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NONMAXIMAL IDEALS AND THE BERKOVICH SPACE

OF THE ALGEBRA OF BOUNDED ANALYTIC

FUNCTIONS

JESÚS ARAUJO

Abstract. We prove that the Berkovich space (or multiplicative spec-
trum) of the algebra of bounded analytic functions on the open unit disk
of an algebraically closed nonarchimedean field contains multiplicative
seminorms that are not norms and whose kernel is not a maximal ideal.
We also prove that in general these seminorms are not univocally de-
termined by their kernels, and provide a method for obtaining families
of different seminorms sharing the same kernel. The relation with the
Berkovich space of the Tate algebra is also given.

1. Introduction

Throughout K is an algebraically closed field complete with respect to a
(nontrivial) nonarchimedean absolute value |·| and H∞ denotes the space of
(K-valued) bounded analytic functions on the open disk D := {z ∈ K : |z| < 1},
that is, the space of bounded power series on D. When endowed with the
Gauss norm (which coincides with the sup norm ‖·‖), the spaceH∞ becomes
a Banach algebra. We remark that, given a nonzero f(z) =

∑∞
0 anz

n ∈ H∞,
the value

‖f‖ = sup
n≥0

|an| = sup
z∈D

|f(z)|

does not necessarily belong to the value group |K×| := {|z| : z ∈ K \ {0}}.
A remarkable difference with respect to the complex case is that in a

Banach algebra over K there can be maximal ideals that are not the kernel of
any multiplicative linear functional. For this reason, the classical definition
of spectrum (or maximal ideal space) of a complex Banach algebra does not
carry over to the ultrametric setting. Nevertheless, the standard definition
of Berkovich space (or multiplicative spectrum) yields the usual spectrum
when adapted to the complex context (see Definition 1.1 and Remark 1.1).

Not much is known about the Berkovich space M of H∞. Points in M are
seminorms, and theoretically they can be divided into four types, namely:

I. Points whose kernel is a maximal ideal of codimension 1,
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II. Points whose kernel is a maximal ideal of codimension different from
1,

III. Points whose kernel is trivial, that is, equal to {0}.
IV. Points whose kernel is a nonzero nonmaximal prime ideal.

Points of type I can be identified with those in D (see [8]), as each of them
is the absolute value evaluation δz at a point z of D (that is, δz(f) = |f(z)|
for every f ∈ H∞).

Points of type II can be obtained by the use of ultrafilters and, in par-
ticular, regular sequences (a sequence (zn) in D is said to be regular if
infn∈N

∏
m �=n |zn − zm| > 0). The key point in studying regular sequences

consists of identifying each of them with a bounded sequence in K via the
map i : H∞ → �∞, f ∈ H∞ �→ (f(zn)) ∈ �∞. Given a regular sequence
(zn), every maximal ideal containing the ideal I of all functions f ∈ H∞
vanishing at every zn can be identified with an ultrafilter in N, that is, a
point in the Stone-Čech compactification βN of N (see [13, Corollary 4.7]).
Thus, given a regular sequence z = (zn) and a nonprincipal ultrafilter u in
N (that is, a point u ∈ βN \ N), the seminorm

δz,u := lim
u

δzn

is a point of type II. In this paper, we say that a sequence (zn) in D is regular
with respect to a nonprincipal ultrafilter u in N if there exists C ∈ u such
that (zn)n∈C is regular, that is,

inf
n∈C

∏
m∈C
m �=n

|zn − zm| > 0.

Points of type III are obviously given by multiplicative norms. The sim-
plest case of a multiplicative norm is of the form ζD, for any nontrivial disk
D contained in D, where

ζD(f) := sup
z∈D

|f(z)|

for all f ∈ H∞.

Our goal in this paper is to prove that the set of points of type IV is
nonempty, and to study some of its features. The fact that there exist
points of type IV disproves a conjecture raised in [8]. On the other hand, we
also prove that there exist kernels shared by infinitely many different points
of type IV. This is in sharp contrast with the situation known so far, where
each maximal kernel univocally determines a seminorm.

Note that the existence of a nonzero nonmaximal closed prime ideal does
not necessarily imply the existence of points of type IV. The question of
the existence of such an ideal in H∞, raised in [13], remained unknown for
many years, until it was finally solved (in the positive) in [6] when K is of
characteristic 0. Of course our result here gives a positive answer for any K,
and we can even grant the existence of infinite chains of closed prime ideals
(see [13, Problem after Lemma 4.10]).
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Definition 1.1. Let A be a unital commutative Banach algebra over K. A
map ϕ : A → [0,+∞) is a continuous multiplicative ring seminorm on A if
the following conditions hold:

(1) ϕ(0A) = 0 and ϕ(1A) = 1.
(2) ϕ(ab) = ϕ(a) ϕ(b) for all a, b ∈ A.
(3) ϕ(a+ b) ≤ ϕ(a) + ϕ(b) for all a, b ∈ A.
(4) ϕ(a) ≤ ‖a‖ for all a ∈ A.

Remark 1.1. We assume that ‖1A‖ = 1. It is straightforward to show (see for
instance [4, Lemma 1.7]) that every continuous multiplicative ring seminorm
is also an ultrametric algebra seminorm on A, that is, it further satisfies:

(5) ϕ(λa) = |λ|ϕ(a) for all λ ∈ K and a ∈ A.
(6) ϕ(a+ b) ≤ max {ϕ(a), ϕ(b)} for all a, b ∈ A.

The Berkovich space (or multiplicative spectrum) M (A) of A is the set
of all continuous multiplicative (in any of the equivalent senses of Defini-
tion 1.1 and Remark 1.1) seminorms endowed with the topology of simple
convergence, that is, a net (ζλ)λ∈Λ in M (A) converges to ζ0 ∈ M (A) if
(ζλ(a))λ∈Λ converges to ζ0(a) for all a ∈ A. It is well known that M (A) is
Hausdorff and compact (see for instance [1, Theorem 1.2.1] or [4, Theorem
1.11]). Indeed, the multiplicative spectrum of some algebras is a compactifi-
cation of D (see [1, 2, 4, 5, 11, 17]). Nevertheless, in our case, it is unknown
if D is dense in M = M (H∞), which is a nonarchimedean version of the
Corona problem (a related problem was solved in [13]). In fact, what is now
known is that D is dense in the subset of all seminorms whose kernel is a
maximal ideal (see [7]). In this paper, all seminorms we deal with belong to
the closure of D (see Theorem 2.4).

It is easy to check that the kernel ker ζ := {f ∈ A : ζ(f) = 0} of every
element ζ ∈ M (A) is a closed prime ideal of A. When we say that a
seminorm has maximal kernel or nonzero nonmaximal kernel, we mean that
its kernel is a maximal ideal or a nonzero nonmaximal ideal, respectively.

We see that if D is a (closed or open) disk, then ζD belongs to M. Also,
since |K×| is dense in R+, ζD+(z,r) = ζD−(z,r) for z ∈ D and r ∈ (0, 1) (where

D+(z, r) and D−(z, r) are the closed and open disks with center z and radius
r, respectively).

Recall that, given f ∈ H∞ and z0 ∈ D, f can be written by f(z) =∑
n=1 an(z − z0)

n for every z ∈ D (see for instance [15, Theorem 25.1]),
and that z0 is a zero of f of multiplicity m ≥ 1 if there is g ∈ H∞ with
g(z0) 	= 0 such that f(z) = (z− z0)

mg(z) for all z. For E ⊂ D, we denote by
Z(f,E) the number of zeros of f in E (by this we will always mean taking
into account multiplicities).

For r > 0, C(0, r) will be the set of all z with |z| = r. If D+(z, r) ⊂
C(0, |z|) and w1, . . . , wn are the zeros of f ∈ H∞ with absolute value |z|,
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then we define

ξD+(z,r)(f) :=

{
rZ(f,D

+(z,r))
∏

|z−wi|>r |z − wi| if Z(f, C(0, |z|)) 	= 0,

1 if Z(f, C(0, |z|)) = 0,

where we understand that
∏

|z−wi|>r |z − wi| = 1 if |z − wi| ≤ r for all
i = 1, . . . , n.

In this paper we mainly study the set M0 of all seminorms of the form
ϕ := limu ζD+(zn,rn), where u is any nonprincipal ultrafilter in N, (zn) is
any sequence in D with limn→∞ |zn| = 1, and (rn) is any sequence in (0, 1).
Obviously, in many cases ϕ := limu ζD+(zn,rn) = ‖·‖. This happens for
instance when the set of all n ∈ N such that |zn| ≤ rn belongs to u. But
even in this case we can also write ‖·‖ = limu ζD+(zn,|zn|2), so we can assume

that rn < |zn| for all n. It is clear that, if limu rn > 0, then there exist
r ∈ (0, 1) and a sequence k = (kn) in N (not necessarily unique) such that
0 < r = limu rn

kn < 1. We will see in Corollary 6.2 that

ϕ = ϕk,r
z,u := lim

u
ζD+(zn, kn

√
r).

This means that, when limu rn > 0, we can restrict ourselves to seminorms

of the special form ϕk,r
z,u . On the other hand, it is very easy to see that, if

limu rn = 0, then limu ζD+(zn,rn) = δz,u := limu δzn . We also prove that, in
fact, all points in M0 can be written in the form δz,u (see Theorem 2.4).

We can say more. Given ϕ ∈ M0, there exist a sequence (wn) in D with
limn→∞ |wn| = 1 and a sequence (sn) in (0, 1) such that the disksD+ (wn, sn)
are pairwise disjoint and ϕ = limu ζD+(wn,sn) (see Corollaries 6.3 and 6.4).

We also deal here with two subsets of M0: M
′
0 and M1. The set M

′
0 con-

sists of all the limits of the above form limu ζD+(zn,rn), where (zn) is regular

with respect to u and all the disks D+ (zn, rn), n ∈ C, are pairwise disjoint
for some C ∈ u. If we drop the requirement that (zn) be regular with respect
to u, then the results we obtain are quite different (see Proposition 6.7; see
also Corollary 6.4).

As for the second set, M1, it has the remarkable property that no semi-
norm in it is determined by its kernel, that is, there are many other semi-
norms having the same kernel. For the description of M1, we generalize
the notion of regular sequence as follows: Given a sequence z = (zn) in D

and a nonprincipal ultrafilter u in N, we denote by Compu(z) the set of all
sequences k = (kn) in N for which there exists Ck ∈ u such that

inf
n∈Ck

∏
m∈Ck
m �=n

|zn − zm|km > 0.

Now, for a nonprincipal ultrafilter u of N, k ∈ Compu(z) and r ∈ (0, 1), we

set ζk,rz,u := ϕk,r
z,u , that is,

ζk,rz,u := lim
u

ζD+(zn, kn
√
r),
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and (
ζk,0z,u , ζ

k,1
z,u

)
:=

{
ζk,rz,u : r ∈ (0, 1)

}
.

