
Performance and Complexity of Tunable Sparse
Network Coding with Gradual Growing Tuning

Functions over Wireless Networks

Pablo Garrido†, Chres W. Sørensen¶, Daniel E. Lucani¶, Ramón Agüero†

†University of Cantabria
Santander, Spain

{pgarrido,ramon}@tlmat.unican.es

¶ Department of Electronic Systems
Aalborg University, Denmark

{cws,del}@es.aau.dk

Abstract—Random Linear Network Coding (RLNC) has been
shown to be a technique with several benefits, in particular
when applied over wireless mesh networks, since it provides
robustness against packet losses. On the other hand, Tunable
Sparse Network Coding (TSNC) is a promising concept, which
leverages a trade-off between computational complexity and
goodput. An optimal density tuning function has not been found
yet, due to the lack of a closed-form expression that links density,
performance and computational cost. In addition, it would be
difficult to implement, due to the feedback delay. In this work we
propose two novel tuning functions with a lower computational
cost, which do not highly increase the overhead in terms of the
transmission of linear dependent packets compared with RLNC
and previous proposals. Furthermore, we also broaden previous
studies of TSNC techniques, by means of an extensive simulation
campaign carried out using the ns-3 simulator. This brings the
possibility of assessing their performance over more realistic
scenarios, e.g considering MAC effects and delays. We exploit
this implementation to analyze the impact of the feedback sent by
the decoder. The results, compared to RLNC, show a reduction
of 3.5 times in the number of operations without jeopardizing
the network performance, in terms of goodput, even when we
consider the delay effect on the feedback sent by the decoder.

Index Terms—Random Linear Coding; Sparse Matrices; Sim-
ulation; Wireless Networks; TSNC

I. INTRODUCTION

We are witnessing a continuous evolution of wireless tech-
nologies and networks. One of the most relevant challenges
is the growing traffic demand. In the year 2020, it is expected
that the number of Internet connected devices will increase,
reaching around 50 billion (there are currently 25 billion
devices, according to Cisco estimation [1]). Nevertheless,
the highly heterogeneous systems, in terms of computational
power, energy and network resources, etc., brings additional
challenges to tackle with. Hence, the scientific community
is proposing novel techniques to improve the behavior of
wireless networks. One example of such solutions is Network
Coding (NC).

Network coding, originally proposed by Ahlswede et al.
in [2], fosters an alternative paradigm to store and forward and
sets out a new network understanding. Packets can be alge-
braically combined, re-combined or discarded by nodes while
they traverse the network. Some initial works, by Koetter and
Li [3], [4], showed that the use of linear codes could yield
the optimum multicast capacity, while Ho et al. [5] proposed
the RLNC scheme, showing that random linear combinations

of packets could lead to the optimal performance in terms of
network capacity.

Afterwards, different studies have analyzed the benefits
of RLNC solutions, showing that NC can bring a more
efficient usage of network resources. They also highlighted the
possibility of recoding packets at intermediate nodes. On the
other hand, their computational complexity and the required
overhead are usually overlooked, although they could in fact
jeopardize their overall goodput.

In this paper we extend the proposal made by Feizi et
al. in [6], where they show the potential of enabling a
tunable density mechanism, which they coined Tunable Sparse
Network Coding (TSNC). TSNC fosters the transmissions of
generations similar to RLNC, but does not choose a single
density for the entire process. When a block starts to be sent,
coded packets are generated with a low density, that is to say
few original packets are combined. Afterwards, this density
is increased throughout the transmission. Using low densities
alleviates both the encoding and decoding computational
complexity. On the other hand, once the destination node has
received a certain number of packets, a low density would
nevertheless yield a small probability of receiving innovative
packets, so it would be sensible increasing it (i.e. combine
more packets) when the number of already received packets
gets higher.

The novel contributions of this paper are: (1) the proposal
of two novel tuning functions for a practical tunable sparse
network coding scheme, which reduces the computational
cost of the decoding process; (2) the behavior assessment of
the TSNC techniques over a wireless network, exploiting the
ns-3 framework; (3) a study on the feedback sent by the
decoder impact on the behavior and on the overall network
performance.

