Accepted Manuscript

Nonmaximal ideals and the Berkovich space of the algebra of bounded analytic MATHEMATICAL

functions ANALYSIS AND
APPLICATIONS

Eelilons: s

Jests Araujo i

usociale Edilors:

PII: S0022-247X(17)30499-7

DOI: http://dx.doi.org/10.1016/j.jmaa.2017.05.039
Reference: YJMAA 21400

To appear in: Journal of Mathematical Analysis and Applications

Received date: 28 April 2017

Please cite this article in press as: J. Araujo, Nonmaximal ideals and the Berkovich space of the algebra of bounded analytic
functions, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.05.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.jmaa.2017.05.039

NONMAXIMAL IDEALS AND THE BERKOVICH SPACE
OF THE ALGEBRA OF BOUNDED ANALYTIC
FUNCTIONS

JESUS ARAUJO

ABSTRACT. We prove that the Berkovich space (or multiplicative spec-
trum) of the algebra of bounded analytic functions on the open unit disk
of an algebraically closed nonarchimedean field contains multiplicative
seminorms that are not norms and whose kernel is not a maximal ideal.
We also prove that in general these seminorms are not univocally de-
termined by their kernels, and provide a method for obtaining families
of different seminorms sharing the same kernel. The relation with the
Berkovich space of the Tate algebra is also given.

1. INTRODUCTION

Throughout K is an algebraically closed field complete with respect to a
(nontrivial) nonarchimedean absolute value |-| and H* denotes the space of
(K-valued) bounded analytic functions on the open disk D := {z € K : |z| < 1},
that is, the space of bounded power series on ). When endowed with the
Gauss norm (which coincides with the sup norm ||-||), the space H* becomes
a Banach algebra. We remark that, given a nonzero f(z) = > " a,2" € H>,
the value

1F]l = sup |an| = sup | f(2)|
n>0 zeD

does not necessarily belong to the value group |K*| := {|z] : z € K\ {0}}.
A remarkable difference with respect to the complex case is that in a
Banach algebra over K there can be maximal ideals that are not the kernel of
any multiplicative linear functional. For this reason, the classical definition
of spectrum (or maximal ideal space) of a complex Banach algebra does not
carry over to the ultrametric setting. Nevertheless, the standard definition
of Berkovich space (or multiplicative spectrum) yields the usual spectrum
when adapted to the complex context (see Definition 1.1 and Remark 1.1).
Not much is known about the Berkovich space 9t of H*°. Points in 9 are
seminorms, and theoretically they can be divided into four types, namely:

I. Points whose kernel is a maximal ideal of codimension 1,

Key words and phrases. Ultrametric Banach algebras; multiplicative seminorms;
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II. Points whose kernel is a maximal ideal of codimension different from
1,

III. Points whose kernel is trivial, that is, equal to {0}.

IV. Points whose kernel is a nonzero nonmaximal prime ideal.

Points of type I can be identified with those in D (see [8]), as each of them
is the absolute value evaluation §, at a point z of D (that is, 0,(f) = |f(2)]
for every f € H™).

Points of type II can be obtained by the use of ultrafilters and, in par-
ticular, regular sequences (a sequence (z,) in D is said to be regular if
infren 1, 4n |z, — zm| > 0). The key point in studying regular sequences
consists of identifying each of them with a bounded sequence in K via the
map i: H® — (*, f € H® — (f(z,)) € £>°. Given a regular sequence
(zn), every maximal ideal containing the ideal J of all functions f € H™
vanishing at every z, can be identified with an ultrafilter in N, that is, a
point in the Stone-Cech compactification BN of N (see [13, Corollary 4.7]).
Thus, given a regular sequence z = (z,,) and a nonprincipal ultrafilter u in
N (that is, a point u € SN\ N), the seminorm

Opu i=limd,,
u

is a point of type II. In this paper, we say that a sequence (z,) in D is regular
with respect to a nonprincipal ultrafilter u in N if there exists C' € u such
that (zp,)nec is regular, that is,
inf — .
Inf H |zn — 2zm| >0
meC
m#n
Points of type III are obviously given by multiplicative norms. The sim-
plest case of a multiplicative norm is of the form (p, for any nontrivial disk
D contained in D, where

Cp(f) = sup |f(2)]

zeD
for all f € H*.

Our goal in this paper is to prove that the set of points of type IV is
nonempty, and to study some of its features. The fact that there exist
points of type IV disproves a conjecture raised in [8]. On the other hand, we
also prove that there exist kernels shared by infinitely many different points
of type IV. This is in sharp contrast with the situation known so far, where
each maximal kernel univocally determines a seminorm.

Note that the existence of a nonzero nonmaximal closed prime ideal does
not necessarily imply the existence of points of type IV. The question of
the existence of such an ideal in H°, raised in [13], remained unknown for
many years, until it was finally solved (in the positive) in [6] when K is of
characteristic 0. Of course our result here gives a positive answer for any K,
and we can even grant the existence of infinite chains of closed prime ideals
(see [13, Problem after Lemma 4.10]).
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Definition 1.1. Let A be a unital commutative Banach algebra over K. A
map ¢ : A — [0,400) is a continuous multiplicative ring seminorm on A if
the following conditions hold:

(1) ( 0 and ¢(14) = 1.

(2) p(ab) = p(a) p(b) for all a,b € A.

(3) w(a+b) < a)+ @) for all a,b € A.
(4) o( |la|| for all a € A.

Remark 1.1. We assume that ||14]] = 1. It is straightforward to show (see for
instance [4, Lemma 1.7]) that every continuous multiplicative ring seminorm
is also an wltrametric algebra seminorm on A, that is, it further satisfies:

(5) o(Aa) =|Alp(a) for all A € K and a € A.
(6) v(a+b) <max{p(a),p(b)} for all a,b € A.

The Berkovich space (or multiplicative spectrum) .#(A) of A is the set
of all continuous multiplicative (in any of the equivalent senses of Defini-
tion 1.1 and Remark 1.1) seminorms endowed with the topology of simple
convergence, that is, a net ((y)ycp in #(A) converges to (o € .#(A) if
(Cr(@))yen converges to (p(a) for all a € A. Tt is well known that . (A) is
Hausdorfl and compact (see for instance [1, Theorem 1.2.1] or [4, Theorem
1.11]). Indeed, the multiplicative spectrum of some algebras is a compactifi-
cation of D (see [1, 2, 4, 5, 11, 17]). Nevertheless, in our case, it is unknown
if D is dense in M = # (H), which is a nonarchimedean version of the
Corona problem (a related problem was solved in [13]). In fact, what is now
known is that D is dense in the subset of all seminorms whose kernel is a
maximal ideal (see [7]). In this paper, all seminorms we deal with belong to
the closure of D (see Theorem 2.4).

It is easy to check that the kernel ker¢ := {f € A: {(f) =0} of every
element ¢ € #(A) is a closed prime ideal of A. When we say that a
seminorm has mazimal kernel or nonzero nonmazimal kernel, we mean that
its kernel is a mazimal ideal or a nonzero nonmaximal ideal, respectively.

We see that if D is a (closed or open) disk, then (p belongs to M. Also,
since |K*| is dense in R™, (p+ (., = (p- (2, for z € D and r € (0,1) (where
D% (z,r) and D™ (z,r) are the closed and open disks with center z and radius
r, respectively).

Recall that, given f € H® and zp € D, f can be written by f(z) =
Yoy an(z — 20)" for every z € D (see for instance [15, Theorem 25.1]),
and that zg is a zero of f of multiplicity m > 1 if there is ¢ € H* with
g(z0) # 0 such that f(z) = (2 —20)™g(z) for all z. For E C D, we denote by
Z(f, E) the number of zeros of f in E (by this we will always mean taking
into account multiplicities).

For r > 0, C(0,r) will be the set of all z with |z| = r. If D" (z,r) C
C(0,|z]) and wi,...,w, are the zeros of f € H* with absolute value |z|,
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then we define

€t om () 1= { rEEDTEDT] s |2 = wil 3 2(F,C(0, ]2]) #0,

where we understand that [], .., [z —wi| = 1if |z —w;| < r for all

1=1,...,n.

[>r

In this paper we mainly study the set 9%y of all seminorms of the form
¢ = limy (p+ (s, r,), Where u is any nonprincipal ultrafilter in N, (2,) is
any sequence in D with lim,,_,« |2,| = 1, and (r,,) is any sequence in (0, 1).
Obviously, in many cases ¢ := limy(p+(z,,,) = [ This happens for
instance when the set of all n € N such that |z,| < r, belongs to u. But

even in this case we can also write ||-|| = lim, <D+(zn |2[2); 5O We can assume

that r, < |z,| for all n. It is clear that, if lim,r, > 0, then there exist
r € (0,1) and a sequence k = (k;,) in N (not necessarily unique) such that
0 < r = lim, r," < 1. We will see in Corollary 6.2 that

N (S A T
P =g = UMChe )

This means that, when lim, r,, > 0, we can restrict ourselves to seminorms
of the special form <p1z(£ . On the other hand, it is very easy to see that, if
limy rp, = 0, then limy (p+(., ) = Oz = lim, 6,,. We also prove that, in
fact, all points in My can be written in the form J,, (see Theorem 2.4).

