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Abstract

Species distribution models (SDMs) are an important tool in biogeog-

raphy and phylogeography studies, that most often require explicit absence

information to adequately model the environmental space on which species

can potentially inhabit. In the so called background pseudo–absences ap-

proach, absence locations are simulated in order to obtain a complete sample

of the environment. Whilst the commonest approach is random sampling

of the entire study region, in its multiple variants, its performance may not

be optimal, and the method of generation of pseudo–absences is known to

have a significant influence on the results obtained. Here, we compare a

suite of classic (random sampling) and novel methods for pseudo–absence
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data generation and propose a generalizable three–step method combining

environmental profiling with a new technique for background extent restric-

tion. To this aim, we consider 11 phylogenetic groups of Oak (Quercus sp.)

described in Europe. We evaluate the influence of different pseudo–absence

types on model performance (area under the ROC curve), calibration (relia-

bility diagrams) and the resulting suitability maps, using a cross–validation

approach. Regardless of the modelling algorithm used, random–sampling

models were outperformed by the methods that incorporate environmental

profiling of the background, stressing the importance of the pseudo–absence

generation techniques for the development of accurate and reliable SDMs. We

also provide an integrated modelling framework implementing the methods

tested in a software package for the open source R environment.

Keywords: Ecological niche, Quercus , environmental profiling, sampling

methods, threshold distance

1. Introduction1

Species Distribution Models (SDMs) constitute rules that associate known2

presence locations of biological entities with the characteristics of their envi-3

ronment to predict its potential distribution in the geographic space (Guisan4

and Zimmermann, 2000; Elith and et al, 2006). SDM building techniques can5

be broadly classified into two types: profile and group discrimination tech-6

niques. The first group refers to those modelling approaches that rely solely7

on known presences to infer the potential distribution of the species, while8

group discrimination techniques require information of the environmental9

range where the species do not occur, that is, absence data. Group discrimi-10
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nation techniques have gained popularity in recent years, as they have been11

reported to yield better results than profile techniques (Engler et al., 2004;12

Chefaoui and Lobo, 2008; Elith and et al, 2006; Mateo et al., 2010). However,13

in part due to the great effort involved in true absence sampling, most of the14

available datasets for predictive modelling (generally natural history collec-15

tions, see. e.g. Araújo and Williams, 2000) are lacking explicit absence data.16

Thus, in most cases discrimination techniques are used, requiring the envi-17

ronmental characterization of the sites of presence in front of a background18

sample (pseudo–absence data) that characterizes the available environment19

in the study region.20

Although the strong influence of the pseudo–absence generation process21

has been shown in previous studies, comparative analyses addressing the22

suitability of different methods, some of them quite novel, are scarce in the23

literature (Zaniewski et al., 2002; Phillips et al., 2009; Lobo et al., 2010),24

and there is not a consensus on the way in which pseudo–absences should be25

generated. In fact, several previous studies addressing this issue (e.g. Hengl26

et al., 2009; Wisz and Guisan, 2009; Stokland et al., 2011; Senay et al., 2013)27

propose contradictory solutions. As such, the inclusion of reliable pseudo–28

absences in model evaluation remains an open issue.29

The most simple and widely applied method of generating pseudo–absences30

is random selection of the entire study area (e.g., Gastón and Garćıa-Viñas,31

2011; Hanspach et al., 2011; Domisch et al., 2013). A search in the SCOPUS32

database containing the terms “habitat suitability”, “niche modelling” and33

“background data”, “pseudo-absence” or “presence-only”, narrowed to the34

journals of the first quartile and the topic “environmental sciences” for the35
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period 2009–july 2014, yielded a total of 64 articles from which roughly 80%36

used presence–only datasets. Of them, the 92% used randomly generated37

pseudo–absences within the study area, either explicitly (38%), or implic-38

itly (54%) via the MAXENT algorithm (see e.g.: Barbet-Massin et al., 2012;39

Jiménez-Valverde, 2012, for details), other 28% used profile techniques and40

a 12% used target group background (note that some of the articles anal-41

ysed used more than one type of technique, and therefore percentages do42

not sum up to 100%). Percentages under 10% correspond to the novel ap-43

proaches analysed in this article. In spite of its wide application, the random44