We put, for z and u fixed, Mz,u :=
⋃

k∈Compu(z)
(
ζk,0z,u , ζ

k,1
z,u

)
, and more in

general Mz :=
⋃

u∈βN\NMz,u. Finally, we set M1 :=
⋃

zMz.

Note that, in principle, a seminorm ϕk,r
z,u ∈ M′

0 cannot be written as

ζk,rz,u because k does not necessarily belong to Compu(z) (nevertheless, in
general it does, as can be seen in Theorem 2.10). On the other hand, M1

is indeed a subset of M′
0 (see Remark 6.2). But, of course, the fact that a

seminorm ζk,rz,u ∈ M1 belongs to M′
0 does not necessarily imply that there

exists C ∈ u such that all disks D+ (zn, kn
√
r) are pairwise disjoint for n ∈ C.

Nevertheless, we have the following remark that will be used later.

Remark 1.2. If there exists C ∈ u with M := infn∈C
∏

m∈C
m �=n

|zn − zm|km > 0

and 0 < r0 < M , then all the disks D+
(
zn, kn

√
r0
)
, n ∈ C, are pairwise

disjoint.

By 1, we denote the sequence constantly equal to 1. In general, k, l, m
are used, respectively, for sequences (kn), (ln) and (mn) in N. Also z, w,
and v denote, respectively, sequences (zn), (wn) and (vn) in D.

As usual, given a topological space A and a subset B of A, clAB denotes
the closure of B in A.

The paper is organized as follows. In Section 2 we state the main results.
In Section 3, we give some technical results that are used through the paper.
In Section 4, we show that the Berkovich space of the Tate algebra T1

(without one point) can be homeomorphically embedded as an open subset
of M (Theorem 2.12). In Section 5, we study the existence of bounded
analytic functions with a prescribed number of zeros, paying attention to
their norms. In Section 6, we study how the same seminorm can be expressed
in different forms, and we prove in particular Theorem 2.4. Section 7 is
devoted to proving most of the results stated in Section 3 (and some others
concerning M1).

2. Main results

Theorem 2.1. Let ϕ ∈ M0 have nonzero kernel. Given f ∈ kerϕ with
f 	= 0 and r ∈ (0, ‖f‖), there exists ψ ∈ M′

0 with nonzero nonmaximal
kernel such that ϕ ≤ ψ and ψ(f) = r.

In particular all kernels of seminorms δz,u, with z regular with respect
to u, strictly contain nontrivial kernels. Therefore, Theorem 2.1 provides a
positive answer to the question of the existence of seminorms with nonzero
nonmaximal kernel. We easily deduce the following.

Corollary 2.2. H∞ contains infinite chains of nonzero closed prime ideals.
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Theorem 2.3. Let z be regular with respect to a nonprincipal ultrafilter
u in N. Then there exists a linearly ordered compact and connected set
Au

z ⊂ M with δz,u = minAu
z and ‖ ‖ = maxAu

z such that kerϕ is nonzero
and nonmaximal for all ϕ ∈ Au

z \ {δz,u, ‖ ‖}.
Points in M0 can in fact be written in the form δw,v := limv δwm , where

w may be not regular with respect to v.

Theorem 2.4. M0 = {δw,v : limn→∞ |wn| = 1, v ∈ βN \ N}.
Theorem 2.5. Let z be a regular sequence with respect to u ∈ βN\N. Then,
for each k ∈ Compu(z), the maps ζk,0z,u := limr→0 ζ

k,r
z,u and ζk,1z,u := limr→1 ζ

k,r
z,u

exist and belong to M0, and

clM

(
ζk,0z,u , ζ

k,1
z,u

)
=

(
ζk,0z,u , ζ

k,1
z,u

)
∪
{
ζk,0z,u , ζ

k,1
z,u

}
.

Moreover clM

(
ζk,0z,u , ζ

k,1
z,u

)
is homeomorphic to the interval [0, 1], through a

homeomorphism sending
(
ζk,0z,u , ζ

k,1
z,u

)
onto (0, 1).

The following result says that many seminorms share the same nonzero
nonmaximal kernels.

Corollary 2.6. Let z be a regular sequence with respect to u ∈ βN\N. Then,
for each k ∈ Compu(z), all seminorms in

(
ζk,0z,u , ζ

k,1
z,u

]
:=

(
ζk,0z,u , ζ

k,1
z,u

)
∪
{
ζk,1z,u

}
have the same kernel.

We can compare Corollary 2.6 with Theorem 1 in [7], where it is proven
that each maximal ideal is the kernel of a unique seminorm.

In view of Corollary 2.6, we can consider kernels of seminorms in Mz,u

given by different sequences k and l. It is very easy to deduce that they
coincide when limu ln/kn ∈ (0,+∞). In any other case, we have the following
corollary.

Corollary 2.7. Let z be a regular sequence with respect to u ∈ βN \N. Let

k, l ∈ Compu(z). If limu ln/kn = 0, then ker ζk,1z,u � ker ζl,1z,u.

Corollary 2.8. The kernel of every point in M1 is nonzero and nonmaxi-
mal.

We easily deduce that ker ζk,1z,u is always nonzero and nonmaximal, and

that ker ζk,0z,u is nonzero. Moreover, if limu kn < +∞, then ζk,0z,u = δz,u, so its
kernel is maximal. Now, we see that the converse also holds.

Corollary 2.9. Let z be a regular sequence with respect to u ∈ βN\N. Then,
for each k ∈ Compu(z), ker ζ

k,0
z,u is nonmaximal if and only if limu kn = +∞.

Next, if ϕk,r
z,u , ϕ

l,s
z,u ∈ M′

0 do not belong to M1, then ϕk,r
z,u = ϕl,s

z,u. That is,
all points in M′

0 (with nonmaximal kernel) belong to M1 but at most one:
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Theorem 2.10. Given ϕ = ϕk,r
z,u ∈ M′

0, either ϕ ∈ Mz,u or

ϕ = sup
m∈Compu(z)

ζm,1
z,u .

Corollary 2.11. Let ϕ = ϕk,r
z,u ∈ M′

0, where (|zn|) is strictly increasing.
Then either ϕ ∈ M1 or ϕ = ‖ ‖.

We finish our list of main results with a theorem linking the Berkovich
space of the Tate algebra T1 with M. Recall that T1 is the Banach algebra
of analytic functions on the closed unit disk D+ (0, 1), that is, the space of
all power series with coefficients in K converging on D+ (0, 1). It coincides
with the subspace of H∞ consisting of all power series

∑∞
n=0 anz

n with
limn→∞ |an| = 0, and contains the polynomial algebraK[z] as a dense subset.

The Berkovich space M (T1) is well known (see for instance [1, 1.4.4]).
Each ϕ ∈ M (T1) can be written in terms of (a limit of) seminorms ζD+(a,r),
in such a way that there is a natural extension of each ϕ to a i (ϕ) ∈ M
defined in the same terms. We put M ∗ := M (T1) \ {‖ ‖}.
Theorem 2.12. The canonical map

i : M ∗ → i (M ∗) ⊂ M

is a homeomorphism. Moreover i (M ∗) is open in M, and M (T1) is home-
omorphic to a quotient of M.

3. Some technical results

We begin this section by giving some well known results concerning the
zeros of analytic functions. Suppose that f(z) = 1+

∑∞
n=1 anz

n ∈ H∞. For
each r ∈ [0, 1), let Mr(f) := maxn≥0 |an| rn. We say that r ∈ (0, 1) is a
critical radius for f if there are at least two distinct indices m, k such that

Mr(f) = |am| rm = |ak| rk.
It turns out that r is a critical radius for f if and only if C(0, r) contains a
zero of f . Indeed, the number of zeros (taking into account multiplicities)
located in C(0, r) coincides with the number

Z(f, C(0, r)) = νr(f)− μr(f)

where νr(f) and μr(f) are defined, respectively, as the greatest and the
smallest n such that |an| rn = Mr(f) (see for instance [14, Section 2.2,
Theorem 1] for a proof when K is an algebraically closed extension of Qp

but valid also for our K). It is clear from the definition that, if r < s, then
νr(f) ≤ μs(f). In fact, the critical radii form an increasing (finite or infinite)
sequence (Rn) satisfying μRn(f) = νRn−1(f) for all n ≥ 2 that, when infinite,
has 1 as its only accumulation point.

Hence, if r ∈ (0, 1) is not a critical radius, then there exists only one
nr ∈ N with |anr | rnr = Mr(f) and |f(z)| = |anr | rnr for all z with |z| = r.
It turns out that nr = νRi(f), where Ri is the greatest critical radius strictly
less than r, if there is any, and nr = μR1(f) = 0 otherwise.
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On the other hand, writing νn = νRn(f) for short, we see that |f(0)| =
1 = |aν1 |R1

ν1 and |aν1 | = 1/R1
ν1 . Also, |aν1 |R2

ν1 = |aν2 |R2
ν2 , giving

|aν2 | = 1/
(
R1

ν1R2
ν2−ν1

)
= 1/

∏2
i=1Ri

Z(f,C(0,Ri)). For all n, this process

leads to |aνn | = 1/
∏n

i=1Ri
Z(f,C(0,Ri)). We finally remark that

‖f‖ = sup
n

|aνn | =
1∏∞

i=1Ri
Z(f,C(0,Ri))

.

We continue with the results of this section. The proof of the following
lemma is easy.

Lemma 3.1. Suppose that f ∈ H∞ has exactly k zeros w1, . . . , wk of abso-

lute value R ∈ (0, 1). Then f(z) = g(z)
∏k

i=1(z−wi), where g ∈ H∞ has no
zeros of absolute value R. Also, ‖f‖ = ‖g‖.
Lemma 3.2. Let f ∈ H∞ be such that f(0) = 1, and suppose that its
critical radii are R1 < R2 < · · · < 1. Suppose also that for each i ∈ N, f has
exactly mi zeros wi

1, . . . , w
i
mi

in C(0, Ri). Then, given z ∈ D with |z| = Rk,

|f(z)| =
Rk

m1+···+mk−1
∏mk

j=1

∣∣∣z − wk
j

∣∣∣∏k
i=1Ri

mi
.

Similarly, if Rk < R := |z| < Rk+1, then

|f(z)| = Rm1+···+mk∏k
i=1Ri

mi
.

Proof. By Lemma 3.1, f(z) = g(z)
∏k

i=1

∏mi
j=1

(
z − wi

j

)
, where g ∈ H∞ has

mi zeros in each C(0, Ri) for every i > k, and no other zeros. This implies
that the critical radii of g are the Ri for i > k and that |g(z)| is constantly
equal to |g(0)| on D− (0, Rk+1), that is, when |z| < Rk+1,

|g(z)| = |g(0)| = 1/R1
m1 · · ·Rk

mk .