We can say more. Given ¢ € My, there exist a sequence (wy,) in D with
limy, o0 |wy,| = 1 and a sequence (s,,) in (0, 1) such that the disks DT (wp,, s,,)
are pairwise disjoint and ¢ = limy (p+(w,,,s,) (see Corollaries 6.3 and 6.4).

We also deal here with two subsets of 9: M(, and M. The set MY, con-
sists of all the limits of the above form limy (p+ (., ), Where (z,) is reqular
with respect to u and all the disks DT (2,,,7,), n € C, are pairwise disjoint
for some C' € u. If we drop the requirement that (z,) be regular with respect
to u, then the results we obtain are quite different (see Proposition 6.7; see
also Corollary 6.4).

As for the second set, MMy, it has the remarkable property that no semi-
norm in it is determined by its kernel, that is, there are many other semi-
norms having the same kernel. For the description of 91, we generalize
the notion of regular sequence as follows: Given a sequence z = (z,) in D
and a nonprincipal ultrafilter u in N, we denote by Comp,(z) the set of all
sequences k = (k) in N for which there exists C € u such that

inf H 2n — zm|"™ > 0.

neC)
k meCy

m#£n
Now, for a nonprincipal ultrafilter u of N, k € Comp,(z) and r € (0, 1), we
k,r k,r .
set (5 = Yz, that is,

kr . q;
Z’J = hlrlnﬁD+(Zm ki)
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and

(G cst) = {ckrire )}
We put, for z and u fixed, My = Ukeconp, (2) (C;;ﬂ ;ﬂ}), and more in
general M := [J,c sy Mz Finally, we set My = U, Mm,.

Note that, in principle, a seminorm nplz(ﬂ € M{ cannot be written as
g;f i+ because k does not necessarily belong to Comp,(z) (nevertheless, in
general it does, as can be seen in Theorem 2.10). On the other hand, 9ty
is indeed a subset of MY, (see Remark 6.2). But, of course, the fact that a
seminorm (5 € 9, belongs to MY, does not necessarily imply that there

exists C' € u such that all disks D (z,,, */r) are pairwise disjoint for n € C.
Nevertheless, we have the following remark that will be used later.

Remark 1.2. If there exists C' € u with M := inf,,cc [ [mec |2n — zm|km >0
m#£n

and 0 < rg < M, then all the disks DT (zn, kq/ro), n € C, are pairwise
disjoint.

By 1, we denote the sequence constantly equal to 1. In general, k, 1, m
are used, respectively, for sequences (ky), (I,) and (m,) in N. Also z, w,
and v denote, respectively, sequences (zy,), (w,) and (v,) in D.

As usual, given a topological space A and a subset B of A, cl4 B denotes
the closure of B in A.

The paper is organized as follows. In Section 2 we state the main results.
In Section 3, we give some technical results that are used through the paper.
In Section 4, we show that the Berkovich space of the Tate algebra T}
(without one point) can be homeomorphically embedded as an open subset
of M (Theorem 2.12). In Section 5, we study the existence of bounded
analytic functions with a prescribed number of zeros, paying attention to
their norms. In Section 6, we study how the same seminorm can be expressed
in different forms, and we prove in particular Theorem 2.4. Section 7 is
devoted to proving most of the results stated in Section 3 (and some others
concerning M ).

2. MAIN RESULTS

Theorem 2.1. Let ¢ € My have nonzero kernel. Given f € kery with
f # 0andr € (0,]|f), there exists p € IM{ with nonzero nonmazimal
kernel such that o < ¥ and Y(f) =r.

In particular all kernels of seminorms 4, ,, with z regular with respect
to u, strictly contain nontrivial kernels. Therefore, Theorem 2.1 provides a
positive answer to the question of the existence of seminorms with nonzero
nonmaximal kernel. We easily deduce the following.

Corollary 2.2. H* contains infinite chains of nonzero closed prime ideals.
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Theorem 2.3. Let z be regular with respect to a nonprincipal ultrafilter
u in N.  Then there exists a linearly ordered compact and connected set
AL C M with 05, = min A} and || || = max A} such that ker ¢ is nonzero
and nonmazimal for all ¢ € Ay \ {054, |}

Points in My can in fact be written in the form dyw , := limy &y, , where
w may be not regular with respect to v.

Theorem 2.4. My = {dwp : limy 500 |w,| = 1,0 € SN\ N}.

Theorem 2.5. Let z be a reqular sequence with respect tou € SN\N. Then,
for each k € Comp,(z), the maps (;1? = lim, g C;(UT and C;(L} = lim, sy C;‘J
ezist and belong to My, and

k0 ~k, 1)\ __ k,0 ~k,1 k,0 ~k,1
clon (cz,uv z,u) - < Z,10 z,u) U{ Z,1 ) z,u}'

Moreover clgy ( ;’1?, ;ul) is homeomorphic to the interval [0,1], through a

homeomorphism sending ( ;"?, ful) onto (0,1).

The following result says that many seminorms share the same nonzero
nonmaximal kernels.

Corollary 2.6. Let z be a reqular sequence with respect tou € SN\N. Then,
for each k € Comp,(z), all seminorms in ({;’B, d{ul] = (C;’l?, {;"ul) U {C;(’ul}
have the same kernel.

We can compare Corollary 2.6 with Theorem 1 in [7], where it is proven
that each maximal ideal is the kernel of a unique seminorm.

In view of Corollary 2.6, we can consider kernels of seminorms in 9, ,
given by different sequences k and 1. It is very easy to deduce that they
coincide when limy, I, /k,, € (0,400). In any other case, we have the following
corollary.

Corollary 2.7. Let z be a regular sequence with respect to u € SN\ N. Let
k,1 € Comp,(z). If limyl,/k, =0, then ker Q;ul C ker di

Corollary 2.8. The kernel of every point in 9y is nonzero and nonmaxi-
mal.

We easily deduce that ker C; ul is always nonzero and nonmaximal, and
that ker C;l? is nonzero. Moreover, if limy k,, < 400, then C;S = Oz, S0 its

kernel is maximal. Now, we see that the converse also holds.

Corollary 2.9. Let z be a reqular sequence with respect tou € SN\N. Then,
for each k € Comp,(z), ker C;B is nonmaximal if and only if limy k,, = 4o00.

Next, if golz{”lf, cplzfu € MY, do not belong to M, then cplziﬁ = @Li That is,
all points in 9, (with nonmaximal kernel) belong to 9t; but at most one:
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Theorem 2.10. Given ¢ = golz(,’g € My, either p € My, or
@Y= sup m1
meComp, (z) '
Corollary 2.11. Let ¢ = gplz(”g € My, where (|zy]) is strictly increasing.
Then either ¢ € My or o = || ||

We finish our list of main results with a theorem linking the Berkovich
space of the Tate algebra T7 with 9. Recall that T is the Banach algebra
of analytic functions on the closed unit disk DT (0,1), that is, the space of
all power series with coefficients in K converging on D% (0,1). It coincides
with the subspace of H> consisting of all power series > > a,z" with
lim;,_, 0 |an| = 0, and contains the polynomial algebra K|[z] as a dense subset.

The Berkovich space . (T1) is well known (see for instance [1, 1.4.4]).
Each ¢ € .#(T1) can be written in terms of (a limit of) seminorms (p+ (4,
in such a way that there is a natural extension of each ¢ to a i(y) € M
defined in the same terms. We put .#* := . (T1) \ {|| ||}

Theorem 2.12. The canonical map

ic” —i(a)CM
is a homeomorphism. Moreover i (™) is open in M, and 4 (T1) is home-
omorphic to a quotient of M.

3. SOME TECHNICAL RESULTS

We begin this section by giving some well known results concerning the
zeros of analytic functions. Suppose that f(z) =1+ 77, a,2" € H®. For
each r € [0,1), let M,(f) := max,>o |an|7™. We say that r € (0,1) is a
critical radius for f if there are at least two distinct indices m, k such that

My (f) = lam|r™ = |ax| r*.

It turns out that r is a critical radius for f if and only if C'(0,7) contains a
zero of f. Indeed, the number of zeros (taking into account multiplicities)
located in C'(0,7) coincides with the number

Z(fv C(Oa 7")) - Vr(f) - Mr(f)

where v,.(f) and p,(f) are defined, respectively, as the greatest and the
smallest n such that |a,|r™ = M,(f) (see for instance [14, Section 2.2,
Theorem 1] for a proof when K is an algebraically closed extension of @,
but valid also for our K). It is clear from the definition that, if » < s, then
vr(f) < ps(f). In fact, the critical radii form an increasing (finite or infinite)
sequence (R,,) satisfying ur, (f) = vg,_,(f) for all n > 2 that, when infinite,
has 1 as its only accumulation point.

Hence, if » € (0,1) is not a critical radius, then there exists only one
n, € N with |a,, |r" = M,(f) and |f(2)| = |ap, |r"" for all z with |z| = r.
It turns out that n, = vg,(f), where R; is the greatest critical radius strictly
less than r, if there is any, and n, = ug, (f) = 0 otherwise.
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On the other hand, writing v, = vp, (f) for short, we see that |f(0)| =
1 = |ay,| R1" and |ay,,| = 1/Ri™. Also, |ay, | R = |au,| R2"?, giving
lay,| = 1/ (R R™>™) =1/ H?Zl RASCORD)  For all n, this process
leads to |a,, | = 1/ []i-, R2FCOFD We finally remark that
1
12, RACOR))

||fH = sup |al/n‘ =
n

We continue with the results of this section. The proof of the following
lemma is easy.

