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Abstract  

The intellectual disability that characterizes Down syndrome (DS) is primarily caused by prenatal 

changes in central nervous system growth and differentiation. However, in later life stages, the 

cognitive abilities of DS individuals progressively decline due to accelerated aging and the 

development of Alzheimer’s disease (AD) neuropathology. The AD neuropathology in DS has been 

related to the overexpression of several genes encoded by Hsa21 including DYRK1A (dual-

specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which encodes a protein kinase that 

performs crucial functions in the regulation of multiple signaling pathways that contribute to normal 

brain development and adult brain physiology. Studies performed in vitro and in vivo in animal 

models overexpressing this gene have demonstrated that the DYRK1A gene also plays a crucial 

role in several neurodegenerative processes found in DS. The Ts65Dn (TS) mouse bears a partial 

triplication of several Hsa21 orthologous genes, including Dyrk1A, and replicates many DS-like 

abnormalities, including age-dependent cognitive decline, cholinergic neuron degeneration, 

increased levels of APP and Aβ, and tau hyperphosphorylation. To use a more direct approach to 

evaluate the role of the gene dosage of Dyrk1A on the neurodegenerative profile of this model, TS 

mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment of Mmu16 

that includes this gene, mice that are trisomic for the same genes but only carry two copies of 

Dyrk1A, euploid mice with a normal Dyrk1A dosage, and CO animals with a single copy of Dyrk1A. 

Normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of senescent cells in 

the cingulate cortex, hippocampus and septum, prevented cholinergic neuron degeneration, and 

reduced App expression in the hippocampus, Aβ load in the cortex and hippocampus, the 

expression of phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and 

the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the present study provides 

further support for the role of the Dyrk1A gene in several AD-like phenotypes found in TS mice and 

indicates that this gene could be a therapeutic target to treat AD in DS. 

Keywords: Dyrk1A, senescence, neurodegeneration, APP, tau, Ts65Dn, Down syndrome 

Highlights:  

Dyrk1A is implicated in several Alzheimer’s Disease phenotypes found in Down syndrome 

Reducing Dyrk1A gene dosage in Ts65Dn mice rescued cellular senescence  

Reducing Dyrk1A gene dosage in Ts65Dn mice prevented cholinergic neurodegeneration 

Normalizing Dyrk1A copy number in Ts65Dn mice reduced Aβ load and App and tau levels   
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Introduction 

Down syndrome (DS) is the most common genetic cause of intellectual disability (Shin et al., 2009) 
and is primarily caused by prenatal changes in central nervous system growth and differentiation 
(Lott, 2012; Haydar and Reeves, 2012). However, in later life stages, the cognitive abilities of DS 
individuals progressively decline due to accelerated aging and to the development of Alzheimer’s 
disease (AD) neuropathology. The primary hallmarks of AD, such as the accumulation of amyloid 
plaques composed of β-amyloid (Aβ) peptides, neurofibrillary tangles (NFTs) formed by insoluble 
deposits of abnormally hyperphosphorylated tau, neuroinflammation, synapse and neuron loss and 
regional atrophy, are present in 100% of individuals with DS by the fourth decade of life (Wilcock 
and Griffin, 2013; Lott, 2012; Cenini et al., 2012; Sabbagh et al., 2011; Lott and Dierssen, 2010; 
Teipel and Hampel, 2006).  

This high prevalence of AD neuropathology in DS has been partially related to the overexpression 
of several AD-related genes encoded by Hsa21. One of these genes is APP (Amyloid Precursor 
Protein) and its triplication in DS leads to an increase in the production of Aβ peptides. An 
imbalance between Aβ production and clearance leads to high levels of these peptides, causing 
their fast aggregation and deposition in plaques, which can induce other AD-associated 
neuropathologies such as the increase in oxidative stress, neuroinflammation, neuronal death and 
the acceleration of the decline in learning and memory (Wilcock, 2012; Sipos et al., 2007; 
Eikeleboom et al., 2006; Hardy, 2006; Hardy and Higgins 1992). 

Among the other trisomic genes that have been implicated in the cognitive decline and AD-related 
neuropathology observed in DS individuals is dual-specificity tyrosine-(Y)-phosphorylation 
regulated kinase 1A (DYRK1A). This gene encodes a protein kinase that performs crucial functions 
in the regulation of cell proliferation and multiple signaling pathways (Guedj et al., 2012; Becker 
and Sippl, 2011) that contribute to normal brain development and adult brain physiology (Becker 
and Sippl, 2011; Tejedor and Hämmerle, 2011).  

The DYRK1A gene also plays a crucial role in several neurodegenerative processes found in DS 
(Ferrer et al., 2005), such as cholinergic neurodegeneration, tau hyperphosphorylation and amyloid 
accumulation due to APP phosphorylation. Although the extra copy of APP and its overexpression 
seems to be the primary cause of amyloidosis in the DS brain, several studies have demonstrated 
that DYRK1A plays an important role in this process by interacting with APP. DYRK1A 
phosphorylates APP at Thr668 in vitro in cells of a mouse model that overexpresses the human 
DYRK1A gene (hBACtgDyrk1A) (Ryoo et al., 2008). This phosphorylation facilitates the excision of 
APP by β-secretase 1 (Beta-secretase 1, BACE1) and γ-secretase, inducing an accumulation of 
the neurotoxic peptides Aβ40 and Aβ42 (Wegiel et al., 2011; Vingtdeux et al., 2005; Lee et al., 
2003). Therefore, overexpression of DYRK1A hyperphosphorylates APP leading to a cascade of 
Aβ accumulation. 
 
The first evidence of the role of DYRK1A in tauopathies came from several in vitro studies 
demonstrating that it phosphorylates at least 12 of tau residues including the threonine 212 
(Thr212) (Park and Chung, 2013; Liu et al., 2008; Woods et al., 2001). In addition, there is evidence 
of its in vivo role in tau hyperphosphorylation in transgenic mice that overexpress Dyrk1A alone 
(TgDyrk1A) (Ryoo et al., 2007), in mice with a partial trisomy of a group of genes including Dyrk1A 
(such as the Ts65Dn mouse, see below) (Liu et al., 2008), in the transchromosomic mouse model 
Tc1 (Sheppard et al., 2012) and in the temporal cortex of DS individuals (Qian et al., 2013; Liu et 
al., 2008). These results indicate that DYRK1A overexpression contributes to the appearance of 
neurofibrillary tangles and their subsequent neurotoxicity (Park and Chung, 2013). 
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Similar to what is found in AD, cholinergic neuron degeneration has a prominent role in the cognitive 
decline of DS. In vitro studies have revealed that reducing the protein expression of Dyrk1A in 
trisomic cells from the Ts65Dn mouse rescues the expression of choline acetyltransferase (ChAT) 
(Hijazi et al., 2013). Therefore, there is also evidence of the role of this gene in the cholinergic 
neuron degeneration found in DS.  

