
Exploiting Sparse Coding: A Sliding Window
Enhancement of a Random Linear Network Coding

Scheme
Pablo Garrido, David Gómez, Jorge Lanza and Ramón Agüero, IEEE Senior Member

Universidad de Cantabria, Santander, Spain
{pgarrido, dgomez, jlanza, ramon}@tlmat.unican.es

Abstract—Random Linear Network Coding (RLNC) is a tech-
nique that provides several benefits. For instance, when applied
over wireless mesh networks, it can be exploited to ease routing
solutions as well as to increase the robustness against packet
losses. Nevertheless, the complexity of the decoding process
and the required overhead might jeopardize its performance.
There is a trade-off when deciding the field and block sizes;
larger values decrease the probability of transmitting linearly
dependent packets, but they also increase both the required
overhead and the decoding complexity. In order to overcome
these limitations, we propose a sliding window enhancement;
a fixed number of packets (fewer than the block size) is
combined within every transmission, and the decoding process
can therefore take advantage of the algebra with sparse matrices.
The paper presents an analytical model, which is first validated
and later broaden by means of an extensive simulation campaign
carried out over the ns-3 simulator.

Index Terms—Random Linear Coding; Sparse Matrices; Sim-
ulation; Wireless Networks

I. INTRODUCTION

Wireless technologies have undergone a continuous growth
in several aspects: number of users, devices, traffic load,
requirements. To appropriately tackle this changing environ-
ment, they are in constant evolution, and new mechanisms are
developed to increase the performance of traditional protocols
(for instance, TCP) over these networks.

Network Coding, originally proposed by Ahlswede et al.
in [1], questions the store and forward paradigm and sets out a
new network understanding. Packets are not longer immutable
entities and data can be combined, re-combined or discarded
by nodes through the network. This concept offers different
advantages over wireless mesh networks, either with unicast
or multicast communications, as well as for data storage
services. Some initial works by Koetter and Li [2], [3] showed
that the use of linear codes can bring the multicast maximum
capacity, while Ho et al. [4] proved that random generation
of linear codes achieves the optimum performance with high
probability, proposing the Random Linear Network Coding
(RLNC) scheme.

Afterwards, various studies have assessed the benefits of
this solution. In any case, its computational complexity and
required overhead is usually overlooked, although it can
jeopardize its overall performance. In this sense, there are
fewer works proposing solutions to reduce this computational
complexity. In this paper we propose a window-based scheme
where, instead of coding random packets from the whole
corresponding block, we combine a smaller and fixed amount
of packets, following a sliding window procedure, at each

transmission. We reduce the overhead caused by the transmis-
sion of the coding vector, by including a smaller number of
coefficients. Besides, the decoding complexity can be reduced,
exploiting the algebra with sparse matrices, as was shown by
Feize et al. in [5].

The novel contributions of this paper are: (1) the proposal
of an analytical model of the sliding-window based RLNC,
which is validated by means of an extensive simulation study;
(2) a thorough analysis of how the operational parameters
configuration affect the system performance; (3) a simulation-
based study of the performance of the proposed scheme over
faulty wireless links; (4) an analysis of the gains brought by
recoding at intermediate nodes.

This paper is structured as follows: Section II summarizes
the most relevant studies that have tackled this problem.
In Section III we briefly describe the RLNC protocol and
the proposed window-based scheme; we also introduce an
analytical model that can be used to derive its performance.
Afterwards, Section IV validates this model, which is also
broaden by means of a thorough simulation campaign. Finally,
Section V concludes the paper, proving an outlook of the
aspects that will be tackled in our future research.

II. RELATED WORK

As was already mentioned, Network Coding (NC) questions
the legacy store-and-forward paradigm. Previous research has
mainly focused on two paths to exploit NC techniques. The
first one, referred to as Inter-flow NC, combines packets from
different flows, and one of the most well known proposals
within this group is the COPE protocol [6]. However, Inter-
flow NC has been shown to suffer from a number of issues [7].

The second approach, Intra-flow NC, combines packets
belonging to the same data flow. Chachulski et al. introduced
RLNC in [8] to reduce signaling packets, outperforming
previous deterministic coding solutions. There are also some
works that have combined the two main realms; for example,
Krigslund et al. showed in [9] that the RLNC can effectively
address some of the the main problems exhibited by COPE;
however there is still a remarkable overhead associated to the
transmission of coding vectors.