Lemma 3.1. Suppose that f € H* has exactly k zeros wq,...,wy of abso-
lute value R € (0,1). Then f(z) = g(z) Hle(z —w;), where g € H* has no
zeros of absolute value R. Also, || f]l = |lg||-

Lemma 3.2. Let f € H™ be such that f(0) = 1, and suppose that its
critical radii are Ry < Ro < --- < 1. Suppose also that for each i € N, f has

exactly m; zeros wi, ..., wh, in C(0,R;). Then, given z € D with |z| = Ry,

ka1+~~~+mk71 Hmkl
]:

Hfﬂ R’
Similarly, if Ry, < R := |z| < Rp41, then

_ ok
z wj‘

f(2) =

Rmatetmy

| f(2)] _W

Proof. By Lemma 3.1, f(2) = g(z) Hf:l [T, (z - w;), where g € H* has
m; zeros in each C(0, R;) for every i > k, and no other zeros. This implies
that the critical radii of g are the R; for ¢ > k and that |g(z)| is constantly
equal to |g(0)| on D~ (0, Ri11), that is, when |z| < Rg41,

l9(2)] = |g(0)] = 1/Ry™" - - Ry™*.
Now, the result follows easily. (]

Corollary 3.3. Suppose that f € H*® has no zeros in D~ (2q,r), where 0 <
r < |20|. Then |[f(2)] = |f (20)| for every z € D~ (20,7), and (p+ (2o (f) =
| f (20)]-

Corollary 3.4 will be very useful.

Corollary 3.4. Let z be a sequence in D with (|z,]) increasing and converg-
ing to 1, and let (r,,) be a sequence in (0,1) with DV (z,,1m,) C C(0,|z,]) for
all n. Given a nonprincipal ultrafilter u in N,

B Cpt(z,, ) (F) = I E Dt (2, ) ()
for every f € H®.
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Proof. Since each {p+(;, r,) is multiplicative, it is enough to prove it for
f € H* with f(0) = 1. Also, the result is obvious if f has a finite number
of zeros in D, so we assume that the sequence (wy) of its zeros satisfies that
(Jwg|) is increasing and convergent to 1.

For each n € N, take kj, as the largest k with |wg| < |z,|. If |wg,| < |2/,
then {p+(, r,)(f) = 1 and, by Lemma 3.2,

|Zn‘kn |Zn|kn
<D+(zn,7’n) (f) l—s g gD*(zn,’rn)(f)'
[Ty il TLZy fwil
Similarly, if |wg, | = |zn| and My, = card {m : |wy,| = |wy,|}, then
1 ‘Zn|kn

<D+(zn,rn)(f) = €D+(zn,r")(f)'

EAR | Ly

Now, recall that, if (a,) is a decreasing sequence in R with ">, a, <
+00, then lim, o na, = 0. Equivalently, since (Jwy|) is increasing and
Hzil ‘wk| > 0’ hmnﬁoo‘wkn|kn
quently, limy, o0 |2, | = 1. On the other hand, since ||| = 1/ [ |wgl,
we easily conclude the result.

= 1, so lim, oo |zn|k” = 1 and, conse-

We give a final lemma that will be used later.

Lemma 3.5. Let z € D, z # 0, and suppose that 0 < s < r < |z|. If
f € H®, then

<§>Z(f,D_(z,r))

r fD*(z,r)(f) < gD*(z,s)(f) < €D+(z,r) (f)

Proof. Tt is clear that §p+(. ¢ (f) < Ep+(.,(f). On the other hand, if
wy, ..., wy are the zeros of f in D~ (z,7)\ DT (2,s), and 21, ..., 2, are the
zeros of f in C(0,|z|) \ D~ (z,r), then

+ zZ,8 = _“
§D+(z,s)(f) S SZ(ﬁD (=) H |z — w;| H |z — Zj|
i=1 j=1
S Z(f,D*(z,r)) Z(f (2 T)) m
2 (;) " ]1:[1 |z — 2]
s\ Z(f,D(zr))
= (;) £D+(z,r) (f)a
and we are done. O

4. 9 AND A*

Proposition 4.1 is given in [6]. For the sake of completeness, we provide
a (different) proof.

Proposition 4.1. Suppose that ¢ € M satisfies p = ¢ € MA* on K[z].
Then @ =1 ().
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Proof. To see that ¢ = i(1), it is enough to prove the equality at any
f € H* satisfying f(0) = 1 and having infinitely many critical radii R;.
Since ¢ # || ||, we can find r € (0,1) with ¢ < (p+ (g, and we may assume
that f has m; zeros in each C(0, R;), and that r < Ry < Ry < ---. For
each R € (Ry,1), we write f = Prfgr, where P € K[z] is the product
Pr(z) := [[i-, (z — z), being the z; all the zeros of f in D" (0, R), and
fr € H*™ has no zeros in D" (0, R).

Claim. The limit [p] (f) := limpr_1 ©(fr) exists, and

_ i) ()
o(f) = W [p] (£)-

For R € (Ry,1) fixed, let N be the largest integer with Ry < R, so that
Ry, ..., Ry are the critical radii of Pr. Obviously |Pg| and |f| are constant
in D*(0,7), s0 ¢ (Pr) = [Pr(0)| = [[;2, B;™, and i () (f) = |£(0)] = 1.
Since |[f|| = 1/ [T,y Ba"™", limpo1 (Pr) || fI| = 1 = 1(¥) (f). Also (f) =
Y(Pr)e(fr) for all R, so by taking limits we prove the claim. B

Also, since ||Pgr|| = 1, ||fr]l = ||f]| for all R, and consequently [¢] (f) <
I/l and o(f) <i(¥) (f). We easily conclude that ¢(g) < i(v) (g) whenever
g € H® has constant absolute value on DT (0, 7).

Suppose next that ¢(f) < i(v¥)(f), that is, p(f) < 1. Note that f(z) :=
14> | anz" and, since there are no critical radii R < r, M := sup,,cy anr" <
1, so the function h(z) := f(z) — 1 satisfies |h(z)| < M for all z € DT(0,r)
and i () (h) < (p+(o,(h) < 1. We can write h = Pg, where P € K[z] and
g € H™ has constant absolute value in DT (0, r), which implies that ¢(g) <
i(¢)(g9)- Obviously, (P)i(¢y)(g) = i(¢)(h) < 1, whereas {(P)e(g)
w(h) =1 (because p(f) < 1 and (1) = 1), implying that i () (9) < (g
Since this is impossible, we conclude that ¢(f) =1i(¥) (f).
Proof of Theorem 2.12. It is obvious that i is injective and that i~ : i (./#7*) —
M is continuous. Next, suppose that (()),c, is a net in .#* convergent
to ¢y, € A*. By the definition of convergence of a net, since ¢\, # || |,
there exist r € (0,1) and A; € A such that ¢y < (p+ (o) for all A > Ay, and
(o < Cp+(o,r)- This implies in particular that, for g € H*, if |g| is constant
in DF(0,7), then i (Cy,) (9) = [9(0)] =1(Cx) (9) for all A > Ay

Now consider f € H®. Obviously f = Pg where P is a polynomial
with all its zeros in DV (0,r) and g € H* has no zeros in D*(0,r). Then,
taking into account that P € K[z], for A > A\ and A = Xg, 1(Q)\) (f) =
G (P)[9(0)|. Consequently (i(Cx) (f))yea converges to i(Cy,) (f). The fact
that i is continuous follows easily.

We next see that i(.Z*) is open in M. Given ¢ € .#*, there exists
r < 1 such that ¢ < (p+(,) and a polynomial P € K[z] with all its ze-
ros in DT (0,7) such that {p+(,)(P) < [|[P| /2. Now if ¢ € M satisfies
[W(P) —i(e)(P)| < ||P]l /2, then ¥(P) < ||P]|, so the restriction of 1 to
K[z] is not equal to || ||. By Proposition 4.1, ¢ belongs to i (.#™).

~—

O
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Finally, the map T : 9 — .#(T}) that coincides with i~! on i (.#Z*) and
sends M \ i(.Z*) to || || is easily seen to be continuous and closed. The
result now follows from [3, Proposition 2.4.3]. O

5. SEQUENCES OF ZEROS

It is well known that, in complex analysis, under some natural conditions,
a bounded analytic function can be constructed to have zeros precisely at
a given sequence (z,) of complex numbers in the open unit disk, each with
a prescribed multiplicity (see [10, Theorem I1.2.2]). A similar result does
not hold for nonarchimedean fields, in particular when they are not spher-
ically complete, as it is the case of the p-adic complex fields C, (see [12]).
Nevertheless, in the nonarchimedean context, an analytic function (not nec-
essarily bounded) can be found having as zeros the points of the sequence
(z) when it satisfies a natural condition, but with multiplicities larger (and
not necessarily equal) than those prescribed (see [9], and [4, Theorem 25.5]
for a detailed proof).

Roughly speaking, here we are interested in finding f € H* having zeros
not at points of a given sequence (z,), but close to them, and paying atten-
tion instead to the the fact that any of those zeros is simple and that || f]]
belongs to |K*|.

We begin with a well known result (see for instance [16, p. 15]).

