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Abstract

Vibrations are classified among the major problems of the engineering struc-
tures. Anti-Vibration isolators are used to absorb vibrational energy and
minimize forces causing damage. The isolator is modelled as a parallel com-
bination of stiffness and damping elements. The main purpose of the model
is to enable designers to predict a dynamic system response under differ-
ent structural excitations and boundary conditions. A method of nonlinear
identification, discussed in this paper, aims to provide a tool for engineers
to extract information about nonlinear dynamic behaviour using measured
data from experiments. The proposed method is demonstrated and validated
with numerical simulations. Thus, an application of this technique for identi-
fies the nonlinear parameters is illustrated. Nonlinear stiffness and nonlinear
damping can decrease with the increase of amplitude of the base excitation.
The softening behaviour of the mesh isolator is clearly visible.
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1. introduction1

In many engineering applications, it is required to minimize the transfer2

of vibrations from the source to receiver. In order to solve this problem and3

reduce the transmitted vibration, a vibration isolator should be added. From4

several isolation techniques, the passive isolator has been widely applied in5

engineering due to its simple design and high reliability. Different kinds of6

passive isolators are applied in many fields. For instance, typical vibration7

isolators employ metal coil spring to store the energy due to resilience and to8

maintain the force between contacting surfaces. Elastomeric shock mounts,9

such as rubber isolators which absorb mechanical energy by deforming, play10

an important role in the noise and vibration control. They are widely used in11

automotive engines [1], aircraft components, industrial machinery and build-12

ing foundations. In practice, air spring, pneumatic and elastomeric vibration13

mount, are also commonly used as an important fundamental part of me-14

chanical equipment requiring low natural frequency isolation and automobile15

suspension system [2]. Viscoelastic material isolators are considered as a rel-16

atively new damping material and have been extensively used in aerospace17

applications [3]. There are various types of this kind [4, 5, 6]: such as the18

vibration isolator using Solid-And- Liquid-Mixture (SALiM) [7] which was19

inspired by Yamamoto [8]. Further to that, Courtney carried out some ex-20

periments on shock absorbing liquid absorber to validate its basic properties,21

and referred to SALiM liquid [9, 10]. Another kind of passive isolators is the22

passive negative stiffness isolator [11, 12] which is a revolutionary concept in23

low-frequency vibration isolation. This isolator is provided by a spring that24

supports a load, combined with two springs, which are called corrector or25

auxiliary springs, act as negative stiffness mechanism. The metal mesh iso-26

lator, which is essentially stainless steel wires crimped, rolled or compressed27

into any geometric shape that is required, is one of the important passive28

vibration isolation products Stop-Shock. It can provide a solution for many29

engineering applications, for example, engines and gearboxes supports, rail-30

way lines, suspension bump stops. Since, it not only has higher stiffness than31

the elastomeric materials, but also offers larger hysteresis loops and provides32

excellent isolation performance [13].33

In order to design a nonlinear system, a nonlinear modal analysis, based34

on mathematical models of a single-degree-of-freedom system, is carried out.35

The modal quantities depend on several variables: amplitude of vibration,36

frequency of excitation, stiffness and damping parameters. The main pur-37
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pose to use nonlinear modal analysis methods is to allow engineers to identify38