In our previous work we have carried out a thorough
evaluation of the RLNC scheme. The architecture of the
modules that were implemented in the framework of the ns-3
was presented in [10], together with a detailed analysis of
some of its operational parameters. Afterwards, a probabilistic
transmission scheme was introduced in [11], which also

studied the benefits of introducing recoding at intermediate
nodes.

One of the strongest arguments against the use of RLNC is
the one that questions its decoding complexity, which can be
roughly estimated as O(K3), being K the number of packets
to be transmitted per block. This is particularly high, if we
compare it to other sparse end-to-end coding schemes, such as
LT [12] and Raptor Codes [13], with a decoding complexity of
O(K · ln 1

ε). However, these solutions have some limitations,
particularly if they are going to be used over wireless mesh
networks, since they do not consider the recoding at inter-
mediate nodes, which is one of the most relevant features of
the RLNC scheme. Feizi et al. [5] proposed a Tunable Sparse
Network Coding scheme in order to reduce the complexity of
the decoding process, with a density that was dynamically
adapted. In short, packets are generated with a density d,
which is increased after the transmission of a number of coded
packets. This approach was also exploited by Sorensen et al.
in [14], where they introduced a more advanced scheme.

On the other hand, it is worth highlighting that decoding
complexity is not the only problem of RLNC. The overhead
due to the coding vector sent in each coded packet shall be
also considered. Heide et al. [15] analyzed the impact of
different parameters (block, field size and density) over the
RLNC overhead, with an approach similar to the one used
in [5], since it combines a small number of packets (density)
in each transmission. However, their study overlooked the
performance of their proposed scheme and did not consider
lossy channels nor the potential gains that might be brought
by the use of recoding.

As mentioned earlier, in this work we address these lim-
itations, and the performance of the proposed solution is
thoroughly analyzed by means of a simulation campaign over
the ns-3 simulator [16].

III. DESIGN AND IMPLEMENTATION

A. RLNC scheme

The RLNC module is implemented as a new layer, placed
between IP and UDP. At the source node, it stores packets
received from the upper layers (UDP) in a transmission buffer
until it has received K packets; said in other words, the (fixed)
block size equals to this K parameter. Then, the source starts
sending coded packets as random linear combinations of such
packets, which belong to the same block, p′j =

∑K−1
i=0 ci×pi.

These coefficients are randomly selected from a Galois Field,
GF (2q) and we can therefore associate a coding vector, ~cj , to
each coded packet, entailing all the coefficients used during
the coding process. Both the Galois Field and block sizes are
parameters with a direct impact over the performance. The
source keeps transmitting these combinations until it receives
an acknowledgment from the destination, when it moves to
the next block.

The destination incorporates two storage entities: a re-
ception buffer, which can keep up to K packets, and a
decoding matrix, C(K ×K), which is built with the received
coding vectors. When the destination receives a packet, the
coding vector is obtained from the header and is stored in
the decoding matrix. If its rank increases, i.e. the vector
is linearly independent from the ones previously received,
the packet is kept at the reception buffer, and otherwise

R1S D
p′j =

∑
ci · pi p′′k =

∑
c′j · p′j

p′j =
∑

ci · pi

Figure 1: Operation of the RLNC scheme over a three-node
chain topology

it is silently discarded. Once the destination has received
K linearly independent packets it decodes the whole block,
sending an acknowledgment to the source node.

The operation of the intermediate nodes is similar to that of
the source; the RLNC scheme provides some “intelligence”
and packets are processed and could be as well discarded.
First, the coding vector is obtained to assess whether it is
linearly dependent from the ones previously received. In such
case, the packet is discarded, and otherwise it is stored in
the transmission buffer. Then, the intermediate nodes send
recoded packets, by randomly combining the previously stored
packets.

In Figure 1 a canonical topology is shown as an il-
lustrative example. Using the traditional store and forward
scheme all the packets that the destination overhears over
the direct link with the source are discarded, and only
those that have been forwarded by the intermediate node
are useful; those have an overall loss probability of 1 −
[(1− FERS,R1

) · (1− FERR1,D)], where FERi,j is the
Frame Error Rate of the link i, j. On the other hand, the
recoding feature can limit the impact of transmission losses;
if we assume that the intermediate node can generate pack-
ets even if it has not received any from the source, the
overall loss probability is established by the worst channel,
max(FER1, FER2). Moreover, if the promiscuous mode is
enabled at the destination node, it might overhear packets,
even if they are not addressed to him, and the information
overheard over the direct link S → D could be different from
that received over the S → R1 → D path. Hence, the overall
number of transmissions is reduced.