As mentioned above, evidence for the role of DYRK1A in various DS phenotypes is partially derived 

from studies performed in several segmental trisomic mouse models of DS that overexpress 

different sets of orthologous genes of human chromosome 21 (Hsa21), including Dyrk1A (Rueda 

et al., 2012; Bartesaghi et al., 2011) and in transgenic mice overexpressing DYRK1A in artificial 

bacterial or yeast chromosomes or carrying extra copies of the corresponding murine cDNA (De la 

Torre et al., 2014; Ahn et al., 2006; Altafaj et al., 2001; Smith et al., 1997).  

The most commonly used model of DS is the Ts65Dn (TS) mouse, which bears a partial triplication 
of several Hsa21 orthologous genes, including Dyrk1A (Sturgeon and Gardiner, 2011). TS mice 
replicate many DS-like abnormalities, including alterations in behavior, learning and memory, brain 
morphology and hypocellularity, neurogenesis, neuronal connectivity and electrophysiological and 
neurochemical processes (Rueda et al., 2012; Bartesaghi et al., 2011). Similar to DS individuals, 
the TS mouse also shows age-dependent cognitive decline and degeneration starting at the age of 
6 months, including cholinergic and noradrenergic neuron degeneration, increases in the levels of 
APP protein and Aβ peptides and tau hyperphosphorylation (Millan Sanchez et al., 2012; Rueda et 
al., 2010; Netzer et al., 2010; Liu et al., 2008; Seo et al., 2005). However, these animals do not 
show amyloid plaques or neurofibrillary tangles. TS mice also present increased oxidative stress 
and inflammatory morphology, such as microglial activation in the hippocampus and in the medial 
septum (Corrales et al., 2014; 2013; Lockrow et al., 2011; 2009; Hunter et al., 2004). 

Although there is strong evidence for the role of Dyrk1A in several AD phenotypes found in DS, 
most studies have been performed in vitro or in animal models overexpressing this gene. The aim 
of this study was to use a more direct approach to evaluate the role of the gene dosage of Dyrk1A 
on different neurodegenerative phenotypes found in the TS model of DS. To do this, in the present 
study, TS mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment 
of Mmu16 that includes this gene (TS +/+/+), mice that are trisomic for the same genes but only 
carry two copies of Dyrk1A (TS +/+/-), euploid (CO) mice containing a normal Dyrk1A dosage (CO 
+/+) and CO animals with a single copy of Dyrk1A (CO +/-). The effect of the different gene dosages 
of Dyrk1A was assessed on the cellular senescence, cholinergic neuron density, APP levels, Aβ 
load, and total and phosphorylated tau displayed by these animals in different brain structures. 
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Methods 

The University of Cantabria Institutional Laboratory Animal Care and Use Committee approved this 

study, and the protocols were performed in accordance with the Declaration of Helsinki and the 

European Communities Council Directive (86/609/EEC).  

Experimental Animals 

Mice were generated by repeatedly backcrossing B6EiC3Sn a/A-Ts(17<16>)65Dn (TS) females 

with C57BL/6Ei x C3H/HeSNJ (B6EiCSn) F1 hybrid males. The Robertsonian Chromosome 

Resource (The Jackson Laboratory, Bar Harbor, ME, USA) provided the parental generations, and 

mating was performed at the animal facilities of the University of Cantabria.  

TS females were crossed with the Dyrk1A+/- heterozygous male mice breed on a mixed C57BL/6-

129Ola genetic background (Fotaki et al., 2002) to obtain TS mice carrying a triplicated Mmu16 

segment (TS +/+/+) extending from the Mrp139 gene to the Znf295 gene, including the Dyrk1A 

gene, mice trisomic for all of these genes but diploid for Dyrk1A (TS +/+/-), euploid (CO) mice 

containing a normal Dyrk1A dosage (CO +/+) and CO animals with a single copy of Dyrk1A (CO 

+/-). 

To determine trisomy, the animals were karyotyped using real-time quantitative PCR (qPCR), as 

previously described (Liu et al., 2003). C3H/HeSnJ mice carry a recessive mutation that leads to 

retinal degeneration (Rd); therefore, all of the animals were genotyped using standard PCR to 

detect the Rd mutation (Bowes et al., 1993). Experiments were conducted using wt/wt or Rd1/wt 

animals. The Dyrk1A dosage of the mice was genotyped using PCR, as previously described 

(Fotaki et al., 2002). 

A total of 96 male mice were used (6 TS +/+/+, 6 TS +/+/-, 6 CO +/+ and 6 CO +/- of 5-6 months of 

age and 18 TS +/+/+, 18 TS +/+/-, 18 CO +/+ and 18 CO +/- of 13-14 months of age). Twelve 

animals from each group were used for the immunohistochemical detection of ChAT (6 of 5-6 

months of age and 6 of 13-14 months of age). Six extra animals per group of mice 13-14 months 

of age were used for the senescence studies and 6 mice of the same age were used for the western 

blot and ELISA analyses. The researchers were blind to the genotype and karyotype throughout 

the entire assessment.   

Histological and stereological procedures 

Mice were deeply anesthetized with pentobarbital and transcardially perfused with saline, followed 

by 4% paraformaldehyde. After postfixation in 4% paraformaldehyde overnight at 4°C and transfer 

into 30% sucrose, the brains were frozen on dry ice and coronally sliced using a cryostat (50-µm-

thick sections to examine the cingulate cortex and hippocampus and 30-µm-thick sections to 

examine the medial septum). Every eighth section throughout the rostrocaudal extent of the 

cingulate cortex and hippocampus and every sixth section of the medial septum were used. 

Histochemical detection of senescence-associated β-galactosidase 

The density of senescent cells in the cingulate cortex, the subgranular zone (SGZ), a narrow layer 

of cells located between the granule cell layer and hilus of the dentate gyrus (DG), the granular 

layer (GL) of the DG and the medial septum was estimated in the different groups of mice using 

the SA-β-gal assay (senescence-associated β-galactosidase) method according to He et al. (2013). 

Anatomical regions and their boundaries were identified according to the atlas of Paxinos and 
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Watson (2007). The SA-β-gal staining background was used to define the anatomical structures 

(e.g. see images in figure 1A), and the Cavalieri method was employed to calculate the total area 

of the SGZ and the total volume of both the DG and medial septum, as previously described 

(Llorens-Martin et al, 2006). The volume of the cingulate cortex was not calculated, as this structure 

lacks clearly defined boundaries. Instead, anatomical landmarks were used to correctly position 

the dissector counting frames in this brain region. 

Sections of the cingulate cortex, hippocampus and medial septum were washed twice with PBS 

and fixed for 15 min at room temperature with a 0.5% glutaraldehyde solution. Next, the sections 

were washed and incubated with a staining solution containing 5-bromo-4chloro-3-indolyl-β-D-

galactopyranoside (X-gal, ThermoFisher Scientific, MA, USA) for 24 h at 37°C, mounted on 

Superfrost Plus glass slides, dehydrated, cleared, and coverslipped with mounting medium.  