and quantify the nonlinearity in a standard testing environment. The most39

significant application of modal testing is to compare the numerical analysis40

with experimental data and to apply the necessary changes on the model, in41

order to obtain satisfactory results.42

The identification and quantification of nonlinearity has drawn much atten-43

tion. There are available many currently available techniques, presented in44

[14, 15]. Worden and Tomlison [16] summarized the background of harmonic45

balance method and the Hilbert transform. The latter was used by Feldman,46

M. to propose a method that studies the dynamic system for: free vibration47

analysis “FREEVIB” [17] and forced vibration analysis “FORCEVIB” [18].48

Kershen et al. [19] classified the identification methods according to seven49

categories. Some cited methods are: the Restoring Force Surface (RFS) [20],50

the Inverse Method [21] and the Linearity Plots [22]. The RFS works in51

the time domain and the starting point is the application of the Newton’s52

second law. Moreover, Rice, H.J. [23] identified the nonlinear parameters us-53

ing equivalent linearization and determined the optimum one by minimizing54

the average of the least square of the error. Guo [24] evaluated the trans-55

missibility of nonlinear viscously damped vibration system under harmonic56

excitation using a new method, based on the Ritz-Galerkin method, to inves-57

tigate the effect of the damping characterization parameters on this system.58

A. Carrella [25, 26, 27] has recently presented a new approach, Code for59

Nonlinear Characterisation from mEasured Response To VibratiOn, to iden-60

tify and quantify the dynamic behaviour of vibration isolators, based on the61

analysis of experimental data. CONCERTO is applied to a single-degree-of-62

freedom (SDOF) system which is subjected to harmonic base excitation or63

harmonic force excitation. The principle, upon which the approach is based,64

is effectively a linearization; at given response amplitude, the stiffness and65

the damping are considered constant. It is also assumed that the system66

responds at the same frequency as the excitation.67

The newness of this work is the employment of the identification method68

mentioned previously to reconstruct the nonlinear stiffness and damping69

functions of a metal mesh isolator. This article aims at investigating the70

dynamic properties of the examined isolator under different levels of excita-71

tion in order to improve the reduction of transmitted vibrations. This paper72

is organised as follows: the following Section introduces the procedure pro-73

posed in this work; in the third section, a comparison is performed with an74

existing nonlinear identification method based on measured transmissibility75
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[27] in order to validate the numerical model qualitatively and quantitatively;76

the transmissibility measured data are analyzed to characterize and identify77

the nonlinear stiffness and damping of the investigated isolator in the fourth78

Section.79

2. Theoretical study80

In this section, a methodology is presented and discussed. It consists81

of the measurement of the transmissibility (displacement) from appropriate82

responses, in one hand and on extracting frequency (stiffness) and damping83

functions, in the other hand.84

2.1. Overview of CONCERTO: Code for Nonlinear Characterisation from85

mEasured Response To VibratiOn:86

The CONCERTO, presented in [25, 26, 27], is a frequency-domain method,87

whose its aims is the identification and quantification of nonlinear parameters88

[25] from measured FRF [26] and transmissibility data [27]. This method is89

used to analyse numerical and experimental data [27].90

Figure 1: SDOF system of a suspended mass on a nonlinear mount with complex stiffness
and under base excitation

The proposed SDOF identification method, based on the assumption that91

the studied system with nonlinear stiffness and damping subjected to har-92

monic base excitation, can be depicted through the equation of motion as93

follows:94

mz̈ + k(1 + jη)z = mω2Y sin(ωt) (1)
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where z = x − y represents the deformation of the mount, ω the excitation95

frequency, k and η are the stiffness and damping loss factor respectively.96

The absolute transmissibility is defined as the non-dimensional quantity that97

tells how the motion is transmitted from the base to the mass at various98

frequencies. It is measured as the ratio between the output and the input99

displacements.100

|T | = |X
Y
| = | k(1 + jη)

k(1 + jη)−mω2
| (2)

This can be rewritten in terms of modal quantities as:101

|T | = |X
Y
| = | ω2

0 + jω2
0η

ω2
0 − ω2 + jω2

0η
| (3)

Figure 2: linearisation process of CONCERTO

For given amplitude Zi, there is a pair of frequencies points (see Fig.102

2). The displacement curve Vs. frequency contains information which are103

required to calculate the natural frequency ω0(Zi) and the loss factor η(Zi)104

at that particular amplitude as:105

ω2
0(Zi) =

(R2i −R1i)(R2iω
2
2i −R1iω

2
1i) + (I2i − I1i)(I2iω2

2i − I1iω2
1i)

(R2i −R1i)2 + (I2i − I1i)2
(4)
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106

η(Zi) = |−(I2i − I1i)(R2iω
2
2i −R1iω

2
1i) + (R2i −R1i)(I2iω

2
2i − I1iω2

1i)

ω2
r(Zi)((R2i −R1i)2 + (I2i − I1i)2)

| (5)

where R1 and R2 (I1 and I2) are the real (imaginary) parts of the transmis-107

sibility at the amplitude Zi, that have been measured at the frequencies ω1108

and ω2, before and after the resonance peak, respectively.109

In order to quantify the nonlinear parameters, it is necessary to evaluate the110

stiffness and damping functions, from the functions of natural frequency and111

loss factor.112

Once the model mass, presenting the mass of the system divided by the113

number of mounts in the system, has been determined, the stiffness function114

k(Zi) can thus be obtained by multiplying the mass by the natural frequency115

expressed in Eq.(4).116

k(Zi) = ω2
0(Zi)m (6)

In addition, the damping function C(Zi) can be extracted using the relation-117

ship [25]:118

C(Zi) = η(Zi)ω0(Zi)m (7)