A new header is included in each packet at the NC level,
as is depicted in [10]. Note that both the Galois Field and
the block sizes are included within this header, as well as the
complete coding vector, ~c. We have limited the block size to
256, since the latency for larger values would be too long;
furthermore, the field size is bound to 8, so as to respect the
limitations imposed by the M4RIE library [17], which is used
in our implementation.

B. Sliding Window Based Coding

Various works ([5], [14]) have shown that the use of sparse
coding vectors might reduce the computational complexity of
the decoding process at the destination. In this study, we also
pay attention to both reducing the overhead and increasing
the throughput. We introduce a new parameter in the RLNC
scheme, the sliding window size w, and rather than sending
random linear combinations of the whole block, the source
node transmits combinations of packets that belong to the
same sliding window, w. As can be seen in Figure 2, it starts
with wmin = 0 and wmax = w and both indexes are increased
with one packet after every transmission.

p′j =
∑wmax

i=wmin
ci · pi

Tr
an

sm
is

si
on

s

Packets

Figure 2: Illustrative example of the coding process for a 3-
packet window; each row corresponds to a single transmis-
sion, entailing 3 different packets; the columns reflect the
packets in which the block has been divided (7 in this case)

In order to find the exact probability of a successful
block reception (decoding process) of K packets after having
received N , PNK , we use an urn-based model, as was done
in [18], [19]. Consider an urn with all the vectors with length
K that can be generated in a Galois Field of size Q = 2q .
If we discard the null coefficients, there would be (2q − 1)K

possible vectors. Under this scheme, we can guarantee that the
first K − (w− 1) generated vectors are linearly independent,
since they always include a novel packet. In order to decode
the whole block, the destination needs to receive K linearly
independent coding vectors. Since we know that the first
K − (w − 1) ones are independent, the problem can be
reformulated, as the generation of w− 1 linearly independent
packets in the next N −K − (w− 1) tries. We can therefore
see the problem as a linear system where we have to generate
w “equations” for w unknown “variables”. Since the already
K − (w− 1) generated equation are linearly independent, we
can build an initial “equation” as a linear combination of the
existing ones.

We will first consider the case where N = K, and then
extend it for N greater than K.

Case N = K: As was already said, after taking K−(w−1)
coding vector from the urn, we can artificially build a “new”
coding vector of w coefficients. Then, the probability of de-
coding the whole block after receiving K packets can be seen
as the probability of extracting w−1 new coding vectors from
such urn. Since there are 2q − 1 linearly dependent vectors
and we can overall generate (2q − 1)w different vectors, the
probability of obtaining a new linearly independent vector
equals, for the first try, 1− 2q−1

(2q−1)w .

αK−2 αK−1 α0

βK−2 βK−1 β0
0 0 0

→
α′K−1 α′0 α′1
βK−1 β0 0
γK−1 γ0 γ1

Figure 3: Illustrative example of a coding matrix update

In order to illustrate the process, Figure 3 shows an ex-
ample where the window size is 3. The first extraction is
represented by the vector α = [αK−2 αK−1 α0], built as
a linear combination of the K − (w− 1) previously received
vectors, keeping, as unknown variables, the last two packets
of the block as well as the first one: K − 2, K − 1, 0,
since the next coded packet would involve those indexes. As
mentioned earlier, the probability for the next extraction to be

linearly independent is 1− 2q−1
(2q−1)w . Afterwards, the relevant

coefficients would affect the k − 1, 0 and 1 packets, and the
problem can be therefore rewritten as can be seen in Figure 3,
where the new vector α′ is built from the combination of the
K − (w − 1) initial vectors, such that the unknown variables
are those corresponding to the K − 1, 0, 1 packets.

