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Elliptic curves over a finite field Fq with j-invariant 0 or 1728, both supersingular and ordinary, whose
embedding degree k is low are studied. In the ordinary case we give conditions characterizing such
elliptic curves with fixed embedding degree with respect to a subgroup of prime order ℓ. For k = 1, 2,
these conditions give parameterizations of q in terms of ℓ and two integers m, n. We show several
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an example is provided.

Keywords: Elliptic curves, Embedding degree, Distorsion maps, Pairing-based Cryptography,
Bateman-Horn’s Conjecture.

2010 AMS Subject Classification: 14H52, 94A60.

1. Introduction

Let E be an elliptic curve defined over a finite field Fq, with q = pr, p prime, p ≥ 5,
given by its Weiertrass model y2 = x3+Ax+B; A,B ∈ Fq. For general results on elliptic
curves we refer to [21] and for their cryptographic applications to [4]. Let us remember
that the cardinality N = #E(Fq) is given by N = q + 1 − t, where t, the trace of the
Frobenius endomorphism, satisfies (Hasse theorem) |t| ≤ 2

√
q. When p - t the curve

E/Fq is called ordinary and its endomorphism ring End(E) can be embedded as an

order in the quadratic imaginary field K = Q(
√

t2 − 4q), while if p | t the curve is called
supersingular and End(E) can be considered as an order in a quaternion algebra.
Let E(Fq) be the set of rational points of E over the finite field Fq. This set can be

endowed with a structure of abelian group. This group was proposed to be used in dis-
crete logarithm cryptosystems instead of the multiplicative group F∗

q as it is stronger
against cryptanalytic attacks. However, Menezes-Okamoto-Vanstone (MOV) and Frey-
Rück (FR) algorithms allow, using pairings (Weil, Tate, etc), the translation of the Dis-
crete Logarithm Problem (DLP) on the points of E(Fq) to the DLP on a field extension
Fqk (see [4] or [16]). The natural number k (the embedding degree) is characterized by
the following definition.
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Definition 1.1 Let ℓ be a divisor of N = #E(Fq) (usually ℓ a prime). The embedding
degree of E/Fq with respect to ℓ is the smallest natural integer k verifying the equivalent
conditions:

i) ℓ | (qk − 1).
ii) F∗

qk contains a cyclic subgroup of order ℓ.

If ℓ is the greatest prime divisor of N = #E(Fq), then k is called the embedding degree
of E/Fq.

It is also worth nothing the following result by Balasubramanian and Koblitz [1]: if
k > 1 the conditions i) and ii) are equivalent to

iii) E(Fqk) contains the full ℓ-torsion group E[ℓ] ∼= Z/ℓZ× Z/ℓZ.

Nevertheless, if k = 1, the group E[ℓ](Fq) can be either cyclic (of order ℓ) or the full
group E[ℓ].

The DLP on elliptic curves with small k could be vulnerable to MOV and FR attacks.
However, curves with small embedding degree are suitable in Pairing-based Cryptography
[5]. For both destructive and constructive reasons, it is advisable to know the embedding
degree of a given elliptic curve. Supersingular elliptic curves have embedding degree less
than or equal to 6 (in fact, in this paper, since characteristic p ̸= 2, 3, k = 1, 2, 3), while
ordinary curves with small degree are scarce [1].
Elliptic curve cryptosystems work on a cyclic subgroup ⟨P ⟩ ⊆ E(Fq) of order ℓ (usually

a prime). Nevertheless, the alternating property of the Weil pairing eℓ implies that eℓ is
trivial for every couple of points Q,R ∈ ⟨P ⟩. The same happens frequently for the Tate
pairing, [5, Chapter IX]. To avoid this obstacle, a modified pairing is used, employing a
distortion map.

Definition 1.2 A distortion map for a point P ∈ E(Fq) of prime order ℓ, coprime with
p, is an endomorphism σ of E defined over Fqk such that σ(P ) ̸∈ ⟨P ⟩ (eℓ(P, σ(P )) ̸= 1).

