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Abstract 

 

An alternative modelling for flexible membranes anchored to the ground for soil slope 

stabilisation is presented using Smoothed-Particle Hydrodynamics to model the unstable 

ground mass in a soil slope, employing a dynamic solve engine. A regression model of 

pressure normal to the ground, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠, and also membrane deflection, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠, have been 

developed using Design of Experiment. Finally, a comparison between the pressure 

obtained from numerical simulation and from a limit equilibrium analysis considering 

infinite slope has been carried out, showing differences in the results, mainly due to the 

membrane stiffness. 
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           𝑤𝑤𝑠𝑠𝑡𝑡ℎ 𝑡𝑡ℎ𝑃𝑃 𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡 𝑃𝑃𝑞𝑞𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑛𝑛 𝑃𝑃𝑞𝑞𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑛𝑛𝑃𝑃  

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠:𝑀𝑀𝑛𝑛𝑀𝑀𝑠𝑠𝑛𝑛𝑃𝑃𝑛𝑛 𝑔𝑔𝑃𝑃𝑓𝑓𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑛𝑛 𝑛𝑛𝑓𝑓 𝑡𝑡ℎ𝑃𝑃 𝑛𝑛𝑃𝑃𝑛𝑛𝑠𝑠𝑃𝑃𝑛𝑛𝑛𝑛𝑃𝑃,𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔 𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑛𝑛 𝑡𝑡ℎ𝑃𝑃 𝑔𝑔𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛𝑔𝑔 

           𝑠𝑠𝑛𝑛 𝑡𝑡ℎ𝑃𝑃 𝑛𝑛𝑠𝑠𝑔𝑔 𝑟𝑟𝑛𝑛𝑠𝑠𝑛𝑛𝑡𝑡 𝑛𝑛𝑓𝑓 𝑛𝑛 𝑟𝑟𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛, 𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡𝑃𝑃𝑔𝑔 𝑤𝑤𝑠𝑠𝑡𝑡ℎ 𝑡𝑡ℎ𝑃𝑃 𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛 𝑃𝑃𝑠𝑠𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑛𝑛𝑃𝑃 

𝑔𝑔200:𝐶𝐶𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃 𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑔𝑔 𝑡𝑡ℎ𝑃𝑃 𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑔𝑔𝑃𝑃𝑛𝑛 𝑓𝑓𝑛𝑛𝑃𝑃 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠

(𝛾𝛾 ∙ 𝑔𝑔)  𝑤𝑤ℎ𝑃𝑃𝑛𝑛 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠

= 200 𝑀𝑀𝑃𝑃𝑛𝑛, 𝑠𝑠𝑛𝑛𝑃𝑃𝑃𝑃𝑔𝑔 𝑛𝑛𝑛𝑛 𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛 𝑃𝑃𝑠𝑠𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑛𝑛𝑃𝑃  

𝑔𝑔600:𝐶𝐶𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃 𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑔𝑔 𝑡𝑡ℎ𝑃𝑃 𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑔𝑔𝑃𝑃𝑛𝑛 𝑓𝑓𝑛𝑛𝑃𝑃 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠

(𝛾𝛾 ∙ 𝑔𝑔)  𝑤𝑤ℎ𝑃𝑃𝑛𝑛 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠

= 600 𝑀𝑀𝑃𝑃𝑛𝑛, , 𝑠𝑠𝑛𝑛𝑃𝑃𝑃𝑃𝑔𝑔 𝑛𝑛𝑛𝑛 𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛 𝑃𝑃𝑠𝑠𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑛𝑛𝑃𝑃  

𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖:𝐶𝐶𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃 𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝑛𝑛𝑔𝑔 
𝑞𝑞

(𝛾𝛾 ∙ 𝑔𝑔) 𝑠𝑠𝑛𝑛 𝑡𝑡ℎ𝑃𝑃 𝑠𝑠𝑛𝑛𝑓𝑓𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡𝑃𝑃 𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑃𝑃 𝑛𝑛𝑛𝑛𝑔𝑔𝑃𝑃𝑛𝑛 

𝑔𝑔𝐷𝐷𝐷𝐷:𝐷𝐷𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛 −𝑊𝑊𝑛𝑛𝑡𝑡𝑃𝑃𝑛𝑛𝑛𝑛 𝑃𝑃𝑡𝑡𝑛𝑛𝑡𝑡𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑐𝑐 

𝑔𝑔𝑈𝑈,𝛼𝛼:𝐷𝐷𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛 −𝑊𝑊𝑛𝑛𝑡𝑡𝑃𝑃𝑛𝑛𝑛𝑛 𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃 𝑐𝑐𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃 
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1 .- Introduction 

 

Flexible membranes anchored to the ground constitute a method of the slope surface 

stabilisation. These membranes are normally made of cable nets, wire meshes or ring 

nets, bolts anchored to the ground and reinforcement cables forming regular patterns. 

This technique has been widely used due to its low visual impact and scarce traffic 

interference during installation. 

 

Flexible membranes may be classified as either low-resistance or high-resistance. A 

low-resistance membrane is generally formed by a twisted (single, double or triple) 

hexagonal wire mesh manufactured with standard steel and anchored to the ground at a 

few points with bolts, allowing material to slide due to a loose contact between the 

membrane and the slope surface. The main purpose of this type of membrane is to work 

as a curtain, preventing small rock pieces from getting to the road when they detach by 

conducting them along the slope surface till the ditch. High-resistance flexible 

membranes are formed by stiffer membranes (either cable nets, single torsion wire 

meshes or ring nets), with a relatively more rigid contact to the slope surface. They are 

manufactured with medium to high strength steel. According to some manufacturers 

and researchers, the main application of these membranes is to avoid soil sliding or rock 

detachment in slopes by exerting a pressure, q, normal to the ground surface, which 

prevents instability by increasing internal shear strength in the sliding plane. This 

pressure 𝑞𝑞 is generated from a pre-stress force applied to the membrane and 

reinforcement cables at the time of installation. Manufacturers and researchers usually 

refer to this behaviour as ‘active’, in a similar way to the concept of ‘active anchors’ in 

the field of soil nailing; in both cases structural elements are pre-stressed.  
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Although the use of flexible membranes has become very common worldwide, there are 

only two technical guidance documents that suggest a design methodology (Muhunthan 

et al. 2005; Phear et al. 2005). There is only one standard document (UNI 11437:2012) 

that deals with test methods for flexible systems for slope stabilisation; however, design 

procedures are not described in this document. Moreover, there are only a few scientific 

references related to the topic of design methodology other than those published by the 

manufacturers of cable nets and high-resistance wire meshes themselves, and two PhD 

theses by independent researchers from the University of Cantabria (Castro Fresno 

2000; Da Costa García 2004). In most of these previous works, active behaviour was 

assumed in order to design the flexible system.  