Hence, there will be (2q−1)2−(2q−1) linearly dependent
vectors from α′ and β′, and the probability of obtaining a third
linearly independent vector would be (2q−1)2−(2q−1)

(2q−1)w ; finally,
the probability of having K linearly independent vectors after
N = K extractions (receptions) is given by:

P(N,K) = 1+
(2q − 1)

(2q − 1)w

w−1∏
j=2

(2q − 1)j − (2q − 1)j−1

(2q − 1)w
(1)

Case N > K: Lets first assume N = K+1 extractions. We
can again assume that the first vector is always independent
(probability P1 = 1), since it is obtained by linearly com-
bining the K −w initial receptions. In the second extraction,
the probability of obtaining a linear dependent vector will be
P2 = 2q−1

(2q−1)w and in such case, there are still w−1 extractions
to obtain w − 1 independent vectors. Note that if the kth

reception is already linearly dependent, all the remaining ones
must be independent (N = K+1). For the case of a 3-packet
window, the final result is that shown in Eq. 2, where P2 and
P3 are the probabilities of obtaining a linear dependent vector
in the second and third receptions, respectively.

P(K + 1,K) = P(K,K) · (1 + P2 + P3) (2)

If we follow the same reasoning for a generic N , we can
finally obtain the following result.

P(N,K) = P(K,K)

[
1 +

w∑
r1=2

Pr1

[
1 +

w∑
r2=r1

Pr2

. . .

1 + w∑
rN−K=rN−K−1

PrN−K

 (3)

The density of the sparse code is defined as the ratio of non-
zero coefficients in the coding matrix. Hence, in our case, d =
w
K . There exits a trade-off between the density (lower densities
lead to less complex decoding operations), and the overhead
associated to the number of linearly dependent packets that
are transmitted.

Last, it is worth mentioning that thanks to the sliding-
window approach, we reduce the overhead of the RLNC
header. As has been already seen, the header size depends
on the Galois field and block sizes, dK·q8 e. It is known that
larger Galois Field sizes are able to reduce the transmission of
linearly dependent packets. However, the overhead required to
include the coefficients in the corresponding header might be
unacceptable, especially for larger block sizes. This is avoided
in the proposed window-based scheme, since the correspond-
ing header carries fewer coefficients (corresponding to the
packets that are combined in a transmission).

IV. RESULTS

This section first assesses the performance of the proposed
scheme using the theoretical model that was previously dis-
cussed, validating its correctness. Afterwards, the analysis

65 75 85
0

0.2

0.4

0.6

0.8

1

Packets

cd
f

-
Pr

ob
{#

Pa
ck

et
s
≤
x

}

GF (22)

GF (22)− {0}
Theoretical

(a) K = 64 and W = 7

256 258 260 262

Packets

GF (22)

GF (22)− {0}
Theoretical

(b) K = 256 and W = 16

Figure 4: cdf of number of transmitted packets to ensure a
successful block decoding

is broaden, by means of an extensive simulation campaign
carried out over the ns-3 simulator.

The common parameters for every simulation are a trans-
mission of 3200 packets and the link layer is set up following
the IEEE 802.11b (11 Mbps) standard. We study the per-
formance over two scenarios: first, we use a single wireless
link; and afterwards we add a third node to build a chain
topology, mimicking the one previously seen in Figure 1 so
as to analyze the impact when the intermediate node recodes
packets before forwarding them. In our previous papers [10],
[11] we have already studied the impact of the field and block
sizes, and based on the outcome of such works, we limit
the block size to two values: K = 64, 256, since they led
to the best performances; in addition, we disable MAC-layer
retransmissions, since we also proved that they do not provide
any benefit, when working with the RLNC scheme.

A. Overhead Analysis

In a first set of experiments, we verify the validity of
Equations 1 and 3. After a large number of runs (1000)
Figure 4 shows the cumulative distribution function (cdf) of
the number of packets that need to be transmitted by the
source, under ideal conditions (no packets are lost within the
wireless channel), for a successful decoding process. The field
size is q = 2 and we represent the results for two distinct
cases: when the coefficients are randomly chosen from the
whole GF (2q) (Zeros) or when we discard null values (i.e.
GF (2q)−{0}, No Zeros). The figure also includes the values
that are obtained by plotting the results of Eq. 3, showing
a perfect match for the No Zeros case. The results show a
worse behavior for smaller field and window sizes, as can be
seen in Figure 4a, which also reflects a strong impact of null
coefficients. For higher values of these parameters, there is
not a relevant difference between the two schemes.