Distortion maps always exist on supersingular elliptic curves but never for ordinary
elliptic curves with embedding degree greater than 1 (see [22]). For ordinary curves with
k = 1 they can exist only if E[ℓ] ⊆ E(Fq). Nevertheless, in this case, ℓ must satisfy other
conditions to guarantee the existence of a distortion map, see Theorem 2.1 of [7].
In this paper, we will study the embedding degree and distortion maps for curves with

invariant j = 1728 (i.e. with Weiertrass equation y2 = x3 + Ax) and j = 0 (curves
with equation y2 = x3 + B). These curves are well studied in the classical theory of
elliptic curves [21]. Since the Weierstrass form of these curves is very simple, addition
and doubling can be computed efficiently. These curves can be supersingular or ordinary
and we consider both cases separately. Elliptic curves with j = 0 and embedding degree
1 have been studied recently in [13] by Kirlar.
Our interest is focused on the characterization of families of curves for different small

embedding degrees and not on implementation considerations, such as performance and
cryptographic security requirements.
The paper is structured as follows. Section 2 recalls some basic information on elliptic

curves with j-invariant 0 and 1728. Section 3 is devoted to supersingular curves, while
ordinary elliptic curves are studied in Section 4. Finally, some particular families and
examples are given in Section 5. From numerical experiments, we can deduce that the
number of elliptic curves of the families with embedding degree 1 or 2 closely approaches
the expected value given by the Bateman-Horn’s conjecture [3].
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2. Elliptic curves with j-invariant 0 and 1728

Isomorphism classes and some information about the cardinality of the elliptic curves
with j-invariant 1728 or 0 were provided in [19]. In the present paper we will use those
number theoretic results as a tool and apply them to the aim stated above. In order to
be self-contained, in this section we recall such results from [19].

Proposition 2.1 ([19, Proposition 3.1]) The number of isomorphim classes of elliptic
curves with j-invariant 1728 over Fq, q = pr is given by

i) If q ≡ 3 (mod 4) (so p ≡ 3 (mod 4) and r odd) then there exist two isomorphism
classes with representatives,

y2 = x3 + x, y2 = x3 − x. (1)

Both curves are supersingular.
ii) If q ≡ 1 (mod 4) then there exist four isomorphism classes with representatives,

Ei : y
2 = x3 + ωix, 0 ≤ i ≤ 3, (2)

where ω is a generator of F∗
q. For p ≡ 3 (mod 4), so r even, these curves are

supersingular, otherwise the curves are ordinary.

Remark. The curve E0 and its quadratic twisted E2 are independent of the particular
generator ω, but E1, E3 can be interchanged when changing it.

Lemma 2.2 ([19, Proposition 3.5]) The traces ti of the Frobenius endomorphisms of the
curves Ei given in (2) verify:

t0, t2 ≡ 2 (mod 4), t1, t3 ≡ 0 (mod 4),

t0/2 ≡ 1 (mod 4) and t2/2 ≡ 3 (mod 4).

Proposition 2.3 ([19, Proposition 2.1]) The number of isomorphim classes of elliptic
curves with j-invariant 0 over Fq, q = pr is given by

i) If q ≡ 2 (mod 3) then there exist two isomorphism classes with representatives,

y2 = x3 + 1, y2 = x3 +B, B ∈ F∗
q − (F∗

q)
2. (3)

Both curves are supersingular.
ii) If q ≡ 1 (mod 3) then there exist six isomorphism classes with representatives,

E′
i : y

2 = x3 + ωi, 0 ≤ i ≤ 5, (4)

where ω is a generator of F∗
q. For p ≡ 2 (mod 3), so r even, these six curves are

supersingular, otherwise the curves are ordinary.

Remark. E′
0, E

′
1 and E′

2 are respectively a quadratic twist of E′
3, E

′
1 and E′

5. There
is an ambiguity in the identification of E

′

1 or E5
′ (resp. E

′

2 and E4
′). They depend on

3



August 12, 2015 12:34 International Journal of Computer Mathematics Ellipticlowembf

the generator ω we take for F∗
q . For instance, giving two generators ω, ω′ such that

ω = (ω′)j ; j ≡ 5 (mod 6) then the curve E′
1 : y2 = x3 + ω could be also read as

E′
5 : y

2 = x3 + (ω′)5. Only E′
0, E

′
3 are independent of the particular generator ω.

Lemma 2.4 ([19, Proposition 2.3]) The traces t′i of the Frobenius endomorphisms of the
curves E′

i given in (4) verify:

t′0 ≡ 2 (mod 6), t′3 ≡ 4 (mod 6), t′1, t
′
5 ≡ 1 (mod 6) and t′2, t

′
4 ≡ −1 (mod 6).

3. The supersingular case

The taxonomy of supersingular elliptic curves and their embedding degree is well estab-
lished, see for instance [16]. The determination of the cardinality of supersingular curves
with j = 1728 or 0 is already given in [19] and consequently their insertion in such clas-
sification is easy. We summarize those results in the following subsections, giving also a
distortion map for each curve. Some of these distortions can be found in [5], while others
are adaptations of the general method suggested in [22].