 

A design method of these systems based on passive behaviour was first introduced in 

Bertolo & Giacchetti (2008). The work described a design procedure for flexible 

systems anchored to rock slopes in order to retain a rock wedge. The method assumed 

that a certain deformation of the membrane is necessary in order to develop tensile 

forces in it, and, therefore, apply a certain pressure on the rock wedge. A limit 

equilibrium analysis (LE) was performed in two dimensions. Mohr-Coulomb failure 

criterion was adopted between rock wedge and unstable mass with a friction angle of 

45º. The force-displacement curve of the membrane was obtained from a puncture test 

carried out in laboratory on a square cable net panel of 3m side. This model did not 

account for the dynamic force of the impact of a moving mass (rock wedge) impacting 

on the membrane. In addition, residual strength between rock wedge and unstable mass 

was not considered, which is generally lower than the peak shear strength. In Bertolo et 

al. (2009), a full scale test method for flexible systems anchored in rock slopes was 
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presented. In this paper, it was also considered that the membrane had a passive 

behaviour.  

 

Most manufacturers and independent researchers adopt an active behaviour for these 

membranes for design purposes; however, this hypothesis was not specifically verified. 

Most models found in the literature are analytical, except three models proposed by Da 

Costa García (2004), Luis Fonseca (2010), Sasiharan et al. (2006) using numerical 

simulations.  

 

Da Costa Garcia (2004) performed a numerical simulation using FEM (Finite Element 

Method), representing a two-dimension section of the slope. The membrane was 

represented with an elastic shell component, bolts were represented through points in 

the membrane where only vertical displacement was allowed. Ground slope was 

discretised with a Matsuoka-Nakai model with a cohesive soil, where a strength 

reduction law of cohesion (c) and friction angle (∅) was applied in order to provoke 

failure. The highest deformations in membrane in the worst situation reached about 4 

mm. In the real situation, typical deformations in the membrane could be of 300-500 

mm.  

 

Luis Fonseca (2010) published a technical book where practical information about 

different flexible systems used to prevent rock fall hazards was compiled. In this work, 

a numerical simulation performed by researchers at the Science and Technology 

University of Krakow (M. Cala, M. Kowalski) was presented. The researchers perform 

a comparison using the software FLAC to compare the safety factor of a slope, using 

only anchors or anchored flexible membranes, to a slope with no protection. The results 
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provided showed that the safety factor when using anchored membranes was higher 

than using only anchors, and both clearly higher than not using any protection. 

However, researchers did not provide any information regarding the tensile stress or 

deformations in membrane in order to compare the similarity to a real case.  

 

Sasiharan et al. (2006) proposed numerical simulations on a drapery system anchored to 

the ground. These simulations reproduced only one type of flexible systems which 

performed as a curtain to prevent debris from reaching the road. Only horizontal 

reinforcement cables were placed at the top of the slope, in order to allow debris to 

reach the bottom of the slope. The numerical simulation consists of a membrane panel 

from the top of the slope to bottom of a certain width in order to be representative. The 

forces applied were only at the bottom of the membrane, parallel to it and oriented in 

the downslope direction. Various scenarios were simulated studying the influence of 

slope angle, bolt spacing and bolts and reinforcement cable arrangement.  

 

Apart from these three examples, most of existing design methods are based on limit 

equilibrium methods. The main difference between models is whether they consider or 

not cohesion, pore pressures or seismic forces. Also, there are also some variations in 

the geometry of the potential failure mass of soil among models: some of them 

considered wedges, other blocks+wedges and others infinite slopes. In the general case, 

a uniform pressure 𝑞𝑞 normal to the ground is calculated so that it increases the normal 

effective stress on the sliding surface and therefore the shear strength on it. Two main 

conditions have to be satisfied by a flexible membrane to be considered as active 

(Blanco-Fernandez et al. 2011):  
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– Condition 1: The membrane (and therefore slope surface) should present a convex 

shape: either a catenary, circle or parabola.  

– Condition 2: The membrane has to be initially pre-stressed with a known tensile force 

T, which depends on stabilisation pressure q and slope curvature.  

 

For the first condition, several field inspections and photo records of real sites show that 

slopes rarely have a convex shape. The most common shape is flat or in the most 

favourable case, irregular (flat, convex and concave shape present in the same slope 

surface). Even if an installer reshaped the slope surface and achieved the desired convex 

shape, it would be almost impossible to maintain this shape over time due to long-term 

weathering.  

 

In relation to condition 2, it has been demonstrated that pre-stress in the system 

components, membrane, reinforcement cables and bolts is very low, so an active 

behaviour cannot be considered under these conditions (Blanco-Fernandez et al. 2013).  

 

2 .- Numerical simulation procedure 

 

2.1 .- Methodology. General aspects 

 
It has already been proved that membranes behave passively (Blanco-Fernandez et al. 

2011, 2013), which means that they are able to retain an unstable mass (slip circle or 

rock edge) that has already started to slide. Therefore, the aim of the simulation should 

be to describe the interaction of a moving mass with the stable portion of the ground 

and the flexible membrane.  
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Starting from this alternative approach, the work flow should begin with the definition 

of the dimensions of the unstable mass of either soil or rock. In both cases, conventional 

methods that incorporate the possibility of including passive reinforcement could be 

used. Until the failure criterion is reached, neither membrane nor reinforcement cables 

would add any notable stabilisation force to the equilibrium of the potential unstable 

mass. However, anchor bolts might add some strength, due to friction developed along 

their length and also due to the bending moment and shear strength at their intersection 

with the potential sliding surface.  

  

Concerning soil slopes, different methods, based on LE methods, have been reported in 

the literature to obtain the slip surface circle; these include passive reinforcement 

(Schlosser 1983; Juran et al. 1990; Jewell and Pedley 1990). Also, various solutions 

have been developed using FEM with a soil strength reduction method and passive 

reinforcement options (Wei et al. 2008; Wang and Men 2010).  

 

After the size of the unstable mass is obtained by any of the methods discussed above, 

the dynamic simulation can be set up. A two-dimensional (2D) plane-stress model of a 

vertical section representing the strip of a ground mass can be established to simulate 

the slope (see Fig. 1). 2D simulations have an advantage in relation to three-dimensional 

ones (3D), the saving in computing time; however, certain assumptions have to be 

adopted (see 2.3.2), which alters the real situation. In contrast, 3D simulation can better 

describe the real setting of anchors, reinforcement cables, either horizontal or vertical 

and orthotropic membranes. Nevertheless, assumptions adopted for the 2D 
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simplification should assume a system that is less restrained in movements than in 

reality in order to be on the safe side.  

 
Fig. 1.  Section of membrane panel represented in simulation 

 
 

Dynamic simulation with explicit software (Autodyn) has been employed in this work. 