In order to evaluate the impact of the particular configura-
tion of block, field and window sizes in terms of the overhead,
we introduce two additional parameters. The percentage of
packets that are discarded due to linear dependencies is
defined by ε = N−K

N , and it has a clear impact over the
performance. Besides, it is also important to take into account
the overhead induced by the RLNC header, HRLNC . In this
sense, there might be certain configurations in which the
number of linear dependencies are reduced, but this does

1
16

1
8

1
4

1
2

1
0

0.1

0.2

0.3

w/K

ξ

K = 32

K = 64

K = 256

Figure 5: Total overhead

not compensate the additional header length, and the overall
overhead is, in fact, increased. Thus, we define the overall
overhead, ξ, in Eq. 4, as a function of the total number of
spurious packets (N −K) and the corresponding header and
packet lengths, HRLNC and L, respectively.

ξ =
N ·HRLNC + (N −K) · L

K · L
(4)

Figure 5 shows the evolution of the overall overhead (ξ)
as a function of the window size and for different block
lengths. In order to fairly compare the different block sizes,
the x-axis corresponds to the ratio between the window and
the block size; as can be seen the performance depends on
this ratio, rather than on the window value itself. The use
of small window values yields a remarkable increase of the
number of spurious transmissions, since the probability of
receiving linearly dependent packets becomes quite high, as
can be seen from the analytical model. For K = 256 we can
see an interesting effect, since there is an optimum value for
the window size, and larger windows would actually lead to
higher overheads. This reflects a longer RLNC header without
a relevant decrease of the spurious packets. By inspecting
the obtained results, we can establish the most favorable
configuration, which would be K = 256 and w = 32, yielding
an overhead of ξ ≈ 0.02, for any field size.

In order to analyze the behavior when K = 256 over a
non ideal scenario, we randomly drop packets while they are
being transmitted, configuring a Frame Error Rate (FER) that
is varied between 0.0 and 0.6. In this case, we cannot use
the overhead to assess the performance of the scheme, since
the increase of transmissions is not only a consequence of
linear dependencies, but packets can be also lost during their
transmission. In this sense, we study the evolution of the ε
ratio, which is shown in Figure 6. Besides, we assess the
performance for different field sizes1. We can again see that
the linear dependencies decrease until a certain window size
is used w = K/8 = 32 for the error-free scenario. In this
case, it is worth highlighting the impact of packet losses;
when the window is long enough, w > K/4, the linear
dependencies are not affected by packet losses. However,
for shorter window sizes, the sliding window scheme has an
interesting effect, since having more dropped packets can even
reduce the number of linearly dependent received packets. For
smaller FER values, if either of the two last packets are lost,
the source needs to go over the complete block (quite likely
transmitting useless packets); on the other hand, when the

1Note that the binary configuration q = 1 is the only case in which null
coefficients are allowed.

8 16 32 64 128 256
0

0.2

0.4

w

ε
FER = 0.0

FER = 0.3

FER = 0.6

(a) K = 256, GF (2)

8 16 32 64 128 256
0

0.2

0.4

w

ε

FER = 0.0

FER = 0.3

FER = 0.6

(b) K = 256, GF (28)

Figure 6: Ratio between linear dependencies and total number
of received packets

FER is higher, many packets might have been previously lost,
and therefore not so many redundant receptions are observed.

B. Performance Analysis

First, we obtain an analytical result, establishing the
throughput perceived by the RLNC layer, which corresponds
to that offered by the UDP protocol. We calculate it by means
of the well known Bianchi’s model [20]. In addition, this
baseline performance is jeopardized by a number of different
factors that can be estimated.

The first one corresponds to the transmission of linearly
dependent coding vectors, ~c, which are silently discarded and
thus have a negative impact over the system performance.
Eq. 3 can be used to derive the probability of a successful
decoding process after having received N encoded packets,
so the average number of required transmissions can be
easily obtained, as shown in Eq. 5, where pdc(K,N) is
the corresponding probability density function, which can be
computed as pdc(K,N) = P(K,N)− P(K,N − 1).

E[N] =

∞∑
i=K

i · pdc(K, i) (5)

As it is clear that E[N] ≥ K, we can finally establish
the average excess packet ratio, ε, which will have a negative
impact over the system throughput.