This paper is structured as follows: Section II summarizes
the most relevant studies related to the research discussed
in this paper. Section III briefly describes the RLNC pro-
tocol, and the proposed approaches for the TSNC scheme.
Afterwards, in Section IV we analyze the complexity of
the proposed solution, comparing it a legacy RLNC; this
is afterwards broadened by means of a thorough simulation
campaign carried out over the ns-3 framework. Finally,
Section V concludes the paper, providing an outlook of the
aspects that will be tackled in our future research.

II. RELATED WORK

As was already mentioned, Ho et al. introduced RLNC
in [5]. They fostered the use of such technique for robust,
distributed transmissions and information compression, show-
ing that it was able to outperform previous deterministic
coding solutions. Afterwards, a combination of RLNC and an
opportunistic routing mechanism was presented by Chachul-
ski et al. in [7], leading to the so-called MAC-independent
Opportunistic Routing & Encoding (MORE) protocol.

In some of our previous works we have thoroughly studied
the RLNC behavior over error-prone wireless networks by
means of thorough simulation campaigns over the ns-3
framework. The corresponding ns-3 implementation was
presented in [8], which also analyzed the impact of some of
its operational parameters. In [9] we introduced a probabilistic
transmission scheme, also assessing the benefits of recoding
at intermediate nodes.

The RLNC decoding complexity can be quite high: O(K3),
being K the number of packets per generation. It is worth
recalling that other sparse end-to-end coding schemes, such
as LT [10] and Raptor Codes [11]; when they are de-
signed to recover the original K symbols by any subset of
(1+ ε)K symbols, their decoding complexity is much lower:
O(K · ln 1

ε , ε > 1). They rely on carefully designed degree
distributions, which are used to decide how many packets are
to be coded together. However, due to such coding structure,
recoding is rather complicated with these solutions [12].
Hence, they have clear limitations, if they are to be used over
wireless mesh networks, since they do not leverage recoding at
intermediate nodes, which is one of the most relevant features
of the RLNC scheme.

Sparse coding techniques have been exploited in order to
reduce such computational complexity. For example, Tassi et
al. [13] discussed a convex resource allocation framework that
allows minimizing the complexity of RLNC. In some cases,
decoding complexity is not the only issue of RLNC solutions,
since the overhead caused by the coding vector that needs to
be embedded in each coded packet shall be also considered.
Heide et al. [14] analyzed the impact of different operational
parameters (generation size, field size and density) over the
RLNC overhead; their approach is similar to the one used
in [6], combining a small number of packets (low density) in
each transmission. Moreover, a more complex scheme where
sparse codes and overlapping generations was exploited by by
Sørensen et al. in [15].

However, a static sparse coding level could lead to a
larger number of transmitted coded packets, jeopardizing the
network performance. Feizi et al. [6] already proposed a
TSNC scheme to reduce the complexity of the decoding
process, with a density that was dynamically adapted. In
short, packets are generated with a certain density d, which
is incremented after the transmission of a number of coded
packets.

The goal of this work is to optimally establish when
and how should the encoder increase the coding density.
Feizi et al [16] assessed the evolution of the density and
its impact over the goodput, using various tuning functions,
but considering a synthetic scenario, since they assumed
the encoder had full knowledge about the decoder status.

Sørensen et al. proposed a practical scheme in [17], where
the encoder just establishes the sparsity when the decoder
has received an amount of packets. In both cases, ideal and
reliable (i.e. zero-delay and no erasures) networks are assumed
between encoder and decoder, while real wireless channels are
considered within this work.

III. DESIGN AND IMPLEMENTATION

In this section we start by briefly depicting the operation
of both RLNC and TSNC techniques. Afterwards we propose
two novel approaches to dynamically adapt the corresponding
coding density. Both of them gradually increase the number
of coded packets per transmission, so as to find its optimum
value, without relying on a perfect feedback from the decoder.