Now, the result follows easily. �

Corollary 3.3. Suppose that f ∈ H∞ has no zeros in D− (z0, r), where 0 <
r ≤ |z0|. Then |f(z)| = |f (z0)| for every z ∈ D− (z0, r), and ζD+(z0,r) (f) =
|f (z0)|.

Corollary 3.4 will be very useful.

Corollary 3.4. Let z be a sequence in D with (|zn|) increasing and converg-
ing to 1, and let (rn) be a sequence in (0, 1) with D+(zn, rn) ⊂ C(0, |zn|) for
all n. Given a nonprincipal ultrafilter u in N,

lim
u

ζD+(zn,rn)(f) = ‖f‖ lim
u

ξD+(zn,rn)(f)

for every f ∈ H∞.
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Proof. Since each ξD+(zn,rn) is multiplicative, it is enough to prove it for
f ∈ H∞ with f(0) = 1. Also, the result is obvious if f has a finite number
of zeros in D, so we assume that the sequence (wk) of its zeros satisfies that
(|wk|) is increasing and convergent to 1.

For each n ∈ N, take kn as the largest k with |wk| ≤ |zn|. If |wkn | < |zn|,
then ξD+(zn,rn)(f) = 1 and, by Lemma 3.2,

ζD+(zn,rn)(f) =
|zn|kn∏kn
i=1 |wi|

=
|zn|kn∏kn
i=1 |wi|

ξD+(zn,rn)(f).

Similarly, if |wkn | = |zn| and Mkn = card {m : |wm| = |wkn |}, then

ζD+(zn,rn)(f) =
1

|zn|Mkn

|zn|kn∏kn
i=1 |wi|

ξD+(zn,rn)(f).

Now, recall that, if (an) is a decreasing sequence in R with
∑∞

n=1 an <
+∞, then limn→∞ nan = 0. Equivalently, since (|wk|) is increasing and∏∞

k=1 |wk| > 0, limn→∞ |wkn |kn = 1, so limn→∞ |zn|kn = 1 and, conse-

quently, limn→∞ |zn|Mkn = 1. On the other hand, since ‖f‖ = 1/
∏∞

k=1 |wk|,
we easily conclude the result. �

We give a final lemma that will be used later.

Lemma 3.5. Let z ∈ D, z 	= 0, and suppose that 0 < s < r < |z|. If
f ∈ H∞, then(s

r

)Z(f,D−(z,r))
ξD+(z,r)(f) ≤ ξD+(z,s)(f) ≤ ξD+(z,r)(f).

Proof. It is clear that ξD+(z,s)(f) ≤ ξD+(z,r)(f). On the other hand, if

w1, . . . , wn are the zeros of f in D− (z, r) \D+ (z, s), and z1, . . . , zm are the
zeros of f in C(0, |z|) \D− (z, r), then

ξD+(z,s)(f) = sZ(f,D
+(z,s))

n∏
i=1

|z − wi|
m∏
j=1

|z − zj |

≥
(s
r

)Z(f,D−(z,r))
rZ(f,D

−(z,r))
m∏
j=1

|z − zj |

=
(s
r

)Z(f,D−(z,r))
ξD+(z,r)(f),

and we are done. �

4. M and M ∗

Proposition 4.1 is given in [6]. For the sake of completeness, we provide
a (different) proof.

Proposition 4.1. Suppose that ϕ ∈ M satisfies ϕ = ψ ∈ M ∗ on K[z].
Then ϕ = i (ψ).
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Proof. To see that ϕ = i (ψ), it is enough to prove the equality at any
f ∈ H∞ satisfying f(0) = 1 and having infinitely many critical radii Rj .
Since ψ 	= ‖ ‖, we can find r ∈ (0, 1) with ψ ≤ ζD+(0,r), and we may assume
that f has mj zeros in each C(0, Rj), and that r < R1 < R2 < · · · . For
each R ∈ (R1, 1), we write f = PRfR, where PR ∈ K[z] is the product
PR(z) :=

∏n
i=1 (z − zi), being the zi all the zeros of f in D+(0, R), and

fR ∈ H∞ has no zeros in D+(0, R).

Claim. The limit [ϕ] (f) := limR→1 ϕ(fR) exists, and

ϕ(f) =
i (ψ) (f)

‖f‖ [ϕ] (f).

For R ∈ (R1, 1) fixed, let N be the largest integer with RN ≤ R, so that
R1, . . . , RN are the critical radii of PR. Obviously |PR| and |f | are constant

in D+(0, r), so ψ (PR) = |PR(0)| =
∏N

j=1Rj
mj , and i (ψ) (f) = |f(0)| = 1.

Since ‖f‖ = 1/
∏∞

n=1Rn
mn , limR→1 ψ(PR) ‖f‖ = 1 = i (ψ) (f). Also ϕ(f) =

ψ(PR)ϕ(fR) for all R, so by taking limits we prove the claim. �
Also, since ‖PR‖ = 1, ‖fR‖ = ‖f‖ for all R, and consequently [ϕ] (f) ≤

‖f‖ and ϕ(f) ≤ i (ψ) (f). We easily conclude that ϕ(g) ≤ i (ψ) (g) whenever
g ∈ H∞ has constant absolute value on D+(0, r).

Suppose next that ϕ(f) < i (ψ) (f), that is, ϕ(f) < 1. Note that f(z) :=
1+

∑∞
n=1 anz

n and, since there are no critical radiiR ≤ r,M := supn∈N anr
n <

1, so the function h(z) := f(z)− 1 satisfies |h(z)| ≤ M for all z ∈ D+(0, r)
and i (ψ) (h) ≤ ζD+(0,r)(h) < 1. We can write h = Pg, where P ∈ K[z] and

g ∈ H∞ has constant absolute value in D+(0, r), which implies that ϕ(g) ≤
i (ψ) (g). Obviously, ψ(P )i (ψ) (g) = i (ψ) (h) < 1, whereas ψ(P )ϕ(g) =
ϕ(h) = 1 (because ϕ(f) < 1 and ϕ(1) = 1), implying that i (ψ) (g) < ϕ(g).
Since this is impossible, we conclude that ϕ(f) = i (ψ) (f). �
Proof of Theorem 2.12. It is obvious that i is injective and that i−1 : i (M ∗) →
M ∗ is continuous. Next, suppose that (ζλ)λ∈Λ is a net in M ∗ convergent
to ζλ0 ∈ M ∗. By the definition of convergence of a net, since ζλ0 	= ‖ ‖,
there exist r ∈ (0, 1) and λ1 ∈ Λ such that ζλ ≤ ζD+(0,r) for all λ ≥ λ1, and
ζλ0 ≤ ζD+(0,r). This implies in particular that, for g ∈ H∞, if |g| is constant
in D+(0, r), then i (ζλ0) (g) = |g(0)| = i (ζλ) (g) for all λ ≥ λ1.

Now consider f ∈ H∞. Obviously f = Pg where P is a polynomial
with all its zeros in D+(0, r) and g ∈ H∞ has no zeros in D+(0, r). Then,
taking into account that P ∈ K[z], for λ ≥ λ1 and λ = λ0, i (ζλ) (f) =
ζλ(P ) |g(0)|. Consequently (i (ζλ) (f))λ∈Λ converges to i (ζλ0) (f). The fact
that i is continuous follows easily.

We next see that i (M ∗) is open in M. Given ϕ ∈ M ∗, there exists
r < 1 such that ϕ ≤ ζD+(0,r) and a polynomial P ∈ K[z] with all its ze-

ros in D+ (0, r) such that ζD+(0,r)(P ) < ‖P‖ /2. Now if ψ ∈ M satisfies
|ψ(P )− i(ϕ)(P )| < ‖P‖ /2, then ψ(P ) < ‖P‖, so the restriction of ψ to
K[z] is not equal to ‖ ‖. By Proposition 4.1, ψ belongs to i (M ∗).
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Finally, the map T : M → M (T1) that coincides with i−1 on i (M ∗) and
sends M \ i (M ∗) to ‖ ‖ is easily seen to be continuous and closed. The
result now follows from [3, Proposition 2.4.3]. �

5. Sequences of zeros

It is well known that, in complex analysis, under some natural conditions,
a bounded analytic function can be constructed to have zeros precisely at
a given sequence (zn) of complex numbers in the open unit disk, each with
a prescribed multiplicity (see [10, Theorem II.2.2]). A similar result does
not hold for nonarchimedean fields, in particular when they are not spher-
ically complete, as it is the case of the p-adic complex fields Cp (see [12]).
Nevertheless, in the nonarchimedean context, an analytic function (not nec-
essarily bounded) can be found having as zeros the points of the sequence
(zn) when it satisfies a natural condition, but with multiplicities larger (and
not necessarily equal) than those prescribed (see [9], and [4, Theorem 25.5]
for a detailed proof).

Roughly speaking, here we are interested in finding f ∈ H∞ having zeros
not at points of a given sequence (zn), but close to them, and paying atten-
tion instead to the the fact that any of those zeros is simple and that ‖f‖
belongs to |K×|.

We begin with a well known result (see for instance [16, p. 15]).

Lemma 5.1. Let γ1, . . . , γn ∈ K be pairwise different. Then the rank of the
Vandermonde matrix ⎛

⎜⎜⎜⎜⎜⎝

1 γ1 γ1
2 . . . γ1

n−1

1 γ2 γ2
2 . . . γ2

n−1

1 γ3 γ3
2 . . . γ3

n−1

...
...

...
. . .

...
1 γn γn

2 . . . γn
n−1

⎞
⎟⎟⎟⎟⎟⎠

is n.

Next, and throughout this section, we use the notation and basic prop-
erties of critical radii and zeros of analytic functions given at the beginning
of Section 3.

Lemma 5.2. Let P (z) := a0+a1z+ · · ·+zn ∈ K[z]. If P (z) =
∏n

i=1(z−zi)
with z1, . . . , zn ∈ D, then |ai| ≤ 1 for all i ∈ {0, . . . , n− 1}.
Lemma 5.3. Let P1(z), Q(z) ∈ K[z], where the degree of P1(z) is n > 0,
and let

P2(z) := P1(z) + zn+1Q(z).