sampling method rises the risk of introducing false absences into the model45

from locations that are suitable for the species, leading to underestimates of46

its fundamental niche and potential distribution (Anderson and Raza, 2010).47

This occurs naturally due to biotic interactions and dispersal limitations that48

do not allow the species to inhabit, and also very often as a result of sampling49

biases in the data collections. Faced with this problem, it is common practice50

to set a buffer distance from known presence localities in order to minimize51

the false negative rate (e.g., Mateo et al., 2010; Bedia et al., 2013). More elab-52

orated approaches employ a presence–only algorithm as a preliminary step to53

move pseudo–absences away in the environmental space (see e.g.: Zaniewski54

et al., 2002; Engler et al., 2004; Barbet-Massin et al., 2012; Liu et al., 2013) or55

apply a geographically weighted exclusion, which keeps pseudo–absences out56

from presences using distance maps (Hirzel et al., 2001; Barbet-Massin et al.,57

2012; Norris et al., 2011; Hengl et al., 2009). These strategies are intended58

to reduce the background data to those areas where false absences are less59

likely to occur, while the target group background method has been posited60
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as a solution to remove some of the bias in presence–data collections, using61

the presence localities of other species as biased background data (Phillips62

et al., 2009).63

Another critical matter regarding pseudo–absence data is the extent from64

which background is sampled. In fact, the available data in the background65

is usually much larger than the data characterized by presence localities66

(Anderson and Raza, 2010). A constrained distribution of pseudo–absences67

around presence locations can lead to misleading models, while unconstrained68

sampling can artificially inflate test statistics, as well as the weight of less69

informative response variables (Van der Wal and Shoo, 2009). As a result,70

the three–step method has been recently proposed as an adequate approach71

to overcome these limitations, envisaged to define the extent and the envi-72

ronmental range of the background from which pseudo–absences are sam-73

pled (Senay et al., 2013, see Sec. 2.4 for details). From an ecological per-74

spective, the uncertainty associated to the presence of a biological entity is75

a combined effect of separate factors (biotic, abiotic and movement factors),76

that in turn depend on the environment of a specific site. In this context, the77

three–step method pursues the estimation of the fundamental distribution78

(regions of favorable abiotic factors) by the introduction of pseudo–absences79

within the niche space corresponding to areas of non-presence (outside the80

realized niche) and where movement factors are likely favorable (accessible81

geographic areas) but not so the abiotic factors (Peterson et al., 2011). On82

the opposite, random sampling would produce predictions closer to a realized83

distribution, since it only excludes the presence locations for pseudo–absence84

data generation.85
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The aims of this study are: (i) to analyze the effect of the method used86

for pseudo–absence data generation on resulting SDMs, and (ii) to provide87

a modelling framework implementing the state-of-the-art techniques yielding88

optimal results. In particular, we compare five pseudo–absence data genera-89

tion methods, ranging from the classical random sampling of the whole region90

and the target group method, to more sophisticated three–step techniques,91

combining environmental profiling and spatial restrictions on the sampling92

domain. We also propose a new criterion for background extent selection93

based on the theoretical properties of model performance as a function of94

distance to presence locations. We consider three modelling techniques com-95

monly used in SDM applications and 11 phylogenetic groups of Quercus sp.96

identified in Europe (Quercus sp Europe database, Petit et al., 2002b). In97

addition, we provide an integrated modelling framework based on the open-98

source R language (R Core Team, 2014), implementing the methods tested99

in this study (Supplementary Material).100

2. Methods and materials101

2.1. Species Data102

The term “species” is a taxonomic designation, and may not necessarily103

refer to an ecologically homogeneous group of organisms when different eco-104

types occur within the study area (Oney et al., 2013). Experimental evidence105

suggests that conventional SDM is not able to properly capture the climatic106

response of species by treating them as homogeneous units (Beierkuhnlein107

et al., 2011). With this regard, Hernández et al. (2006) suggested that108

research in environmental niche modelling should focus on broad distribu-109
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Figure 1: Phylogenetic distribution of Quercus sp in Europe. Oak groups in decreasing

sample size order are: H7(n=734), H10(n=651), H1(n=490), H12(n=466), H11(n=283),

H5(n=250), H17(n=67), H4(n=53), H6(n=41), H15(n=36) and H27(n=31).