2.2. Analytical stiffness and damping functions using Harmonic Balance119

In order to evaluate the efficiency of the method, analytical expressions120

for the stiffness and damping functions have been derived using the Harmonic121

Balance Method to solve the nonlinear differential equations [16].122

In fact, the effective expressions correspond to the stiffness and damping123

of a linearised system under the assumption that the system responds at124

the same frequency as the harmonic excitation. This is equivalent to the125

analytical expressions determined by applying the first-order expansion of126

the Harmonic Balance approximation in the steady state.127

The dynamic equation describing the motion of a SDOF system, subjected128

to a harmonic excitation, could be written as:129

mz̈ + fd(ż) + fs(z) = y(t) (8)

where z and y denote the response and the excitation, respectively. fd(ż) is130

the nonlinear damping function and fs(z) is the nonlinear stiffness function.131

For stable state harmonic vibration, the displacement response can be ex-132

pressed as:133

z(t) = Z sin(ωt) (9)
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The analysis will be simplified by considering the equation of motion as134

follows:135

mz̈ + Ceqż +Keqz = y(t) (10)

where Ceq and Keq present the equivalent damping and stiffness, respectively.136

2.2.1. Nonlinear Stiffness137

The nonlinear stiffness function can be expanded using the Fourier series,138

neglecting all the higher-order terms and only the fundamental term (first139

harmonic) is considered.140

So:141

fs(z) ∼= ak0 + ak1 cos(ωt) + bk1 sin(ωt) = Keqz(t) (11)

where ak0, ak1 and bk1 are the Fourier coefficients of the fundamental term142

expressed as:143

144

ak0 =
1

2π

∫ 2π

0

fs(z(t))dθ

ak1 =
1

π

∫ 2π

0

fs(z(t)) cos θdθ

bk1 =
1

π

∫ 2π

0

fs(z(t)) sin θdθ

(12)

The mathematical model of a cubic stiffness element can be expressed as:145

fs(z) = kz + knlz
3 (13)

So, substituting Eq.(13) into Eq. (12), the Fourier coefficients will be calcu-146

lated:147

148

ak0 = 0

ak1 = 0

bk1 = k1Z +
3

4
knlZ

(14)

Therefore,149

Keq = k +
3

4
knlZ

2 (15)

where k and knl represent the linear and the nonlinear stiffness parameters,150

respectively.151
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2.2.2. Nonlinear Damping152

The nonlinear damping function can be rewritten as follow:153

fd(ż(t)) ∼= ac0 + ak1 cos(ωt) + bc1 sin(ωt) = Ceqż(t) (16)

where ac0, ac1 and bc1 are the Fourier coefficient of the fundamental term.154

ac0 =
1

2π

∫ 2π

0

fd(ż(t))dθ

ac1 =
1

π

∫ 2π

0

fd(ż(t)) cos θdθ

bc1 =
1

π

∫ 2π

0

fd(ż(t)) sin θdθ

(17)

Combining Eq.(16) and Eq.(17) leads to:155

Ceq =
ac1
ωZ

=
1

ωZπ

∫ 2π

0

fd(ωZ cos θ) cos θdθ (18)

The mathematical model of a quadratic damping element can be expressed156

as:157

158

fd(ż) = cż + cnlż|ż| (19)

Then the equivalent damping is given by:159

160

Ceq =
c

ωZπ

∫ 2π

0

ωZ cos θ cos θdθ+
cnl
ωZπ

∫ 2π

0

ωZ cos θ|ωZ cos θ| cos θdθ (20)

After integration, this becomes:161

162

Ceq = c+
8

3π
cnlωZ (21)

where ω is the natural frequency of linear system and Z is the amplitude of163

the response at steady state. c and cnl represent the linear and the nonlinear164

damping parameters, respectively.165
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3. Numerical simulations of transmissibility data for Nonlinear sys-166

tems167

In this section, a set of numerical simulations of nonlinear SDOF systems168

are presented to illustrate the applicability of the approach discussed above.169