ε =
E[N]−K
E[N]

(6)

Another aspect that might jeopardize the performance is
the transmission of the acknowledgment packet by the re-
ceiver when it successfully decodes a block. If we define
τ as the average delay of a data packet, and τACK as the
one corresponding to an acknowledgment, the penalization
factor caused by the these confirmation packets, εACK, can be
estimated as follows.

εACK =
τACK

E[N] · τ + τACK
(7)

1/16 1/8 1/4 1/2 1
3

4

5

6

w/K

T
hr

ou
gh

pu
t

(M
bp

s)

K = 256 K = 128 K = 64

K = 32 Theoretical

Figure 7: Throughput over a single link communication,
FER = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

FER

T
hr

ou
gh

pu
t

(M
bp

s)

q = 2, w = 64 q = 8, w = 256 TCP
q = 2, w = 256 q = 4, w = 256

Figure 8: Throughput Vs. Link quality (FER)

Finally, the overall throughput, S = Smax ·(1−ε)·(1−εACK),
where Smax is the throughput under saturation conditions
(Bianchi’s model), over error-free links.

Figure 7 shows the throughput over a single link between
two nodes with FER = 0.1, for different block and window
sizes. As could have been expected, after the discussion of
the previous section, the best performance is achieved for the
largest block size, and when the window size equals 32. In
addition, we can observe that, for all cases the sliding window
RLNC outperforms the original RLNC scheme (it corresponds
to the value w/K = 1). We can also highlight the good match
between the theoretical values and those obtained during the
simulation campaign.

We now assess the performance over a lossy channel, fixing
its quality by increasing the FER between 0.0 and 0.6. We
focus on a block size of K = 256, since we previously
showed that the best performance was achieved with this
configuration. The results yield that a window size of 64
leads to the highest throughput, no matter the field size, as
shown in Figure 8. We obtain the same performance than that
best one of the original scheme (i.e. without sliding window,
w = 256) [10]. In addition, we shall also mention that the
proposed RLNC scheme always outperforms the legacy TCP
protocol, especially when the link quality get worse.

Finally, in order to evaluate the impact of the recoding
feature, we use the chain topology (see Figure 1); we fix
a FER = 0.6 for the direct link between S and D, while
the two other links, S → R1 and R1 → D, have the same
quality (FER = 0.1). Under these circumstances, a legacy
routing scheme would likely select the S → R1 → D path. In
addition, if the relaying node R1 did not recode the packets
before forwarding them, the packets overheard by node D
over the direct link with the source node would very likely
be redundant, and the destination would not be therefore able
to take advantage from such receptions. On the other hand,
recoding at R1 would actually increase the probability that

1/8 1/4 1/2 1
0

1

2

3

4

w/K

T
hr

ou
gh

pu
t

(M
bp

s)
K=64 K=64 - Recoding TCP (1 hop)
K=256 K=256 - Recoding TCP (2 hops)

Figure 9: Throughput over the 3-node chain topology (S →
R1 → D) for different configurations

packets sent by R1 bear different information2.
In Figure 9 we can see that the gain brought by enabling

the recoding process at the intermediate nodes is ≈ 17%.
Although the recoding procedure would increase the density
as well as the corresponding overhead (more coefficients
within the coding vector), its combination with the sparse
coding yields this additional performance enhancement, that
is almost independent of the window size. The figure also
shows the throughput observed for the legacy TCP protocol,
using both the direct link (S → D) as well as the two-hop
connection through R1; in both cases, the performance is
lower than the one exhibited by RLNC.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed the design and implemen-
tation of an enhanced coding scheme, based on a sliding
window solution. We have derived an analytical model to
establish the overhead of the proposed solution, as a function
of the block, field and window sizes. The model was first
validated and then complemented by means of a thorough
simulation campaign carried out over the ns-3 simulator.

The results showed that there is a trade-off between the
three studied parameters, i.e. GF (2q), K and w. We can
conclude that the use of large block sizes and low finite
fields would provide the best performance; in addition, we
have also seen that the window size can be reduced without
jeopardizing the performance, until w = K/4. The sliding
window based coding scheme yields a lower overhead and
reduces the decoding complexity, since the decoding matrix
sparsity would allow using optimized inversion algorithms,
as the one presented in [5]. In addition, we have also seen
that the proposed solution can be combined with the recoding
of packets at the intermediate nodes, which can yield an
additional gain.