Lemma 5.1. Let vy, ...,7v, € K be pairwise different. Then the rank of the
Vandermonde matrix

1 v m? ...
1 v 7?2 ... !
1 v 3?2 .. gt
1T ’Ynz ce ’Ynn_l

s n.

Next, and throughout this section, we use the notation and basic prop-
erties of critical radii and zeros of analytic functions given at the beginning
of Section 3.

Lemma 5.2. Let P(z) := ap+a1z+---+2z" € K[z]. If P(2) =[[;~,(z—z)
with z1,...,2zy, €D, then |a;] <1 for alli € {0,...,n—1}.
Lemma 5.3. Let Pi(z),Q(2) € K[z], where the degree of Pi(z) is n > 0,
and let

Py(2) := Pi(2) + 2" Q(2).
Suppose that Ry is a critical radius of Py(z) satisfying pr, (P2) > n and that

C(0,Ry) contains exactly k zeros of Py(z), k > 0. Then it also contains
exactly k zeros of Q(2).
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Proof. We write P1(z) == ap+ar1z+...+ay2" and Q(2) := api1 + anyoz +
oot Qpame12™, so that Py(z) = Z?:Omﬂ a;z'. By definition, |a;| Ri* <
]\JR1 (Pg) for all 4 ¢ {,uRl (PQ), VR (PQ)} Also

RyM 1 (P2) — VR, (Pz)’

Mg, (PQ) = ‘auRl (P2) aVRl(PZ)‘ Ry

and |a;| R1" < Mg, (Ps) for i € {pur,(Ps),...,vr,(P2)}. Taking into account
that pr,(P2) > n + 1, we easily see that ug, (Q) = pur,(P) —n — 1 and
vRr,(Q) = vg,(P2) —n — 1. Since, vg,(P2) = k + ug, (P2), the conclusion
follows easily. O

Lemma 5.4. Let My, My, M3 € N. Let P1(z) = p1(2)q1(2) = 1—|—ZT]\LJ:11+M2 anz",
where p1(z), q1(z) € K[z] have degrees My and Ma, respectively. Let Ay and
Ag be the sets of zeros of p1(z) and q1(z), respectively, and suppose that each
zero of q1(z) is simple and max,ec 4, |2| < min,ea, |z|.

Suppose that S € |K*| and that A3 C K has Ms points and satisfy
max,e4, 2| < S < minyeq, |2

Then there exists Q(z) € K[z] of degree My + Ms such that Pa(z) :=
Py(2) + 2MAMALQ(2) can be written as

Py(2) = pa(2)q2(2),
with pa(2) = ro(2)sa(2), where My, Ma + 1 and My + My are the degrees of
ro(2), s2(2) and q2(z), respectively, and

e cach z € Ay U As is a simple zero of q2(2);

e 19(2) has the same critical radit as pi(z), and the same number of
zeros in each critical radius;

e all My +1 zeros of s2(z) are contained in C(0,S).

Proof. We suppose that
{|Z|:Z€A1} = {Rl,...,RNl}
{|Z| 2Z€A2} = {RN1+1,...,RN2}
{|Z| :Z€A3} = {RN2+1,...,RN3},

with Ry < -+ < Ry, and that for each j € {N; +1,..., N3}, there are
k; (pairwise different) points z € Ap U A3 with |2| = R;. Also, for each
Jj€{1,..., N1}, there are k; zeros in A; with absolute value R;.

Fix w; € K with |wi| = S, so Ry, < |wi] < Rn,+1. According to
Lemma 5.1, there exist Mo+ M3z+1 coeflicients by, . . ., bas,+m, € K such that
bo+b1z+ - +bpsy gy 2 M2 TMs = — Py (2) J2MHMeHL for all 2 € Ay UA3U{wn },
that is,

Ma+M3
Py(2) := Py(2) + 2"t ( > bnz"> =0.
n=0

Since Ry, +1 is bigger than |wi| and pijy,|(P1) = Vjy,|(P1) = M1 + Mo,
PRy 41 (F2) > By | (P2) = By |(P1) = My + Mo,
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and we conclude from Lemma 5.3 that Qo(z) := ZQ/EJ Ms b, 2" has exactly k;
zeros in each C'(0, R;) for i = No+1,..., N3. On the other hand, each z € Ay
is a zero of Qu(z), and the degree of Qo(z) is My + M3, so Qo(z) has exactly
k; zeros in each C'(0, R;) for ¢ = N7 +1,..., N3. Since it has no other zeros,
again by Lemma 5.3, if 1 > Ry, with S1 # Rny+1,-.., RN, is a critical
radius for P, then pug, (P2) < My + My, implying that VRy, (Py) < My+ M.
On the other hand, since vry, (P2) > vy, (P1), we deduce that vg,, (P2) =
My + My = pg, (P2). We conclude that |w;]| is the only critical radius for
P, bigger than Ry, and different from all other R;, which necessarily gives
M|w1|(P2) = My + My and V\wl\(P2) = HRn,+1 (P2) = My + 2Ms + 1. This
implies that Py(z) has Ms + 1 zeros in C(0, |w1]).

Finally, since vy, (P») = My + M, we have that ans, s, | Ry, MM >

|bp| Ry, MHM24nL for all n > 0, which implies that

|CLM1+1V[2| RMi+Mz |bn| RMi+Matn+1

whenever 0 < R < Rp,. Consequently, critical radii of P»(z) and Pi(z)
in (0, Rn,] coincide, as well as the number of zeros in each critical radius.
This means that each C(0, R;) contains exactly k; zeros of Py(z), for i =
1,...,Na. O

Proposition 5.5. Let z be a sequence in D with ¢ := [[7 |zn| > 0. Suppose
that the disks DT (zp,€,), n € N, are pairwise disjoint. Then there exists
f e H*® with f(0) =1 and || f]| € |[K*| having exactly a single zero in each
D" (2, €n) and such that, for any other zero z of f, |z| # |za| for every
n € N.

Proof. Let {R; : i € N} ={|z,| : n € N}, and suppose that, for each i, R; <
Ri+q1 and 2, ... 7,2}% are those z, of absolute value R;. We select ¢; € |K*|,
0; < min{e, : |2,] = R;}, and assume also that 61 < Rj.

Pick any Ny € N and define M; := vazll k;. Then take No > Ny such
that, for My := ZzN:zNhLl ki, RN1M2 < ¢ minj<ij<n, (5Zk’

Inductively, for any other n € N, pick N4, > N, such that

RNnM"+1 <ec min 51-]‘3’3,
Np—1+1<i<N,

where M, 1 := Efi’}:}iﬂ ki.
Based on the sequence (Ry, ), we fix a new sequence (Sy,)p>2 in |[K*| with
RNn < Sn < RNn+1
for all n > 2. Next call Ny := 0 and, for n > 1,
B, I{Ran_1+1§ZSNn}
and
A, = {zi,,z}% N1 +1 SiSNn}.
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Clearly, the polynomial

No k; 2
Pi(z) := H (1 - Z)
=1 J

i=1 \j

has degree M; + My and its (simple) zeros are the points in A; U As.

We write Pj(2) := 1+ a1z + -+ an 4,21 M2. Next, by Lemma 5.4,
we can inductively construct a sequence (P, ) in K[z] such that, for all n > 2
and L, := My +2Ms+ --- 4+ 2M,, + Mp11 +n —1,

Py(z):=1+aiz+ - +ag, 2"
can be written as
Pa(2) = pn(2)qn(2) = 0(2)5n(2)qn(2);

for some polynomials

wm=) = ]] lk_[ (1 R 5)

i€BnUBny1 \j=1 J

of degree M,, + M,,+1 having all points in A,, U A,,+1 as simple zeros,

mz) = ]I lk‘[ (1 - wi>

I€B1U-UB,, 1 \j=1 J
of degree My + Mo + - -+ + M,,_1 and with critical radii R; for all i < N;_,

having k; (not necessarily simple) zeros w} in each C(0, R;), and

n M;+1 5
sn(z) == H H (1 - J)

i=2 \ j=1 J
of degree My + M3+ ---+ M, +n — 1 and with critical radii S; (1 < n),
having M; + 1 (not necessarily simple) zeros uj in each C(0,.5;).
Hence, for [ € B, and |z| = Ry,

l k;

z
) = IT (I -2
i=N,_1+1 \j=1 J
RNtttk ki z—zé
- kn ke H N
L A =

RlM1+"'+Mn71

Ri% - Ry FNaa

n—1

rn(2)] =

and
n—1 M;+1

s =TT [ 11

RZM2+---+Mn71+n72

z
o
J

= o Myl My 141"
S 2+ B 1+
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This implies that

ky
(5.1) Pa(2)] = lsnI T |2 - 24
j=1
where L i
1tk
Rk ... Rf

On the other hand, if in addition ’z — zé’ > 0; for all j, then Hflzl ‘z — zé’ >
8% . Taking into account that

1
b
S2M2+1 . SnM’L+1R1k1 s RNnJrlkN"“

laL,| =

we easily obtain

1 RlMl+1\/[2+'“+M7z—1+2Mn+Mn+l+1

1
ar, | Ri'" = =
oL, | B lsn(2)| T S MntL Ry R 'RNnHkN"H Rt thia

Rzkl+”'+an+1

< k kN
Rl+1 I+1 .. ’RNn+1 n+1
M,
- RNn n+1
C
< gk
ki
ol
< IIJ Zj‘-
Jj=1

This implies, by Equality 5.1,
(5.2) laz, | R < [Pa(2)]-
Next, using Lemma 5.2 it is easy to see that, since each P,(z) has all its
zeros contained in D and P,(0) = 1, all its coefficients satisfy
| < 1 - 1
@ —
U IR R TI, S T e
which implies that f(z) == 1+ > ", a;,2™ is bounded and, consequently,
belongs to H*°. Also, the critical radii for f are the R; and the 5;, and it

has exactly k; zeros in each C(0, R;) and M; + 1 zeros in each C(0,S;). We
now define, for n € N,

() = F@) = Paz) = Y ana™

m=Ln+1
Note that, since |ar,,| Ry, ,,“ > |am| By, ,,™ for all m > Ly,

lar, | Ri*" > |am| Ri™
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for | € By, and consequently, if |z| = R;, then

(5-3) l9n(2)| < lar, | Ri™.