tional subunits based on distinct genetic linages. For instance, González110

et al. (2011) demonstrated that omission error is reduced when “biologi-111

cally meaningful” data (in reference to genetically distinct populations of112

the same species) are modelled. Hence, in this study we consider genetically113

differenced groups of Quercus sp in Europe. Each group corresponds to a dif-114

ferent chloroplast haplotype, determined by PCR analysis on more than 2600115

populations of Oaks in Europe (see Petit et al., 2002a,b,c). We considered116

11 out of the total 42 Oak haplotypes identified, attending to the minimum117

population size needed to build the models (n > 30) while attending to the118

best possible representation of all European Quercus linages (Petit et al.,119

2002b, Table 1).120

The study area was divided in 11 parts (in correspondence to each hap-121
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Figure 2: Conceptual diagram of the methodology used in this study. Legend is shown in

the bottom left corner. Underlined words refer to the names of the R functions performing

each step in the developed framework (see Supplementary Material).

lotype distribution) by defining a bounding box around the presence points122

(Fig. 1).123

2.2. Climate Data124

We used the bioclimatic variables of the WorldClim dataset (Hijmans125

et al., 2005) at 10 km resolution as explanatory variables to build the SDMs.126

The chosen resolution is adequate to the aims of this study, given the ‘false127

precision’ provided by the downscaled WorldClim climate surfaces of 1 Km,128

as highlighted in previous niche modelling studies (Bedia et al., 2013). After129
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Table 1: Haplotypes considered ordered by decreasing sample size (n), and the lineages

they belong to, according to the Quercus sp Europe database (Petit et al., 2002b). Only

one linage (F) out of five was not included in the analyses due to insufficient sample size

of all its haplotypes.

Haplotype Linage n

H7 A 734

H10 B 651

H1 C 490

H12 B 466

H11 B 283

H5 A 250

H17 E 67

H4 A 53

H6 A 41

H15 E 36

H27 D 31

a pairwise cross-correlation analysis of the bioclimatic variables (following130

Bedia et al., 2013), we retained a subset of uncorrelated predictors (bio02,131

bio03, bio08, bio13, bio14 and bio15) rescaled in the range [0,1].132

2.3. SDM development and assessment133

SDMs were built using three different popular techniques, namely max-134

imum entropy (MAXENT, Phillips et al., 2006), generalized linear models135

(GLMs, Guisan and Zimmermann, 2000) and multivariate adaptive regres-136

sion splines (MARS Friedman, 1991). Constrained by data availability, we137

resorted to cross-validation techniques (Steyerberg et al., 2010) to replace138

truly independent data for model validation, as it is commonplace in ecolog-139
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ical studies (e.g. Manel et al., 1999). In particular, we used a 10-fold cross140

validation approach, given that it is equally efficient in the error estima-141

tion as other techniques computationally more demanding like for instance142

leave-one-out cross validation (Kohavi, 1995).143

We used the area under the ROC curve (AUC) as the most widely used144

metric for model performance assessment. The ROC curve describes the pre-145

dictive ability of the system under the whole range of probability thresholds,146

thus representing a global measure of model performance, that is quantita-147

tively assessed by the area it encloses. Thus, high AUC values (closer to 1)148

indicate good model discrimination, although this is not necessarily coupled149

to a high numerical accuracy of the predictions (Bedia et al., 2011). With150

this regard, calibration plots (also known as reliability diagrams) can be used151