SA-β-gal-positive cells (showing a blue reaction product over the cell soma) were counted along 

the SGZ and on the GL of the DG of each animal using a Zeiss Axioskop 2 plus microscope with a 

40X objective in one-in-eight series sections. To determine the senescence cell density in the SGZ, 

the total number of positive cells was divided by the area of the SGZ (defined as the length of the 

SGZ divided by the thickness of the section). To determine the GL density, the number of positive 

cells was divided by the volume of the GL in every section. The total number of SA-β-gal-positive 

cells in these structures was calculated using a variation of the optical dissector method, as 

previously described (Trejo et al., 2001). Briefly, the cell density was multiplied by the total volume 

of the GL or total SGZ extension previously estimated using the Cavalieri method. 

The number of SA-β-gal-positive cells in the cingulate cortex and medial septum was quantified 

using a systematic random design of dissector counting frames (250 x 250 µm). Both anatomical 

structures were photographed using a Zeiss Axioskop 2 plus microscope with a 10X objective. In 

a one series of sections, six independent fields were randomly selected along the cingulate cortex 

and medial septum. The number of senescent cells was counted within each frame and divided by 

the dissector extension to estimate the cellular density. The values were averaged to calculate the 

density for each animal. For cell number quantification in the cingulate cortex, the cells were 

counted within a 0.0625-mm2 area of the cingulate cortex. The total number of senescent cells in 

the medial septum was obtained after multiplying the cell density by the total extension of the 

region. Image analysis was performed using NIH ImageJ software (National Institutes of Health, 

MD, USA). 

Immunocytochemical detection of ChAT  

After inactivation of endogenous peroxidase for 30 min in 3% hydrogen peroxide, slices containing 

the medial septum were washed three times in phosphate-buffered saline (PBS) and blocked for 1 

h in PBS containing 20% normal donkey serum (NDS) and 0.2% Triton X-100 prior to overnight 

incubation at room temperature (RT) in a mixture containing the primary antibody (goat polyclonal 

Anti-ChAT, Chemicon; 1:100). After rinsing the sections in PBS three times for 10 min each, the 

sections were incubated for 2 h in biotinylated secondary antibody (anti-goat, Vector Laboratories; 

1:250) diluted in 2% NDS in PBS at RT. The sections were rinsed three times in PBS and incubated 

for 1 h at RT in a streptavidin-biotin complex (Vectastain ABC Kit) in PBS. Following a thorough 

rinsing with PBS, immunohistochemical staining was visualized by incubation in 3.3′-

diaminobenzidine solution (Vector Laboratories). After immunostaining, floating tissue sections 

were mounted on Superfrost Plus glass slides, dehydrated, cleared, and coverslipped with 

mounting medium. The medial septum was photographed using a Zeiss Axioskop 2 plus 
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microscope with a 10X objective, and all ChAT-positive cells were counted with NIH ImageJ Cell 

Counter software and divided by the area of the medial septum to calculate the density of this cell 

population. The total number of ChAT-positive cells was determined using a variation of the optical 

dissector method, as previously described (Trejo et al., 2001). Briefly, the cell density was multiplied 

by the total volume of the medial septum, estimated using the Cavalieri method as described in the 

previous section. 

Western blotting 

Mice were euthanized by decapitation and the cortex, hippocampus and cerebellum were 

dissected. Whole-cell lysates from the cortex, hippocampus and cerebellum were prepared as 

previously described (Rueda et al., 2010). The total protein content of each sample was determined 

using the method of Lowry et al. (1951). Identical amounts of total protein (50 µg) from each sample 

were loaded on a 10% sodium dodecyl sulfate-polyacrylamide gel, electrophoresed, and 

transferred to a polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA) using a 

Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad). The efficient transfer of proteins was 

confirmed by staining the PVDF membrane with Ponceau red (Sigma-Aldrich, St. Louis, MO, USA). 

Non-specific binding of antibodies was prevented by incubating the membranes in TBST buffer (10 

mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.05% Tween 20) containing 3% bovine serum albumin (BSA). 

The blots were incubated with a mouse monoclonal anti-APP antibody (1:2000; Millipore, Billerica, 

MA, USA), mouse monoclonal anti-Tau5 antibody (1:1000; Millipore), rabbit monoclonal anti-Tau 

pSer202 antibody (1:100; Abcam Cambridge, United Kingdom), and a rabbit polyclonal anti-Tau 

pThr212 antibody (1:100; Invitrogen, Carlsbad, CA, USA) diluted in TBST containing 3% BSA 

overnight at 4°C. After extensive washing with TBST, the blots were incubated with a goat anti-

mouse IRDye 800CW or a goat anti-rabbit IRDye 680RD antibody (1:10.000; LI-COR 

Biotechnology, Lincoln, Nebraska, USA) for 1 h at room temperature. The fluorescence was 

detected using a LI-COR ODYSSEY IR Imaging System V3.0 (LI-COR Biotechnology). The images 

were exported and saved as gray scale TIFF files (16 bit) to improve the contrast between signal 

and noise. Subsequently, the integrated optical density of the bands was determined with NIH 

ImageJ software and normalized to the background values. The relative variations between the 

bands of the four groups of experimental mice were calculated in the same experiment. Each 

individual sample was evaluated in at least three independent experiments. The values were within 

a linear range. To ensure equal loading, the blots were reproved using a mouse monoclonal anti-

GAPDH antibody (6C5) (1:2000; Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

Quantification of Aβ1-42 in brain tissue by ELISA 

Sandwich Aβ ELISA was used to measure cortex, hippocampal and cerebellar levels of Aβ1-42. 

Briefly, the tissue samples were weighed and homogenized in 8X cold 5 M guanidine hydrochloride 

buffer (pH 8.0) and incubated 3 h at RT. Samples were diluted with standard dilution buffer (1:10), 

and centrifuged at 16.000 g for 20 min at 4°C to remove insoluble material. The supernatant fraction 

was collected and stored at −80°C. To quantify Aβ levels supernatant fractions were analyzed 

using a well-established mouse Aβ142 ELISA kit (KMB 3441) following the manufacturer´s 

instructions.  

All the analyses were always performed in duplicate. OD450 values were detected on a microplate 

reader (Multiskan EX, Thermo Electron Corporation). The Aβ1-42 levels were calculated according 

to the standard curve. 
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Statistical analysis 

Data were analyzed using a two-way (‘karyotype’ x ‘Dyrk1A’) ANOVA. The mean values for each 

experimental group were compared post hoc using Bonferroni tests. All of the analyses were 

performed using SPSS (version 22.0, Chicago, IL, USA) for Windows.  
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Results  

Normalization of the Dyrk1A copy number normalized the density of cells with a senescent 

phenotype in the hippocampus and medial septum of TS mice 

Cellular senescence is a process that contributes to the dysfunction of the aging brain. To evaluate 

the effects of the Dyrk1A copy number on this pathological process, we estimated the density of 

SA-β-gal-positive cells in the hippocampus, medial septum and cingulate cortex of the four 

experimental groups. TS +/+/+ mice presented an increased density of cells with a senescent 

phenotype in the GL (ANOVA ‘karyotype’: F(1,21)=0.05, figures 1A and 1B), SGZ (F(1,21)=1.26, 

p=0.27; figures 1A and 1D), medial septum (F(1,21)=7.44, p=0.012; figures 1F and 1D), and 

cingulate cortex (figures 1I and 1J). Similar results were obtained in the analyses of total cell 

number. The number of cells undergoing senescence was higher in the GL (ANOVA ‘karyotype’: 

F(1,21)=3.70, p=0.067, figure 1C), SGZ (F(1,21)=7.015, p=0.007; figure 1E) and septum 

(F(1,21)=11.43, p=0.003; figure 1E) of TS +/+/+ mice. In the cingulate cortex, ANOVA revealed no 

significant effect of ‘karyotype’ on the cell number (F(1,21)=0.016, p=0.90; figure 1K). However, this 

result reflected the fact that both CO and TS mice were considered in this analysis, and the increase 

in the number of senescent cells in CO +/- mice compared to CO +/+ and the decrease in TS+/+/- 

compared to TS +/+/+ masked the difference between TS+/+/+ and CO +/+ animals. When the 

effect of gene manipulations on both genotypes was considered, TS +/+/+ mice displayed a higher 

number of senescent cells in the cingulate cortex than CO +/+ animals (ANOVA ‘karyotype x 

Dyrk1A’: F(1,21)=10.63, p=0.004; figure 1K).  