3.1 Supersingular curves with j = 1728

The cardinality of these curves is given by the following result.

Lemma 3.1 ([19, Section 3]) For the supersingular elliptic curves given in Proposition
2.1 we have:

i) y2 = x3 + x, y2 = x3 − x have cardinality q + 1 over Fq, q ≡ 3 (mod 4).
ii) E1 and E3 have cardinality q+1, E0 has cardinality q+1±2

√
q and E2 has cardinality

q+1∓2
√
q over Fq, q ≡ 1 (mod 4), q = pr (the sign corresponds to r ≡ 2, 0 (mod 4)).

Curves with equation (1) have embedding degree k = 2. According to [16] their groups
of points are isomorphic to either Z/(q + 1)Z or Z/(q + 1)/2Z × Z/2Z. For any prime
divisor ℓ ̸= 2 of their group order and for any P = (x, y) of order ℓ a distortion map is
given by

σ(x, y) = (−x,
√
−1y). (5)

Since
√
−1 ̸∈ Fq, both points P and σ(P ) are linearly independent over Fq.

The curves E1, E3 have cyclic groups and embedding degree k = 2. Now as
√
−1 ∈ Fq,

then (5) is not a distortion map. Nevertheless, we can take (for any prime ℓ ̸= 2) the
map,

σ(x, y) =

(
ωi( 1−p

2
)xp,

√
ωi( 3(1−p)

2
)yp

)
. (6)

The curves E0, E2 have rational groups Z/(√q ∓ 1)Z × Z/(√q ∓ 1)Z and embedding
degree k = 1. Since these groups contain the full group of ℓ-torsion, the map given in (5)
is also a distortion map for any point P of order ℓ, except if P is an eigenvector for the
endomorphism σ.
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3.2 Supersingular curves with j = 0

The cardinality of these curves is given by the following result.

Lemma 3.2 ([19, Section 2] For the curves of Proposition 2.3 we have:

i) y2 = x3 + 1, y2 = x3 +B have cardinality q + 1 over Fq, q ≡ 2 (mod 3).
ii) E′

0 has cardinality q + 1 ± 2
√
q and E′

3 has cardinality q + 1 ∓ 2
√
q over Fq, q ≡ 1

(mod 3), q = pr (the sign corresponds to r ≡ 2, 0 (mod 4)).
iii) E′

1 and E′
4 are quadratic twist. The same occurs with E′

2 and E′
5. E′

1 and E′
5 have

cardinality q + 1 ± √
q and E′

2 and E′
4 have cardinality q + 1 ∓ √

q over Fq, q ≡ 1
(mod 3), q = pr (the sign corresponds to r ≡ 2, 0 (mod 4)).

Curves with equation (3) have embedding degree k = 2 and group cyclic or isomorphic
to Z/(q+1)/2Z×Z/2Z. For any prime divisor ℓ ̸= 3 dividing the cardinality and for any
P = (x, y) of order ℓ a distortion map is given by

σ(x, y) = (ζ3x, y) (7)

with ζ23 + ζ3 + 1 = 0 over Fq.
E′

0, E
′
3 have groups isomorphic to Z/(√q± 1)Z×Z/(√q± 1)Z and embedding degree

k = 1. For any prime ℓ ̸= 3 dividing #E(Fq) the above map is a distortion map for any
point P = (x, y) not eigenvector of σ.
The four curves E′

1, E
′
2, E

′
4, E

′
5 have cyclic groups, embedding degree k = 3 and if

α ∈ Fq3 such that α3 = ωi, i = 1, 2, 4, 5, a distortion map is:

σ(x, y) =

(
xp

αωi(p−2)/3
,

yp

ωi(p−1)/2

)
. (8)

4. The ordinary case

Several constructions of ordinary elliptic curves with small embedding degree can be
found in the literature, for example [2], [5, Chapter IX], [9], [17], [13], [14] or [11]. Most of
them are based on the following idea: Given an embedding degree k, look for a suitable
equation t2 − 4q = Dh2 with a small D and then determine an elliptic curve with
discriminant D and cardinality q + 1− t using the complex multiplication method. Our
approach is, in some way, opposite to this because we impose D = −1,−3 (i.e. j =
1728, 0) and we look for suitable values of ℓ and q that guarantee the desired k.
According to Propositions 2.1 and 2.3, elliptic curves over Fq are ordinary if j = 1728

and p ≡ 1 (mod 4) and if j = 0 and p ≡ 1 (mod 3). To characterize when these elliptic
curves have low embedding degree we will take advantage of the following result, given
by Cocks and Pinch [6].