in order to provide additional information regarding the level of agreement152

between predicted and observed probabilities of occurrence. This informa-153

tion is displayed in the form of a plot such that the better the agreement, the154

closer the line is to the diagonal for the whole range of probability values (see155

e.g. Bedia et al., 2011; Vaughan and Ormerod, 2005, for a wider explanation156

in the context of SDM assessment).157

2.4. Pseudo–Absence data generation158

A larger proportion of pseudo–absences against presences can affect model159

performance positively or negatively, introducing biases in model inter-comparisons,160

for which prevalence should be kept constant at an intermediate level (McPher-161

son et al., 2004; Liu et al., 2005). Thus, for all methods tested we kept162

the number of pseudo–absences equal to the number of presences in all163

cases (prevalence = 0.5, Hengl et al., 2009; Mateo et al., 2010; Hanspach164
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et al., 2011; Senay et al., 2013). Additionally, a exclusion buffer of 10 km165

around the occurrence points was set in order to avoid cells containing both166

presence and pseudo–absence data (Chefaoui and Lobo, 2008). All steps167

involved in pseudo–absence generation according to the different methods168

tested are indicated in the diagram of Fig. 2.169

Random selection (RS). Pseudo–absences were sampled at random in the170

whole background, excepting the grid points within the exclusion buffer.171

Random selection with environmental profiling (RSEP). The RSEP method172

is aimed at defining the environmental range of the background from which173

pseudo–absences are sampled. Environmentally unsuitable areas are defined174

using a presence–only profiling algorithm. To this aim, we run one–class sup-175

port vector machines (OCSVM, Scholkopf and Smola, 2001) for each Oak176

group (see e.g. Drake et al., 2006; Bedia et al., 2011, for specific details on the177

use of support vector machines in SDM studies). OCSVM has been indicated178

as the most adequate algorithm for this purpose as it can handle high dimen-179

sional data and complex non–linear relationships between predictors (Senay180

et al., 2013).181

Three–step selection (TS). The TS method adds two more steps to the RSEP182

method to define the environmental range, and also the extent of the back-183

ground from which pseudo–absences are sampled (Fig. 2). Thus, the first184

step is the definition of the environmentally unsuitable areas as is done in185

the RSEP method.186

In the second step, alternative SDMs are built using random pseudo–187

absences generated for different spatial extents within the unsuitability back-188

11



ground zones defined in the first step. In order to consider all possible extents,189

we set different maximum distance thresholds to each presence location, con-190

sidering a sequence from 20 km (twice the exclusion buffer) to the length of191

half diagonal of the bounding box (the maximum possible distance between192

any pair of points within the area (Fig. 1)), each 10 km (the grid resolution).193

The third step consists in selecting the optimum background extent and194

the corresponding fitted model from all possible pseudo–absence configura-195

tions generated in step 2. Senay et al. (2013) limited the background data196

using a variable importance change criterion based on principal component197

analysis to reduce the dimensionality of the environmental space. In our198

case, we applied a model performance criterion, as variable importance may199

not always vary significantly for the whole range of distances tested. Thus,200

a threshold extent is chosen according to the best model performance, while201

minimizing the distance to presences. With this regard, Van der Wal and202

Shoo (2009) evaluated the relationship between the geographic extent from203

which pseudo–absences are taken and model performance, and found that204

AUC rapidly increased as background size expanded from 10 to 100 km205

while subsequent expansions resulted in only minor increases in AUC. We206

found a similar behaviour for all Oak groups, and concluded that the AUC207

vs. distance curve can be optimally fit to an asymptotic Michaelis-Menten208

type model of the form:209

v(x) =
V m× x

Km + x
, (1)

where v and x represent the AUC and the background extent respectively,210

V m (Fig. 3) is the asymptotic AUC value achieved by the system and the211
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Michaelis constant Km is the extent at which the AUC is half of V m. As212