The only external force is gravity, and the initial velocity of the unstable mass is null. 

The velocity that could develop in the unstable mass is not very high (< 5 m/s); 

however, using an implicit method could lead to convergence problems and to an 

excessive computing time. Explicit analysis can also deal with the high non-linearity of 

the problem, in terms of geometry and material modelling. Fig. 2 (left) and (right) 

shows simulation examples for a soil slope and a rock slope respectively.  
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Fig. 2.  Numerical simulation example of a flexible membrane. Soil slope (left) and 
rock slope (right). 

 

During the whole sliding phenomena, a peak force followed by a force stabilisation or 

decay will appear in the tensile stress in membrane and reinforcement cable due to the 

impact (Fig. 3).  
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Fig. 3. Tensile stress vs. time (planar failure). 

 

2.2 .- Unstable mass formulation for soils 

 

In the particular case of simulation of an unstable soil mass, a type of numerical 

formulation is desired that allows high deformations and distortions. Various numerical 

formulations enable high distortions to be dealt with, such as Arbitrary Lagrangian- 

Eulerian (ALE), Discrete Element Method (DEM) or mesh-less methods such as 

Smooth Particle Hydrodynamics (SPH), among others. Bojanowski (2014) compared 

various numerical methods to simulate soil-structure interaction using Finite Element 

Method (FEM), Element Free-Galerkin (EFM), Smooth Particle Hydrodynamics (SPH) 

and Multi-Material Arbitrary Lagrangian-Eulerian (MM-ALE). He finally concluded 

that SPH was more suitable than ALE in terms of its higher ability to model contact 
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with other Lagrangian components. In relation to computing time, for medium-coarse 

meshes, SPH was faster than ALE. On the other hand, the main disadvantage of EFM is 

that it is very rare to find it included in commercial software. Finally, FEM was not 

recommended for modelling high deformation and high distortion problems.  

 

Bibliographic references concerning comparisons between DEM and SPH to model 

granular materials have not been found so far. Although soil is a discontinuous medium, 

classical soil mechanics deals with it as a continuous medium, such as FEM. SPH 

(Smooth Particle Hydrodynamics) is a Lagrangian mesh free method where a 

continuous medium is discretised into points (also known as ‘particles’), instead of 

continuous cells or elements. Deformations are expressed in terms of variations of 

density. For each particle i, density is defined as a simple weighting function of the 

density of that point i and neighbouring points j and the distance ij. It is generally used 

to solve free surface problems, fluid problems with a Lagrangian approach, collision or 

impact problems and large distortion/deformation problems. On the other hand, typical 

DEM formulations describe interaction between particles as a collision force that 

includes a linear spring and damping; thus, complex material models are more difficult 

to model with conventional DEM software.  

 

Bui et al. (2008a) studied for the first time the failure and post-failure mechanism of a 

soil slope employing SPH discretisation with a Drucker-Prager constitutive model. They 

presented different simulations considering associated and non-associated plastic flow 

rules, and different friction angles and cohesion values. They compared the results with 

scale laboratory test, and also FEM simulations concluding that SPH was an adequate 

numerical method to simulate both failure and post-failure processes.  
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On that time, Bui et al. (2008b) performed a numerical simulation of a soil slope 

discretised with SPH where they introduced a pile in order to study the soil-structure 

interaction. The slope was first analysed without pile and only gravity as an external 

force and the results showed a safety factor lower than 1; therefore, failure would occur. 

Afterwards, the pile was introduced in the slope, and the safety factor increased. No 

comparisons were performed with laboratory or real cases. However, results apparently 

show physically logical behaviour. 

 

Later, Bui et al. (2011) resolved a slope stability problem considering also pore water 

pressures. They compared the results of safety factor and slip surface shape of SPH, 

FEM and LE showing good agreement. Nevertheless, the authors stress the capability of 

SPH to simulate the post failure, contrary to the other two methods.  

 

Liang et He (2014) made a simulation using SPH for dry frictional soils in order to 

analyse the influence of shear rate for different slope angles and depth of the 

instabilities.  

 

There are also more works after Bui et al. 2008 were the slope failure was modelised 

using SPH, comparing the results with other methods, laboratory tests or real cases: 

Nonoyama et al. (2015), Wu et al. (2015), Zhang et al. (2014) and Dakssa & Harahap 

(2012).  

 

Theoretical limitations of the SPH method are mainly the tension instability that may 

led to unrealistic soil fracture for large deformations. For only frictional problems with 
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low friction angles, Bui et al. (2008a) states that the problem of instability is nearly 

neglectable; besides, for large frictional angles they suggest to use the tension cracking 

algorithm to overcome the problem of tension instability. In case of cohesive soils, they 

suggest to use an artificial stress method based on Monaghan (2000) and Grey et al 

(2001). 

 

To date, there are no studies concerning the simulation of a soil slope discretised with 

SPH interacting with a flexible membrane.  

 

2.3 .- Components of the simulation 

 

2.3.1 .- Membrane 

 
The various types of membranes available on the market can be idealised as continuous 

membranes that only support tensile stress, having different stress-strain characteristics 

curves and yield criterias. For simulation purposes, it was assumed in this paper that 

real membranes such as cable nets, wire meshes or ring nets, behave as continuous 

elastic membranes with a constant elastic modulus.  

 

2.3.2 .- Reinforcement cables and bolts 

 

Typical anchoring patterns of both cable nets and wire meshes are formed by square or 

rectangular panels, limited by rows and columns of bolts (see Fig. 1). Vertical and 

horizontal reinforcement cables connect anchors and restrain overall membrane 

deformations.  
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In this paper, a 2D vertical section passing through the mid-point of two columns of 

bolts was considered as a representative section for the numerical simulation. In a real 

situation, the mid-point between two columns of rows shows a certain displacement 

regarding the stiffness of a horizontal reinforcement cable fixed at two lateral bolts. In 

order to simplify the model, a null displacement of horizontal cables was considered, 

represented by a fix point in the numerical simulation.  

 

The 2D simplification of the model (plane stress), implies that only horizontal rows of 

reinforcement cables/bolts are represented. In the real situation both horizontal and 

vertical reinforcement cables are generally set up; therefore, the numerical model 

represents a less restrained situation.  

 

2.3.3 .- Stable ground 

 

Stresses in the stable zone of the slope was not relevant for design purposes; so, the only 

function of the stable slope was to define an interaction surface with the unstable mass. 

Therefore, the stable slope was represented as a contour surface (only surface stresses 

have been taken into account) that interacted with the unstable mass with particular 

friction properties. Some software does not provide the option of boundary surfaces; 

hence, a Lagrangian discretisation of a thin component representing the stable slope 

contour would be a suitable alternative.  