We deduce from Inequalities 5.2 and 5.3 that |ar, | Ri'" < |f(z)| whenever
|z| = Ry and ’z — zﬁ‘ > ¢ for all j € {1,...,k}. In particular, if we fix j €
{1,...,k} and take w € D with |w — zé- = &y, then |f(w)| > |ag, | Ri'™ >

gn(zé)’ On the other hand, P, (zé) =0, so ‘f (zé)’ = ‘gn (zg) ‘ This

means that, if we define h(z) := f (z + Zé), then |h(0)| < |h(z)| whenever
|z| = ;. We conclude that either h(0) = 0 or there is a critical radius for h
between 0 and ¢;, and consequently there is a zero of f in D~ (zé-, (Sl>. Since

f has exactly k; zeros in C(0, R;), we are done.

It just remains to prove that the above f can be taken to satisfy || f]| €
|K*|. Note that apart from the R, the critical radii of the function f are
certain S,, € |[K*|N(Ry,,, RN, +1), n > 2, chosen at will. Let us next see that
these can be selected in such a way that || f|| = 1/ (TT52, Rafm T[025 Sp ™)
belongs to |[K*|. Clearly, it is enough to show that every value in the inter-
val ([12%, Ry, M1 1102, R, M) is attained by products of the form
[ S Matl Tt is easy to see that this is equivalent to proving that, given
a set D dense in (0,400), if (ay) and (b,) are sequences in (0,4o00) with
Yol by <ooand 0 < ap < by, for all n, then every T' € (307 | an, Y ooy by)
can be written in the form T' = Y 07 ¢n(t,) with all ¢(t,) € D, where
an(8) 1= san + (1 — s)by, for every s € [0,1] and n € N.

First, it is clear that there exists s; € (0,1) with T = >, gn(s1).
We fix € > 0 and pick ¢t; € [0,1] with ¢1(t1) € D and q1(t1) + ¢2(0) <
q1(s1) + q2(s1) < q1(t1) + g2(1) such that |q1(¢t1) — q1(s1)| < €. Then there
exists s € (0,1) with ¢1(t1) + q2(s2) = qi1(s1) + ¢2(s1), that is, ¢i1(¢t1) +
g2(52) +q3(0) < 322 qn(s1) < qu(t1) + ga(s2) + g3(1). Consequently, there
exists to € (0,1) with g2(t2) € D such that

3
@1 (t) + q2(t2) + g3(0) < D an(s1) < @1 (tr) + qa(t2) + gs(1)

n=1

and ’%(tl) +qa(ts) = >0y Qn(sl)‘ < €/2.

Clearly, we inductively find a sequence (t,) in (0,1) with g,(t,) € D for
each n, and such that ‘Zﬁzl an(tn) — Zﬁzl qn(sl)‘ < ¢/k for all k. Thus
T =377 qn(tn), and we are done. O

Remark 5.1. Note that, for a sequence (7)) in (0,1), the function f in
Proposition 5.5 can be taken so that no T}, is a critical radius for f.
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6. SEQUENCES DETERMINING THE SAME SEMINORMS

In this section we first show that a seminorm is determined by the be-
haviour of the radii of seminorms along an ultrafilter.

Lemma 6.1. Let zo € D\ {0} and s,r € (0,1) satisfy s < r < |zo|. Then,
for every f € H>®\ {0},

0< CD‘*'(zo,r)(f) — <D+(20,s)(f) < (Tz(f7D+(ZO,7')) — SZ(f,D+(20,7"))) “fH .

Proof. We write f(z) = g(z) [[:%,(z — w;), where w1, ..., wy, are the zeros
of fin C(0,|z0|). Taking into account Corollary 3.3, it is easy to see that
<D+(zo,r) (g) = <D+(0,S) (g) Consequenﬂ}I7

D+ (z0m) () = CDt (0. (9) 2(1.D* (z0.1) H 20 — wi
w; €D+ (z0,r)

and that

CD+ (20,9 (F) = Cpt (20,1 (9) Do) I 20— wil.
wi €D+ (zg,r)

Since ||f|l = ||g]|, the conclusion follows easily. O

Corollary 6.2. Let k be a sequence in N. Suppose that u is a nonprinci-
pal ultrafilter in N and that (r,) and (s,) are sequences in (0,1) such that
limy 7, = limy s,"» # 0,1. If z is a sequence in D with ry, s, < |za| for
all n, then limu <D+(Zn,7“n) = limu CD*(zn,sn)'

Proof. We can assume that A € u satisfies s,, < r,, for every n € A.
Let f € H*, f #0. By Lemma 6.1, for n € A,

0< CD*(zn,rn)(f)7CD+(zn,sn)<f) < (rnz(f,D‘F(znmn)) _ SnZ(f,D‘*'(zn,rn))> Hf” )

Obviously, from the hypothesis we deduce that lim, r,'» = lim, s, for
every sequence (t,) of natural numbers, and the conclusion follows. 0

Remark 6.1. In the case when K is not spherically complete, a natural
question is whether the limit of norms based on filters in D with no center
allows us to define new seminorms. We will see that this is not the case.
Suppose that, for each n € N, |||, = limy—00 Cp+ (2, sn ), Where

C(0,]2]) > D¥ (1, 51) D DF (25, 85) O -+

and (oo_; D (204, s%) = 0. Suppose also that lim,_, [2]'| = 1. Take a
nonprincipal ultrafilter u in N and define the seminorm ¢ := lim,, ||-||,, € 9.
It is clear that s, := lim,,—0o s7, > 0 for each n. Consider a sequence (k)
in N such that r := lim, s,*» € (0,1) and take, for each n, an m,, € N such
that lim,, s%nk” =r. Calling r, := sy, and 2, := 27, , we easily check that

¢ = lim, CD‘*’(zn,rn)‘
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Corollary 6.3. Gwen ¢ = limy(p+(z,r,) € Mo, there exist a sequence
(wy,) in D with im,—,« |wy,| = 1 and a sequence (s,) in (0,1) in such a way

that all the disks D" (wy, s,) are pairwise disjoint and ¢ = limy (p+(y,, s,.)-

Proof. Note that, if ¢ = ||-||, then ¢ = lim, CD+( so in all cases we

Zn:‘zn|2)’
can assume without loss of generality that D% (z,,7,) C C(0,|z,|) for all
n. Fix ng € N, and suppose that the set

{n e N:|z,| = |zn,|} = {n1,...,nx}.
It is straightforward to prove that, for each ¢ € {1,...,k}, there exists

)

whenever 43 # i3. This implies that the disks D~ (wy,,r,,) are pairwise
disjoint. Of course we can define a sequence (w,,) with the desired properties
by putting wy, := wy, when z, = z,. Obviously, ¢ = limy (p- (4, r,)- Now,
if we assume that limyr, > 0, then the conclusion follows immediately
taking into account Corollary 6.2. The case when limy, r,, = 0 is similar. [

W, = Max {Tn; s Tny s [Zny, — Zng,

€ C(zp;,Tn,;) such that ‘wml — Wn,,

Remark 6.2. Note that, in Corollary 6.3, if z is regular with respect to u,
then so is w. Taking into account that each ¢ = C; % € My can be written
by ¢ = limy Cp+(w,,s,), Where all the disks D™ (wy, s,) are pairwise disjoint,
we conclude that ¢ € M. Thus, My C MY,

Corollary 6.4. Every ¢ € My can be written by ¢ = limy (p+ where

u € BN\ N and the disks DT (2,,7,) are pairwise disjoint.

Zn,Tn)?

Next we show that the converse of Corollary 6.2 does not hold in general.
In fact, very different behavior of the radii along an ultrafilter can lead to the
same seminorm (see Example 6.6 and Remark 7.2; see also Theorem 2.10).

Proposition 6.5. Let z be a sequence in D with lim,_ |2,| = 1, and let
k be a sequence in N. Suppose that u is a nonprincipal ultrafilter in N with
the property that, for every C' € u,

lilrln H |2 — 2zm|™ < 1.

|zm|=|2n|
meC
m#n
Let (r,) and (sp) be sequences in (0,1) with zpy, ¢ D™ (2n, 1), D™ (2n, Sn)
whenever m # n. If there exists Cy := {n1,na,...,n4, ...} € U such that
lim rp, kny =1 = lim snik”z‘,
12— 00 1—00

then

hllln CD+(zn,rn) = hlrln CDJr(zn,sn)'

Remark 6.3. Note that in Proposition 6.5, if z is regular and k belongs
to Comp,(z), then the seminorm ¢ := limy (p+ (., ,) satisfies (;{,} < ¢. In
Example 6.9, we will see that the equality does not hold in general.
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Remark 6.4. In Example 6.9, we will also see that a weaker assumption in
Proposition 6.5 such as that lim, 7,*» = 1 = lim, s, does not imply that
limu CDJr(Zn,Tn) = hmu <D+(Z7“5n).