a result, we propose a generalizable method to find the threshold extent213

for pseudo–absence sampling near the suitability boundary of the species,214

without penalizing model performance, which constitutes the major novelty215

in comparison with previous published methodologies. Thus, AUCs from216

the multimodel and the different background extents tested are fitted to the217

curve of equation 1 to extract the theoretical asymptotic AUC value (V m).218

Then, the minimum threshold extent x at which AUCx > Vm is chosen (Fig.219

3), and the corresponding fitted SDM is retained to produce the suitability220

maps for the entire study area.221

Three–step with k-means selection (TSKM). The difference of TSKM with222

regard to TS is that the pseudo–absences are taken from the spatial subunits223

defined by a clustering on the background extent in Step 2. Instead of using224

a random selection on the unsuitable areas after Step 1, a k-means clustering225

is applied on the environmental and geographical space (k being equal to the226

number of presence points) and the coordinate values of each cluster centroid227

are retained, thus obtaining a regular distribution of dissimilar points for228

the study area which constitutes a representative sample of the unsuitable229

environment (Senay et al., 2013). Step 3 is then done as in TS method. The230

resulting background extents for the TS and TSKM methods are listed in231

Table 2.232

Target group selection (TG). In order to select a target group for each phylo-233

genetic Oak group we searched for presence records of species not belonging234

to the Fagaceae family in the database of The Global Biodiversity Infor-235

mation Facility (GBIF, http://data.gbif.org). To ensure a sufficiently236
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Figure 3: Relation of the AUC to the background extent for group H7. The black curve

correspond to the fitted Michaelis-Menten model. Vm represents the maximum AUC

achieved by the system. The highlighted point corresponds to the smallest background

extent greater than Vm (i.e., the threshold extent). This relationship is similar to that

described in Figure 2 in Van der Wal and Shoo (2009). All Oak groups in the study

exhibited the same type of curve (see also the examples in the Supplementary Material).

high number of presence points, we focused on species with a widespread237

distribution in Europe as target group candidates.238

For each candidate and Oak group, we computed the cross type of the239

Ripley’s K function (Dixon, 2006) to analyse the spatial behaviour of the240

point pattern. From the estimated Cross K-functions, those showing spa-241

tial dissociation of the TG candidate with regard to the Oak group were242

chosen (see Grantham, 2012, for wider explanation regarding point pattern243
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Figure 4: AUC box–plots of the 11 oak groups modelled with the five pseudo–absence

generation methods for each modelling technique. Oak groups were modelled with higher

accuracy by MAXENT and MARS. The average AUC values improved for all modelling

techniques when using a different method from RS.

analysis and Rypley’s K function interpretation), resulting in the follow-244

ing target groups: Ulex europaeus for groups H3 and H11; Picea glauca for245

groups H1, H2, H4, H5, H6 and H8; Pinus nigra for groups H7 and H10;246

Pinus strobus for group H9. TG locations were then randomly sampled to247

match the number of Oak localities in order to obtain balanced datasets for248

model training (see Sec. 2.4).249

3. Results and Discussion250

3.1. TG method251

TG attained the highest AUCs for almost all the phylogenetic groups252

(Table 3, Fig. 4), but in turn it yielded poorly calibrated models (Fig. 5),253

with a strong under-estimation of high probability values. We argue that254

these results are due to the spatially clustered distribution of targeted group255
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Table 2: Threshold distances to presences (kilometres) defining the background extents

from which pseudo–absences are sampled. Each data in the column dmax correspond to

the length of the half diagonal of the bounding box that encloses the study area (Fig. 1),

i.e.: the maximum possible distance between a pair of points within the study area.