Reducing one copy of Dyrk1A rescued the reduction in the density of senescent cells in the 

hippocampus of TS +/+/- mice but had no effect in CO +/- mice (GL: ‘Dyrk1A’: F(1,21)=0.47, p=0.49; 

‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=8.78, p=0.007, figure 1B; SGZ: ‘Dyrk1A’: F(1,21)=1.43, p=0.24; 

‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=12.54, p=0.002, figure 1D). However, when the total number of cells 

was quantified in these structures, both TS and CO mice with reduced Dyrk1A copy numbers 

presented a reduction in the number of cells (GL: ‘Dyrk1A’: F(1,21)=11.73, p=0.002; ‘‘karyotype’ x 

‘Dyrk1A’’: F(1,21)=0.44, p=0.51, figure 1C; SGZ: ‘Dyrk1A’: F(1,21)=8.89, p=0.007; ‘‘karyotype’ x 

‘Dyrk1A’’: F(1,21)=1.46, p=0.024, figure 1E). The fact that the number of cells was lower in the CO 

+/- group than in the CO +/+ group reflects the well-documented reduction in hippocampal size 

observed in this group of animals (Guedj et al., 2012). However, when this measure was corrected 

after considering the area or volume of these areas, the animals showed normal cell densities, 

indicating that reducing a functional copy of this gene did not affect senescence in the CO +/- 

hippocampus. 

In the septum, reducing one copy of Dyrk1A rescued the density of cells with a senescent 

phenotype (‘Dyrk1A’: F(1,21)=28.90, p<0.001; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.32, p=0.58; figure 

1G) and decreased the total number of cells undergoing senescence (‘Dyrk1A’: F(1,21)=34.48, 

p=0.001; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=2.66, p=0.11; figure 1G) in both TS +/+/a and CO +/- mice.  

Moreover, in the cingulate cortex, reducing a functional copy of Dyrk1A in TS +/+/- but not in CO 

+/- mice reduced the density (‘Dyrk1A’: F(1,21)=0.31, p=0.58; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=9.06, 

p=0.007; figure 1J) and number (‘Dyrk1A’: F(1,21)=0.75, p=0.39; ‘‘karyotype’ x ‘Dyrk1A’’: 

F(1,21)=10.63, p=0.004; figure 1K) of senescent cells. Although it is likely that CO +/- mice might 

also present a reduction in the size of the cingulate cortex, and thus a normal density of senescent 

cells, the volume of this structure was not calculated, as the cingulate cortex lacks clearly defined 

boundaries. As explained in the methods section, anatomical landmarks were used to correctly 
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position dissector counting frames in this brain region, and the cells were counted within a 0.0625-

mm2 area of the cingulate cortex. 

Therefore, Dyrk1A may protect mice from the development of cell senescence in CO mice in the 

medial septum and TS mice in the medial septum, cingulate cortex and hippocampus. 

 

Normalizing Dyrk1A gene dosage prevented cholinergic neurodegeneration in trisomic 

animals 

The septum of TS mice is characterized by a progressive cholinergic degeneration. To investigate 

the relationship between this process and the Dyrk1A copy number, we performed a quantitative 

analysis of the density of ChAT-positive cells in this structure. At 6 months of age, the density 

(ANOVA ‘karyotype’; F(1,21)=0.34, p=0.56; figures 2A and 2C) or the total number of cells 

(F(1,21)=1.89, p=0.18; figures 2A and 2E) with a cholinergic phenotype in the septum of TS +/+/+ 

did not significantly differ from that in the other groups of animals. In addition, reducing one 

functional copy of Dyrk1A did not modify the density (‘Dyrk1A’: F(1,21)=1.46, p=0.25; ‘‘karyotype’ x 

‘Dyrk1A’’: F(1,21)=0.03, p=0.86; figures 2A and 2C) or the total number (‘Dyrk1A’: F(1,21)=2.31, 

p=0.14; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=1.54, p=0.23; figures 2A and 2E) of ChAT+ cells in this 

structure.  

However, 13-14-month-old TS +/+/+ mice presented a marked reduction in the density of this 

population of cells (ANOVA ‘karyotype’: F(1,21)=9.71, p=0.005; figures 2B and 2D). Reducing the 

Dyrk1A gene copy number completely rescued this deficit in 13-14-month old TS +/+/- mice 

(‘Dyrk1A’: F(1,21)=10.074, p=0.004; figures 2B and 2D), without having any effect in CO +/- animals 

(‘karyotype’ x ‘Dyrk1A’’: F(1,21)=8.48, p=0.008). In addition, TS +/+/+ and CO +/- mice presented a 

reduction in the total number of ChAT+ cells, which was not rescued in TS +/+/- mice (ANOVA 

‘karyotype’: F(1,21)=0.18, p=0.67; ‘Dyrk1A’: F(1,21)=5.0, p=0.035; ‘karyotype x Dyrk1A’: 

F(1,21)=7.93, p=0.010; figures 2B and 2F). The discrepancies between the density and total 

number of cells observed in the different groups of aged animals likely reflect differences in the size 

of the septum, as previously observed in other brain areas in CO +/- mice.  

These results suggest that the overexpression of Dyrk1A plays a significant role in the reduction of 

cholinergic neuron density observed in TS +/+/+ animals.  
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The reduction in Dyrk1A gene dosage decreased APP protein expression in the 

hippocampus of TS mice and in the cortex, hippocampus and cerebellum of CO mice 

TS mice are also characterized by an enhancement in APP expression. Numerous studies have 

shown the regulatory role of Dyrk1A on APP processing and its scission of amyloid peptides. 

Therefore, we evaluated whether the gene dosage of Dyrk1A affects the APP protein levels in the 

cortex, hippocampus and cerebellum. As expected, TS +/+/+ mice presented enhanced levels of 

APP protein expression in the cortex (ANOVA ‘karyotype’: F(1,21)=34.93, p<0.001; figure 3A), 

hippocampus (F(1,21)=29.35, p<0.001; figure 3B) and cerebellum (F(1,21)=7.23, p=0.014; figure 3C). 