 

2.3.4 .- Unstable mass: soil slopes 

 

In this article, SPH was proposed as a suitable method considering its adaptability to 

model high deformation and high distortion problems, its ability to model interactions 
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with other numerical methods, the possibility to model any type of material behaviours, 

the affordable computing time and its availability in commercial software. In addition, 

the works performed in Bui et al. (2008a) and after suggest the suitability of SPH as an 

alternative tool in the slope stability field.  

 

In relation to the shear strength in the sliding surface it is recommended to use drained 

residual strength since failure has already been achieved, large shear strains have also 

appeared, but pore water pressures from stable ground cannot be transmitted anymore to 

the slip plane. This can be taken into account in Autodyn by introducing a friction 

coefficient between the unstable mass and ground that should be 𝑡𝑡𝑛𝑛𝑛𝑛 (∅𝑟𝑟𝑟𝑟𝑠𝑠). It is 

important to remark, as well, that Autodyn does not include the possibility of 

considering cohesion. 

 

2.3.5 .- Pore pressures 

 

Current software specialised in geotechnical problems can deal with pore pressures and, 

therefore, take into account both total and effective stresses. As mentioned in section 

2.3.4, one of the possible numerical approaches to deal with large deformations and 

distortions is SPH. Unfortunately, commercial software including the SPH capability 

(e.g. Autodyn), is not focused on geotechnical problems; therefore, pore water pressures 

cannot be taken into account.  

 

3 .- Regression model for the numerical simulation results 
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3.1 .- Model for the pressure normal to the ground, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 

 

In this section a regression model for the normal pressure applied to ground using the 

results of numerical simulations based on DOE is presented. The idea is to find out a 

formula that shows some physical relation between numerical results and some logical 

input variables.  

 

Regarding limitations in Autodyn, cohesion and pore water pressures have not been 

taken into account in the numerical simulation, but only friction angle. For the 

numerical simulation, the pressure q was calculated considering maximum tensile stress 

and maximum deformation normal to the ground of membrane. Different input 

variables were considered in order to determine their influence on the pressure 𝑞𝑞. The 

pressure 𝑞𝑞 (Eq. 1) was calculated considering that membrane deforms as a parabole 

(Fig. 4) comprised between two rows of bolts. A 2D balance of equations considering 1 

m of slope width was carried out. Membrane thickness was represented through the 

parameter e. 

�𝐹𝐹𝑦𝑦 = 0  →  2 ∙ 𝑇𝑇 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝜃𝜃 − 𝑞𝑞 ∙ l = 0 → 𝑞𝑞 =
2 ∙ 𝑇𝑇 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝜃𝜃

𝑛𝑛
 

𝑦𝑦 = 𝑘𝑘 ∙ 𝑀𝑀2;   𝑀𝑀 =
𝑛𝑛
2
→ 𝑓𝑓 =

𝑘𝑘 ∙ 𝑛𝑛2

4
→ 𝑘𝑘 =

4 ∙ f
 𝑛𝑛2

 

 

 

𝑦𝑦′ = 2 ∙ 𝑘𝑘 ∙ 𝑀𝑀;    𝑀𝑀 = 𝑠𝑠
2
→  𝑡𝑡𝑛𝑛𝑛𝑛𝜃𝜃 = 𝑘𝑘 ∙ 𝑛𝑛   →  𝑡𝑡𝑛𝑛𝑛𝑛𝜃𝜃 = 4∙f

𝑠𝑠
 

 

𝑞𝑞 =
2 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 ∙ 𝑃𝑃 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛 �atan �4∙f𝑛𝑛  �� 

l
 

(Eq. 1) 
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As shown in Fig. 4, 𝑞𝑞 is the pressure normal to the slope surface per unit of slope width, 

𝑓𝑓 is the mid point deflection of the parabole and 𝑛𝑛 is the span of the parabole.  

 

Fig. 4. Tension versus earth pressure in the membrane.  
 

Design of Experiment (DOE) technique was used in order to obtain different ground 

pressures applied to the membrane in relation to variations of the input variables. The 

input variables and maximum and minimum values selected for the DOE were shown in 

Table 1. 

 

Table 1.- DOE: input variables. 
Symbol Variable Minimum Maximum 
∅ Friction angle (º) 10 30 
𝜌𝜌 Soil density (T/m3) 1.6 2.2 
𝑔𝑔 Depth of unstable fringe of soil (m) 1 2 
𝛽𝛽 Slope angle (º) 30 60 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Elastic modulus of soil (kPa) 5∙103 5∙106 
𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 Elastic modulus of membrane (kPa) 200 600 
𝑛𝑛 Bolt spacing (m) 2 4 

 

Once the array of scenarios was selected (Table 2), numerical simulations were run in 

the computer. Two main results were obtained from the numerical simulation: the 

maximum deformation of membrane (𝑦𝑦𝑠𝑠𝑚𝑚𝑚𝑚) and also the maximum tensile stress on it 

(𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚). These two values were necessary to calculate the ground pressure 𝑞𝑞 shown in 

the last column of  Table 2, using (Eq. 1. Poisson’s ratios have been set to 0.3 for the 

membrane and 0.22 for the soil. Friction angle between membrane and unstable soil was 
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set to 25º (Sasiharan et al. 2006). A slope of 30 m length was considered for all 

simulations.  

 

Fig. 5 shows the process of soil sliding and membrane deformation for run 9. In this 

case, maximum tensile stress on geomembrane was achieved at 1.4 s. In the image it can 

be seen that a kind of ‘bag’ of soil is accumulated between the membrane and the stable 

slope.  

 
Table 2.- DOE runs and results. 

RUN ∅ 
(º) 

ρ 
(T/m3) 

d 
(m) 

β 
(º) 

Esoil 
(kPa) 

Emem 
(kPa) 

l 
(m) 

τmax  
(kPa) 

f𝑠𝑠𝑠𝑠𝑠𝑠 
(m) 

q𝑠𝑠𝑠𝑠𝑠𝑠  
(kPa) 