Lemma 4.1 An elliptic curve E has embedding degree k with respect to ℓ if and only if
t ≡ 1 + ζk (mod ℓ), for ζk a kth root of unity modulo ℓ.

Thus, as t is the trace of the Frobenius endomorphism π, first we have to impose
conditions for it, so that one of four elements in Z[

√
−1] (respectively six elements in

Z[1+
√
−3

2 ]), with norm q has the right trace. Then we have to decide which of the four
curves Ei (respectively six curves E′

i) corresponds to such π. For this purpose Lemmas

5
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2.2 and 2.4 will be useful.
To continue, we will study separately the cases of embedding degree k = 1, 2 and

higher.

4.1 Embedding degree 1

According to Lemma 4.1, the trace of the Frobenius endomorphism of an elliptic curve
with embedding degree k = 1 with respect to ℓ must be t ≡ 2 (mod ℓ).
We first consider elliptic curves with j = 1728. In this case, the endomorphism ring O

is OK = Z[
√
−1].

Theorem 4.2 One of the four curves Ei : y2 = x3 + ωix has embedding degree 1 with
respect to ℓ if and only if

q = (m2 + n2)ℓ2 + 2mℓ+ 1, m, n ∈ Z, m ≡ n (mod 2). (9)

Such a curve has cardinality (m2 + n2)ℓ2.

Proof. Since j = 1728, the Frobenius endomorphism can be written as π = a+ b
√
−1 for

some integers a, b, in the ring OK . From Lemma 4.1, its trace satisfies t = 2a = 2+2mℓ,
hence a = 1 +mℓ, for some m ∈ Z. On the other hand, ℓ divides #E(Fq), so ℓ | (q − 1),
then q = N(π) = a2 + b2 ≡ 1 (mod ℓ). Consequently, ℓ | b and there exists an integer n
such that b = nℓ. Hence, q = (1 +mℓ)2 + (nℓ)2 = (m2 + n2)ℓ2 + 2mℓ + 1. Taking into
account that q is odd then m and n have the same parity. �

Theorem 4.2 does not specify which of the four curves Ei has embedding degree 1, but
from Lemma 2.2 we can give more information. If m is even, ti ≡ 2 (mod 4) and i = 0 or
2. Moreover, for ℓ an odd prime, we can distinguish between the curves: E0 corresponds
to m ≡ 0 (mod 4) and E2 to m ≡ 2 (mod 4). So, we can establish a necessary and
sufficient condition to ensure that the elliptic curve E0 or E2 has embedding degree 1
with respect to ℓ. On the other hand, if m is odd, the curve would be E1 or E3. These last
curves can not be distinguished since the correct trace depends on the chosen generator
of F∗

q .

Koblitz and Menezes show in [14] that over any prime field Fp, p = 1 + b2, the curve
y2 = x3 − x has embedding degree 1 for any prime divisor of b if 4 | b and also the
curve y2 = x3 − 4x if b ≡ 2 (mod 4). It is worth noticing that over Fp both curves are
isomorphic to E0 and they are precisely those obtained taking in Theorem 4.2 the values
m = 0 and b = nℓ (n even). A special case is also presented in [11].
In order to provide distortion maps for these curves, we must check that E[ℓ] ⊆ E(Fq).

Lenstra ([15]) describes how to compute the group structure of an elliptic curve via its
endomorphism ring.

Lemma 4.3 The corresponding curve in Theorem 4.2 has group isomorphic to Z/d1Z×
Z/d2Z, where d1 = gcd(m,n)ℓ and d2 =

(m2+n2)ℓ
gcd(m,n) .

Proof. As Z[
√
−1]-module, E(Fq) is isomorphic to Z[

√
−1]/(π − 1)Z[

√
−1] (see [15]).

Since Z[
√
−1] is a principal ideal domain, E(Fq) is a Z[

√
−1]-module, then there exists

a basis ⟨e1, e2⟩ of Z[
√
−1] and integers d1, d2 (invariant factors) with d1 | d2 such that

(π−1)Z[
√
−1] = ⟨d1e1, d2e2⟩. Moreover, E(Fq) ∼= Z/d1Z×Z/d2Z. These invariant factors

can be computed using the Smith Normal Form of the matrix

(
a1 a2
b1 b2

)
where ⟨a1 +

6
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a2
√
−1, b1 + b2

√
−1⟩ is any basis of (π − 1)Z[

√
−1] ( [20]).