Reducing the Dyrk1A copy number decreased the levels of this protein in mice of both karyotypes 

in all structures (cortex: ‘Dyrk1A’: F(1,21)=6.96, p=0.010; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.00, p=0.99; 

hippocampus: ‘Dyrk1A’: F(1,21)=12.84, p=0.001; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.25, p=0.61; 

cerebellum: ‘Dyrk1A’: F(1,21)=5.51, p=0.029; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.09, p=0.76), although 

this effect was more evident in all structures in CO +/- mice and in the hippocampus of TS +/+/- 

mice. 

 

Normalization of the Dyrk1A copy number in TS +/+/- mice reduced Aβ load in the cortex 

and hippocampus 

Aberrant APP processing leads to increased neurotoxic Aβ peptide deposition, with Aβ42 being the 

most toxic isoform. When we analyzed the levels of Aβ-42 in the different groups of mice, we found 

that TS +/+/+ mice presented enhanced levels of this peptide in the cortex (figure 4A) and 

hippocampus (figure 4B) but not in the cerebellum (figure 4C). Reducing the expression of Dyrk1A 

in TS animals reduced Aβ42 load in the cortex (ANOVA ‘karyotype’: F(1,21)=17.73, p=0.001; 

‘Dyrk1A’: F(1,21)=2.15, p=0.16; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=3.43, p=0.081; figure 4A).  

In the hippocampus, although no significant differences were found between TS or CO mice 

carrying different number of copies of this gene (‘karyotype’: F(1,21)=1.22, p=0.22; Dyrk1A’: 

F(1,21)=0.047, p=0.83), statistical analysis revealed that this was because reducing a copy of this 

gene in CO animals slightly increased the expression levels of Aβ-42 while it decreased them in 

TS animals (‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=4.46, p=0.048; figure 4B).  

This genetic manipulation did not modify of Aβ42 levels in the cerebellum of TS or CO animals 

(F(1,21)=0.68, p=0.42; ‘Dyrk1A’: F(1,21)=1.32, p=0.72; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.74, p=0.40; 

figure 4C). 
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Normalizing the Dyrk1A copy number reduced the levels of total tau found in the cortex, 

hippocampus and cerebellum of trisomic mice 

Because abnormal tau accumulation and hyperphosphorylation are typical hallmarks implicated in 

the pathogenesis of AD, we first evaluated the effect of the Dyrk1A gene dose on the levels of this 

protein. Total tau expression (measured with the tau5 antibody) was increased in the cortex 

(ANOVA ‘karyotype’: F(1,21)=34.54, p<0.001; figure 5A), hippocampus (F(1,21)=23.18, p<0.001; 

figure 5B) and cerebellum (F(1,21)=8.33, p=0.009; figure 5C) of TS +/+/+ mice. Reducing one 

functional copy of Dyrk1A reduced or normalized its levels of expression in the cortex (‘Dyrk1A’: 

F(1,21)=2.06, p=0.16; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=8.73, p=0.008) and cerebellum (‘Dyrk1A’: 

F(1,21)=7.35, p=0.013; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=8.95, p=0.007) of TS +/+/- mice and in the 

hippocampus of both TS +/+/- and CO +/- mice (F(1,21)=33.07, p<0.001; ‘‘karyotype’ x ‘Dyrk1A’’: 

F(1,21)=2.27, p=0.13). 

 

Phosphorylated tau  

Dyrk1A gene dosage and its protein expression levels have been previously linked to the 

hyperphosphorylation of tau. When we examined the phosphorylated state of tau, no differences 

were found in the amount of tau phosphorylation at the Ser202 residue in the cortex of the four 

groups of mice (ANOVA ‘karyotype’: F(1,21)=2.80, p=0.11; ‘Dyrk1A’: F(1,21)=0.00, p=0.96; ‘‘karyotype’ 

x ‘Dyrk1A’’: F(1,21)=0.00, p=0.93; figure 6A) or at the Th212 residue (‘karyotype’: F(1,21)=2.24, 

p=0.15; ‘Dyrk1A’: F(1,21)=0.64, p=0.43; ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.58, p=0.45; figure 7A). 

However, TS +/+/+ mice presented increased levels of phosphorylation of tau at Ser202 in the 

hippocampus and cerebellum, which were normalized after a reduction in the functional copy 

number of Dyrk1A (hippocampus: ‘karyotype’ F(1,21)=7.09, p=0.016, ‘Dyrk1A’: F(1,21)=14.85, 

p=0.001, ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=0.43, p=0.51, figure 6B; cerebellum: ‘karyotype’: 

F(1,21)=0.55, p=0.46, ‘Dyrk1A’: F(1,21)=70.23, p<0.001, ‘‘karyotype’ x ‘Dyrk1A’’, F(1,21)=18.12, 

p<0.001; figure 6C). 

In the case of the phosphorylation of tau at Thr212, TS +/+/+  mice did not differ from CO +/+ mice 

in the expression levels of this residue in the hippocampus or cerebellum, but a significant reduction 

in the expression levels of phosphorylation at the Thr212 residue was found in these structures 

(hippocampus: ‘karyotype’: F(1,21)=3.99, p=0.063, ‘Dyrk1A’: F(1,21)=35.04, p<0.001, ‘‘karyotype’ x 

‘Dyrk1A’’: F(1,21)=1.80, p=0.19; figure 7B; cerebellum: ‘karyotype’: F(1,21)=0.16, p=0.68, ‘Dyrk1A’: 

F(1,21)=2.10, p=0.16, ‘‘karyotype’ x ‘Dyrk1A’’: F(1,21)=5.38, p=0.033, figure 7C) of TS +/+/- mice.  
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Discussion 

In the present study, normalizing the Dyrk1A gene dosage in aged trisomic mice normalized the 

density of senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic 

neuron degeneration, and reduced APP expression in the hippocampus, Aβ load in the cortex and 

hippocampus, phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and 

the levels of total tau in the cortex, hippocampus and cerebellum. 

Dyr1kA and cellular senescence 

Cell senescence is a process that is characterized by permanent arrest of cell proliferation and that 

contributes to the dysfunction of the aging brain (Vidal et al., 2012). The number of senescent cells 

in tissues substantially increases during normal aging and increases oxidative stress, Aβ deposition 

and tau phosphorylation (Rodriguez-Sureda et al., 2015; He et al., 2013; Zhou et al., 2015; Kaluski 

et al., 2017). Fibroblasts with trisomy 21 present signs of premature cell senescence secondary to 

increased oxidative damage (Rodríguez-Sureda et al., 2015). Consistent with these findings, we 

have recently demonstrated that the hippocampus of adult TS mice present greater amounts of 

oxidative damage and an increased density of cells with a senescent phenotype (Parisotto et al., 

2016). In addition, in the present study, an increased density of senescent cells was not only 

observed in the hippocampus but also in the septum and cingulate cortex of TS +/+/+ mice, and 

reducing the number of functional copies of Dyrk1A completely rescued this phenotype in these 

three structures. The septo-hippocampal cholinergic system in learning and attention (Bartus, 2000; 

Baxter and Chiba, 1999) and this population of neurons undergoes atrophy and degeneration in 

both AD and aging DS individuals (Mufson et al., 2003; 2000; Risser et al., 1997; Casanova et al., 

1985; Godridge et al., 1987). In addition, the cingulate cortex and hippocampus, also implicated in 

learning and AD-related cognitive loss, present the increased accumulation of Aβ oligomers during 

disease progression (Serrano-Pozo et al., 2011). The results of the present study support a role for 

Dyrk1A during aging in these cell populations, which might aggravate neurodegenerative 

processes in AD and DS. However, future studies should investigate the mechanism by which the 

overexpression of this gene enhances cell senescence. 