Proof of Proposition 6.5. Since we are dealing with an ultrafilter, we can
assume without loss of generality that 0 < s, < r, for all n € Cy. It is
clear that there exists a sequence (1) in N with lim,_,~ I, = 400 such that

lim,ec, nln = 1/2.
n—oo

Take f € H*. We have that, if Z, = Z (D~ (z,,7,)) and

An = H |20 — Zm [P

and

o 2= H |2n — 2|
2€Z(C(0,|znl))

|z—2m|>rmVm

for n € Cp, then

(6'1) snzn)\nﬂn < §D+(zn,sn)(f) < §D+(zn,rn)(f) = rnZnAn,un-

Let a := limy Z,,/(knl,). We easily see that, if o = 0, then lim, s,%" = 1

and, taking limits in Equation 6.1, limy {p+ (., ¢,y (f) = imu p+ (2, ) (F)-
On the other hand, if 0 < a < 400, then there exist A € u with A C Cj

and 8 > 0 such that Z,, > Bk,l, for all n € A. Next, for n € A we define

L, :=min{l,, : m € A, |zn| = |2},
and obtain
BLn
An < H |Zn _ Zm‘ﬁkmL” = H |Zn - Zm|km
|zm|=|2n] [2m [=]2n |
meA meA
m#n m#n

Since lim, yo0 l, = +00, lim ,eq4 L, = 400. Also, by hypothesis, there
n—o0
exist M <1 and A" € u with A’ C A and
H |Zn - Zm|km <M

[2m [=]2n]
me
m#n
for all n € A’. This gives lim,,c 4 A\, = 0, and consequently lim, A, = 0.

n—oo
Finally, it follows from Equation 6.1 that
M &p+ (e, r) (f) =0 =Tméps(, o) (f) =0,
and we are done. O

We next give an example where Proposition 6.5 can be applied.
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Example 6.6. Let z be a sequence in D with [[°7 |2,] > 0. Let Ry < Ry <
- be the absolute values of the z, and, for each 7, suppose that there
are M; > 2 points z, of absolute value R;, and that lim; ,,, M; = +oo.
Suppose also that there exists M € |K*| N (0,1) such that, for all i € N,
2 — 2m| = YV M € (0, R;) whenever |z,| = R; = |z|, n # m.
Fix a nonprincipal ultrafilter v in N and consider the family § of the
complements of all sets D in N with the property that

lim card({z, : n € D} NC(0, R;))
v M;
It is easy to check that § is a filter in N, and that any ultrafilter u containing
§ satisfies the conditions of Proposition 6.5 for k,, = 1 for all n. Thus, if r,, :=
Mi/M for each n with |2,| = R;, then lim, CD+(zpyrn) = MMy Cp+ (2,5, for
any sequence (s,) such that lim, s, = 1 and s,, < r,, for all n.

=0.

Proposition 6.7. Let z be a sequence in D with lim, o |2,| = 1, and let u
be a nonprincipal ultrafilter in N. Suppose that (D~ (zn,7r)) is a sequence
of pairwise disjoint open disks.

If z is not reqular with respect to u, then

lim CD+(Zn,Tn) = lim 5271
u u

Proof. For f € H* with |f(0)] = 1 fixed, let C be the set of all n such
that D™ (z,,ry,) contains no zeros of f. Suppose first that C' belongs to .
Then |f| takes a constant value on each disk D~ (z,,r,), for n € C, and
this same value is taken at each z,, n € C. It is now straightforward to see
that limy d,, (f) = limy(p-(z, ) (f). Suppose next that C' ¢ u, and take
any C' € u with ¢’ ¢ N\ C. Since [[,ccv|2n] = 1/ |If]] > 0 and (zn)nec
is not regular, we can assume that, for all n € C’, there exists at least one
m € C', m # n, with |z,,| = |z,|. Then fix a zero u,, of f in each D~ (2, 7y,)
for all n € C’. It is clear that, for n € (',

§D+(zn,rn)(f) < H |2n — um| = H |20 — 2m] .

[um|=|2n] [2m [=]2n]
meC’ meC’
m#n m#n

Since (2n)c is not regular, infrccr §p+ (2, ) (f) = 0, and we easily deduce
from Corollary 3.4 that limy (pt (., ) (f) = limy Epr(z,, ) (f) = 0. Finally,
since 9z, < (pt(z, we conclude that limy d,, (f) = 0. O

:Tn)’

Exzample 6.8. Let z be a sequence in D with [[7, |z,| > 0. Let {R; : 4 € N}
be the set of the absolute values of all z,, and suppose that S; := |z, — 2z
is constant for all n,m € N with |z,| = R; = |zi|, ¢ € N. Suppose also that
u is a nonprincipal ultrafilter in N such that z is not regular with respect to
u. Then Proposition 6.7 gives us

(62) lim 3z, =1 (s (o, 5
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Obviously, we can define a map 7 : N — N associating each n with the
number 7(n) with |2,| = Rr(,). The meaning of 7(A) for A C N is clear,
as well as that of 7w(u). In fact, 7(u) is also a nonprincipal ultrafilter in N.
Now, it is easy to check that, by Equality 6.2, if each wy is any point in
D* (2n, Sx(), then

lim ., = }3{5 CD+ (w, Sk) -

The following example shows that the result in Proposition 6.5 cannot be
sharpened (see Remarks 6.3 and 6.4).

Ezample 6.9. We consider M, (R;), (M;), z and u to be the same as in
Example 6.6. Suppose that (N}) is a sequence in (0,1) with []p2, Ny > 0,
where Ny := M?2. Clearly, we can find a sequence (4y) in u with 4; = N
and Ag11 C Ag for all k such that each Ay satisfies the following property:
Given i € N, if the cardinal K} of the n in Ay with z, € C(0, R;) is not 0,
then K,i > 2 and

Ki
(A4i_m> " > Np..

Now select sequences (r,,) and (d,) in (0,1) with lim, o7, = 1 and
lim, 500 0p = 0, and such that 0 < 8, < r, < “/M whenever |z,| =
R;. Next consider a function f € H* having exactly Z, simple zeros in
each DT (z,,d,), where Z, := max{k € N:n € A;}, and no other zeros in
the corresponding C(0, R;) (see Proposition 5.5). Note that, for i € N,
lenlzRi Z, < > 72, Ki. Consequently, for each n € N with |z,|] = R;,

ED+ (zn,rn) (f) = rn?m A, where

Ki+Ki+Ki4 =
M, — 1 2 3
M= T Jen— 2l > ( i \I/M) > [ M-
lzm|=|2n] k=1
m#n

Note also that there exists a sequence (I,,) in N with lim,, oo 7,/* = 1/2,
and this sequence satisfies lim, o, = +00. As in the proof of Propo-
sition 6.5 (with k, = 1 for all n), we see that, if lim,Z,/l, > 0, then
limy A,, = 0. Since this is not the case, we deduce that lim, Z,/l,, = 0, and
consequently that lim, r,%* = 1. By Corollary 3.4, taking into account that
ED+ (2 ) () = 0?7 [IR2 ) Ny for all n, we conclude that limy (p+ (., ) (f) #
0. On the other hand, since Ay € u for all &, lim, Z,, = 400, which implies
that for all s € (0,1), lim, s>» = 0 and consequently, Zlf(f) = 0. Thus,
C%’ul # limy Cp+ (2, ) (see Remark 6.3).

On the other hand, Example 6.6 tells us that, if the sequence (r,) is taken
as above, then limy (p+ (., r,) = M (p+(., s,.), Where s, = Mi=/M whenever
|zn| = R;. Now, it is easy to see that lim (p+ (., ,) = limz ) Cor <'1Ui7 Mi’W)’
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where each w; belongs to DT (zn, Mi/M) and 7 is defined as in Exam-

ple 6.8. In other words, if w = (w;) and M = (M; — 1), then limy (p+ (., ) =
MM

w,m(u)°
We can prove that, for the function f above, if t € (0, Ci\v/l;r]\(/{l)(f)), then
there is a sequence (t,) such that limy (p+ (., +,)(f) = t (for this fact, see

the proof of Theorem 2.1 in Section 7). It is also clear that t, < VM
whenever |z,| = R;. On the one hand, this implies that, if we put ¢; :=
limu <D+(zn7tn)’ then

1,1 M, M
Cz,’u < th’ < ¢t” < CW,TI’(U)

and ¢y (f) < ¢p (f) whenever ¢ < t”. This means by Proposition 6.5 that
there is no set {ny : k € N} € u such that limy_, t,,, = 1. Since obviously
limy, ¢, = 1, we see that Remark 6.4 is correct.

Proof of Theorem 2.4. It is obvious that each dyw , belongs to My, because
it can be written as limy ©p+(w,,,1/(2m))- On the other hand, we take ¢ =
limy ¢ p+(z, ), and assume that limyr, > 0. By Corollary 6.3, we can
assume that all the disks DT (z,,r,) are pairwise disjoint and that 7, < |z,
for every n. We see that that the result follows from Proposition 6.7 if z is
not regular with respect to u.