dTS dTSKM dmax

H7 230 290 2090

H10 500 670 2100

H1 580 800 2070

H12 620 620 2130

H11 390 560 1800

H5 190 240 2170

H17 690 830 2360

H4 150 380 1440

H6 1000 1050 2950

H15 360 80 2420

H27 30 70 450

presences used as pseudo–absences, leading to spatially autocorrelated back-256

ground samples resulting in inflated AUC values (González et al., 2011), and257

also to an over-estimated suitability for a large proportion of non-sampled258

areas (Figs. 6 and 7), as compared to the other methods. Phillips et al.259

(2009) and Mateo et al. (2010) recommended the TG pseudo–absence as the260

best method for discrimination, resulting in models with the best predictive261

performance. We find the same result, with TG attaining the highest AUC262

values, although this comes at the cost of a poor model calibration, and there-263

fore we do not recommend this technique if reliable suitability maps are to be264

obtained. This stresses the importance of well-distributed presence/absence265

data across the environmental and geographical space of the study area in266
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Table 3: Multimodel mean AUC values, according to the four pseudo–absence generation

methods tested, for each of the Oak groups analyzed. Values for TG method are underlined

when they are the best of all methods. Values in bold are the maximum AUC values

excluding the TG method.

RS RSEP TS TSKM TG

H7 0.771 0.834 0.832 0.830 0.981

H10 0.772 0.854 0.851 0.856 0.970

H1 0.764 0.822 0.823 0.820 0.976

H12 0.781 0.839 0.864 0.852 0.971

H11 0.760 0.815 0.842 0.846 0.985

H5 0.786 0.830 0.829 0.828 0.977

H17 0.798 0.847 0.878 0.897 0.935

H4 0.720 0.873 0.835 0.824 0.962

H6 0.802 0.847 0.862 0.859 0.939

H15 0.762 0.668 0.748 0.707 0.941

H27 0.726 0.843 0.741 0.677 0.712

order to obtain reliable models (Lobo and Tognelli, 2011).267

3.2. RSEP, TS and TSKM methods268

RSEP and three–step methods (TS and TSKM) attained similar results.269

As expected, we did not find any significant differences in their AUCs (Fig.270

4, Table 3) since both TS and TSKM define a threshold extent based on271

the asymptotic AUC value V m (Fig. 3), close to the expected value of the272

maximum distance threshold used by the RSEP method. With this regard,273

TS and TSKM methods are preferable than RSEP, since using the theoretical274

AUC value given by V m ensures the selection of a good model, while RSEP275

method may result in a sub-optimal model if the last point in the X-axis lies276
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Figure 5: Calibration plots of the multimodel predictions. Points connected by lines are

the mean obtained from the different Oak groups and the grey area correspond to the

range between maximum and minimum values. Values below the diagonal indicate over-

estimated probabilities and values above it under-estimated predictions. The smallest Oak

groups H4(n=53), H6(n=41), H15(n=36) and H27(n=31), are excluded in the calibration

plots, because their low sample size systematically yields poorly calibrated models that

mask observable differences between methods.

significantly below the V m value by chance (Fig. 3).277

The suitability plots (Fig. 7) show a similar behaviour, clearly differ-278

ent from RS and TG. Thus, we conclude that the relevant step that affects279

SDM results is the environmental profiling of the background, which con-280

stitutes the common characteristic of the RSEP and three–step methods.281

As a result, RSEP was equally effective while entailing a more straightfor-282

ward implementation. Analogously, since the background extent restriction283

does not impair final results, three–step methods are also recommendable284

as the effect of non informative pseudo–absences from far regions could be285

significant in other case studies, especially when a wider study area is con-286

sidered. In this sense, several authors argue that pseudo–absences from far287

regions should be avoided (Van der Wal and Shoo, 2009; Anderson and Raza,288

2010). Moreover, Jiménez-Valverde (2008) and Lobo et al. (2010) suggested289
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that pseudo–absences should be located near the external boundary of the290