Table 1 summarises the type of nonlinearity and the numerical values used170

in each case. In addition, the parameters of the underlying linear system171

are described in Table 1. All the simulation refer to the systems which are172

modelled as:173

174

mz̈ + cż + fc(ż) + kz + fk(z) = mω2Y sin(t) (22)

where z = x− y is the relative displacement between the mass and the base175

and Y the amplitude of the base excitation. fc and fk represent the nonlinear176

damping and stiffness respectively.177

Eq.(22) has been solved using direct integration with the Matlab solver178

ODE45 which is the Runge-Kutta 4th and 5th order method for ordinary179

differential equations at different frequencies of excitations. Then, the abso-180

lute displacement has been determined by computing the ratio between the181

Fourier coefficient of the response and the amplitude of the base excitation.182

183

Table 1: Type and values of nonlinearities for the numerical simulation

Mass m = 1.5kg, Damping coefficient c = 0.8Ns/m, k = 6000N/m

Nonlinearity Damping fc Stiffness fk Values

cubic stiffness + fc = Cnlż|ż| fk = knlz
3 knl = 7e6Nm−3

Quadratic damping Cnl = 8Ns2m−2

In order to validate the results obtained with CONCERTO approach, a184

comparison is performed with the nonlinear identification method based on185

measured transmissibility and presented in [27] and then with the analytical186

expressions for the stiffness functions explained in section 2.3. Figs. 3 - 4187

show the results obtained to analyse the transmissibility of a system with188

combined nonlinearities (quadratic damping + cubic stiffness) and excited189

by a harmonic base oscillation with amplitude Y = 0.4 10−3m and Y = 0.15190

10−3m, respectively.191

9



The information about the nonlinearities of the system is provided in the two192

plots: one depicts the stiffness, Eq.(6), and the other the damping, Eq.(7), as193

a function of the amplitude of vibration displacement response of the mass.194

From the stiffness and damping plots, it can be seen that by increasing the195

level of excitation, and thus the amplitude of response, there is an increase196

in stiffness and damping. This increase suggests a hardening stiffness.197

From the Figs. 3(b, c) and 4(b, c), we notice that these results show a quite198

noticed agreement between the extracted stiffness and its analytical equiv-199

alent expression. But, errors are introduced in the estimation of damping200

due, perhaps, to CONCERTO’s interpolation whose limitations are that the201

determination of the stiffness and damping values is based on points which202

physically do not exist but are a pure numerical artefact [26].203

204

Figure 3: Numerical analysis of the system with cubic stiffness and quadratic damping
excited with amplitude 0.4 10−3
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Figure 4: Numerical analysis of the system with cubic stiffness and quadratic damping
excited with amplitude 0.15 10−3

4. Experimental set up, results and discussions205

In the following section, an experimental investigation is performed to206

determine the nonlinear properties of a commercially metal mesh isolator207

which can be inserted between the source of vibrations and the receiver.208

Experimental tests were designed to characterize and identify the nonlinear209

stiffness and damping of this isolator.210

211

11



4.1. Measurement212

Figure 5: Test machine

The experiments are performed in an electro-dynamic shaker Gearing and213

Watson V 400, connected to an amplifier DSA4− 8k. The experimental set214

up is established in Fig. 5.The exciter was positioned vertically and has been215

controlled by a USB laser system through the Dactron associated software216

for data acquisition and analysis. Two accelerometers (Brüel & Kjær, type217

4398) are axially placed: one on the shaker table (model s/n 2194696) and218

another on the mass plate (model s/n 2109449). The transmissibility could219

be determined by the ratio of the two signals.220

In order to study the mounts behavior under different static loads, three221

masses were used M1, M2 and M3 which are dependent on the number of222
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Table 2: values and number of plates used during the test

Number of plates Mass values

M1 1 5686.2g

M2 4 17552.6g

M3 7 29270.3g

plates. The mass values used during the test are given in Table 2.223

4.2. Material: the test object224

Metal mesh isolators are essentially stainless steel wires; woven using225

knitting machine, rolled and/or pressed into the required geometric shape226

via a press mould. The density of the mesh isolators were determined by the227

knitting and pressing method. Metal mesh material can be manufactured228

to accommodate specific application needs including railway, engine mounts,229

and vibration absorbers.230

Figure 6: Five models of isolators

Five models of isolators (A, B, C, D, E), that differ in the density as231

shown in Fig. 6, are selected as the test element for the experimental in-232

vestigation. Measurements, which have been carried out according to the233

method established above, aim to identify the dynamic characterization of234

the nonlinear isolator.235

4.3. Sine sweep excitation236

Three levels of acceleration (a1 = 1m/s2, a2 = 2m/s2 and a3 = 3m/s2),237

for each mass and isolator, have been used for exciting the structure with238
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the stepped-sine signal starting at 5Hz and increasing with a constant fre-239