1 10 1.6 1 30 5∙103 200 2 9.778∙103 0.227 40.48 

2 30 1.6 1 30 5∙106 200 4 1.855∙102 0.036 0.03 

3 10 2.2 1 30 5∙106 600 2 7.819∙103 0.191 27.84 

4 30 2.2 1 30 5∙103 600 4 5.360∙102 0.027 0.07 

5 10 1.6 2 30 5∙106 600 4 2.498∙104 0.388 45.12 

6 30 1.6 2 30 5∙103 600 2 1.395∙102 0.002 0.00 

7 10 2.2 2 30 5∙103 200 4 2.447∙104 0.678 68.63 

8 30 2.2 2 30 5∙106 200 2 1.003∙102 0.002 0.00 

9 10 1.6 1 60 5∙103 600 4 4.458∙104 0.603 115.04 

10 30 1.6 1 60 5∙106 600 2 4.992∙103 0.068 6.74 

11 10 2.2 1 60 5∙106 200 4 1.848∙104 0.520 42.64 

12 30 2.2 1 60 5∙103 200 2 1.251∙104 0.247 55.46 

13 10 1.6 2 60 5∙106 200 2 1.708∙104 0.262 79.28 

14 30 1.6 2 60 5∙103 200 4 2.048∙104 0.641 55.25 

15 10 2.2 2 60 5∙103 600 2 5.089∙104 0.300 262.09 

16 30 2.2 2 60 5∙106 600 4 1.425∙104 0.287 19.66 

17 20 1.9 1.5 45 2502500 400 3 1.572∙104 0.287 37.39 
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Fig. 5. Numerical simulation evolution of run 9  
 

Table 3.- Regression models for 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 (in bold, selected model) 

Model Description R2adj R2pred 

1 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +  𝑛𝑛2∙𝜌𝜌 + 𝑛𝑛3 ∙ 𝑔𝑔 +  𝑛𝑛4 ∙ 𝛽𝛽  +  𝑛𝑛5 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛6 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠  +  𝑛𝑛7 ∙ 𝑛𝑛 
𝑟𝑟𝑚𝑚0 = 0.721    𝑟𝑟∅ = 0.012    𝑟𝑟𝜌𝜌 = 0.459    𝑟𝑟𝜌𝜌 = 0.198    𝑟𝑟𝛽𝛽 = 0.028    𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.059    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.458    𝑟𝑟𝑠𝑠 = 0.489    52.89 -3.72 

2 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +  𝑛𝑛2 ∙ 𝜌𝜌  +  𝑛𝑛3 ∙ 𝑔𝑔 +  𝑛𝑛4 ∙ 𝛽𝛽 
𝑟𝑟𝑚𝑚0 = 0.508     𝑟𝑟∅ = 0.015     𝑟𝑟𝜌𝜌 = 0.499     𝑟𝑟𝑎𝑎 = 0.234     𝑟𝑟𝛽𝛽 = 0.037      41.90 9.04 

3 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +  𝑛𝑛2 ∙ 𝜌𝜌  +  𝑛𝑛3 ∙ 𝑔𝑔 +  𝑛𝑛4 ∙ 𝛽𝛽  +  𝑛𝑛5 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 
𝑟𝑟𝑚𝑚0 = 0.433     𝑟𝑟∅ = 0.019     𝑟𝑟𝜌𝜌 = 0.510     𝑟𝑟𝑎𝑎 = 0.246     𝑟𝑟𝛽𝛽 = 0.042     𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.509    32.90 -5.40 

4 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +  𝑛𝑛2 ∙ 𝛽𝛽 
𝑟𝑟𝑚𝑚0 = 0.474      𝑟𝑟∅ = 0.014      𝑟𝑟𝛽𝛽 = 0.034 41.67 23.48 

5 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ 𝑀𝑀1  +  𝑛𝑛2 ∙ 𝑀𝑀2 

𝑀𝑀1 =
𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽
𝑡𝑡𝑛𝑛𝑛𝑛∅     𝑀𝑀2 = 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽    𝑟𝑟𝑚𝑚0 = 0.662      𝑟𝑟𝑋𝑋1 = 0.008      𝑟𝑟𝑋𝑋2 = 0.412 45.46 22.37 

6 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ 𝑀𝑀1  +  𝑛𝑛2 ∙ 𝑀𝑀2 

𝑀𝑀1 =
𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽
𝑡𝑡𝑛𝑛𝑛𝑛∅     𝑀𝑀2 = 𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽     𝑟𝑟𝑚𝑚0 = 0.806     𝑟𝑟𝑚𝑚1 = 0.000     𝑟𝑟𝑚𝑚2 = 0.165 70.62 42.62 

7 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ 𝑀𝑀1  +  𝑛𝑛2 ∙ 𝑀𝑀2 

𝑀𝑀1 =
𝑔𝑔 ∙ 𝛾𝛾 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠

𝑡𝑡𝑛𝑛𝑛𝑛∅     𝑀𝑀2 = 𝑔𝑔 ∙ 𝛾𝛾 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠       𝑟𝑟𝑚𝑚0 = 0.009     𝑟𝑟𝑚𝑚1 = 0.000     𝑟𝑟𝑚𝑚2 = 0.000 89.62 81.82 

8 
𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒂𝒂𝟏𝟏 ∙ 𝒙𝒙𝟏𝟏  +  𝒂𝒂𝟐𝟐 ∙ 𝒙𝒙𝟐𝟐 

𝒙𝒙𝟏𝟏 =
𝒅𝒅 ∙ 𝜸𝜸 ∙ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ∙ 𝑬𝑬𝒔𝒔𝒎𝒎𝒔𝒔

𝒕𝒕𝒂𝒂𝒔𝒔∅     𝒙𝒙𝟐𝟐 = 𝒅𝒅 ∙ 𝜸𝜸 ∙ 𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔 ∙ 𝑬𝑬𝒔𝒔𝒎𝒎𝒔𝒔       𝒑𝒑𝒙𝒙𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎     𝒑𝒑𝒙𝒙𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 89.79 89.63 

9 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ 𝑀𝑀1  +  𝑛𝑛2 ∙ 𝑀𝑀2 

𝑀𝑀1 =
𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡𝑛𝑛𝑛𝑛∅     𝑀𝑀2 = 𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      𝑟𝑟𝑚𝑚0 = 0.008      𝑟𝑟𝑚𝑚1 = 0.470     𝑟𝑟𝑚𝑚2 = 0.272 -1.79 -12.92 
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10 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ 𝑀𝑀1  +  𝑛𝑛2 ∙ 𝑀𝑀2 

𝑀𝑀1 =
𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠

𝑡𝑡𝑛𝑛𝑛𝑛∅ ∙ 𝑛𝑛     𝑀𝑀2 =
𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠

𝑛𝑛     𝑟𝑟𝑚𝑚0 = 0.003       𝑟𝑟𝑚𝑚1 = 0.000     𝑟𝑟𝑚𝑚2 = 0.001 87.06 78.38 

 

Table 3 shows the different regression models of the maximum pressure normal to the 

ground, 𝑞𝑞, that were generated in order to see their goodness of fitness for the 17 runs 

carried out. Maximum pressure (𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠) was adopted as the response of the model. For 

every model the polynomial expression and also the ′𝑟𝑟′ value of each component 

(probability to reject that factor from the model though it is significant) are represented. 