Now, (π − 1)Z[
√
−1] = ⟨ℓ(m + n

√
−1), ℓ(m

√
−1 − n)⟩ and the result follows because

the Smith Normal Form of

(
ℓm ℓn
−ℓn ℓm

)
is precisely

(
d1 0
0 d2

)
. where d1 = gcd(m,n)ℓ

and d2 =
(m2+n2)ℓ
gcd(m,n) .

�

Thus, distortion maps can exist for a ℓ-torsion group, but it is also necessary to check
the behaviour of ℓ in OK = Z[

√
−1] as mentioned in [7].

Corollary 4.4 If Ei is an elliptic curve with j = 1728 and embedding degree 1, the
map σ(x, y) = (−x,

√
−1y) will be a distortion map for any point P of prime order ℓ ̸= 2,

except if ℓ ≡ 1 (mod 4) and P is eigenvector for σ (there are 2ℓ− 2 such points).

Proof. Following [7], there are distortion maps for every subgroup (of order ℓ) of E[ℓ] if
and only if ℓ is inert in OK = Z[

√
−1], that is ℓ ≡ 3 (mod 4). For ℓ ≡ 1 (mod 4), ℓ splits

and there exist distortion maps for all but two subgroups.
Let σ(x, y) = (−x,

√
−1y), clearly σ is an endomorphism of E. Since the action of σ

on E[ℓ] has characteristic polynomial X2+1 it is clear that σ is a distorsion map for any
point P such that is not a eigenvector for it, which only occurs if ℓ ≡ 1 (mod 4). �

Now we consider the case j = 0. The endomorphism ring for an elliptic curve with

j = 0 is the maximal order in K = Q(
√
−3), that is OK = O = Z[1+

√
−3

2 ].

Theorem 4.5 One of the six curves E′
i : y2 = x3 + ωi has embedding degree 1 with

respect to ℓ if and only if

q = (mℓ+ 2)2 + 3(nℓ+ 1)(ℓ(n−m)− 1), m, n ∈ Z. (10)

Such a curve has cardinality (3n(n−m) +m2)ℓ2.

Proof. Let π be the Frobenius endomorphism of an elliptic curve with embedding degree

1 with respect to ℓ. We have now π = a+ b1+
√
−3

2 for some integers a, b. So, from Lemma
4.1 there exists m ∈ Z such that t = 2a+b = 2+mℓ. Since q = N(π) = a2+b2+ab, then
q = (mℓ+ 2)2 + 3a(a−mℓ− 2). On the other hand, ℓ divides #E(Fq), hence ℓ | (q − 1).
This is equivalent to ℓ | 3(a− 1)2 and, assuming ℓ > 3, we can write a = nℓ+1 for some
n ∈ Z. Replacing these values for a, b in the norm of π the result follows. �

From Lemma 2.4 if m is even, the specific curve with embedding degree 1 is E′
0 or

E′
3. Moreover, since ℓ > 3, E′

0 corresponds to m ≡ 0 (mod 6) and E′
3 corresponds to

m ≡ 2, 4 (mod 6). The curve E′
4 is a quadratic twist of E′

1 and E′
5 of E′

2. Hence t′1 ≡ t′5
(mod 6) and t′2 ≡ t′4 (mod 6). However, these curves cannot be distinguished since the
trace depends on the generator ω.
Kirlar studies in [13] the curves y2 = x3 − c over Fp and he shows that y2 = x3 − 1

has embedding degree k = 1 over Fp, where p = 1 + 27c2 for some natural c. Over Fp,
Kirlar’s curve is exactly E′

0 and it corresponds to m = 0 and c = nℓ in Theorem 4.5. A
different case is also presented in [11], the curve y2 = x3+ b over Fp, p = r2+r+1, r ≡ 2
(mod 3) where b is neither a square nor a cube. This curve is isomorphic to E′

1 or E′
5 (it

depends on ω) and it corresponds to the case m = n = 1.
As for the j = 1728 case, group structure of the elliptic curve can be computed.

7
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Lemma 4.6 The corresponding curve in Theorem 4.5 has group isomorphic to Z/d1Z×
Z/d2Z, where d1 = gcd(m,n)ℓ and d2 =

(3n(n−m)+m2)ℓ
gcd(m,n) .

Proof. This proof is similar to that of Lemma 4.3 taking into account that now the endo-

morphism ring is OK = Z[1+
√
−3

2 ] and (π− 1)Z[1+
√
−3

2 ] = ⟨nℓ+ ℓ(m− 2n)1+
√
−3

2 , (−m+

2n)ℓ+ ℓ(m− n)1+
√
−3

2 ⟩.
�

As before a distortion map can be given using the results of [7].