Suppose that R1 is a critical radius of P2(z) satisfying μR1(P2) > n and that
C(0, R1) contains exactly k zeros of P2(z), k > 0. Then it also contains
exactly k zeros of Q(z).
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Proof. We write P1(z) := a0+ a1z+ . . .+ anz
n and Q(z) := an+1+ an+2z+

. . . + an+m+1z
m, so that P2(z) =

∑n+m+1
i=0 aiz

i. By definition, |ai|R1
i <

MR1(P2) for all i /∈ {μR1(P2), . . . , νR1(P2)}. Also
MR1(P2) =

∣∣∣aμR1
(P2)

∣∣∣R1
μR1

(P2) =
∣∣∣aνR1

(P2)

∣∣∣R1
νR1

(P2),

and |ai|R1
i ≤ MR1(P2) for i ∈ {μR1(P2), . . . , νR1(P2)}. Taking into account

that μR1(P2) ≥ n + 1, we easily see that μR1(Q) = μR1(P2) − n − 1 and
νR1(Q) = νR1(P2) − n − 1. Since, νR1(P2) = k + μR1(P2), the conclusion
follows easily. �

Lemma 5.4. Let M1,M2,M3 ∈ N. Let P1(z) = p1(z)q1(z) = 1+
∑M1+M2

n=1 anz
n,

where p1(z), q1(z) ∈ K[z] have degrees M1 and M2, respectively. Let A1 and
A2 be the sets of zeros of p1(z) and q1(z), respectively, and suppose that each
zero of q1(z) is simple and maxz∈A1 |z| < minz∈A2 |z|.

Suppose that S ∈ |K×| and that A3 ⊂ K has M3 points and satisfy
maxz∈A2 |z| < S < minz∈A3 |z|.

Then there exists Q(z) ∈ K[z] of degree M2 + M3 such that P2(z) :=
P1(z) + zM1+M2+1Q(z) can be written as

P2(z) = p2(z)q2(z),

with p2(z) = r2(z)s2(z), where M1, M2 + 1 and M2 +M3 are the degrees of
r2(z), s2(z) and q2(z), respectively, and

• each z ∈ A2 ∪A3 is a simple zero of q2(z);
• r2(z) has the same critical radii as p1(z), and the same number of
zeros in each critical radius;

• all M2 + 1 zeros of s2(z) are contained in C(0, S).

Proof. We suppose that

{|z| : z ∈ A1} = {R1, . . . , RN1}
{|z| : z ∈ A2} = {RN1+1, . . . , RN2}
{|z| : z ∈ A3} = {RN2+1, . . . , RN3} ,

with R1 < · · · < RN3 , and that for each j ∈ {N1 + 1, . . . , N3}, there are
kj (pairwise different) points z ∈ A2 ∪ A3 with |z| = Rj . Also, for each
j ∈ {1, . . . , N1}, there are kj zeros in A1 with absolute value Rj .

Fix w1 ∈ K with |w1| = S, so RN2 < |w1| < RN2+1. According to
Lemma 5.1, there existM2+M3+1 coefficients b0, . . . , bM2+M3 ∈ K such that
b0+b1z+· · ·+bM2+M3z

M2+M3 = −P1(z)/z
M1+M2+1 for all z ∈ A2∪A3∪{w1},

that is,

P2(z) := P1(z) + zM1+M2+1

(
M2+M3∑
n=0

bnz
n

)
= 0.

Since RN2+1 is bigger than |w1| and μ|w1|(P1) = ν|w1|(P1) = M1 +M2,

μRN2+1
(P2) > μ|w1|(P2) ≥ μ|w1|(P1) = M1 +M2,
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and we conclude from Lemma 5.3 that Q0(z) :=
∑M2+M3

n=0 bnz
n has exactly ki

zeros in each C(0, Ri) for i = N2+1, . . . , N3. On the other hand, each z ∈ A2

is a zero of Q0(z), and the degree of Q0(z) is M2+M3, so Q0(z) has exactly
ki zeros in each C(0, Ri) for i = N1 +1, . . . , N3. Since it has no other zeros,
again by Lemma 5.3, if S1 > RN2 with S1 	= RN2+1, . . . , RN3 is a critical
radius for P2, then μS1(P2) ≤ M1+M2, implying that νRN2

(P2) ≤ M1+M2.

On the other hand, since νRN2
(P2) ≥ νRN2

(P1), we deduce that νRN2
(P2) =

M1 + M2 = μS1(P2). We conclude that |w1| is the only critical radius for
P2 bigger than RN2 and different from all other Ri, which necessarily gives
μ|w1|(P2) = M1 + M2 and ν|w1|(P2) = μRN2+1

(P2) = M1 + 2M2 + 1. This

implies that P2(z) has M2 + 1 zeros in C(0, |w1|).
Finally, since νRN2

(P2) = M1 +M2 we have that |aM1+M2 |RN2
M1+M2 >

|bn|RN2
M1+M2+n+1 for all n ≥ 0, which implies that

|aM1+M2 |RM1+M2 > |bn|RM1+M2+n+1

whenever 0 < R < RN2 . Consequently, critical radii of P2(z) and P1(z)
in (0, RN2 ] coincide, as well as the number of zeros in each critical radius.
This means that each C(0, Ri) contains exactly ki zeros of P2(z), for i =
1, . . . , N2. �

Proposition 5.5. Let z be a sequence in D with c :=
∏∞

n=1 |zn| > 0. Suppose
that the disks D+ (zn, εn), n ∈ N, are pairwise disjoint. Then there exists
f ∈ H∞ with f(0) = 1 and ‖f‖ ∈ |K×| having exactly a single zero in each
D+ (zn, εn) and such that, for any other zero z of f , |z| 	= |zn| for every
n ∈ N.

Proof. Let {Ri : i ∈ N} = {|zn| : n ∈ N}, and suppose that, for each i, Ri <
Ri+1 and zi1, . . . , z

i
ki

are those zn of absolute value Ri. We select δi ∈ |K×|,
δi ≤ min {εn : |zn| = Ri}, and assume also that δ1 < R1.

Pick any N1 ∈ N and define M1 :=
∑N1

i=1 ki. Then take N2 > N1 such

that, for M2 :=
∑N2

i=N1+1 ki, RN1
M2 < c min1≤i≤N1 δi

ki .
Inductively, for any other n ∈ N, pick Nn+1 > Nn such that

RNn
Mn+1 ≤ c min

Nn−1+1≤i≤Nn

δi
ki ,

where Mn+1 :=
∑Nn+1

i=Nn+1 ki.

Based on the sequence (RNn), we fix a new sequence (Sn)n≥2 in |K×| with
RNn < Sn < RNn+1

for all n ≥ 2. Next call N0 := 0 and, for n ≥ 1,

Bn := {Ri : Nn−1 + 1 ≤ i ≤ Nn}
and

An :=
{
zi1, . . . , z

i
ki

: Nn−1 + 1 ≤ i ≤ Nn

}
.
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Clearly, the polynomial

P1(z) :=

N2∏
i=1

⎛
⎝ ki∏

j=1

(
1− z

zij

)⎞
⎠

has degree M1 +M2 and its (simple) zeros are the points in A1 ∪A2.
We write P1(z) := 1 + a1z + · · ·+ aM1+M2z

M1+M2 . Next, by Lemma 5.4,
we can inductively construct a sequence (Pn) in K[z] such that, for all n ≥ 2
and Ln := M1 + 2M2 + · · ·+ 2Mn +Mn+1 + n− 1,

Pn(z) := 1 + a1z + · · ·+ aLnz
Ln

can be written as

Pn(z) = pn(z)qn(z) = rn(z)sn(z)qn(z),

for some polynomials

qn(z) :=
∏

i∈Bn∪Bn+1

⎛
⎝ ki∏

j=1

(
1− z

zij

)⎞
⎠

of degree Mn +Mn+1 having all points in An ∪An+1 as simple zeros,

rn(z) :=
∏

i∈B1∪···∪Bn−1

⎛
⎝ ki∏

j=1

(
1− z

wi
j

)⎞
⎠

of degree M1 +M2 + · · ·+Mn−1 and with critical radii Ri for all i ≤ Ni−1,
having ki (not necessarily simple) zeros wi

j in each C(0, Ri), and

sn(z) :=
n∏

i=2

⎛
⎝Mi+1∏

j=1

(
1− z

uij

)⎞
⎠

of degree M2 + M3 + · · · + Mn + n − 1 and with critical radii Si (i ≤ n),
having Mi + 1 (not necessarily simple) zeros uij in each C(0, Si).

Hence, for l ∈ Bn and |z| = Rl,

|qn(z)| =
l∏

i=Nn−1+1

⎛
⎝ ki∏

j=1

∣∣∣∣∣1− z

zij

∣∣∣∣∣
⎞
⎠

=
Rl

kNn−1+1+···+kl−1

RNn−1+1
kNn−1+1 · · ·Rl−1

kl−1

kl∏
j=1

∣∣∣∣∣z − zlj

zlj

∣∣∣∣∣ ,
|rn(z)| = Rl

M1+···+Mn−1

R1
k1 · · ·RNn−1

kNn−1

and

|sn(z)| =
n−1∏
i=2

⎛
⎝Mi+1∏

j=1

∣∣∣∣∣1− z

uij

∣∣∣∣∣
⎞
⎠ =

Rl
M2+···+Mn−1+n−2

S2
M2+1 · · ·Sn−1

Mn−1+1
.
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This implies that

(5.1) |Pn(z)| = |sn(z)|Tl

kl∏
j=1

∣∣∣z − zlj

∣∣∣ ,
where

Tl :=
Rl

k1+···+kl−1

R1
k1 · · ·Rl

kl
.

On the other hand, if in addition
∣∣∣z − zlj

∣∣∣ ≥ δl for all j, then
∏kl

j=1

∣∣∣z − zlj

∣∣∣ ≥
δl
kl . Taking into account that

|aLn | =
1

S2
M2+1 . . . Sn

Mn+1R1
k1 · · ·RNn+1

kNn+1
,

we easily obtain

|aLn |Rl
Ln

1

|sn(z)|
1

Tl
=

Rl
M1+M2+···+Mn−1+2Mn+Mn+1+1

Sn
Mn+1Rl+1

kl+1 · · ·RNn+1

kNn+1Rl
k1+···+kl−1

<
Rl

kl+···+kNn+1

Rl+1
kl+1 · · ·RNn+1

kNn+1

<
RNn

Mn+1

c

≤ δl
kl

≤
kl∏
j=1

∣∣∣z − zlj

∣∣∣ .
This implies, by Equality 5.1,

(5.2) |aLn |Rl
Ln < |Pn(z)| .

Next, using Lemma 5.2 it is easy to see that, since each Pn(z) has all its
zeros contained in D and Pn(0) = 1, all its coefficients satisfy

|ai| ≤ 1∏∞
j=1Rj

kj
∏∞

j=2 Sj
Mj+1

≤ 1

c3
,

which implies that f(z) := 1 +
∑∞

m=1 amzm is bounded and, consequently,
belongs to H∞. Also, the critical radii for f are the Ri and the Si, and it
has exactly ki zeros in each C(0, Ri) and Mi + 1 zeros in each C(0, Si). We
now define, for n ∈ N,

gn(z) := f(z)− Pn(z) =
∞∑

m=Ln+1

amzm.