A ′𝑟𝑟′ value equal or lower to 0.05 means that the term is representative in the model, 

with only a probability of 5% or less not to have any influence in the response. Also, for 

each model the determination coefficient adjusted (𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎2 ) and the determination 

coefficient predictive (𝑅𝑅𝑝𝑝𝑟𝑟𝑟𝑟𝑎𝑎2 ) are also shown. Model 8 shows the highest values of 𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎2  

(89.79%) and 𝑅𝑅𝑝𝑝𝑟𝑟𝑟𝑟𝑎𝑎2  (89.63%) from all models. In addition, all its input variables are 

representative in the model. It is important to remark that the expression is similar to the 

one for the infinite slope (Eq. 4) in a LE analysis, but with different coefficients and 

also adding as a multiplier factor in both terms 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠.  

 

The final expression, considering the coefficients obtained from the regression model is:  

 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = 0.023497 ∙  𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛(𝛽𝛽)/𝑡𝑡𝑛𝑛𝑛𝑛(∅) ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠  − 0.0321241 ∙ 𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃(𝛽𝛽) ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠           

𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒅𝒅 ∙ 𝝆𝝆 ∙ 𝑬𝑬𝒔𝒔𝒎𝒎𝒔𝒔 ∙ [𝟎𝟎.𝟎𝟎𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 ∙  𝒔𝒔𝒔𝒔𝒔𝒔(𝒔𝒔)/𝒕𝒕𝒂𝒂𝒔𝒔(∅) −𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟏𝟏𝟐𝟐 ∙ 𝒄𝒄𝒄𝒄𝒔𝒔(𝒔𝒔)]       (Eq. 2) 

 

The units use for the regression model are metres for 𝑔𝑔, T/m3 for 𝜌𝜌 and kPa for 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠. 

The results for 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 will be expressed in kPa according to the coefficients used. 
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Table 4 shows the fulfilment of the 6 conditions for linear regression models. All 

hypothesis tests and regression models have been stabilised with 5% of significance 

level. It is also relevant to outstand that the last test (Independence of predictive 

variables among them) shows a value higher but very close to 0.05. This result might 

suggest that predictive variables might be correlated. This could be justified regarding 

the specific values selected for the DOE; nevertheless, x1 and x2 cannot be correlated 

since in one term there exists 𝑡𝑡𝑛𝑛𝑛𝑛 (∅) while in the other it does not.  

 

Table 4.- Regression model 𝑛𝑛𝑓𝑓 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑃𝑃. 𝑀𝑀1, 𝑀𝑀2: conditions fulfilment 

Hypothesis Type of test Criteria Value Fulfil? 

Normality of error distribution  Normality test 
(Anderson-Darling) p > 0.05 p = 0.850 Yes  

Null average of errors Statistical hypothesis test 
H0: μerrors =0 p > 0.05 p = 0.174 Yes 

Independence of errors in 
relation to response 

Regression model between 
errors and response p > 0.05 p = 0.226 Yes 

Independence of errors in 
relation to predictive variables 
(homoscedasticity) 

Regression model between 
errors and predictive variables p > 0.05 p = 1.000 Yes 

Independence of errors among 
them 

Durbin-Watson 
(dUα=1.54) 

d >  𝑔𝑔Uα  
4-d > dUα d = 1.758 Yes 

Independence of predictive 
variables among them 

Regression model between 
predictive variables p > 0.05 p = 0.057 Yes 

 

The model obtained reveals that variables like 𝑛𝑛 (separation between rows of bolts) and 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (elastic modulus of soil) do not have a significant influence in the response.  

 

A possible explanation for the lack of influence of 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠, could be the fact that 

the deformation of the unstable mass as a whole is more influenced by internal failures 

that provokes separation of particles and thus large displacements and distortions of the 

whole unstable mass, rather than 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 itself. 
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Regarding the apparent lack of influence of 𝑛𝑛 in relation to 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠, it is an unexpected 

outcome, since from a physical point of view, there should exist some influence. A 

possible explanation to this finding could be the small number of runs; this may 

sometimes cause that certain correlations could not be detected. Therefore, in order to 

have a more clearer conclusion about the influence or not of 𝑛𝑛, further simulations 

should be carried out.  

 

3.2 .- Model for the membrane deformation, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 

 

In this section a regression model for the maximum deformation on membrane, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠, is 

proposed. The values considered to perform the regression models were those referred 

as 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 in Table 2. Eleven different regression models (Table 5) have been generated 

based on potential input variables. A total of nine input variables have been selected for 

the first model, which includes the same seven variables (∅,𝜌𝜌,𝑔𝑔,𝛽𝛽,𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 ) that 

were selected for the∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 model, but adding two more: 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 itself and also∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚. 

Although these two last variables are obviously correlated among them and also with 

the previous seven variables, it was decided to include them in the model in order to 

find out the simplest and more representative regression model. The analysis of the p-

value of the terms of each regression model will finally determine which input variables 

are the most influential. The model with the highest R2adj and R2pred is Model 10.  

 
Table 5.- Regression models for 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 (in bold, selected model) 

Model Description R2adj R2pred 

1 
f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +  𝑛𝑛2∙𝜌𝜌 + 𝑛𝑛3 ∙ 𝑔𝑔 +  𝑛𝑛4 ∙ 𝛽𝛽  +  𝑛𝑛5 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛6 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠  +  𝑛𝑛7 ∙ 𝑛𝑛 +𝑛𝑛8 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛9 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 

𝑟𝑟𝑚𝑚0 = 0.867    𝑟𝑟∅ = 0.099    𝑟𝑟𝜌𝜌 = 0.383    𝑟𝑟𝑎𝑎 = 0.208    𝑟𝑟𝛽𝛽 = 0.125    𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.071 
𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.051         𝑟𝑟𝑠𝑠 = 0.257    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.034    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.068 

82.33 55.23 

2 
f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +   𝑛𝑛2 ∙ 𝑔𝑔 +  𝑛𝑛3 ∙ 𝛽𝛽  +  𝑛𝑛4 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛5 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠  +  𝑛𝑛6 ∙ 𝑛𝑛 +𝑛𝑛7 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛8 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 

𝑟𝑟𝑚𝑚0 = 0.576    𝑟𝑟∅ = 0.088     𝑟𝑟𝑎𝑎 = 0.205    𝑟𝑟𝛽𝛽 = 0.115    𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.070    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.049 
𝑟𝑟𝑠𝑠 = 0.177    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.038    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.079 

82.62 57.07 

3 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +   𝑛𝑛2 ∙ 𝛽𝛽  +  𝑛𝑛3 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛4 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠  +  𝑛𝑛5 ∙ 𝑛𝑛  +  𝑛𝑛6 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛7 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.199    𝑟𝑟∅ = 0.187     𝑟𝑟𝛽𝛽 = 0.237    𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.132    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.029   𝑟𝑟𝑠𝑠 = 0.268    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.038    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.034 80.88 57.39 