Role of Dyrk1A in cholinergic degeneration, APP and Aβ 

Similar to that is found in DS and AD individuals, in the TS mouse, the number of cholinergic 
neurons in the basal prosencephalon progressively degenerates starting at the age of 6 months 
(Granholm et al., 2000; Hunter et al., 2004), playing a role in the cognitive decline that appears in 
both conditions. Consistent with these results, the present study demonstrated a reduced density 
of ChAT (the enzyme responsible for the biosynthesis of acetylcholine)-positive cells in the septum 
of 13-14 but not of 5-6-month-old TS +/+/+ mice. This neurodegeneration has been related to 
defects in retrograde transport of the neurotrophic growth factor (NGF) rather than the death of 
these neurons (Delcroix et al., 2004). Increased App expression disrupts NGF transport and causes 
cholinergic neuron degeneration (Salehi et al., 2006). In fact, Ts1Cje mice, which have a triplicated 
Mmu16 region without App triplication, do not show cholinergic system alterations (Chen et al., 
2009), while in vitro studies in embryos from other models, carrying an extra copy of this gene, 
such as the Ts16 mouse (Fiedler et al., 1994; Opazo et al., 2006), present cholinergic deficits. 
Although the TS mouse carries an extra copy of the App gene, these mice do not develop amyloid 
plaques but display increased expression of full-length APP mRNA and APP protein in the cortex 
and hippocampus (Corrales et al., 2013; Seo and Isacson, 2005). Consistent with the evidence of 
the effect of APP on the cholinergic system degeneration, in the present study, we have found 
increased App protein levels in the cortex, hippocampus and cerebellum of TS +/+/+ mice. 
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The cholinergic neurodegeneration found in DS and AD has been proposed to be induced by the 
formation of amyloid plaques and neurofibrillary tangles. Aβ deposition is an early event in AD that 
precedes neuronal degeneration and cognitive decline by several years or even decades (Cenini 
et al., 2012; Leverenz et al., 1998). A pathologic APP-dependent process for Aβ deposition occurs 
in the AD and DS brain. Overexpression of APP has been associated with an increase in Aβ42 
levels in the brains of foetuses with DS (Teller et al., 1996). Binding of aggregated Aβ to APP is 
likely to promote increased metabolic processing of APP through the amyloidogenic pathway, 
further contributing to Aβ deposition, neuritic degeneration, and synapse loss in AD (Bignante, 
2013) and DS. 
 
The hippocampal and cortical levels of Aβ42 have been demonstrated to be increased in TS mice 
at 4 months of age (Netzer et al., 2010) and this enhancement becomes more pronounced in later 
life stages (Corrales et al., 2013; Hunter et al., 2003), which may contribute to neuronal 
degeneration and cognitive alterations in TS mice. Additional evidence for the role of Aβ in cognitive 
degeneration originates from the demonstration that chronic treatment with Aβ-lowering drugs 
restores cognitive abilities in TS mice (Netzer et al., 2010). Natural and transgenic models of AD 
also display increases in APP and Aβ expression and support the hypothesis of the role of the 
amyloid cascade in AD pathogenesis. In addition, in normal rodents, some aspects of AD can be 
mimicked by intracerebral or intracerebroventricular infusion of Aβ peptides in the brain (Lawlor 
and Young, 2010), including AD-like behavioral alterations. In the present study, TS +/+/+ mice 
also displayed enhanced Aβ-42 levels in the cortex and hippocampus. However, the Aβ1-42 
assessment was performed in guanidine hydrochloride extractions, where both soluble and 
insoluble Aβ1-42 species are present. Although TS mice express murine Aβ1-42 and do not form 
aggregates, a recent study has demonstrated increased expression of some low molecular weight 
oligomeric species in these animals (Sansevero et al., 2016), which are likely to play an important 
role in AD pathology in the absence of plaque pathology. Because soluble Aβ oligomers are key 
molecules involved in AD neuropathologyy (Ferreira et al., 2015), a detailed characterization of Aβ 
species should be performed by analyzing Aβ oligomers in different brain fractions (i.e. normal 
saline, SDS and guanidine hydrochloride). 
 
We report here that normalizing the gene dosage of the Dyrk1A gene completely rescued ChAT 
levels in the aged TS +/+/- mice. Consistent with these results, Hijazi et al. (2013) demonstrated 
that downregulation of Dyrk1A by siRNA in cell lines derived from the cortex of Ts16 (Ctb) mice 
rescued ChAT expression to levels similar to those of normal cells.  
 
Interestingly, the present study showed that reducing a functional copy of the Dyrk1A gene both in 
TS +/+/- and CO +/- mice also reduced APP protein levels in the cortex, hippocampus and 
cerebellum of these mice and Aβ42 levels in the cortex and hippocampus of TS +/+/- mice.  
 
However, the reason for this positive effect in APP but not in Aβ-42 expression in CO+/- mice, as 
well as the lack of differences in cerebellar Aβ-42 levels between the four groups of mice in spite 
of changes in APP levels, remains unclear. The metabolism, processing or regulation of APP in the 
different brain structures might be different, but this and other mechanisms need to be further 
investigated.  
 
Together, these studies propose Dyrk1A as a target gene involved in the normal function of the 
cholinergic system, possibly due to its effects on App expression and phosphorylation and on the 
formation of Aβ oligomers. 

Implication of Dyrk1A in tau expression 
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Increased tau levels in the brain have been reported to be neurotoxic and to promote 

neurodegeneration (Jin et al., 2011) because this protein is crucial in the promotion and stabilization 

of microtubule assembly. Abnormal tau expression and hyperphosphorylation are common 

features in AD and DS (Khatoon et al., 1994; Oyama et al., 1994), causing abnormalities in the 

cytoskeleton. In addition, increases in tau expression have been reported in other mouse models 

of AD and aging (Manich et al., 2011; Doehner et al., 2010; Madhusudan et al., 2009).  

Classic intracellular NFTs are not present in the aging TS brain; however, extracellular tau 

deposits in aged TS mouse brains are higher (Rachubinski et al. 2012; Kern et al., 2011; Qian et 

al. 2013). In agreement with these results, in the present study, a significant elevation of total tau 

levels in the cortex, hippocampus and cerebellum of TS +/+/+ were found. However, alterations in 

the solubility of tau and phosphorylated tau are also crucial in the development of AD pathology in animal 

models that display increased expression of these proteins in the absence of neurofibrillary tangles. 

Therefore, future studies should assess, in TS mice, tau and phosphorylated tau levels in different brain 

fractions.  