suitable environment to adequately represent the potential distribution of a291

species. At this respect, we consider that the three–step method proposed292

in this study satisfies this requirement while avoids misleading models with293

reduced AUCs. In addition, TS is generalizable and its implementation is294

straightforward using the R functions provided (Supplementary Material).295

Finally, since the TSKM method does not improve SDM results in relation296

to TS, the introduction of the k-means clustering in Step 2 of TSKM can be297

skipped in favour of a simple random selection within the background extent.298

3.3. RS method vs. RSEP, TS and TSKM methods299

The RS method produced well calibrated SDMs, excepting in the zones300

of higher environmental suitability, where the latter was over-estimated for301

all Oak groups (Fig. 5). This is due to the fact that many pseudo-absences302

are distributed around presences inside the potentially suitable environment,303

resulting in a lower rate of observed presences against absences in the zones304

predicted as most suitable, and is arguably one major disadvantage of the305

RS method with regard to methods applying environmental profiling as a306

previous step (RSEP, TS and TSKM). Furthermore, RS yielded the worst307

discrimination results, with the lowest AUC values for all algorithms tested308

(Fig. 4) and for most Oak groups (Table 3).309

The use of a profiling technique as an intermediate step, characteristic310

of the three-step methods (TS and TSKM), has been criticized by some au-311

thors for producing artificially high probabilities of occurrence (Wisz and312

Guisan, 2009; Stokland et al., 2011) and wider predicted suitability areas.313

In ecological terms, the variability in the predicted probabilities is related to314
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the ability of the SDMs to represent realized vs. potential species distribu-315

tions, lying spatially wider predicted distributions closer to the fundamental316

niche of the target species (Chefaoui and Lobo, 2008). However, since the317

potential distribution of the species is uncertain, we see no reason to pe-318

nalize the model based on the extent of the area predicted as suitable (see319

e.g. Jiménez-Valverde, 2012). Furthermore, our results indicate that the pre-320

dicted potential areas are not significantly shrink/widened with the use of321

either profiling/RS techniques (they are though in case of TG method, Fig.322

6). In fact, the most remarkable difference between both is a higher resolu-323

tion of the profiling-based models as compared to RS for most Oak groups,324

as depicted by the suitability plots (Fig. 7). This means that ambiguous325

probabilities (around 0.5) are less likely to occur when RSEP or three–step326

methods are introduced, in favor of more informative predicted probabilities327

closer either to 1 or to 0, as opposed to the traditional RS approach. (see328

e.g. Bedia et al., 2011, for a more detailed explanation of model resolution329

in the context of SDMs). This is particularly important in order to reduce330

uncertainties when binary presence/absence maps are required for decision331

making and/or management plans.332

Furthermore, the lack of records from suitable regions may simply derive333

from an inadequate sampling (Anderson, 2003; Hanspach et al., 2011). In334

fact, presence data is quite often environmentally biased (Bierman et al.,335

2010) resulting in presence data that does not represent the whole environ-336

mental range of the realized niche. In these cases, the RS method introduces337

false absences (within both the realized and fundamental niches) introduc-338

ing a major source of uncertainty (Lobo et al., 2010) and resulting in over-339
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constrained areas of high suitability (Fig. 7). In this sense, as long as RSEP,340

TS and TSKM methods sample pseudo–absences within a previously profiled341

unsuitable area, the risk of introducing false pseudo–absences is minimized,342

even in the case of relatively biased species collections. On the other hand, in343

case of error in the initial presence data (e.g. false positives), then profiling344

techniques may bear the risk of further reinforcing this bias rather than cor-345

recting it, although this particular situation should be further investigated.346

3.4. Sensitivity of model performance to the pseudo–absence generation method347

Our results show that the method of pseudo–absence generation strongly348

conditions output SDMs. Whilst the choice of the SDM algorithm is gen-349

erally recognized as the principal factor of uncertainty in niche modelling350

studies (see e.g. Buisson et al., 2010; Fronzek et al., 2011), in this case study351

we demonstrate that pseudo–absence sampling design is even more impor-352

tant, leading to a larger variation of model AUC (Fig. 4, Table 3) than353

the modelling algorithms tested or the initial presence dataset choice, even354

though MAXENT and MARS performed better than GLMs (Fig. 4), indi-355

cating that algorithm selection is also an important factor (Phillips et al.,356

2009; Bedia et al., 2011; Senay et al., 2013). Our results also suggest that357

MARS performance was more sensitive to the pseudo–absence configuration358

than MAXENT (Fig. 4), although a more intensive testing beyond the scope359

of this study would be required to ascertain the sensitivity of different algo-360

rithms to the pseudo–absence generation scheme.361
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3.5. Sample size effect on results362