Note that, since |aLn |RNn+1
Ln > |am|RNn+1

m for all m > Ln,

|aLn |Rl
Ln > |am|Rl

m
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for l ∈ Bn, and consequently, if |z| = Rl, then

(5.3) |gn(z)| < |aLn |Rl
Ln .

We deduce from Inequalities 5.2 and 5.3 that |aLn |Rl
Ln < |f(z)| whenever

|z| = Rl and
∣∣∣z − zlj

∣∣∣ ≥ δl for all j ∈ {1, . . . , kl}. In particular, if we fix j ∈
{1, . . . , kl} and take w ∈ D with

∣∣∣w − zlj

∣∣∣ = δl, then |f(w)| > |aLn |Rl
Ln >∣∣∣gn(zlj)∣∣∣. On the other hand, Pn

(
zlj

)
= 0, so

∣∣∣f (
zlj

)∣∣∣ =
∣∣∣gn (zlj)∣∣∣. This

means that, if we define h(z) := f
(
z + zlj

)
, then |h(0)| < |h(z)| whenever

|z| = δl. We conclude that either h(0) = 0 or there is a critical radius for h

between 0 and δl, and consequently there is a zero of f in D−
(
zlj , δl

)
. Since

f has exactly kl zeros in C(0, Rl), we are done.
It just remains to prove that the above f can be taken to satisfy ‖f‖ ∈

|K×|. Note that apart from the Rn, the critical radii of the function f are
certain Sn ∈ |K×|∩(RNn , RNn+1), n ≥ 2, chosen at will. Let us next see that
these can be selected in such a way that ‖f‖ = 1/

(∏∞
n=1Rn

kn
∏∞

n=2 Sn
Mn+1

)
belongs to |K×|. Clearly, it is enough to show that every value in the inter-
val

(∏∞
n=2RNn

Mn+1,
∏∞

n=2RNn+1
Mn+1

)
is attained by products of the form∏∞

n=2 Sn
Mn+1. It is easy to see that this is equivalent to proving that, given

a set D dense in (0,+∞), if (an) and (bn) are sequences in (0,+∞) with∑∞
n=1 bn < ∞ and 0 < an < bn for all n, then every T ∈ (

∑∞
n=1 an,

∑∞
n=1 bn)

can be written in the form T =
∑∞

n=1 qn(tn) with all q(tn) ∈ D, where
qn(s) := san + (1− s)bn for every s ∈ [0, 1] and n ∈ N.

First, it is clear that there exists s1 ∈ (0, 1) with T =
∑∞

n=1 qn(s1).
We fix ε > 0 and pick t1 ∈ [0, 1] with q1(t1) ∈ D and q1(t1) + q2(0) <
q1(s1) + q2(s1) < q1(t1) + q2(1) such that |q1(t1)− q1(s1)| < ε. Then there
exists s2 ∈ (0, 1) with q1(t1) + q2(s2) = q1(s1) + q2(s1), that is, q1(t1) +

q2(s2) + q3(0) <
∑3

n=1 qn(s1) < q1(t1) + q2(s2) + q3(1). Consequently, there
exists t2 ∈ (0, 1) with q2(t2) ∈ D such that

q1(t1) + q2(t2) + q3(0) <
3∑

n=1

qn(s1) < q1(t1) + q2(t2) + q3(1)

and
∣∣∣q1(t1) + q2(t2)−

∑2
n=1 qn(s1)

∣∣∣ < ε/2.

Clearly, we inductively find a sequence (tn) in (0, 1) with qn(tn) ∈ D for

each n, and such that
∣∣∣∑k

n=1 qn(tn)−
∑k

n=1 qn(s1)
∣∣∣ < ε/k for all k. Thus

T =
∑∞

n=1 qn(tn), and we are done. �

Remark 5.1. Note that, for a sequence (Tn) in (0, 1), the function f in
Proposition 5.5 can be taken so that no Tn is a critical radius for f .
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6. Sequences determining the same seminorms

In this section we first show that a seminorm is determined by the be-
haviour of the radii of seminorms along an ultrafilter.

Lemma 6.1. Let z0 ∈ D \ {0} and s, r ∈ (0, 1) satisfy s ≤ r < |z0|. Then,
for every f ∈ H∞ \ {0},

0 ≤ ζD+(z0,r)(f)− ζD+(z0,s)(f) ≤
(
rZ(f,D

+(z0,r)) − sZ(f,D
+(z0,r))

)
‖f‖ .

Proof. We write f(z) = g(z)
∏m

i=1(z − wi), where w1, . . . , wm are the zeros
of f in C(0, |z0|). Taking into account Corollary 3.3, it is easy to see that
ζD+(z0,r)(g) = ζD+(0,s)(g). Consequently,

ζD+(z0,r)(f) = ζD+(z0,r)(g) r
Z(f,D+(z0,r))

∏
wi /∈D+(z0,r)

|z0 − wi|

and that

ζD+(z0,s)(f) ≥ ζD+(z0,r)(g) s
Z(f,D+(z0,r))

∏
wi /∈D+(z0,r)

|z0 − wi| .

Since ‖f‖ = ‖g‖, the conclusion follows easily. �

Corollary 6.2. Let k be a sequence in N. Suppose that u is a nonprinci-
pal ultrafilter in N and that (rn) and (sn) are sequences in (0, 1) such that
limu rn

kn = limu sn
kn 	= 0, 1. If z is a sequence in D with rn, sn < |zn| for

all n, then limu ζD+(zn,rn) = limu ζD+(zn,sn).

Proof. We can assume that A ∈ u satisfies sn ≤ rn for every n ∈ A.
Let f ∈ H∞, f 	= 0. By Lemma 6.1, for n ∈ A,

0 ≤ ζD+(zn,rn)(f)−ζD+(zn,sn)(f) ≤
(
rn

Z(f,D+(zn,rn)) − sn
Z(f,D+(zn,rn))

)
‖f‖ .

Obviously, from the hypothesis we deduce that limu rn
tn = limu sn

tn for
every sequence (tn) of natural numbers, and the conclusion follows. �

Remark 6.1. In the case when K is not spherically complete, a natural
question is whether the limit of norms based on filters in D with no center
allows us to define new seminorms. We will see that this is not the case.
Suppose that, for each n ∈ N, ‖·‖n = limm→∞ ζD+(znm,snm), where

C (0, |zn1 |) ⊃ D+ (zn1 , s
n
1 ) ⊃ D+ (zn2 , s

n
2 ) ⊃ · · ·

and
⋂∞

m=1D
+ (znm, snm) = ∅. Suppose also that limn→∞ |zn1 | = 1. Take a

nonprincipal ultrafilter u in N and define the seminorm ψ := limu ‖·‖n ∈ M.
It is clear that sn := limm→∞ snm > 0 for each n. Consider a sequence (kn)
in N such that r := limu sn

kn ∈ (0, 1) and take, for each n, an mn ∈ N such
that limu s

n
mn

kn = r. Calling rn := snmn
and zn := znmn

, we easily check that
ψ = limu ζD+(zn,rn).
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Corollary 6.3. Given ϕ = limu ζD+(zn,rn) ∈ M0, there exist a sequence
(wn) in D with limn→∞ |wn| = 1 and a sequence (sn) in (0, 1) in such a way
that all the disks D+ (wn, sn) are pairwise disjoint and ϕ = limu ζD+(wn,sn).

Proof. Note that, if ϕ = ‖·‖, then ϕ = limu ζD+(zn,|zn|2), so in all cases we

can assume without loss of generality that D+ (zn, rn) ⊂ C (0, |zn|) for all
n. Fix n0 ∈ N, and suppose that the set

{n ∈ N : |zn| = |zn0 |} = {n1, . . . , nk} .
It is straightforward to prove that, for each i ∈ {1, . . . , k}, there exists

wni ∈ C (zni , rni) such that
∣∣∣wni1

− wni2

∣∣∣ = max
{
rni1

, rni2
,
∣∣∣zni1

− zni2

∣∣∣}
whenever i1 	= i2. This implies that the disks D− (wni , rni) are pairwise
disjoint. Of course we can define a sequence (wn) with the desired properties
by putting wn := wni when zn = zni . Obviously, ϕ = limu ζD−(wn,rn). Now,
if we assume that limu rn > 0, then the conclusion follows immediately
taking into account Corollary 6.2. The case when limu rn = 0 is similar. �
Remark 6.2. Note that, in Corollary 6.3, if z is regular with respect to u,

then so is w. Taking into account that each ϕ = ζk,rz,u ∈ M1 can be written
by ϕ = limu ζD+(wn,sn), where all the disks D

+ (wn, sn) are pairwise disjoint,

we conclude that ϕ ∈ M′
0. Thus, M1 ⊂ M′

0.

Corollary 6.4. Every ϕ ∈ M0 can be written by ϕ = limu ζD+(zn,rn), where

u ∈ βN \ N and the disks D+ (zn, rn) are pairwise disjoint.

Next we show that the converse of Corollary 6.2 does not hold in general.
In fact, very different behavior of the radii along an ultrafilter can lead to the
same seminorm (see Example 6.6 and Remark 7.2; see also Theorem 2.10).

Proposition 6.5. Let z be a sequence in D with limn→∞ |zn| = 1, and let
k be a sequence in N. Suppose that u is a nonprincipal ultrafilter in N with
the property that, for every C ∈ u,

lim
u

∏
|zm|=|zn|

m∈C
m �=n

|zn − zm|km < 1.

Let (rn) and (sn) be sequences in (0, 1) with zm /∈ D−(zn, rn), D−(zn, sn)
whenever m 	= n. If there exists C0 := {n1, n2, . . . , ni, . . .} ∈ u such that

lim
i→∞

rni
kni = 1 = lim

i→∞
sni

kni ,

then

lim
u

ζD+(zn,rn) = lim
u

ζD+(zn,sn).

Remark 6.3. Note that in Proposition 6.5, if z is regular and k belongs

to Compu(z), then the seminorm φ := limu ζD+(zn,rn) satisfies ζk,1z,u ≤ φ. In
Example 6.9, we will see that the equality does not hold in general.
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Remark 6.4. In Example 6.9, we will also see that a weaker assumption in
Proposition 6.5 such as that limu rn

kn = 1 = limu sn
kn does not imply that

limu ζD+(zn,rn) = limu ζD+(zn,sn).

Proof of Proposition 6.5. Since we are dealing with an ultrafilter, we can
assume without loss of generality that 0 < sn ≤ rn for all n ∈ C0. It is
clear that there exists a sequence (ln) in N with limn→∞ ln = +∞ such that
limn∈C0

n→∞
sn

knln = 1/2.