A. System description

The source node stores K packets received from the upper
layers in a transmission buffer; K corresponds to the fixed
generation size. Afterwards, it starts sending coded (random
linear combinations) packets, belonging to such generation.
The corresponding coefficients (ci) are randomly selected
from a Galois Field, GF (2q) and we can therefore associate
a coding vector, ~cj , to each coded packet, comprising the
coefficients used during the coding process. Both the Galois
Field and generation sizes are parameters with a direct im-
pact on the overall performance. The source keeps sending
combinations until it receives an acknowledgement from the
destination, moving to the next generation.

The destination has two storage entities: a reception buffer,
which can keep up to K packets, and a decoding matrix,
C(K × K), which is populated with the received coding
vectors. When the destination receives a packet, the coding
coefficients vector is obtained from the header and is stored
in the decoding matrix. If it is linearly independent from
the already received ones, the packet is said to increase the
degree of freedoms (dofs). Otherwise, it is discarded. Once the
destination has received K innovative packets, it can restore
the original ones, and notifies the sender that it expects a new
generation.

The legacy RLNC scheme randomly combines packets from
the whole generation and its decoding complexity can be quite
high O(K3). It has been shown that the use of low density
codes might yield an important complexity reduction, as it
was exploited by the design of LT [10] or Raptor [11] codes.
However, due to the strict coding structure used by these
schemes, recoding is rather complicated. TSNC techniques [6]
advocate the combination of a small number of packets from
the whole generation. We can thus define a set of w packets
as W = {pi1 , pi2 , ..., piw |pik 6= pik′ ,∀ik 6= ik′}, randomly
selected from the generation. Finally, a w − sparse coded
packet is created as the combination of w packets:

p′j =
∑
i∈W

ci × pi (1)

Note that if RLNC was used, then |W | = K.
Lets assume i innovative packets have been already re-

ceived, i.e the receiver has i dofs out of K. Feizi et al. [16]
proposed an upper bound for the probability P(i, w,K) that
a new w−sparse coded packet is innovative:

Rasp Rasp v2 S3 S4
0

4

8

12

type of devices

E
ne

rg
y(

nJ
)

pe
r

bi
t

RLNC TSNC B = 144, m = 8

Figure 1: Energy consumption for RLNC and TSNC tech-
niques over different devices

P(i, w,K) ≤ 1−
(
1− w

K

)K−i
(2)

It is worth highlighting that if the decoder has few dofs, the
probability of receiving an innovative packet is high, even for
low density combinations. Hence, it is sensible starting with
small densities, and gradually increase them as long as the
decoder accommodates more linearly independent packets.

We introduce now the budget, B, as the average number of
packets that are to be transmitted by the source to receive a
complete generation at the destination. This budget includes
not only the K linearly independent packets, but also the
overhead induced by linearly dependent receptions. B can be
calculated based on the previously presented probability as
follows:

B =

K−1∑
i=0

1

P(i, w,K)
(3)

In order to stress the relevance of the energy saved when
TSNC is used Figure 1 shows the energy consumption of both
legacy RLNC and TSNC techniques. These results were pre-
sented in [18], where they analyzed the energy consumed by
different devices (Raspberry, Raspberry v2, Samsung Galaxy
3, Samsung Galaxy 5), leading to an overall average reduction
of around 2.5.

B. Proposed Tuning Functions

Our goal is to establish when the encoder should increase
the density, in order to keep the decoding complexity as low
as possible, but without increasing the overhead induced by
linearly dependent packets. We follow the scheme proposed
by Sørensen et al. [17]. The decoder provides more frequent
feedback when it is close to the end of the generation, where
the probability of receiving a linearly dependent packet is
higher, and therefore, an appropriate density is crucial. The
scheme works as follows: the destination sends a notification
back when the corresponding dofs equals some predefined val-
ues, which depend on the number of notifications established
at the decoder, m:

s(j) = K · 2
j − 1

2j
j = 0, 1, · · · ,m (4)