More in general, by Corollary 6.2, each r,, can be taken in |[K*|. Now, for
each n € N| pick N,, € N with N, > n + 1 and such that lim,,_, rpVn = 0.

Also, consider A, := {w?,...,w?{,ﬂ} C C(zn,rn) with ’wZ" —wi| =1y
whenever ¢ # j. We clearly see that all the A, can be taken in such a way
that D% (z,7,) N D*(w,ry,) = 0 whenever z € A, and w € A,,. Using
the lexicographic order, define a sequence w with all the points in J7 ; A,
(that is, if m < m/, then w,, = w}' and w,,; = w?l with n < n’ and, for
n=n',i<j).
Next consider the family § of the complements of all sets D in N with the
property that
lim card({wy, : m € D} N A,)
u N,
It is a routine matter to check that § is a filter in N and that, given an
ultrafilter v containing §, w is not regular with respect to v.
It is also clear that, if s, := 1, whenever wy, € Ay, then ¢ = lim, (p+(
By Proposition 6.7, ¢ = limy 4, -

=0.

Wi ,Sm.)*

We easily see that a slight modification of the above proof shows that
each 6, , with z regular with respect to u can be written as dy , with w not
regular with respect to v.

7. KERNELS OF SEMINORMS

In this section we prove most of the results stated in Section 2.
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Proof of Theorem 2.1. Suppose that ¢ = limy (p+ (., s,), Where s, < |z for
all n. By Corollary 3.4, limy {pt (., 5.)(f) = 0,50 Epr 6 (f) <7/ (21 FI)
for all n in some Cj € u.
Fix n € Cj and suppose that wy, ..., wy are the zeros of f in C (0, |z,|). It
is clear that the function F), : [0, |z,|] — R given by s H;?:l max {s, [z, —wj|},
is continuous and increasing. Also F, (]z,|) = \zn|z(f’c(0’|z"‘)), and, conse-
quently limp,ec, Fy, (|2n]) = 1, and there exists n, € Cp such that F,, (|z,|) >
r/ || f] for all n € Cy with n > n,.. Since F,(0) < €D+(zn,sn)(f) <r/|fll, for
n € Cy with n > n,., we can find r,, € (0,]z,]) such that

Fo(rp) = rnz(f7D+(Zan)) H |2 — wyl .

r
I o
Obviously £p+ (s, r,) (f) = 7/ || f]| for all n. Consequently, if we define v :=
limy Cp+ (2, ), then by Corollary 3.4, ¢ (f) = r.

Note that any two of the above disks DT (2,,7,) are either equal or dis-
joint. For each k € Cy, we set ng := min{n : D (2,,7,) = DT (2x,71)}, in
such a way that the disks D7 (2,7, ) are pairwise disjoint. Put vy := 2y,
and ty := ry, for all k. Then define a new ultrafilter v in N: A set C C N
belongs to v if the set of all n € Cy such that DV (z,,7,) = DT (v, tx),
for some k € C, belongs to u. It is a routine matter to check that i) =
limy Cp+ (v, ¢,,)- On the other hand, by the definition of r;,, we easily see that

each Z (f, D" (zn,75)) > 1, which implies that, for k € N fixed,

T
H |Uk _Ul| Z H |an _wm| Z m

‘Ull‘;}:k‘ |Z"k —wm|>rnk

The fact that v is regular with respect to v follows easily and, consequently,
1) belongs to M.

On the other hand, by Proposition 5.5, we can find g € H* with as many
zeros in each D (z,,r,) as we need so that ¢(g) = 0. This shows that ¢ is
not a norm. U

Proposition 7.1. Let z be a regular sequence with respect to u € SN\ N,
and let k € Comp,(z). Then there exists f € H™ with || f|| =1 such that

0<Gu(f)<r
for all r € (0,1) and C;{J(f) < C;(us(f) fo<r<s<l.
Proof. We consider C € u such that

M = 711612 H ES —zm|k’" > 0.

meC
m#n

Forr € (0,1) and n € C, put r, := */r. Consider a sequence (d,,) of positive
numbers converging to 0 with the property that the disks DT (z,,d,) are
pairwise disjoint. Then, since [], .~ |zn|k" > (0, we can use Proposition 5.5
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and take f € H* with ||f|| = 1 and f(0) # 0 having exactly k, simple
zeros in each DT (z,,d,) whenever n € C, and no other zeros in the circles
C(0, |zm])-
We put, for each n € C, T), := > ., _...|<r, km- Note that if T' :=
meC
inf,ecrn’™ = 0, then M = 0, against our hypothesis. Thus 7' > 0 and

Ty
a:=lim— € (1, 400).
u ky,

On the other hand, it is clear that, for every n € C,
n km
£D+(zn,rn) (f) = TnT H ‘Zn - Zml

|z2m—2n|>Tn
|20 [=[2n |
meC

belongs to the interval [MTnT",Tnk"} C [MT,r] and, by Corollary 3.4,
MT < G(f) <
Suppose next that s € (r,1) and s, := /s for n € C. As above,
§D+(Zn78n)(f) = snsn H |Zn ~ Zm|km

|zm —2zn|>sn

|2m |=2n |
meC
where Sy, := ). . |<s, km. Also, foralln € C,
meC
n n km n km
snS Z SnT H |Zn - Zm| 2 TnT H |Zn - Zml
Snzlszzn‘>’rn 5n2‘2m72n|>7'n
meC meC
and, consequently, the fact that C;lf(f) = ;lf(f) implies that lim, s, =
lim, 7, ™", that is, s® = r®. We conclude that {;‘J(f) < (;‘,f(f) O

Remark 7.1. In the proof of Proposition 7.1, we see that if the set C' can
be taken equal to N, then the same function f makes the result hold for all
u € SN\ N simultaneously.

Prior to proving Theorem 2.5, we give the following lemma.

Lemma 7.2. Let a : (0,1) — [0, +00] be an increasing function. If ro €
(0,1), then there exist r1 > ro and M € R such that

ra(max{m,’r‘}) - roa(max{?"oﬂ‘}) <M |’I" _ TOl

for every r € (ro/2,m1].

Proof. Let 8 := inf,~,, a(r). If 8 = 400, then a(r) = +oo whenever
r e (rg,1), so r®") — () = 0. If B < 400, we find 1 > 7y such that
B < a(r1) < +oo. By the Mean Value Theorem, for each r € (rg,r],
there exists ¢ € (rg,r) with 7" — @) = a(r) =1 (+ — ry). Now, if
B < 1, then r; can be taken with a(r;) < 1, giving ¢*("~1 < 7581 and
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) — @) < a(ry) 10?1 (r — ). On the other hand, if § > 1, then
=1 < 1 and r*0) — () < a(ry) (r — rg).

We next consider the case 0 < r < rg. First, if a(rg) = +oo, then
r®(0) — (o) = (. On the other hand, if a(rg) < +oo, then there exists
¢ € (r,rg) with rg®(0) — a(0) = ¢ (rg) *("0)=1 (15 — ). This implies that,
when a(rg) > 1,

r®r0) — r2(r0) < o(rg) (ro — 1)

for all » € (0,79), whereas when «(rg) < 1

a(rg)—1
ro®(0) — (r0) < () (%0) ’ ro — 1)
for r € (ro/2,r0).
The conclusion follows easily. O

Proof of Theorem 2.5. We write (, := C;J, for short. We deduce from
Proposition 7.1 that the map ® : (0,1) — 9M, r — (., is injective. Let
us next see that it is continuous. Fix f € H* with 0 < || f|| < 1 and, for
0<r<landn€N,put Z,(r):=Z(f, D" (2, "/r)) and

Zn(7)
kn

It is easy to see that the function « : (0,1) — [0, 00| is increasing.
Now, consider 0 < s < r < 1. Since there exists C € u such that

lim ,cc \zn|k” =1 and we are dealing with an ultrafilter, there is no loss of
n—oo

generality if we assume that */r < |z,| for every n € C. By Lemma 6.1,

CDJ“(% ’“W)(f) y <D+(zn, k%)(f)‘ <( ’“{L/F)Z”(T) —( k%)zn(T)
for all n € C, so

G- (f) = G < Tim ( S lim ( /5)%n ()

_ polr) _ gatn).

a(r) = hl{n

The fact that ® is continuous is now easy by Lemma 7.2.

Let us next study whether there exist lim, ¢ ¢, and lim,_,1 ;.. Note that,
given f € H®, the map ¥y : (0,1) = R, r — (.(f) is increasing and
bounded, so there exist (o(f) := lim,—o Vs(r) and (i(f) = lim, 1 Wp(r).
It is clear that the maps (p and (1 defined in this way belong to 9. Also,
since, (. # (s for every r # s, we conclude that the the natural extension
of ® to a new map (call it also ®) @ : [0,1] — 9N is indeed injective and
continuous, so it is a homeomorphism onto its image. The fact that ®[0,1] =
clon (C;f;?, C;{’ul) is now easy.