4 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +   𝑛𝑛2 ∙ 𝛽𝛽  +  𝑛𝑛3 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛4 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 +𝑛𝑛5 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛6 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.025    𝑟𝑟∅ = 0.332     𝑟𝑟𝛽𝛽 = 0.389    𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.167    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.014    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.001    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.001 80.13 47.04 
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5 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0 + 𝑛𝑛1 ∙ ∅ +   𝑛𝑛2 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛3 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 +𝑛𝑛4 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛5 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.014    𝑟𝑟∅ = 0.542      𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.239    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.007    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.001    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.001 80.64 64.29 

6 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0  +   𝑛𝑛1 ∙ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛2 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 +𝑛𝑛3 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛4 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.001      𝑟𝑟𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.275    𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.004    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.001    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.000 81.45 70.93 

7 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0  +   𝑛𝑛1 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 +𝑛𝑛2 ∙ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  +  𝑛𝑛3 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.001     𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.003    𝑟𝑟∙𝑞𝑞𝑠𝑠𝑠𝑠𝑚𝑚 = 0.001    𝑟𝑟∙𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.000 81.01 72.06 

8 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0  +   𝑛𝑛1 ∙ 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 +𝑛𝑛2 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚 
𝑟𝑟𝑚𝑚0 = 0.011     𝑟𝑟𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 0.055    𝑟𝑟𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.001 55.27 24.10 

9 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛0  +   𝑛𝑛1 ∙ 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚/𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 
𝑟𝑟𝑚𝑚0 = 0.000     𝑟𝑟𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚/𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

= 0.000 76.33 72.52 

10 
𝐟𝐟𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒂𝒂𝟏𝟏 ∙ 𝝉𝝉𝒔𝒔𝒂𝒂𝒙𝒙/𝑬𝑬𝒔𝒔𝒎𝒎𝒔𝒔 

𝒂𝒂𝟏𝟏 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎     𝒑𝒑𝝉𝝉𝒔𝒔𝒂𝒂𝒙𝒙/𝑬𝑬𝒔𝒔𝒎𝒎𝒔𝒔
= 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 90.22 89.27 

11 f𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛1 ∙ �q/𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 
𝑟𝑟𝑞𝑞/𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

= 0.000 80.68 76.98 

 
 

The final expression, considering the coefficient obtained from the regression model is:  

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = 0.005485 ∙  𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚/𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠       (Eq. 3) 

 

The units used for the regression model are kPa for both 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚, and 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠. The results 

for 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 will be expressed in m according to the coefficient used. Table 6 shows the 

fulfilment of the 5 conditions for regression models that only depend on one variable, in 

this case  x = 𝜏𝜏𝑠𝑠𝑚𝑚𝑚𝑚/𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠. (Eq. 3) shows a logical and predictable relationship that 

shows that membrane deformation grows when tensile stress on membrane increases 

(which comes from high impact forces) and when the elastic modulus of membrane 

decreases.  

 

Table 6.- Regression model 𝑛𝑛𝑓𝑓 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑃𝑃.  𝑀𝑀, where x = 𝜏𝜏𝑛𝑛𝑛𝑛𝑀𝑀/𝐸𝐸𝑛𝑛𝑃𝑃𝑛𝑛. Conditions fulfilment. 

Hypothesis Type of test Criteria Value Fulfil? 

Normality of error distribution  Normality test 
(Anderson-Darling) p > 0.05 p = 0.177 Yes  

Null average of errors Statistical hypothesis test 
H0: μerrors =0 p > 0.05 p = 0.423 Yes 

Independence of errors in 
relation to response 

Regression model between 
errors and response p > 0.05 p = 0.221 Yes 

Independence of errors in 
relation to predictive variables 
(homoscedasticity) 

Regression model between 
errors and predictive variables p > 0.05 p = 1.000 Yes 

Independence of errors among 
them 

Durbin-Watson 
(dUα=1.54) 

d >  𝑔𝑔Uα  
4-d > dUα d = 2.094 Yes 
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4 .- Comparison between LE and SPH simulations 

 

The aim of this section is to compare numerical simulations using SPH versus a 

traditional design method such as LE analysis. An infinite slope was considered for 

comparison, since various manufacturers adopt this method for design purposes. The 

variable adopted to compare both methods was the normal pressure applied to the 

ground that stabilises the unstable mass. Since cohesion and pore water pressures cannot 

been introduced in Autodyn, they were not considered either in the LE analysis or SPH 

numerical models. According to the tables provided by Da Costa & Sagaseta (2010), the 

error between considering an infinite slope and a limited height slope for the earth 

pressure, could be accounted for approximately 70% when the ratio 𝐻𝐻/𝑔𝑔 (slope 

height/depth of unstable fringe) is around 7.5. This 𝐻𝐻/𝑔𝑔 ratio of 7.5 represents the 

situation when 𝛽𝛽 = 30º, 𝑔𝑔 = 2𝑛𝑛, which will provide the lowest value of 𝐻𝐻/𝑔𝑔. The 

higher the value of 𝐻𝐻/𝑔𝑔, the smaller the difference between infinite slope model and a 

limited height model. Infinite slope will provide higher values of earth pressure than 

those calculated with limited height slopes. 

 

In the LE method, pressure 𝑞𝑞 was calculated (Fig. 6) from the force balance equations 

considering Coulomb failure criterion in the slip surface:  

 

�𝐹𝐹𝑦𝑦 = 0  →  𝜎𝜎 ∙ 𝑛𝑛 − 𝑞𝑞 ∙ 𝑛𝑛 − 𝑛𝑛 ∙ 𝑔𝑔 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽 = 0   

𝑛𝑛 =  𝑔𝑔 ∙ 𝑛𝑛 ∙ 𝜌𝜌  

�𝐹𝐹𝑚𝑚 = 0  →  𝜏𝜏 ∙ 𝑛𝑛 − 𝑛𝑛 ∙ 𝑔𝑔 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽 = 0  
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𝜏𝜏 =  𝜎𝜎 ∙ 𝑡𝑡𝑛𝑛𝑛𝑛Ø  

(𝑞𝑞 ∙ 𝑛𝑛 + 𝑛𝑛 ∙ 𝑔𝑔 ∙ 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽) ∙ 𝑡𝑡𝑛𝑛𝑛𝑛Ø =  𝑛𝑛 ∙ 𝑔𝑔 ∙ 𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽  

𝑞𝑞 =  𝑔𝑔 ∙ 𝜌𝜌 ∙ 𝑔𝑔 ∙ �
𝑃𝑃𝑠𝑠𝑛𝑛𝛽𝛽
𝑡𝑡𝑛𝑛𝑛𝑛Ø

− 𝑐𝑐𝑛𝑛𝑃𝑃𝛽𝛽� (Eq. 4) 

 

Where 𝑞𝑞 is the pressure normal to the slope surface that guarantees the equilibrium of 

the potential unstable fringe, 𝑔𝑔 is the depth of the unstable fringe (see Fig. 6), 𝜌𝜌 is the 

soil density, Ø is the friction angle in the slip surface and 𝛽𝛽 is the slope angle with 

respect to the horizontal. The pressure 𝑞𝑞 is expressed per unit width of slope. 

