yit − Ŷit)Îit. (6.4)

Under some standard regularity conditions, these authors provide the following asymptotic distri-

bution for this IV estimator,

√
N(β̂FIV − β)

d−−−→ N
(
0,Φ−1ΓΦ−1

)
, (6.5)

where Φ = T−1
∑T

t=1E
(
W̃itX̃

>
it f

2
it

)
and Γ = T−2

∑T
t=1

∑T
s=1E

(
εitεisW̃itW̃

>
is f

2
itf

2
is

)
.

Similarly, following this procedure and allowing for the presence of lagged dependent variables in

the vector Xit, in Baltagi and Li (2002) it is proposed an alternative estimator that pays special

attention to the choice of the instruments in order to avoid the existence of weak instrumental

variables. Finally, note that in both studies the authors leave the estimation of the nonparametric

component for future research.

6.2 Endogenous partially linear panel data models with fixed effects

Considering a partially linear model as in (4.1) that fulfills all conditions established in Section 5.

Furthermore, as in Section 6.1, instead of assuming E(vit|Xit, Zit, µi) = 0, we are willing to assume

only E(vit|Zit, µi) = 0. Then, in order to avoid the incidental parameters problem, first differences
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are used in (4.1). Taking as a benchmark the technique developed in Li and Stengos (1996), in Qian

and Wang (2012) it is proposed to estimate the linear component β in a regression model such as

∆Yit − E(∆Yit|Zit, Zi(t−1)) =
(
∆Xit − E(∆Xit|Zit, Zi(t−1))

)>
β + ∆vit. (6.6)

Assuming there is a vector of instruments, Wit ∈ IRd, and replacing the unknown parameters

E(∆Yit|Zit, Zi(t−1)), E(∆Xit|Zit, Zi(t−1)) and E(∆Wit|Zit, Zi(t−1)) by their consistent estimators,

the feasible IV estimator is of the form

β̂FDIV =

(
N∑
i=1

T∑
t=1

(∆Wit −∆Ŵit)(∆Xit −∆X̂it)
>Îit

)−1 N∑
i=1

T∑
t=1

(∆Wit −∆Ŵit)(∆Yit −∆Ŷit)Îit, (6.7)

where Îit is defined as in (4.14),

∆Ŷit = Ê(∆Yit|Zit, Zi(t−1))

=
1

NTh2q

N∑
j=1

T∑
s=1

∆YjsKh(Zit − Zjs)Kh(Zi(t−1) − Zj(s−1))/f̂h(Zit, Zi(t−1)), (6.8)

f̂h(Zit, Zi(t−1)) =
1

NTh2q

N∑
j=1

T∑
s=1

Kh(Zit − Zjs)Kh(Zi(t−1) − Zj(s−1)), (6.9)

and ∆X̂it and ∆Ŵit are defined as in (6.8).

Note that this technique makes it possible to avoid the random denominator problem usual in the

nonparametric estimation of the regression model, but at the cost of having to define the resulting

estimator on IR2q rather than IRq. Adapting the assumptions in Li and Stengos (1996) and imposing

that fh(Zit, Zi(t−1)) is a bounded density function and at least first-order partially differentiable with

a remainder term that is Lipschitz-continuous, in Qian and Wang (2012) it is obtained that as N

tends to infinity,

√
N(β̂FDIV − β)

d−−−→ N
(
0,Ψ−1ΓΨ−1

)
, (6.10)

where Ψ = T−1
∑T

t=2E
(
(∆Wit − E(∆Wit|Zit, Zi(t−1)))(∆Xit − E(∆Xit|Zit, Zi(t−1)))

>f2
it

)
and Γ =

T−2
∑T

t=2

∑T
s=2E

(
∆v1t∆v1s(∆W1t − (∆W1t|Zit, Zi(t−1)))(∆W1t − (∆W1s|Zis, Zi(s−1)))

>f2
itf

2
is

)
, let

fit = fh(Zit, Zi(t−1)) and fis = fh(Zis, Zi(s−1)).

7 Conclusion

In this paper, we have made an intensive review of the recent developments for semi-parametric and

fully nonparametric panel data models that are linearly separable in the innovation and the individ-

ual specific term. We have analyzed these developments under two alternative model specifications:

Fixed and random effects panel data models. More precisely, in the random effects setting we have

focused our attention in the analysis of some efficiency issues that have to do with the so-called
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working independence condition. In the fixed effects setting, to cope with the so-called incidental

parameters problem, we have consider two different estimation approaches: profiling techniques and

differencing methods. We have been also interested in the endogeneity problem and in the use of

instrumental variables in this setting. In addition, for practitioners, we have also shown different

ways of avoiding the so-called curse of dimensionality problem in pure nonparametric models. In

this way, semi-parametric and additive models appear as a solution when the number of explanatory

variables becomes large. Note that Su and Ullah (2011) and Chen et al. (2013) focus on similar

models, although in this case we include the most recent results and pay special attention to the

so-called incidental parameters problem as well as with endogenous explanatory variables.

References

Ai, C. and Q. Li (2008). “Semiparametric and nonparametric methods in panel data models”. In
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