If we establish a desired budget, B, i.e the total number
of coded packets that we pretend to be transmitted by the
encoder, we can estimate the density value, d = w

K , leading
to that specific budget. The value of d can be obtained with
the bisection algorithm over the following expression:

0 20 40 60 80 100
0

0.1

0.2

0.3

dofs at the decoder

d

Step-by-step
Gradual1
Gradual2

Figure 2: Density evolution of the three approaches

B(s(j − 1), s(j),K) =

=

s(j)−1∑
i=s(j−1)

1

P(i, w,K)
≤

s(j)−1∑
i=s(j−1)

1

1− (1− d)K−i
(5)

Given T , the number of already transmitted packets, we can
obtain the remaining available budget B(s(j − 1), s(j),K),
before shifting to the next level, B−T2 . The encoder can thus
select the lowest possible density, provided that it respects the
remaining budget. We propose three different approaches to
modify the density as the transmission evolves:
• Step-by-step: it was presented in [17], and it establishes

that the encoder updates the density every time it receives
a notification from the decoder, according to Eq. (5)
given the desired budget, B, and the number notifications
that there decoder would eventually send, m.

• Gradual1: when the encoder receives feedback from
the decoder, it calculates the density as was done in
the previous alternative, d1; then, starting from the last
known value, the density is linearly increased until it
reaches d1. For example, if the density value that is
calculated upon the first notification received from the
decoder, d1, Eq. (5), the density will gradually increase
(using a linear trend) from d = 1/K to d1.

• Gradual2: we introduce the following growth function
d = p · x+ b, where x is the current dofs, p corresponds
to the slope that would be required to comply with the
corresponding budget, and b ensures its continuity. In
this case we use the bisection algorithm in Eq. (5) to
calculate p, considering the remaining budget, while b
ensures that the density does not have discontinuities.

The Step-by-step approach has two drawbacks over real
networks: (1) notification packets are not instantaneous, and
can even be lost; and (2) the large overhead induced by the
decoder feedback might jeopardize the overall network per-
formance. In order to have approaches less sensitive to those
drawback, the two gradual functions increase the density for
every transmitted packet, and do not require a new notification
to increase it. Notifications are exploited to establish more
appropriate growing functions. In any case, the density never
decreases during a generation transmission. If the next value
is lower than the previous one, we keep using this latter value.

As an illustrative example, Figure 2 shows the evolution of
the three approaches when the budget equals 110, B = 110.
The evolution of Gradual1 starts from a lower density, d =
1/k, and packets are always generated with a lower density

compared with the Step-by-step approach. In the second case,
Gradual2, coded packets are generated with a density similar,
on average, to the reference scheme and, although the growing
pace is faster at the beginning, the density is actually lower
at the end of the transmission.

IV. RESULTS

First we assess the behavior of the TSNC scheme assuming
ideal conditions, i.e. the decoder use an error-free and zero-
delay connection to send the notifications to the source node.
This would allow us to better understand the behavior of the
decoding process. Afterwards, we study the decoding com-
plexity as well as the overall network performance, exploiting
an implementation of the proposed solutions within the ns-3
framework. The decoding complexity is obtained through a
benchmark implemented using the Kodo library [19], which
uses a slightly modified Gaussian Elimination algorithm in the
decoding process. The network performance is measured as
the goodput at the application layer, i.e the total transmitted
bytes divided by the time elapsed from the first transmission
by the encoder until the destination gets the complete file.

A. Benchmark Results

We are first interested in measuring the number of op-
erations per packet that are required to decode a complete
generation; this comparison just focuses on the decoding
complexity of the different proposals, without considering the
impact of the feedback channel. We have implemented the
two enhanced TSNC schemes using the Kodo library [19]
and we have carried out a thorough analysis, assuming that
both source and the receiver nodes are connected with an ideal
(zero-delay) link. We analyze the behavior of three proposals:
(1) Step-by-step, (2) Gradual1 and (3) Gradual2

Following the procedure described in Section III, the de-
coder sends a notification when a particular dofs is reached,
depending on the number of levels m. We study the corre-
sponding complexity as a function of the number of times
the decoder sends those notifications (m) and the allowed
budget, B. The encoder is set up with a generation of 100
packets, each of them being 1500 bytes long. All the results
are obtained after 1000 iterations, and we show both the
average value as well as the 95% confidence interval.