 

 

Fig. 6.  LE method. Infinite slope. Force scheme.  
 

 

In Table 7 the comparison between numerical simulation and infinite slope mode is 

shown. The term 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 represents the normal pressure exerted by membrane to the 

ground considering the numerical simulation results and (Eq. 1) . The term 𝑞𝑞𝑠𝑠𝑖𝑖𝑖𝑖 

represents the value of normal pressure that stabilises a potential earth fringe parallel to 

the slope surface, using the LE equation considering an infinite slope (Eq. 4).  
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Table 7.- Comparison between numerical simulations and infinite slope model 

RUN ∅ 
(º) 

𝜌𝜌 
(T/m3) 

𝑔𝑔 
(m) 

𝛽𝛽 
(º) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(kPa) 

𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠 
(kPa) 

𝑛𝑛 
(m) 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠  
(kPa) 

𝑞𝑞𝑠𝑠𝑖𝑖𝑖𝑖  
(kPa) 

1 10 1.6 1 30 5∙103 200 2 40.48 30.92 

2 30 1.6 1 30 5∙106 200 4 0.03 0.00 

3 10 2.2 1 30 5∙106 600 2 27.84 42.51 

4 30 2.2 1 30 5∙103 600 4 0.07 0.00 

5 10 1.6 2 30 5∙106 600 4 45.12 61.83 

6 30 1.6 2 30 5∙103 600 2 0.00 0.00 

7 10 2.2 2 30 5∙103 200 4 68.63 85.02 

8 30 2.2 2 30 5∙106 200 2 0.00 0.00 

9 10 1.6 1 60 5∙103 600 4 115.04 69.24 

10 30 1.6 1 60 5∙106 600 2 6.74 15.70 

11 10 2.2 1 60 5∙106 200 4 42.64 95.21 

12 30 2.2 1 60 5∙103 200 2 55.46 21.58 

13 10 1.6 2 60 5∙106 200 2 79.28 138.49 

14 30 1.6 2 60 5∙103 200 4 55.25 31.39 

15 10 2.2 2 60 5∙103 600 2 262.09 190.42 

16 30 2.2 2 60 5∙106 600 4 19.66 43.16 

17 20 1.9 1.5 45 2502500 400 3 37.39 34.55 

 

Fig. 7 compares SPH regression models derived from numerical simulations versus the 

LE model. In the vertical axis the normal pressure applied to the ground (𝑞𝑞) divided by 

soil density (𝜌𝜌) and unstable fringe depth (𝑔𝑔) is represented. In the horizontal axis the 

slope angle with respect to horizontal (𝛽𝛽) and also the friction angle (∅) are represented. 

In relation to the regression models based on the numerical simulations, two surfaces 

have been depicted: 𝑔𝑔200 and 𝑔𝑔600. Each one represents an elastic membrane with a 

Young Modulus of 200 kPa and 600 kPa respectively substituting these two values on 

(Eq. 2). LE model for an infinite slope is represented through 𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖 surface (Eq. 4). In 

addition, individual points resulting from the simulation have been also depicted.  

 

As we can see in Fig. 7, numerical simulations are dependent on membrane stiffness; 

the higher the Young Modulus of the membrane, the higher the normal force it is able to 
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exert to the ground. A possible explanation to this behaviour is that the higher the 

membrane stiffness, the higher the deceleration in the unstable mass during the impact 

against the membrane. This higher deceleration implies a higher impact force. The 

dynamic influence of the impact force can also be found in the evolution of the tensile 

stress on membrane vs. time, as depicted in Fig. 3. Obviously, in LE model, membrane 

stiffness and dynamic effects on impact forces cannot be considered. Differences 

between LE and SPH become greater when ∅ is low and 𝛽𝛽 is high, showing a logical 

correlation between the physical phenomena and the numerical simulation results. 

Finally, the LE model provides higher values (for most of the 𝛽𝛽 and ∅ range) than the 

SPH simulations when the membrane stiffness is below, approximately, 450 kPa. For 

stiffer membranes, LE simulations provides lower values. 
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Fig. 7.  Comparison of numerical simulation models (𝒈𝒈𝟐𝟐𝟎𝟎𝟎𝟎, 𝒈𝒈𝟔𝟔𝟎𝟎𝟎𝟎) and LE model (𝒈𝒈𝒔𝒔𝒔𝒔𝒊𝒊). 
Single points from simulations also depicted. 

 

5 .- Conclusions 

A simulation method for obtaining the maximum tensile stress on a membrane anchored 

to the ground for soil slope stabilisation has been suggested. To the best knowledge of 

the authors, this method has been used for the first time for the simulation of flexible 

membranes anchored to soil slopes. The unstable mass has been discretised though 

SPH. 17 different numerical simulations have been carried out based on a DOE. An 

unstable fringe of ground parallel to the slope surface has been assumed. Slope length 

was limited to 30 m.  

 

A regression model that modelises the pressure normal to the ground 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 formed by 17 

runs results has been generated. This model depends linearly on two variables, which 

have been generated through a combination of the following physical values: unstable 

mass depth, ground density, friction angle, slope angle and elastic modulus of 

membrane. Elastic modulus of ground and bolt separation did not show a significant 

influence in the regression model. The apparent lack of influence of bolt separation 

could be due to an insufficient number of runs in the DOE. On the other hand, it is 

considered that the internal failures inside the unstable mass have more influence in 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 rather than the elastic modulus of the soil itself. 

 

Besides, a regression model that correlates maximum deformation on membrane, 

(deformation normal to the ground on the mid point of a membrane panel) in relation to 

its maximum tensile stress and elastic modulus has also been included, demonstrating a 

physical logical relationship.  
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In addition, comparison between numerical simulation results and LE analysis 

considering an infinite slope has been also discussed. The results obtained with the LE 

differs from those obtained with SPH simulations and differences get larger for low ∅  

and high 𝛽𝛽. For high stiff membranes, LE method would underestimate the maximum 

pressure, while for low stiff membranes the LE method would overestimate this 

maximum pressure.  

 

To conclude, one of the main drawbacks of using the LE method, in spite of its 

simplicity, is that it does not consider the membrane stiffness, while numerical 

simulations performed in this paper showed that this variable has a significant influence 

on the normal pressure applied to the slope surface.  
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