As sample sizes are heterogeneous across Oak groups, this allowed us363

to indirectly evaluate the influence of the sample size in the performance.364

Caution has to be given to interpreting inflated AUC values due to small365

number of records (Wisz et al., 2008). For instance, Hanspach et al. (2011)366

excluded species with less than 50 records to allow reliable modelling. In this367

study, the calibration analysis shows that group H4 (53 presence records)368

and smaller groups (Table 1), did not produce reliable models for any of369

the pseudo–absence generation methods compared (not shown), even though370

AUC values were generally high (Table 3). In addition, the poor performance371

of the models for the smallest Oak groups (H15 and H27) is also reflected372

in the relationship of AUC and background extent, resulting in poor model373

fits in the TS and TSKM methods (equation 1) and yielding small threshold374

extents and lower AUCs (Tables 2 and 3).375

4. Conclusion376

The method for pseudo–absence generation strongly affected output SDM377

performance regardless of the modelling algorithm chosen and for all the Oak378

groups tested. The classical random sampling method (RS) yielded the low-379

est overall performance, while the target group (TG) approach attained high380

AUC values at the cost of poorly calibrated models, resulting in unreliable381

suitability maps. Methods that include environmental profiling in a previous382

step (RSEP, TS and TSKM), clearly outperformed both RS and TG, yield-383

ing high AUC values and better calibrated predictions, resulting in the most384

reliable suitability maps with a higher resolution of the predicted probabil-385
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ities. Thus, we suggest that further investigation on pseudo–absence data386

generation should focus in background data profiling. We recommend TS387

as the most adequate method, and also RSEP as a computationally simpler388

alternative. We also propose the AUC-driven method based on asymptotic389

curve fitting as an easily implementable and generalizable approach to ob-390

tain a suitable background extent threshold. RSEP, TS and TSKM methods391

are implemented in the open source R package mopa (MOdelling Pseudo392

Absences, https://github.com/miturbide/mopa), described with worked393

examples in the Supplementary Material.394
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Lowe, A. J., Madsen, S. F., Mátyás, G., Munro, R. C., Popescu, F., Slade,524

D., Tabbener, H., de Vries, S. G. M., Ziegenhagen, B., de Beaulieu, J.-L.,525

Kremer, A., 2002a. Identification of refugia and post-glacial colonisation526

routes of european white oaks based on chloroplast DNA and fossil pollen527

evidence. Forest Ecology and Management 156 (1–3), 49–74.528
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Figure 6: Multimodel suitability maps according to the five pseudo–absence generation

methods tested for Oak group H7. Maps for the rest Oak groups show the same pattern

on the prediction change between methods as is shown in Figure 7. Suitability is here

expressed as a probability of occurrence given the environmental conditions, in the range

[0,1].
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Figure 7: Suitability plots. Percentage of area predicted into each interval of probability

of occurrence for the Oak groups producing well calibrated models (see Figure 5). These

graphics give quantitative information on the suitability maps for a better interpretation

of the results obtained. The first plot (H7) correspond to the suitability maps shown in

Figure 6. Compared to RS, the RSEP, TS and TSKM methods produce incremented areas

of high and low suitability and reduced mid suitable areas. The TG method predicts large

areas of high suitability.

33



Supplementary material for online publication only
Click here to download Supplementary material for online publication only: supplementary_material_mopa.pdf

http://ees.elsevier.com/ecomod/download.aspx?id=372633&guid=d38a218c-a9e7-4364-b8e6-959733c9948a&scheme=1


LaTeX Source Files
Click here to download LaTeX Source Files: Iturbide_manuscript_source_files.zip

http://ees.elsevier.com/ecomod/download.aspx?id=372637&guid=fbc54e05-8991-4924-87c3-9e1213b9efda&scheme=1