Take f ∈ H∞. We have that, if Zn = Z (D− (zn, rn)) and

λn :=
∏

|zm|=|zn|
m �=n

|zn − zm|Zm

and
μn :=

∏
z∈Z(C(0,|zn|))
|z−zm|≥rm∀m

|zn − z|

for n ∈ C0, then

(6.1) sn
Znλnμn ≤ ξD+(zn,sn)(f) ≤ ξD+(zn,rn)(f) = rn

Znλnμn.

Let α := limu Zn/(knln). We easily see that, if α = 0, then limu sn
Zn = 1

and, taking limits in Equation 6.1, limu ξD+(zn,sn)(f) = limu ξD+(zn,rn)(f).
On the other hand, if 0 < α ≤ +∞, then there exist A ∈ u with A ⊂ C0

and β > 0 such that Zn ≥ βknln for all n ∈ A. Next, for n ∈ A we define

Ln := min {lm : m ∈ A, |zm| = |zn|} ,
and obtain

λn ≤
∏

|zm|=|zn|
m∈A
m �=n

|zn − zm|βkmLn =

⎛
⎜⎜⎜⎜⎝

∏
|zm|=|zn|

m∈A
m �=n

|zn − zm|km

⎞
⎟⎟⎟⎟⎠

βLn

.

Since limn→∞ ln = +∞, lim n∈A
n→∞

Ln = +∞. Also, by hypothesis, there

exist M < 1 and A′ ∈ u with A′ ⊂ A and∏
|zm|=|zn|

m∈A
m �=n

|zn − zm|km ≤ M

for all n ∈ A′. This gives limn∈A′
n→∞

λn = 0, and consequently limu λn = 0.

Finally, it follows from Equation 6.1 that

lim
u

ξD+(zn,rn)(f) = 0 = lim
u

ξD+(zn,sn)(f) = 0,

and we are done. �
We next give an example where Proposition 6.5 can be applied.
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Example 6.6. Let z be a sequence in D with
∏∞

n=1 |zn| > 0. Let R1 < R2 <
· · · be the absolute values of the zn and, for each i, suppose that there
are Mi ≥ 2 points zn of absolute value Ri, and that limi→∞Mi = +∞.
Suppose also that there exists M ∈ |K×| ∩ (0, 1) such that, for all i ∈ N,

|zn − zm| = Mi−1
√
M ∈ (0, Ri) whenever |zn| = Ri = |zm|, n 	= m.

Fix a nonprincipal ultrafilter v in N and consider the family F of the
complements of all sets D in N with the property that

lim
v

card({zn : n ∈ D} ∩ C(0, Ri))

Mi
= 0.

It is easy to check that F is a filter in N, and that any ultrafilter u containing
F satisfies the conditions of Proposition 6.5 for kn = 1 for all n. Thus, if rn :=
Mi−1

√
M for each n with |zn| = Ri, then limu ζD+(zn,rn) = limu ζD+(zn,sn) for

any sequence (sn) such that limu sn = 1 and sn ≤ rn for all n.

Proposition 6.7. Let z be a sequence in D with limn→∞ |zn| = 1, and let u
be a nonprincipal ultrafilter in N. Suppose that (D− (zn, rn)) is a sequence
of pairwise disjoint open disks.

If z is not regular with respect to u, then

lim
u

ζD+(zn,rn) = lim
u

δzn .

Proof. For f ∈ H∞ with |f(0)| = 1 fixed, let C be the set of all n such
that D−(zn, rn) contains no zeros of f . Suppose first that C belongs to u.
Then |f | takes a constant value on each disk D− (zn, rn), for n ∈ C, and
this same value is taken at each zn, n ∈ C. It is now straightforward to see
that limu δzn(f) = limu ζD−(zn,rn)(f). Suppose next that C /∈ u, and take

any C ′ ∈ u with C ′ ⊂ N \ C. Since
∏

n∈C′ |zn| ≥ 1/ ‖f‖ > 0 and (zn)n∈C′

is not regular, we can assume that, for all n ∈ C ′, there exists at least one
m ∈ C ′, m 	= n, with |zm| = |zn|. Then fix a zero un of f in each D− (zn, rn)
for all n ∈ C ′. It is clear that, for n ∈ C ′,

ξD+(zn,rn)(f) ≤
∏

|um|=|zn|
m∈C′
m �=n

|zn − um| =
∏

|zm|=|zn|
m∈C′
m �=n

|zn − zm| .

Since (zn)C′ is not regular, infn∈C′ ξD+(zn,rn)(f) = 0, and we easily deduce
from Corollary 3.4 that limu ζD+(zn,rn)(f) = limu ξD+(zn,rn)(f) = 0. Finally,
since δzn ≤ ζD+(zn,rn), we conclude that limu δzn(f) = 0. �

Example 6.8. Let z be a sequence in D with
∏∞

n=1 |zn| > 0. Let {Ri : i ∈ N}
be the set of the absolute values of all zn, and suppose that Si := |zn − zm|
is constant for all n,m ∈ N with |zn| = Ri = |zm|, i ∈ N. Suppose also that
u is a nonprincipal ultrafilter in N such that z is not regular with respect to
u. Then Proposition 6.7 gives us

(6.2) lim
u

δzn = lim
u

ζD+(zn,Si).
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Obviously, we can define a map π : N → N associating each n with the
number π(n) with |zn| = Rπ(n). The meaning of π(A) for A ⊂ N is clear,
as well as that of π(u). In fact, π(u) is also a nonprincipal ultrafilter in N.
Now, it is easy to check that, by Equality 6.2, if each wk is any point in
D+

(
zn, Sπ(n)

)
, then

lim
u

δzn = lim
π(u)

ζD+(wk,Sk).

The following example shows that the result in Proposition 6.5 cannot be
sharpened (see Remarks 6.3 and 6.4).

Example 6.9. We consider M , (Ri), (Mi), z and u to be the same as in
Example 6.6. Suppose that (Nk) is a sequence in (0, 1) with

∏∞
k=1Nk > 0,

where N1 := M2. Clearly, we can find a sequence (Ak) in u with A1 = N

and Ak+1 � Ak for all k such that each Ak satisfies the following property:
Given i ∈ N, if the cardinal Ki

k of the n in Ak with zn ∈ C(0, Ri) is not 0,
then Ki

k ≥ 2 and (
Mi−1

√
M

)Ki
k ≥ Nk.

Now select sequences (rn) and (δn) in (0, 1) with limn→∞ rn = 1 and

limn→∞ δn = 0, and such that 0 < δn < rn ≤ Mi−1
√
M whenever |zn| =

Ri. Next consider a function f ∈ H∞ having exactly Zn simple zeros in
each D+(zn, δn), where Zn := max {k ∈ N : n ∈ Ak}, and no other zeros in
the corresponding C(0, Ri) (see Proposition 5.5). Note that, for i ∈ N,∑

|zn|=Ri
Zn ≤ ∑∞

k=1K
i
k. Consequently, for each n ∈ N with |zn| = Ri,

ξD+(zn,rn)(f) = rn
Znλn, where

λn :=
∏

|zm|=|zn|
m �=n

|zn − zm|Zm ≥
(

Mi−1
√
M

)Ki
1+Ki

2+Ki
3+··· ≥

∞∏
k=1

Nk.

Note also that there exists a sequence (ln) in N with limn→∞ rn
ln = 1/2,

and this sequence satisfies limn→∞ ln = +∞. As in the proof of Propo-
sition 6.5 (with kn = 1 for all n), we see that, if limu Zn/ln > 0, then
limu λn = 0. Since this is not the case, we deduce that limu Zn/ln = 0, and
consequently that limu rn

Zn = 1. By Corollary 3.4, taking into account that
ξD+(zn,rn)(f) ≥ rn

Zn
∏∞

k=1Nk for all n, we conclude that limu ζD+(zn,rn)(f) 	=
0. On the other hand, since Ak ∈ u for all k, limu Zn = +∞, which implies
that for all s ∈ (0, 1), limu s

Zn = 0 and consequently, ζ1,sz,u (f) = 0. Thus,

ζ1,1z,u 	= limu ζD+(zn,rn) (see Remark 6.3).
On the other hand, Example 6.6 tells us that, if the sequence (rn) is taken

as above, then limu ζD+(zn,rn) = lim ζD+(zn,sn), where sn = Mi−1
√
M whenever

|zn| = Ri. Now, it is easy to see that lim ζD+(zn,sn) = limπ(u) ζD+
(
wi,

Mi−1√M
),
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where each wi belongs to D+
(
zn,

Mi−1
√
M

)
and π is defined as in Exam-

ple 6.8. In other words, ifw = (wi) andM = (Mi − 1), then limu ζD+(zn,rn) =

ζM,M
w,π(u).

We can prove that, for the function f above, if t ∈
(
0, ζM,M

w,π(u)(f)
)
, then

there is a sequence (tn) such that limu ζD+(zn,tn)(f) = t (for this fact, see

the proof of Theorem 2.1 in Section 7). It is also clear that tn ≤ Mi−1
√
M

whenever |zn| = Ri. On the one hand, this implies that, if we put φt :=
limu ζD+(zn,tn), then

ζ1,1z,u ≤ φt′ ≤ φt′′ ≤ ζM,M
w,π(u)

and φt′(f) < φt′′(f) whenever t′ < t′′. This means by Proposition 6.5 that
there is no set {nk : k ∈ N} ∈ u such that limk→∞ tnk

= 1. Since obviously
limu tn = 1, we see that Remark 6.4 is correct.

Proof of Theorem 2.4. It is obvious that each δw,v belongs to M0, because
it can be written as limv ϕD+(wm,1/(2m)). On the other hand, we take ϕ =
limu ϕD+(zn,rn), and assume that limu rn > 0. By Corollary 6.3, we can

assume that all the disks D+ (zn, rn) are pairwise disjoint and that rn < |zn|
for every n. We see that that the result follows from Proposition 6.7 if z is
not regular with respect to u.

More in general, by Corollary 6.2, each rn can be taken in |K×|. Now, for
each n ∈ N, pick Nn ∈ N with Nn ≥ n+ 1 and such that limn→∞ rn

Nn = 0.

Also, consider An :=
{
wn
1 , . . . , w

n
Nn

} ⊂ C (zn, rn) with
∣∣∣wn

i − wn
j

∣∣∣ = rn

whenever i 	= j. We clearly see that all the An can be taken in such a way
that D+(z, rn) ∩ D+(w, rm) = ∅ whenever z ∈ An and w ∈ Am. Using
the lexicographic order, define a sequence w with all the points in

⋃∞
n=1An

(that is, if m < m′, then wm = wn
i and wm′ = wn′

j with n ≤ n′ and, for
n = n′, i < j).

Next consider the family F of the complements of all sets D in N with the
property that

lim
u

card({wm : m ∈ D} ∩An)

Nn
= 0.