quency step to a maximum frequency of 50Hz. At each excited frequency,240

the transmissibility was detected using the ratio of the vibration amplitude241

being measured in the system to the vibration amplitude entering the system.242

Tests were performed for each of aforementioned cases.243

(a) Acceleration response (b) Transmissibility response

Figure 7: Sine sweep test; Model A, Mass 1, Acceleration 3

Fig.s 7(a, b) present the results of the sine sweep of the isolator model244

A, obtained with M1 and excited by the second level of acceleration (a2 =245

2m/s2), which is kept constant during the test. Fig. 6(a) depicts the ac-246

celeration response measured by the output accelerometer of the mass. Fig.247

6(b) shows the transmissibility, which was computed as the ratio of the mass248

acceleration measured by the accelerometer s/n 2194696, and the base ac-249

celeration measured by the accelerometer s/n 2109449, as indicated in Fig.250

4.1.251

It is observed that the peak on the curve, at around 15Hz, is representative252

of that isolator’s resonance frequency. It can be also noticed that the vi-253

bration isolation occurs when the curve crosses the transmissibility-axis into254

one, i.e. for frequencies above 36.5Hz.255

Fig. 8(a, b) show the results of the transmissibility response of the isolators256

A and B using M2 and for the three level of acceleration inputs. From Figs.257

7(a) and 7(b), it can be seen that by increasing the level of the acceleration,258

the resonance frequency of the system decreases and the amplitude increases,259
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as well, the transmissibility decreases at high frequencies.260

Otherwise, the higher level of excitation, the lower is the damping and the261

stiffness of the isolator and the earlier is the vibration isolation region. The262

deviation, lean of the curve towards lower frequencies, is a result of the soft-263

ening behaviour.264

265

(a) Model A (b) Model B

Figure 8: Sine sweep test; Mass 2

The curves of transmissibility of the both isolators B and C measured266

for the second level of acceleration (a2 = 2m/s2) and using the three masses267

(M1,M2 and M3) are shown in Fig. 9(a, b). It is noteworthy that, as the268

weight of preload increases, the resonance frequency decreases and the fre-269

quency, at which the transmissibility is less than one, decreases; from 43Hz270

for M1 (Fig. 8(a)) to 22.5Hz for M3. This is because the compressing of the271

isolator dominated the contributions to the value of stiffness and the stiffness272

dominated the response at low frequencies.273

274
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(a) Model B (b) Model C

Figure 9: Sine sweep test; Acceleration 2

The transmissibility results of the five isolators are compared in Fig. 10.275

This comparison was done for the third level of acceleration and using the276

third mass M3. From model A to model E, the resonance frequency increases277

and the amplitude decreases. In addition, the frequency at which the mount278

begins to isolator the vibration. This means that, the higher the density of279

the isolator, the larger the isolation frequency bandwidth.280

Figure 10: Sine sweep test; Mass 3, Acceleration 3
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Now, a vibration test was conducted with both increasing and decreasing281

frequency. Experiments were performed using isolator model C, under M3282

and for levels of acceleration of 2m/s2 and 3m/s2. The graphs of the run up283

sweep and run down sweep are shown in Fig. 11(a, b); the down sweep peak284

shifts away from the up sweep peak. It is notably that the hysteresis and the285

jump phenomenon have been observed [28]. These are the characteristic of286

the softening behavior of the metal mesh isolator.287

(a) 2m/s2 (b) 3m/s2

Figure 11: Sine sweep test; Model C, Mass 3

4.4. Nonlinear modelling288

4.4.1. Application of the method289

The transmissibilities measured for the three level of excitation have been290

analysed with CONCERTO approach which was established in section 2 and291

validated in Section 3. For sake of space, only the results obtained with M2292

will be presented.293

Figs. 12 − 16 show the variation of natural frequency and damping as func-294

tion of displacement. The data shown in these figures. have been normalised.295

The normalisation ratio of the Stiffness and Damping against the amplitude296

of vibration displacement is consistent rather than random.297

298
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(a) Normalised Stiffness Vs. Normalised
Displacement

(b) Normalised Damping Vs.
Normalised Displacement

Figure 12: Extracted stiffness and damping from experimental data; Model A, Mass 2

(a) Normalised Stiffness Vs. Normalised
Displacement

(b) Normalised Damping Vs.
Normalised Displacement

Figure 13: Extracted stiffness and damping from experimental data; Model B, Mass 2