In our future work we plan to broaden this analysis. For
instance, we did not study the observed latency; there might
be applications or services (e.g. real-time applications, video
streaming) imposing additional requirements, which could
eventually limit the block size (a higher block size would
certainly increase the latency). Hence, it would be interesting
to derive an analytical model able to establish the optimum
configuration to address the different requirements (latency,
performance). We would also like to introduce some of the

2For a more detailed discussion on the benefits of the recoding procedure,
the reader might refer to [8], [11]

concepts and ideas presented in [14], where the authors
proposed extracting and inserting the packets inside a block
as they are received.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Government
by its funding through the project COSAIF, “Connectivity as
a Service: Access for the Internet of the Future” (TEC2012-
38754-C02-01).

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.
1204–1216, Jul 2000.

[2] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2003.818197

[3] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information
Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371–381, Feb 2003.

[4] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, 2003. Proceedings., p. 7803, 2003.

[5] S. Feizi, D. E. Lucani, and M. Médard, “Tunable sparse network
coding,” in Proc. of the Int. Zurich Seminar on Comm, 2012, pp. 107–
110.

[6] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM
Trans. Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008. [Online].
Available: http://dx.doi.org/10.1109/TNET.2008.923722

[7] D. Gomez, S. Hassayoun, A. Herren, R. Aguero, and D. Ros, “Impact
of network coding on TCP performance in wireless mesh networks,”
in Personal Indoor and Mobile Radio Communications (PIMRC), 2012
IEEE 23rd International Symposium on, Sept 2012, pp. 777–782.

[8] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” SIGCOMM Comput.
Commun. Rev., vol. 37, no. 4, pp. 169–180, Aug. 2007. [Online].
Available: http://doi.acm.org/10.1145/1282427.1282400

[9] J. Krigslund, J. Hansen, M. Hundeboll, D. Lucani, and F. Fitzek,
“CORE: COPE with MORE in wireless meshed networks,” in Vehicular
Technology Conference (VTC Spring), 2013 IEEE 77th, June 2013, pp.
1–6.

[10] D. Gómez, E. Rodríguez, R. Agüero, and L. Muñoz, “Reliable
communications over wireless mesh networks with inter and intra-flow
network coding,” in Proceedings of the 2014 Workshop on Ns-3, ser.
WNS3 ’14. New York, NY, USA: ACM, 2014, pp. 4:1–4:8. [Online].
Available: http://doi.acm.org/10.1145/2630777.2630781

[11] D. Gomez, P. Garrido, E. Rodriguez, R. Aguero, and L. Munoz,
“Enhanced opportunistic random linear source/network coding with
cross-layer techniques over wireless mesh networks,” in Wireless Days
(WD), 2014 IFIP, Nov 2014, pp. 1–4.

[12] M. Luby, “LT codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, 2002, pp. 271–
280.

[13] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions
on, vol. 52, no. 6, pp. 2551–2567, June 2006.

[14] C. Sorensen, D. Lucani, F. Fitzek, and M. Medard, “On-the-Fly Over-
lapping of Sparse Generations: A Tunable Sparse Network Coding
Perspective,” in Vehicular Technology Conference (VTC Fall), 2014
IEEE 80th, Sept 2014, pp. 1–5.

[15] J. Heide, M. Pedersen, F. Fitzek, and M. Medard, “On code parameters
and coding vector representation for practical RLNC,” in Communica-
tions (ICC), 2011 IEEE International Conference on, June 2011, pp.
1–5.

[16] “The ns-3 network simulator,” http://www.nsnam.org/.
[17] M. R. Albrecht, “The M4RIE library for dense linear algebra over

small fields with even characteristic,” CoRR, vol. abs/1111.6900, 2011.
[Online]. Available: http://arxiv.org/abs/1111.6900

[18] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact decoding
probability under random linear network coding,” Communications
Letters, IEEE, vol. 15, no. 1, pp. 67–69, January 2011.

[19] P. Garrido, D. Gomez, R. Aguero, and L. Munoz, “Performance of
random linear coding over multiple error-prone wireless links,” Com-
munications Letters, IEEE, vol. 19, no. 6, pp. 1033–1036, June 2015.

[20] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed co-
ordination function,” Selected Areas in Communications, IEEE Journal
on, vol. 18, no. 3, pp. 535–547, March 2000.