Corollary 4.7 If E′
i is an elliptic curve with j = 0 and embedding degree 1, the map

σ(x, y) = (ζ3x, y), where ζ3 is a cubic root of unity modulo ℓ, will be a distortion map
for any point P of prime order ℓ > 3, except if ℓ ≡ 1 (mod 3) and P is an eigenvector
for σ (there are 2ℓ− 2 such points).

4.2 Embedding degree 2

An elliptic curve with embedding degree k = 2, with respect to an odd prime ℓ, must
have trace t ≡ 0 (mod ℓ) (Lemma 4.1). Similarly, like the case k = 1, we can obtain
conditions to ensure that the curves Ei or E′

i have embedding degree k = 2. Proofs
for these results are similar to those of the results in Section 4.1 and we omit them for
simplicity.
For j = 1728, we have:

Theorem 4.8 One of the four curves Ei : y2 = x3 + ωix has embedding degree 2 with
respect to ℓ if and only if

q = m2ℓ2 + nℓ− 1, m ≡ n (mod 2) and nℓ− 1 is a square. (11)

The cardinality of the suitable curve is (m2ℓ+ n− 2m)ℓ.

For odd integers m, the obtained curve would be E0 or E2, and both cases can be
distinguished according to the congruence of t/2 modulo 4. That is, for mℓ ≡ 1 (mod 4)
the curve is E0, otherwise it is E2. For even integers m the corresponding curve is E1

or E3 (depending on the generator ω). Since k = 2 there are no distortion maps in this
case. The group structure can be easily computed.

Lemma 4.9 The corresponding curve in Theorem 4.8 has group isomorphic to Z/d1Z×
Z/d2Z where d1 = gcd(mℓ− 1, C) with C2 = nℓ− 1 and d2 =

(m2ℓ+n−2m)
d1

ℓ.

Now, for j = 0, we have:

Theorem 4.10 One of the six curves E′
i : y2 = x3 + ωi has embedding degree 2 with

respect to ℓ if and only if

q = (mℓ)2 + 3C(C − nℓ), m ̸≡ 0 (mod 3) and 3C2 = ℓn− 1. (12)

The cardinality of the suitable curve is q + 1−mℓ.

As the trace for these curves is mℓ, the involved curves are E′
0 or E′

3 if and only if m
is even. Moreover, not all values of m,n are admissible, for example, if n = 1 and m is

8
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even then q is an even integer. Also, if n = 2, 3, 6 then ℓ is not a prime number ( not
even an integer).

Lemma 4.11 The corresponding curve in Theorem 4.10 has group isomorphic to

Z/d1Z× Z/d2Z, where d1 = gcd(C − 1,−mℓ+ 2C) and d2 =
(q+1−nℓ)

d1
.

4.3 Higher embedding degree

Here, we will sketch the general method to find an elliptic curve E with embedding degree
k ≥ 3 for some ℓ and j-invariant 1728 or 0.
Now, in Lemma 4.1, the kth-root of the unity ζk depends on the value of ℓ. Assume we

have fixed a particular value of ℓ and ζk. So, the trace of E can be written as 1+ ζk+mℓ
for some integer m. If j = 1728, then it follows that a = ((1 + ζk)/2 (mod ℓ)) +mℓ, and
for j = 0, we have b = (1 + ζk − 2a (mod ℓ)) + nℓ where a, b are the coefficients of the
Frobenius endomorphism π. Since ℓ divides the cardinality of the curve it is easy to check
that q ≡ ζk (mod ℓ). Replacing the previous expressions in q = N(π), when j = 1728 we
have b2 = (−(1 − ζk)

2/4 (mod ℓ)) + nℓ for some integer n. When j = 0, a must satisfy
the equation 0 ≡ 3a(a− ζk − 1) + ζ2k + ζk + 1 (mod ℓ). Finally, for the computed values
of a and b, q must be expressed in a particular form (as in Theorems 4.2, 4.5, 4.8 and
4.10).
For instance, for k = 3, we have the following.

Theorem 4.12 Let ℓ > 3 be an odd prime and ζ3 a cubic root of the unity modulo ℓ.

i) One of the four curves Ei : y2 = x3 + ωix has embedding degree 3 with respect to ℓ if
and only if

q =

(
1 + ζ3

2
(mod ℓ) +mℓ

)2

+

(
3ζ3
4

(mod ℓ)

)
+ nℓ (13)

and (3ζ3/4 (mod ℓ)) + nℓ is a square in the integers.
ii) One of the six curves E′

i : y2 = x3 + ωi has embedding degree 3 with respect to ℓ if
and only if

q = a2 + ab+ b2, a = mℓ, b = 1 + ζ3 + ℓ(n− 2m). (14)

The group structure for the corresponding curves can also be computed for specific
values ℓ,m, n and the correct ζ3.