It is a routine matter to check that F is a filter in N and that, given an
ultrafilter v containing F, w is not regular with respect to v.

It is also clear that, if sm := rn whenever wm ∈ An, then ϕ = limv ζD+(wm,sm).
By Proposition 6.7, ϕ = limv δwm . �

We easily see that a slight modification of the above proof shows that
each δz,u with z regular with respect to u can be written as δw,v with w not
regular with respect to v.

7. Kernels of seminorms

In this section we prove most of the results stated in Section 2.
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Proof of Theorem 2.1. Suppose that ϕ = limu ζD+(zn,sn), where sn < |zn| for
all n. By Corollary 3.4, limu ξD+(zn,sn)(f) = 0, so ξD+(zn,sn)(f) < r/ (2 ‖f‖)
for all n in some C0 ∈ u.

Fix n ∈ C0 and suppose that w1, . . . , wk are the zeros of f in C (0, |zn|). It
is clear that the function Fn : [0, |zn|] → R given by s �→ ∏k

j=1max {s, |zn − wj |} ,
is continuous and increasing. Also Fn (|zn|) = |zn|Z(f,C(0,|zn|)), and, conse-
quently limn∈C0 Fn (|zn|) = 1, and there exists nr ∈ C0 such that Fn (|zn|) >
r/ ‖f‖ for all n ∈ C0 with n ≥ nr. Since Fn(0) ≤ ξD+(zn,sn)(f) < r/ ‖f‖, for
n ∈ C0 with n ≥ nr, we can find rn ∈ (0, |zn|) such that

r

‖f‖ = Fn(rn) = rn
Z(f,D+(zn,rn))

∏
|zn−wj |>rn

|zn − wj | .

Obviously ξD+(zn,rn)(f) = r/ ‖f‖ for all n. Consequently, if we define ψ :=
limu ζD+(zn,rn), then by Corollary 3.4, ψ(f) = r.

Note that any two of the above disks D+ (zn, rn) are either equal or dis-
joint. For each k ∈ C0, we set nk := min {n : D+ (zn, rn) = D+ (zk, rk)}, in
such a way that the disks D+ (znk

, rnk
) are pairwise disjoint. Put vk := znk

and tk := rnk
for all k. Then define a new ultrafilter v in N: A set C ⊂ N

belongs to v if the set of all n ∈ C0 such that D+ (zn, rn) = D+ (vk, tk),
for some k ∈ C, belongs to u. It is a routine matter to check that ψ =
limv ζD+(vk,tk). On the other hand, by the definition of rn, we easily see that

each Z (f,D+ (zn, rn)) ≥ 1, which implies that, for k ∈ N fixed,∏
|vl|=|vk|

l �=k

|vk − vl| ≥
∏

|znk
−wm|>rnk

|znk
− wm| ≥ r

‖f‖ .

The fact that v is regular with respect to v follows easily and, consequently,
ψ belongs to M′

0.
On the other hand, by Proposition 5.5, we can find g ∈ H∞ with as many

zeros in each D+(zn, rn) as we need so that ψ(g) = 0. This shows that ψ is
not a norm. �
Proposition 7.1. Let z be a regular sequence with respect to u ∈ βN \ N,
and let k ∈ Compu(z). Then there exists f ∈ H∞ with ‖f‖ = 1 such that

0 < ζk,rz,u (f) ≤ r

for all r ∈ (0, 1) and ζk,rz,u (f) < ζk,sz,u (f) if 0 < r < s < 1.

Proof. We consider C ∈ u such that

M := inf
n∈C

∏
m∈C
m �=n

|zn − zm|km > 0.

For r ∈ (0, 1) and n ∈ C, put rn := kn
√
r. Consider a sequence (δn) of positive

numbers converging to 0 with the property that the disks D+(zn, δn) are

pairwise disjoint. Then, since
∏

n∈C |zn|kn > 0, we can use Proposition 5.5
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and take f ∈ H∞ with ‖f‖ = 1 and f(0) 	= 0 having exactly kn simple
zeros in each D+(zn, δn) whenever n ∈ C, and no other zeros in the circles
C(0, |zm|).

We put, for each n ∈ C, Tn :=
∑

|zn−zm|≤rn
m∈C

km. Note that if T :=

infn∈C rn
Tn = 0, then M = 0, against our hypothesis. Thus T > 0 and

α := lim
u

Tn

kn
∈ (1,+∞).

On the other hand, it is clear that, for every n ∈ C,

ξD+(zn,rn)(f) = rn
Tn

∏
|zm−zn|>rn
|zm|=|zn|

m∈C

|zn − zm|km

belongs to the interval
[
Mrn

Tn , rn
kn
] ⊂ [MT, r] and, by Corollary 3.4,

MT ≤ ζk,rz,u (f) ≤ r.
Suppose next that s ∈ (r, 1) and sn := kn

√
s for n ∈ C. As above,

ξD+(zn,sn)(f) = sn
Sn

∏
|zm−zn|>sn
|zm|=|zn|

m∈C

|zn − zm|km

where Sn :=
∑

|zn−zm|≤sn
m∈C

km. Also, for all n ∈ C,

sn
Sn ≥ sn

Tn
∏

sn≥|zm−zn|>rn
m∈C

|zn − zm|km ≥ rn
Tn

∏
sn≥|zm−zn|>rn

m∈C

|zn − zm|km

and, consequently, the fact that ζk,rz,u (f) = ζk,sz,u (f) implies that limu sn
Tn =

limu rn
Tn , that is, sα = rα. We conclude that ζk,rz,u (f) < ζk,sz,u (f). �

Remark 7.1. In the proof of Proposition 7.1, we see that if the set C can
be taken equal to N, then the same function f makes the result hold for all
u ∈ βN \ N simultaneously.

Prior to proving Theorem 2.5, we give the following lemma.

Lemma 7.2. Let α : (0, 1) → [0,+∞] be an increasing function. If r0 ∈
(0, 1), then there exist r1 > r0 and M ∈ R such that∣∣∣rα(max{r0,r}) − r0

α(max{r0,r})
∣∣∣ ≤ M |r − r0|

for every r ∈ (r0/2, r1].

Proof. Let β := infr>r0 α(r). If β = +∞, then α(r) = +∞ whenever

r ∈ (r0, 1), so rα(r) − r0
α(r) = 0. If β < +∞, we find r1 > r0 such that

β ≤ α(r1) < +∞. By the Mean Value Theorem, for each r ∈ (r0, r1],

there exists c ∈ (r0, r) with rα(r) − r0
α(r) = α(r) cα(r)−1 (r − r0). Now, if

β < 1, then r1 can be taken with a(r1) < 1, giving cα(r)−1 ≤ r0
β−1 and



NONMAXIMAL IDEALS 25

rα(r) − r0
α(r) ≤ α(r1) r0

β−1 (r − r0). On the other hand, if β ≥ 1, then

cα(r)−1 ≤ 1 and rα(r) − r0
α(r) ≤ α(r1) (r − r0).

We next consider the case 0 < r < r0. First, if α(r0) = +∞, then

r0
α(r0) − rα(r0) = 0. On the other hand, if α(r0) < +∞, then there exists

c ∈ (r, r0) with r0
α(r0) − rα(r0) = α(r0) c

α(r0)−1 (r0 − r). This implies that,
when α(r0) ≥ 1,

r0
α(r0) − rα(r0) ≤ α(r0) (r0 − r)

for all r ∈ (0, r0), whereas when α(r0) < 1

r0
α(r0) − rα(r0) ≤ α(r0)

(r0
2

)α(r0)−1
(r0 − r)

for r ∈ (r0/2, r0).
The conclusion follows easily. �

Proof of Theorem 2.5. We write ζr := ζk,rz,u , for short. We deduce from
Proposition 7.1 that the map Φ : (0, 1) → M, r �→ ζr, is injective. Let
us next see that it is continuous. Fix f ∈ H∞ with 0 < ‖f‖ ≤ 1 and, for
0 < r < 1 and n ∈ N, put Zn(r) := Z (f,D+ (zn, kn

√
r)) and

α(r) := lim
u

Zn(r)

kn
.

It is easy to see that the function α : (0, 1) → [0,+∞] is increasing.
Now, consider 0 < s < r < 1. Since there exists C ∈ u such that

lim n∈C
n→∞

|zn|kn = 1 and we are dealing with an ultrafilter, there is no loss of

generality if we assume that kn
√
r < |zn| for every n ∈ C. By Lemma 6.1,∣∣∣ζD+(zn, kn

√
r)(f)− ζD+(zn, kn

√
s)(f)

∣∣∣ ≤ (
kn
√
r
)Zn(r) − (

kn
√
s
)Zn(r)

for all n ∈ C, so

|ζr(f)− ζs(f)| ≤ lim
u

(
kn
√
r
)Zn(r) − lim

u

(
kn
√
s
)Zn(r)

= rα(r) − sα(r).

The fact that Φ is continuous is now easy by Lemma 7.2.
Let us next study whether there exist limr→0 ζr and limr→1 ζr. Note that,

given f ∈ H∞, the map Ψf : (0, 1) → R, r �→ ζr(f) is increasing and
bounded, so there exist ζ0(f) := limr→0Ψf (r) and ζ1(f) := limr→1Ψf (r).
It is clear that the maps ζ0 and ζ1 defined in this way belong to M. Also,
since, ζr 	= ζs for every r 	= s, we conclude that the the natural extension
of Φ to a new map (call it also Φ) Φ : [0, 1] → M is indeed injective and
continuous, so it is a homeomorphism onto its image. The fact that Φ[0, 1] =

clM

(
ζk,0z,u , ζ

k,1
z,u

)
is now easy.

We finally prove that ζk,0z,u , ζ
k,0
z,u ∈ M0. We are going to see that there exist

a sequence w in D with limm→∞ |wm| = 1, a nonprincipal ultrafilter v in N,
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and sequences (rm) and (tm) in (0, 1) such that ζk,0z,u = limv ζD+(wm,rm) and

ζk,1z,u = limv ζD+(wm,tm).

We fix s ∈ (0, 1). For each n ∈ N and j = 1, . . . , n, let rjn := kn
√

s/j. We

write An :=
{
rjn : 1 ≤ j ≤ n

}
, and consider A :=

⋃∞
n=1An. Then rename

the rjn ∈ A by r1 := r11, r2 := r12, r3 := r22, r4 := r13, . . . We also put wm := zn
when rm = rjn.

For each N ∈ N, each D ∈ u, and each sequence l in N such that limu ln =
+∞ and ln ≤ n for all n, consider the set DN

l of all m ∈ N satisfying

rm = rjn, for N ≤ j ≤ ln and n ∈ D. It is easy to check that the family F
of all sets DN

l is the basis for a filter F in N. Fix an ultrafilter v containing

F. Since, for N ∈ N fixed, the set C of all m such that rm = rjn with j ≥ N

belongs to F, ζ
k,s/N
z,u ≥ ψ := limv ζD+(wm,rm), and consequently ζk,0z,u ≥ ψ.