There is strong evidence that implicates the DYRK1A/Dyrk1A gene in the elevated tau expression 
found in DS and in the TS mouse. Wegiel et al. (2008) demonstrated a several-fold increase in the 
number of DYRK1A-positive NFTs in the brains of people with DS/AD than in the brains of people 
with only sporadic AD. In addition, a gene dosage-proportional increase in the level of DYRK1A in 
DS in the cytoplasm and the cell nucleus as well as enhanced cytoplasmic and nuclear 
immunoreactivity of DYRK1A were found (Wegiel et al., 2011). 
 
Tau has also been demonstrated to be elevated in HEK-293 cells in which different isoforms of tau 

and Dyrk1A were co-expressed (Qian et al., 2013). These authors demonstrated that Dyrk1A 

enhanced tau expression in a dose-dependent manner and suggested that Dyrk1A enhances tau 

expression by stabilizing its mRNA.  

Accordingly, in this study the Dyrk1A gene dosage also contributed to tau protein expression in a 

dose-dependent manner in TS mice; trisomic animals with three functional copies of this gene had 

higher levels of total tau than those with two copies of Dyrk1A. 

Implication of Dyrk1A in tau hyperphosphorylation 

Aberrant hyperphosphorylation of tau impairs its ability to bind microtubules (Billingsley and 

Kincaid, 1997), thus resulting in their disassembly (Alonso et al., 1996; 1994), tau self-assembly 

and formation of tau aggregates (Alonso et al., 2001). 

The DYRK1A kinase has been involved in tau hyperphosphorylation and neurofibrillary 

degeneration. In fact, high levels of DYRK1A have been found in the cerebral cortex of patients 

with AD and DS (Ferrer et al., 2005). Moreover, aberrant phosphorylation of tau has also been 

reported in TS and Ts1Cje mice (Liu et al., 2008; Shukkur et al., 2006) and in CTb cells derived 

from the cerebral cortex of Ts16 animals (Cárdenas et al., 2012). 

Hyperphosphorylation of tau at least 12 residues has been shown to be higher in AD brains (Yu et 

al. 2009). Among these residues two of them, Thr212 and Ser202, have received special attention. 

DYRK1A phosphorylates tau at the Thr212 residue in vitro (Liu et al., 2008; Woods et al., 2001), in 

the brains of transgenic mice that overexpress the human DYRK1A protein (TgDYRK1A mice) 

(Ryoo et al., 2007) and in the brains of patients with AD (Morishima-Kawashima et al., 1995). 

DYRK1A also phosphorylates Ser202 (Ryoo et al., 2007), and the levels of phosphorylated tau at 
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Ser202 are enhanced in the hippocampus and frontal cortex when DYRK1A levels are high. An 

increase in tau phosphorylated at Thr212 has also been observed in the hippocampus of old Tc1 

mice compared with aged-matched control mice and young Tc1 mice (Sheppard et al., 2012). 

However, these authors did not find an increase in phosphorylation of tau at Ser202/Thr205 in the 

hippocampus of aged Tc1 mice. 

In the present study, the levels of phosphorylation of tau at Ser202 were enhanced in the 

hippocampus and cerebellum of TS +/+/+ mice but not in the cortex. In addition, no significant 

elevations were found in the levels of phosphorylation of tau at Thr212 displayed by trisomic mice 

in any of the three structures.  

Other studies have also failed to find increased tau phosphorylation at Thr212 in Dyrk1A cDNA-

containing transgenic mice (Ferrer et al., 2005). The discrepancy between the data obtained in the 

present study or the study performed in TgDyrk1A cDNA mice (Ferrer et al., 2005) and the ones 

performed in the Tc1 (Sheppard et al., 2012) and the TgDYRK1A mice (Ryoo et al., 2007) may be 

due to the characteristics of the different models. While TS mice have triplicates of numerous 

mouse orthologous genes besides Dyrk1A, the Tc1 mouse carries a triplication of a larger number 

of human Hsa21 genes including DYRK1A but not APP. Thus, factors other than DYRK1A may 

contribute to the phosphorylation of tau at these sites, and may be differentially regulated in the 

two models. On the other hand, the differences found between the studies performed in Tg animals 

only overexpressing Dyrk1A/DYRK1A might be due to differences in the promoters used for the 

production of the transgenic mice; while one of them used the sheep metallothionein promoter that 

drives mouse Dyrk1A expression in cDNA transgenic mice (Altafaj et al., 2001), the other used the 

endogenous human promoter to drive expression of the human DYRK1A gene in TgDYRK1A mice 

(Ahn et al., 2006).  

Thus, increased Dyrk1A activity by either overexpression or overactivation probably promotes 

neurofibrillary degeneration through hyperphosphorylation and/or elevated tau levels.  

Interplay between Dyrk1A, Aβ and tau  

Tau pathology in AD has been suggested to occur downstream of Aβ pathology, but the 

neurodegeneration initiated by Aβ is modulated by tau. An association between Aβ and 

hyperphosphorylated tau has been shown (Ribe et al., 2005; Oddo et al., 2003). Soluble Aβ can 

induce inactivation of phosphatases (Vogelsberg-Ragaglia et al., 2001) and activation of tau 

kinases (Hoshi et al., 2003; Otth et al., 2002), and promoting tau phosphorylation (Hoshi et al., 

2003; Otth et al., 2002; Zheng et al., 2002) and the direct interaction between tau and Aβ induces 

tau aggregation and hyperphosphorylation (Rank et al., 2002). In addition, tau seems to be required 

for the neurotoxic effects of Aβ oligomers (Shipton et al., 2011). Knocking down endogenous tau 

prevents, whereas overexpression of human tau accelerates, the neuritic changes induced by Aβ 

oligomers (Jin et al., 2011). Tau knockout in transgenic mice has been reported to eliminate Aβ- 

induced neurotoxicity and behavioral deficits in animals (Ittner et al., 2010; Roberson et al., 2007). 

As previously mentioned, DYRK1A plays an important role in tau overexpression and 
hyperphosphorylation and Aβ pathology in DS. DYRK1A mRNA and Aβ levels in the hippocampus 
are higher in patients with AD, transgenic mice and neuroblastoma cells (Kimura et al., 2007). In 
addition, Aβ induces an increase in the DYRK1A transcript, which leads to tau phosphorylation and 
overexpression of tau (Kimura et al., 2007). Thus, the upregulation of DYRK1A transcription 
resulting from Aβ overload further leads to tau phosphorylation, suggesting that DYRK1A could be 
a key molecule bridging β-amyloid production and tau phosphorylation in AD. 
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A possible mechanism that has been proposed to account for the interplay between DYRK1A and 

APP is a positive feedback loop (see Cardenas et al., 2012) in which DYRK1A phosphorylates APP 

at Thr668 (Ryoo et al., 2008) favoring the amyloidogenic cleavage of APP (Judge et al., 2011; Lee 

et al., 2003), and Aβ42 induces an upregulation of DYRK1A (Kimura et al., 2007). The cooperative 

effects of these genes could affect tau expression and phosphorylation and result in abnormal 

expression and hyperphosphorylation, favouring tau aggregation and the destabilization of 

microtubules. 