5. Numerical Examples

In this section we present examples of ordinary elliptic curves with low embedding degree
(1, 2, 3 or higher) and j-invariant 0 or 1728. The construction of these curves is based
on the above theorems. Tables 1 and 2 list some families of elliptic curves constructed
following Theorems 4.2, 4.5, 4.8, 4.10, while Table 3 lists elliptic curves with embedding
degree 3 following Theorem 4.12. In Table 4 we present some examples of elliptic curves
with embedding degree k, 4 ≤ k ≤ 10, and k = 12, 16, 24 following the general method
(see Section 4.3).
These tables are divided into two blocks. In the first block elliptic curves with j-

invariant 1728 are presented, while the second one corresponds to curves with j-invariant

9
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Table 1. Ordinary elliptic curves over Fq with embedding de-

gree 1 with respect to ℓ
ℓ m, n q Curve Group Structure

ℓ 0,2 4ℓ2 + 1 E0 Z/2ℓZ× Z/2ℓZ
73 0,2 21317 E0 Z/146Z× Z/146Z
ℓ 2,2 (2ℓ+ 1)2 + 4ℓ2 E2 Z/2ℓZ× Z/4ℓZ
41 2,2 13613 E2 Z/82Z× Z/164Z
ℓ 1,1 (ℓ+ 1)2 + ℓ2 E1 (E3) Z/ℓZ× Z/2ℓZ
79 1,1 12641 E1 (E3) Z/79Z× Z/158Z
ℓ 2,0 4ℓ2 + 2ℓ+ 1 E′

3 Z/2ℓZ× Z/2ℓZ
31 2,0 3907 E′

3 Z/62Z× Z/62Z
ℓ 1,0 ℓ2 + ℓ+ 1 −− Z/ℓZ× Z/ℓZ
59 1,0 3541 E′

1(E
′
5) Z/59Z× Z/59Z

ℓ -3,1 21ℓ2 − 3ℓ+ 1 −− Z/ℓZ× Z/21ℓZ
53 -3,1 58831 E′

2 (E
′
4) Z/13Z× Z/273Z

Table 2. Ordinary elliptic curves over Fq with embedding degree 2 with respect to ℓ
C ℓ m, n q Curve Group Structure

C C2 + 1 1,1 ℓ2 + ℓ+ 1 E0 Z/CZ× Z/CℓZ
10 101 1,1 10301 E0 Z/10Z× Z/1010Z
C C2 + 1 3,1 9ℓ2 + ℓ− 1 E2 Z/2Z× Z/ℓ(9ℓ2 − 5)/2Z
10 101 3,1 91909 E2 Z/2Z× Z/45652Z
C (C2 + 1)/2 2,2 4ℓ2 + 2ℓ− 1 E1 (E3) Z/CZ× Z/2ℓCZ
45 1013 2,2 4106701 E1 (E3) Z/45Z× Z/91170Z
C 3C2 + 1 1,1 ℓ2 + 3C2 − 3Cℓ −− Z/ℓ(ℓ− 3C)Z
20 1201 1,1 1371541 E′

1(E
′
5) Z/1370341Z

C 3C2 + 1 -1,1 ℓ2 + 3C2 + 3Cℓ −− Z/ gcd(C − 1, 6)Z× Z/ 3ℓ(C2+C+1)
gcd(C−1,6)

Z
8 193 -1,1 42073 E′

2(E
′
4) Z/42267Z

C (3C2 + 1)/4 4,4 16ℓ2 + 3C2 − 12Cℓ E′
3 Z/2Z× Z/2ℓ(4ℓ− 3C)Z

13 127 4,4 238759 E′
3 Z/2Z× Z/119126Z

0. For embedding degree 1 or 2 we show three different families of elliptic curves. For
each family we present the general form (for some values of m,n) (on odd numbered
lines) as well as a toy example for a particular prime ℓ (on even lines) with the same
parameters for m,n and the same curve as the previous line.
For these families of elliptic curves with embedding degree 1, we always take ℓ to be

an odd prime number, but we could also give elliptic curves for ℓ any natural number
in the above constructions. In these cases, the embedding degree is taken over an odd
prime divisor of ℓ. For example, if we take m = −1, n = 1 in Theorem 4.2, we obtain
for ℓ = 4060 that the elliptic curve E0 over Fq, q = p2 where p = 5741 has embedding
degree 1 for the primes 5, 7 and 29. In this way, different values for m,n, ℓ can produce
the same curve. For example, taking m = −20, n = 20, the same curve arises for ℓ = 203
and Theorem 4.2 asserts that E0 has embedding degree 1 with respect to 7 or 29.
The following two examples for embedding degree k = 1, are taken from the families of

Table 1, searching for ℓ which is a Solinas prime (i.e. sum or difference of a small number
of powers of 2).