On the other hand, for f ∈ H∞ and ε > 0, there exists C ∈ v such
that ζD+(wm,rm)(f) < ψ(f) + ε for all m ∈ C. Consider the set Mn :={
j : rjn = rm,m ∈ C

}
for each n ∈ N, and note that the family D of all n

with Mn 	= ∅ belongs to u. Also, for n ∈ D, define mn := minMn. By the
construction of F , N := limumn belongs to N, and consequently the set of
all n ∈ D with mn = N belongs to u. Then ζD+(zn,rNn )(f) < ψ(f) + ε for

all n ∈ D and ζ
k,s/N
z,u (f) ≤ ψ(f) + ε. It is a routine matter to check that

ζk,0z,u ≤ ψ.

As for ζk,1z,u , we define tjn := kn
√
1− s/j for each n ∈ N and j = 1, . . . , n,

and set tm := tjn in a similar way as above. Consider also the same se-

quence (wm) and the same ultrafilter v as above. The fact that ζk,1z,u =
limv ζD+(wm,tm) follows easily. �

Proof of Corollary 2.6. The fact that ker ζk,rz,u = ker ζk,sz,u , for r, s ∈ (0, 1),
follows easily from Lemma 3.5 and Corollary 3.4. Also, if r ∈ (0, 1), then

ζk,rz,u ≤ ζk,1z,u . Since ζ
k,1
z,u = limr→1 ζ

k,r
z,u , ker ζ

k,1
z,u = ker ζk,rz,u for all r ∈ (0, 1). �

Proof of Corollary 2.7. Obviously, for every r ∈ (0, 1), ζ l,rz,u ≤ ζk,0z,u , so ker ζ
k,0
z,u ⊂

ker ζl,1z,u. Now, ker ζ
k,1
z,u � ker ζk,0z,u by Proposition 7.1, and we are done. �

Proof of Corollary 2.8. Fix ϕ = ker ζk,rz,u ∈ M1. By Proposition 7.1, ker ζk,0z,u

strictly contains kerϕ, so kerϕ is not maximal. On the other hand, by
Remark 1.2 (assumming without loss of generality that C = N), we fix
r0 ∈ (0, 1) such that all the disks D+

(
zi, ki

√
r0
)
are pairwise disjoint. Next,

taking into account that
∏∞

n=1 |zn|kn > 0, it is easy to see that there exists a

sequence (ln) in N with limn→∞ ln = +∞ such that
∏∞

n=1 |zn|lnkn > 0. Now,
we can use Proposition 5.5 to construct f ∈ H∞ having lnkn zeros in each

D+
(
zn, kn

√
r0
)
. Obviously, ζk,r0z,u (f) = 0. By Corollary 2.6, kerϕ = ker ζk,r0z,u ,

so ϕ is not a norm. �
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Proof of Corollary 2.9. Clearly, if limu kn = +∞, then ζ
1,1/2
z,u ≤ ζk,0z,u , and

ker ζ
k,1/2
z,u � ker ζk,0z,u ⊂ ker ζ

1,1/2
z,u . It follows from Corollary 2.8 that ker ζk,0z,u

is nonzero and nonmaximal. The converse is easy. �

Proof of Theorem 2.3. Let [δz,u, ‖ ‖]M0
be the family of all seminorms in

M0 of the form limu ζD+(zn,rn). It is immediate to see that [δz,u, ‖ ‖]M0
is

linearly ordered with respect to the usual order ≤. We next prove that
Au

z := clM [δz,u, ‖ ‖]M0
is also linearly ordered.

Given different ϕ1, ϕ2 ∈ Au
z, there exists f ∈ H∞ which separates them.

We can assume without loss of generality that ϕ1(f) < ϕ2(f). Next, as in
the proof of Theorem 2.1, for r ∈ (ϕ1(f), ϕ2(f)) we can find rn ∈ (0, 1)
such that ζD+(zn,rn)(f) = r for all n in a certain C ∈ u. Obviously ψ :=
limu ζD+(zn,rn) ∈ [δz,u, ‖ ‖]M0

satisfies

ϕ1(f) < ψ(f) < ϕ2(f).

Now, let
(
ϕkλ,rλ
z,u

)
λ∈Λ

be a net in [δz,u, ‖ ‖]M0
converging to ϕ1. Then

there exists λ0 ∈ Λ such that ϕkλ,rλ
z,u (f) < ψ(f) for all λ ≥ λ0, λ ∈ Λ. In

particular, for each λ ≥ λ0,

lim
u

ζ
D+

(
zn, k

λ
n
√
rλ

)(f) < lim
u

ζD+(zn,rn)(f),

and consequently there exists Eλ ∈ u such that

rλ
1/kλn < rn

for all n ∈ Eλ. This obviously implies that, for g ∈ H∞, ϕkλ,rλ
z,u (g) ≤ ψ(g)

whenever λ ≥ λ0. We conclude that ϕ1 ≤ ψ. Similarly ψ ≤ ϕ2. The fact
that the compact set Au

z is linearly ordered follows.
We next see that Au

z is connected. Suppose to the contrary that Au
z is the

union of two disjoint (nonempty) clopen subsets U, V (with respect to the
induced topology). Suppose also that ϕ1 ∈ U and ϕ2 ∈ V satisfy ϕ1 ≤ ϕ2.
We define

ψ1 := sup {ϕ ∈ U : ϕ ≤ ϕ2} .
Obviously ψ1 ∈ U and ψ1 ≤ ϕ2. Similarly,

ψ2 := inf {ϕ ∈ V : ψ1 ≤ ϕ}
belongs to V , and ψ1 ≤ ψ2. As we showed above there exists ψ ∈ Au

z,
different from ψ1 and ψ2 such that ψ1 ≤ ψ ≤ ψ2. It is clear that ψ /∈ U ∪V ,
which is impossible.

Now suppose that ϕ ∈ Au
z, ϕ 	= δz,u, ‖ ‖. Then there exists r ∈ (0, 1) such

that ζ1,rz,u ≤ ϕ and, by Corollary 2.8, kerϕ is not maximal. On the other
hand, since ϕ 	= ‖ ‖, kerϕ 	= {0}, as follows from Proposition 4.1. �
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Proof of Theorem 2.10. Suppose that ϕ /∈ Mz,u, that is, for all C ∈ u,

infn∈C
∏

m∈C
m �=n

|zn − zm|km = 0. We deduce that, if m ∈ Compu(z), then

limumn/kn = 0, and ζm,1
z,u ≤ ϕk,r

z,u . Thus, supm∈Compu(z) ζ
m,1
z,u ≤ ϕ.

To finish the proof, it is enough to see that for each f ∈ H∞, there

exists m(f) ∈ Compu(z) such that ϕ(f) = ζ
m(f),1
z,u (f). Consider f ∈ H∞. If

ϕ(f) = 0, then ζ
1,r/2
z,u (f) = 0 and, by Corollary 2.6, ζ1,1z,u (f) = 0, so we can

take m(f) = 1. Next, suppose that f /∈ kerϕ.
For each n ∈ N, put rn = kn

√
r and mn := Z (f,D− (zn, rn)). If there

exists C ∈ u such that mn = 0 for all n ∈ C, then by Corollary 3.3 |f(zn)| =
ζD+(zn,rn)(f) for every n ∈ C. It follows easily that δz,u(f) = ζ1,Mz,u (f) = ϕ(f)

for all M ∈ (0, 1), so ϕ(f) = ζ1,1z,u (f). On the other hand, if the above set C
does not belong to u, then for n ∈ N

∏
|zj |=|zn|
j∈N\C
j �=n

|zn − zj |mj ≥ ξD+(zn,rn)(f).

Also, by Corollary 3.4, there isD ∈ u withD ⊂ N\C such that ξD+(zn,rn)(f) ≥
ϕ(f)/2 ‖f‖ for all n ∈ D. Therefore m(f) := (max {mn, 1}) belongs to
Compu(z). On the other hand, it is a routine matter to check that, for

M ∈ (0, 1) fixed, the set of all n with mn
√
M < rn belongs to u and, by

Lemma 3.5,

MξD+(zn,rn)(f) ≤ ξD+(zn, mn
√
M)(f) ≤ ξD+(zn,rn)(f).

Again by Corollary 3.4, this implies that Mϕ(f) ≤ ζ
m(f),M
z,u (f) ≤ ϕ(f) for

all M ∈ (0, 1), and consequently ϕ(f) = ζ
m(f),1
z,u (f). �

Remark 7.2. The following should be compared with Proposition 6.5. Let
z be a regular sequence with respect to u ∈ βN \N, and let k be a sequence
in N. Let r ∈ (0, 1) be such that zm /∈ D+ (zn, kn

√
r) whenever m 	= n. We

see in the proof of Theorem 2.10 that, if k /∈ Compu(z), then ϕk,s
z,u = ϕk,r

z,u for
all s ∈ (0, r].

Proof of Corollary 2.11. Set rn := kn
√
r for all n. Suppose that there ex-

ists f ∈ kerϕ, f 	= 0, and put Zn := Z (f, C (0, |zn|)) for all n ∈ N. By
Corollary 3.4, limu ξD+(zn,rn)(f) = 0, and consequently limu rn

Zn = 0. This
implies that limu Zn/kn = +∞, so there exists C ∈ u with Zn ≥ kn for all

n ∈ C. Since ‖f‖ ≥ 1/
∏

n∈C |zn|Zn , we conclude that
∏

n∈C |zn|kn > 0.
Now the fact that k belongs to Compu(z) is easy.

On the other hand, if kerϕ = {0}, then the fact that ϕ = ‖ ‖ follows from
Proposition 4.1. �
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Corollary 7.3. Given ϕ := ϕk,r
z,u ∈ M′

0. If ϕ /∈ M1, then

kerϕ =
⋂

m∈Compu(z)
ker ζm,1

z,u .

We end the paper by listing some questions for which we do not have an
answer.

1. Does there exist ϕ ∈ M0 with nonmaximal kernel such that kerψ 	=
kerϕ for all ψ ∈ M0 \ {ϕ}?

2. More generally, does there exist ϕ ∈ M with unique nonmaximal
kernel, that is, such that kerψ 	= kerϕ whenever ψ ∈ M and ψ 	= ϕ?

3. Does there exist ϕ ∈ M with nonmaximal kernel such that f ∈ kerϕ
and f ′ /∈ kerϕ for some f ∈ H∞?

4. Does there exist ϕ ∈ M with maximal kernel such that f ′ ∈ kerϕ
whenever f ∈ kerϕ? (stated in [13])
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métriques. Ph.D. dissertation, Université de Poitiers, France, 1973.
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