(a) Normalised Stiffness Vs. Normalised
Displacement

(b) Normalised Damping Vs.
Normalised Displacement

Figure 14: Extracted stiffness and damping from experimental data; Model C, Mass 2
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(a) Normalised Stiffness Vs. Normalised
Displacement

(b) Normalised Damping Vs.
Normalised Displacement

Figure 15: Extracted stiffness and damping from experimental data; Model D, Mass 2

(a) Normalised Stiffness Vs. Normalised
Displacement

(b) Normalised Damping Vs.
Normalised Displacement

Figure 16: Extracted stiffness and damping from experimental data; Model E, Mass 2

These Figs. show that the stiffness and the damping decrease with the299

increasing of the displacement. As the level of excitation increases, the re-300

sponse displacement increases too while the values of stiffness and damping301

decrease. What is remarkable is that, the softening type nonlinearity of the302

mesh isolator is clearly visible, similar to what was shown in section 4.3.303

On the other hand, we notice that, from isolator A to isolator E, the stiffness304

increases. This fact is due to the manufacturing and knit method of each305

isolator.306

307

4.4.2. Identification of the nonlinear parameters of the isolator308

The MATLAB basic fitting approach is applied to the curves extracted309

from CONCERTO, shown in Figs. 12 − 16, to determine the function of the310

19



Stiffness and Damping. The functions of fitted curve stiffness and damping311

from the curve fitting are as follows:312

313

Kfitted = α1 + α2Z + α3Z
2 (23)

314

Cfitted = µ1 + µ3Z
2 (24)

where (α1,α2,α3) and (µ1,µ3) are the coefficients determined from MATLAB315

basic fitting.316

Combining the equations (23) - (24) and the equivalent stiffness (Eq. (25))317

and damping (Eq.(26)) functions proposed by [29], the nonlinear stiffness318

coefficients (k1, k2, k3) and the nonlinear damping coefficients (c1, c3) of the319

isolator can be identified.320

321

Keq = k1 +
8

3π
k2Z +

3

4
k3Z

2 (25)
322

Ceq = c1 +
3

4
ω2c3Z

2 (26)

As an example, the measured transmissibility curve of the isolator type A,323

obtained with M2 excited by the second acceleration (a2 = 2m/s2) is plotted324

as blue line in Fig. 17. In the same figure, the numerical solution using direct325

integration using ODE45 is shown for comparison.326

327

Figure 17: Comparison between numerical simulation and measured data; Model A, Mass
3, Acceleration 2 m/s2
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Fig. 17 indicates the good agreement between simulations and exper-328

imental in the first branch (before peak). Otherwise, the most important329

particularity is the adjacency in the resonant frequency and the amplitude330

of the resonance is almost closely. These prove the validity of the method as-331

sumption to identify the dynamic characteristic of the isolator from measured332

data, as mentioned in [27]. The shift between curves in the second branch333

(after peak) is similar to results as showing in [27]. The shift might be related334

to the identified coefficients of damping that has been implemented in the335

model (defined in Eq. (21)).The function of damping, defined in [30], that336

the damping force is a combination of coulomb damping, quadratic damping337

and viscous damping, could be implemented in the model to achieve a good338

coherence.339

5. Conclusion340

Nonlinearities in structural dynamics are common in real structures. The341

identification of nonlinearity parameters from experimental data is an im-342

portant step to obtain a reliable and precise numerical model which will343

ensure a better understanding of their dynamical behaviour. This paper re-344

views the state of the art of the theory of vibration isolation and presents345

several types of nonlinear isolators. Thus, Different methods of identifica-346

tion are presented. One of them is investigated in order to characterise the347

dynamic behaviour of a SDOF system. This approach consists of realizing348

several steps: firstly, this method is compared with an existent identification349

method to validate it; then, a practical application to anti vibration isolator350

is presented and the linear and nonlinear parameters are extracted to be used351

for building a theoretical model which is used for numerical simulation. The352

agreement between the simulated and measured results is acceptable. But,353

errors are introduced in the estimation of damping due. The cause of these354

errors has not been fully understood and it can be speculated that this is355

the jump phenomenon effect. Most importantly, future works will focus on356

three different aspects: for instance, further exploration will be done to iden-357

tify the limitations in order to improve the method presented; in addition,358

these works will investigate the influence of the temperature in the behaviour359

of the nonlinear isolator; moreover, future research should also consider the360

identification issues arising from the dynamic driving point stiffness using361

impact test.362
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