• For ℓ = 2169+290+1 or ℓ = 2258+2242− 1 and p = 4ℓ2+1, E0 has embedding degree
1 with respect to ℓ.

• For ℓ = 2170 − 2154 − 1 or ℓ = 2257 − 2185 − 1 and p = ℓ2 + ℓ + 1, E′
3 has embedding

degree 1 with respect to ℓ.

Note that the group structure for elliptic curves in the families in Table 2 with j = 1728
is never cyclic. However, there are other examples where it is cyclic. If we take m = 4
and n = 2 in Theorem 4.8 and ℓ = (C2 + 1)/2 a prime, the corresponding curve has

10
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Table 3. Ordinary elliptic curves over Fq with embedding degree 3 with respect

to ℓ
ℓ ζ3 m,n q Curve ℓ ζ3 m,n q Curve
73 64 -1,1 137 E1 (E3) 103 56 -2,-2 57427 E′

1(E
′
5)

73 8 -1,3 1249 E1 (E3) 109 63 1,1 9001 E′
2(E

′
4)

97 35 1,2 13421 E2 73 8 2,1 6067 E′
2(E

′
4)

193 84 2,1 275881 E0 163 104 2,2 83071 E′
2(E

′
4)

Table 4. Ordinary elliptic curves over Fq with embedding degree greater than
3 with respect to ℓ
k ℓ ζk q Curve ℓ ζk q Curve
4 73 46 3769 E1 (E3) 433 179 16633 E′

2(E
′
4)

5 61 20 569 E1 (E3) 271 10 21961 E′
2(E

′
4)

6 313 99 3229 E1 (E3) 43 7 523 E′
0

7 757 453 51929 E2 421 33 11821 E′
3

8 1697 1296 43721 E1 (E3) 457 170 21649 E′
0

9 181 39 401 E1 (E3) 883 641 18301 E′
2(E

′
4)

10 3541 1381 482957 E2 271 171 7759 E′
3

12 157 22 4889 E0 337 265 2287 E′
1(E

′
5)

16 673 512 6569 E1 (E3) 433 168 140893 E′
2(E

′
4)

24 937 163 9533 E1 (E3) 313 168 13627 E′
1(E

′
5)

cyclic structure. This is never possible for embedding degree 1, as is shown in Lemma
4.3.
For higher embedding degrees, as the finite field depends on the k-root of the unity

modulo ℓ, in Tables 3 and 4 we present some particular examples (not a general family).
It is known that pairing-friendly elliptic curves are sparse (see [1, 10, 12]). Moreover,

since elliptic curves with j-invariant 1728 or 0 are exactly those whose endomorphism

ring is Z[
√
−1] or Z[1+

√
−3

2 ], then their presence is quite rare. Bateman-Horn’s conjecture
[3] allows us to suggest that there exist elliptic curves in the families presented in Tables
1 and 2 for any bit length size of the prime ℓ (and so for q). Indeed, the Bateman-
Horn’s conjecture provides a conjectured density for the positive integers at which a
given system of polynomials all have prime values. Figure 1 shows, for each N up to 106,
the number of values ℓ ≤ N (and so the number of elliptic curves in the corresponding
family) such that the involved polynomials (in two of our families) simultaneously take
prime values (continous line). Moreover, we show the corresponding value given by the
Bateman-Horn’s conjecture (dashed line). More precisely, Figure 1.a) shows the case ℓ
and q = 4ℓ2 + 1 are prime numbers (first family in Table 1) and Figure 1.b) shows the
case ℓ = 3C2 + 1, q = ℓ2 + 3C2 − 3Cℓ are primes (fourth family in Table 2). Hence, we
can conclude, for its concordance with the Bateman-Horn’s conjecture, that there are
infinitely many elliptic curves in our families.
A challenging open question is to prove directly the existence of infinitely many curves

in some of our families (disregarding the Bateman-Horn’s conjecture). For instance, in
Table 2 we can find quadratic binary forms aℓ2 + bCℓ + cC2 for expressing q. Relaxing
the condition ℓ prime, we could apply well-known results over the theory of primes
represented by binary quadratic forms (see for example [8]). However, since C and ℓ are
not independent, it is not so simple to prove it (see Theorem 4.10).
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