We finally prove that C;f, ;1? € My. We are going to see that there exist
a sequence w in D with lim, e |wm| = 1, a nonprincipal ultrafilter v in N,
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and sequences (7y,) and (t,,) in (0,1) such that (é{l? = limy Cp+( and
Gt = 1My Cpt (w0 ) .
We fix s € (0,1). For eachn € Nand j = 1,...,n, let 75, :== "/s/j. We

write A,, := {r% 1< < n}, and consider A = UZO:1 A,,. Then rename

Wi, 7T‘m)

the 7}, € A by rq := T%,rg = r%,rg = r%,m = 7“31)7 ... We also put wy, := 2z,
when 7, = 7.

For each N € N, each D € u, and each sequence 1 in N such that limy [,, =
400 and [, < n for all n, consider the set DIN of all m € N satisfying
Tm =74, for N < j <1, and n € D. It is easy to check that the family F
of all sets D}V is the basis for a filter § in N. Fix an ultrafilter v containing

§. Since, for N € N fixed, the set C of all m such that r,, = ) with j>N
belongs to §, C;’us/N > = 1imy (p+ (wy, ) > and consequently (;’1? > .
On the other hand, for f € H* and € > 0, there exists C' € v such

that (p+(w,.,rm)(f) < ¥(f) + € for all m € C. Consider the set M, :=
{j rd = Tm, M € C} for each n € N, and note that the family D of all n

with M,, # () belongs to u. Also, for n € D, define m,, :== min M,,. By the
construction of F, N := limy, m,, belongs to N, and consequently the set of
all n € D with m, = N belongs to u. Then (p+(;, ,~)(f) < ¥(f) + € for

all n € D and {;f/N(f) < ¢¥(f) + e It is a routine matter to check that

)
0 <y, |
As for Q;’ul, we define 7, := "t/1 —s/j for eachn € Nand j = 1,...,n,

and set ¢, := t}, in a similar way as above. Consider also the same se-
quence (w,,) and the same ultrafilter v as above. The fact that (; v o=
limy Cp+(wp, t,,) fOllows easily. O

Proof of Corollary 2.6. The fact that ker C;‘J = kerd‘,’,f, for r,s € (0,1),
follows easily from Lemma 3.5 and Corollary 3.4. Also, if » € (0,1), then
Con < Gl Since Gt = limy 1 Gow, ker G = ker (i for all € (0,1). O

Proof of Corollary 2.7. Obviously, for every r € (0, 1), ;Z < C;i?a so ker C;;?
ker di Now, ker C;ul C ker C;l? by Proposition 7.1, and we are done. U

Proof of Corollary 2.8. Fix ¢ = ker Q;‘,I € M. By Proposition 7.1, ker (;’L?
strictly contains ker ¢, so ker¢ is not maximal. On the other hand, by
Remark 1.2 (assumming without loss of generality that C = N), we fix
ro € (0,1) such that all the disks D (zz-, Ki 7‘0) are pairwise disjoint. Next,
taking into account that [[77 |zn|F™ > 0, it is easy to see that there exists a
sequence (I,,) in N with lim,, o l,, = 400 such that [[>7 |zn|l"k" > 0. Now,
we can use Proposition 5.5 to construct f € H* having [, k,, zeros in each
D™ (2, */rg). Obviously, ;(’uro(f) = 0. By Corollary 2.6, ker ¢ = ker C;"fo,
SO ¢ is not a norm. O
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. 1,1/2 k0
Proof of Corollary 2.9. Clearly, if lim, k, = 400, then (;}'" < (i, and

ker C;;}/Q C ker Q;’l? C ker g‘zljj/Q. It follows from Corollary 2.8 that ker (;’1?
is nonzero and nonmaximal. The converse is easy. O

Proof of Theorem 2.3. Let [z, || [[loy, be the family of all seminorms in
My of the form limy (p+(z, r,). It is immediate to see that [0y, | [|]gy, 1s
linearly ordered with respect to the usual order <. We next prove that
Ay = clon [z, || [lgy, is also linearly ordered.

Given different ¢, ps € AL, there exists f € H* which separates them.
We can assume without loss of generality that ¢1(f) < pa(f). Next, as in
the proof of Theorem 2.1, for r € (¢1(f),p2(f)) we can find r, € (0,1)
such that (p+ (., ) (f) = r for all n in a certain C' € u. Obviously ¢ :=
UMy Cp+ (2, ) € [0z || [|]gn, satisties

e1(f) <o(f) < walf).

A
Now, let (cplz(u’”) be a net in [0z, || ||lg; converging to ¢1. Then
’ AEA ’ %

there exists A\g € A such that @lz(i;”(f) < (f) for all A > Ao, A € A. In
particular, for each A\ > \g,

1111;Il <D+ (Zn, kAW) (f) < hl{n §D+(zn,rn)(f)a

and consequently there exists F\ € u such that
A
T)\l/k < ry

for all n € Ey. This obviously implies that, for g € H*°, cpl;:;” (9) < ¥(9)
whenever A > A\g. We conclude that ¢; < ?. Similarly ¢ < 3. The fact
that the compact set A} is linearly ordered follows.

We next see that A} is connected. Suppose to the contrary that A} is the
union of two disjoint (nonempty) clopen subsets U,V (with respect to the
induced topology). Suppose also that ¢; € U and g € V satisfy ¢1 < 9.
We define

Y1 :=sup{p eU:p < pa}.
Obviously 1 € U and 11 < @9. Similarly,

o :=inf{p e V¢ <o}

belongs to V, and 91 < 9. As we showed above there exists ¢ € AL,
different from 7 and 19 such that 11 < 1) < bs. Tt is clear that ¢ ¢ UUV,
which is impossible.

Now suppose that ¢ € A}, ¢ # 05, || ||. Then there exists r € (0, 1) such
that CZIJ < ¢ and, by Corollary 2.8, ker ¢ is not maximal. On the other
hand, since ¢ # || ||, ker ¢ # {0}, as follows from Proposition 4.1. O
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Proof of Theorem 2.10. Suppose that ¢ ¢ 9y, that is, for all C' € u,
inf,cc [Imec |2n —zm|km = 0. We deduce that, if m € Comp,(z), then
m#£n

limy, m,, /ky, = 0, and Cz"jjl < cplz(f: Thus, SUPmeconp, (z) C;n,dl < .

To finish the proof, it is enough to see that for each f € H™, there
exists m(f) € Comp,(z) such that ¢(f) = zlu(f)’l(f). Consider f € H*®. If
o(f) = 0, then Czlﬂ/g(f) = 0 and, by Corollary 2.6, Czlﬂll(f) = 0, so we can
take m(f) = 1. Next, suppose that f ¢ ker p.

For each n € N, put r, = ®/r and m,, := Z(f, D™ (zn,rn)). If there
exists C' € u such that m,, = 0 for all n € C, then by Corollary 3.3 | f(z,)| =
CDH(2n,rn) (f) for every n € C. It follows easily that d,.(f) = Czlylfw(f) =o(f)

for all M € (0,1), so ¢(f) = ¢au (f). On the other hand, if the above set C
does not belong to u, then for n € N

IT lon—21™ 2 €ps e (D).
|2j1=zn]
JEN\C
J#n
Also, by Corollary 3.4, thereis D € uwith D C N\C such that {p+;,, ) (f) =
o(f)/2||f|l for all n € D. Therefore m(f) := (max{m,,1}) belongs to
Comp,(z). On the other hand, it is a routine matter to check that, for
M € (0,1) fixed, the set of all n with ™/M < 7, belongs to u and, by
Lemma 3.5,

MEp+(zr)(F) < Ept (. myan) () < €D+ ) (F)-

Again by Corollary 3.4, this implies that M(f) < C;}l(f)’M(f) < p(f) for
all M € (0,1), and consequently ¢(f) = ;lu(f)’l(f). O

Remark 7.2. The following should be compared with Proposition 6.5. Let
z be a regular sequence with respect to u € SN\ N, and let k be a sequence
in N. Let 7 € (0,1) be such that z,,, ¢ D" (2, ®/r) whenever m # n. We
see in the proof of Theorem 2.10 that, if k ¢ Comp,(z), then cplz(;{f = api’ﬂ for
all s € (0,r].

Proof of Corollary 2.11. Set r,, := */r for all n. Suppose that there ex-
ists f € kerp, f # 0, and put Z, := Z(f,C(0,]|z,|)) for all n € N. By
Corollary 3.4, limy {p+ (., ) (f) = 0, and consequently lim, rp? = 0. This
implies that lim, Z, /k, = 400, so there exists C € u with Z,, > k, for all
n € C. Since ||f|| > 1/T],cc |2a|*", we conclude that Hnec\zn|k” > 0.
Now the fact that k belongs to Comp,(z) is easy.

On the other hand, if ker ¢ = {0}, then the fact that ¢ = || || follows from
Proposition 4.1. (I
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Corollary 7.3. Given ¢ := cplz‘;ﬂ €My If ¢ ¢ My, then

We

ker p = m ker C;};l.

meComp, (2)

end the paper by listing some questions for which we do not have an

answer.

1.

Does there exist ¢ € 9y with nonmaximal kernel such that ker ¢ #
ker ¢ for all p € My \ {p}?

More generally, does there exist ¢ € 9 with unique nonmaximal
kernel, that is, such that ker vy # ker ¢ whenever ¢» € 9 and i # ¢?
Does there exist ¢ € 9N with nonmaximal kernel such that f € ker ¢
and [’ ¢ ker ¢ for some f € H®?

. Does there exist ¢ € 9 with mazimal kernel such that [’ € ker¢
whenever f € ker ¢? (stated in [13])
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