However, several studies in transgenic mice in which only the Dyrk1A gene is overexpressed or in 

trisomic mice that do not carry an extra functional copy of APP show tau pathology (Sheppard et 

al. 2012; Kimura et al., 2007). Thus, the enhanced phosphorylation observed in these models 

occurs independently of an extra copy of this gene, indicating that the activity of DYRK1A and other 

kinases may not need to interact with APP or Aβ to induce this hyperphosphorylation. In agreement 

with this hypothesis, Janel et al. (2004) described that AD patients exhibit a positive correlation 

between plasma DYRK1A levels and cerebrospinal fluid tau and phosphorylated tau proteins, but 

no correlation with Aβ42 levels. 

Thus, although APP does not seem to be necessary for the appearance of some AD phenotypes, 

in its presence, the magnitude of neurodegeneration might be accelerated or aggravated. We 

propose here that the most likely mechanism for the different AD phenotypes found in TS mice is 

mediated by overexpression of Dyrk1A. Because Dyrk1A phosphorylates APP, and causes an 

increase in the amount of Aβ42, the increased level of Dyrk1A in TS brains might be responsible 

for the increased levels of total and hyperphosphorylated tau and of the elevated amounts of Aβ. 

These two mechanisms might interact to induce cellular senescence and cholinergic 

neurodegeneration, which is prevented after normalization of Dyrk1A gene dosage. 

Conclusions 

In conclusion, normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of 

senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic neuron 

degeneration, and reduced APP expression in the hippocampus, Aβ load in the cortex and 

hippocampus, the expression of phosphorylated tau at the Ser202 residue in the hippocampus and 

cerebellum, and the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the 

present study provides further support for the role of the Dyrk1A gene in several AD-like phenotypes 

found in TS mice and proposes that this gene could be a therapeutic target to treat AD in DS.  

In this regard, several new molecules that inhibit DYRK1A activity have been proven to reduce 

some AD phenotypes such as tau expression or phosphorylation, APP levels or Aβ load (Kim et 

al., 2016; Abbassy et al., 2015; Contadeur et al., 2015). Future studies should test the efficacy of 

the only DYRK1A inhibitor that has been so far tested in humans, epigallocatechin-gallate (EGCG) 

(De la Torre et al., 2014; 2016) to prevent different AD-associated alterations. 
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CAPTIONS 

Figure 1. Representative images of β-galactosidase-positive cells in the hippocampus (A), medial 

septum (F) and cingulated cortex (I) of TS and CO mice with increased, normal or reduced copy 

number of the Dyrk1A gene. Means ± S.E.M. of the density of cells with a senescent phenotype 

in the GL (B), SGZ (D), medial septum (G) and cingulate cortex (J) and the total number of cells 

in the GC (C), SGZ (E), septum (H) and cingulate cortex (K) of the four groups of mice. *: p<0.05; 

**: p<0.01 TS +/+/+ vs. CO +/+; #: p<0.05, ##: p<0.01, ###: p<0.001 TS +/+/+ vs. TS +/+/- or CO 

+/+ vs. CO +/-. Bonferroni tests after significant ANOVAs.  

Figure 2. Representative images of ChAT immunostaining in the medial septum of mice of 5-6 (A) 

and 13-14 months of age (B). Means ± S.E.M. of the density of ChAT+ cells in middle-aged (C) 

and aged (D) and the total number of ChAT+ cells in middle-aged (E) and aged (F) TS and CO 

mice with normal or reduced Dyrk1A gene dosage. *: p<0.05, **: p<0.01 TS +/+/+ vs. CO +/+; #: 

p<0.05, ###: p<0.001 TS +/+/+ vs. TS +/+/-. Bonferroni tests after significant ANOVAs. 

Figure 3. Western blot analysis of APP immunoreactivity levels in the cortex (A), hippocampus (B) 

and cerebellum (C) of TS and CO mice with different dosages of Dyrk1A. GAPDH was used as an 

internal loading control. Blots were digitized, and the integrated optical density was estimated by 

densitometry. APP immunoreactivity changes in TS +/+/+, TS +/+/- and CO+/- animals were 

expressed relative to the values of CO +/+ mice (defined as 100% value). At least three 

independent gels were run for each sample. ***: p<0.001 TS +/+/+ vs. CO +/+. #: p<0.05; ##: 

p<0.01; ###: p<0.001 TS +/+/+ vs. TS +/+/- vs. TS +/+/- or CO +/+ vs. CO +/-. Bonferroni tests after 

significant ANOVAs. 

Figure 4. Aβ42 levels in the cortex (A), hippocampus (B) and cerebellum (C) of TS +/+/+, TS 

+/+/-, CO +/+ and CO +/- mice. Data shown are the mean ± SEM (n=6 animals). * p<0.05; ** 

p<0.01 TS +/+/+ vs. CO +/+; #: p<0.05 TS +/+/+ vs. TS +/+/-. Bonferroni test after significant 

ANOVAs. 

Figure 5. Representative images and western blot analysis of total tau (measured with the tau5 

antibody) immunoreactivity levels in the cortex (A), hippocampus (B) and cerebellum (C) of TS and 

CO mice with different dosages of Dyrk1A. GAPDH was used as an internal loading control. Tau 

immunoreactivity changes in TS +/+/+, TS +/+/- and CO+/- animals were expressed relative to the 

values of CO +/+ mice (defined as 100% value). * p<0.05; ** p<0.01, ***: p<0.001 TS +/+/+ vs. CO 

+/+; #: p<0.05; ##: p<0.01; ###: p<0.001 TS +/+/+ vs. TS +/+/- or CO +/+ vs. CO +/-. Bonferroni 

test after significant ANOVAs. 

Figure 6. Representative images and western blot analysis of pSer202 immunoreactivity levels in 

the cortex (A), hippocampus (B) and cerebellum (C) of TS and CO mice with different dosages of 

Dyrk1A. GAPDH was used as an internal loading control. Blots were digitized, and the integrated 

optical density was estimated by densitometry. Tau-pSer202 immunoreactivity changes in TS 

+/+/+, TS +/+/- and CO+/- animals were expressed relative to the values of CO +/+ mice (defined 

as 100% value). * p<0.05; ** p<0.01 TS vs. CO; #: p<0.05; ##: p<0.01 TS +/+/+ vs. TS +/+/- or CO 

+/+ vs. CO +/-. Bonferroni test after significant ANOVAs. 

Figure 7. Representative images and western blot analysis of tau pThr212 immunoreactivity levels 

in the cortex (A), hippocampus (B) and cerebellum (C) of TS and CO mice with different dosages 

of Dyrk1A. GAPDH was used as an internal loading control. Blots were digitized, and the integrated 

optical density was estimated by densitometry. Tau-pThr212 immunoreactivity changes in TS 
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+/+/+, TS +/+/- and CO+/- animals were expressed relative to the values of CO +/+ mice (defined 

as 100% value. #: p<0.05; ##: p<0.01 TS +/+/+ vs. TS +/+/- or CO +/+ vs. CO +/-. Bonferroni test 

after significant ANOVAs. 
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