The computational cost of the Step-by-step approach can
be seen in Figure 3. We study the number of finite field oper-
ations required at the decoder and the cumulative distribution
function (cdf) of the number of packets that are transmitted
by the source node. First, we can see that higher budgets yield
lower computational costs in the decoding process, since the
encoder can build lower density packets, if more transmissions
are allowed. It is also worth highlighting that a small m
reduces the possibilities for the encoder to change the density,
thus leading to an increase of the number of operations. On
the other hand, a high number of levels, m > 4, does not
reduce the number of operations, since the last density updates
happen when the dofs at the decoder is close to K.

For the cdf of the number of packets that need to be trans-
mitted, we fix m = 4, since higher values showed very similar
performances. We can see that a small budget, B = 110,
leads to a relevant reduction of the number of operations
(from ≈ 1.53× to ≈ 1.77×, depending on the value of m)

100 120 140
0

1

2

3

4

5

Budget

#
1
0
3

O
pe

ra
tio

ns

m = 2 m = 3

m = 4 m = 8

(a) Step-by-step approach

100 120 140
0

0.2

0.4

0.6

0.8

1

symbols

cd
f

-
Pr

ob
{#

sy
m

bo
ls
≤

x}

B = 100 B = 110

B = 120 B = 140

(b) Step-by-step approach. m = 4

Figure 3: Number of finite field operations and cdf of the
number of transmissions Vs. B and m for the Step-by-step
function.

100 120 140
0

1

2

3

4

5

Budget

#
1
0
3

O
pe

ra
tio

ns
m = 2 m = 3

m = 4 m = 8

(a) Gradual1 approach

100 120 140
0

1

2

3

4

5

Budget

#
1
0
3

O
pe

ra
tio

ns

m = 2 m = 3

m = 4 m = 8

(b) Gradual2 approach

Figure 4: Number of finite field operations Vs. B and m for
the Gradual functions

without a significant increase on the number of transmitted
packets. However, we can see a clear trade-off between
computational cost and network performance, since increasing
B and the overhead caused by linearly dependent packets,
severely jeopardizes the overall network performance; we can
indeed see that the number of transmissions is much higher.

In Figure 4 we analyze the behavior of the two proposed
schemes. As was already explained, Gradual1 operation is
quite similar to the one fostered by the Step-by-step alterna-
tive, although it gradually increases the density in every new
transmission; on the other hand, Gradual2 takes into account
the evolution of the density and, instead of estimating the most
appropriate value, it establishes the slope of a linear growing
function. As shown in Figure 4 the first approach yields a
more significant reduction of the number of operations for
small budget values, although the second alternative offers a
better operation for higher budgets and m = 2.

Both approaches have a similar behavior regarding the
number of transmitted packets, as can be seen in Figure 5,
especially for low budget values. Gradual1 generally starts

100 120 140
0

0.2

0.4

0.6

0.8

1

symbols

cd
f

-
Pr

ob
{#

sy
m

bo
ls
≤

x}

B = 100 B = 110

B = 120 B = 140

(a) Gradual1

100 120 140
0

0.2

0.4

0.6

0.8

1

symbols

cd
f

-
Pr

ob
{#

sy
m

bo
ls
≤

x}

B = 100 B = 110

B = 120 B = 140

(b) Gradual2

Figure 5: cdf of the number of transmissions vs B.

2 3 4 5 6 7 8
1

2

3

4

m

G
ai

n

Steps Gradual1 Gradual2

GF (2) GF (28)

Figure 6: Reduction in the number of operations with respect
to the RLNC scheme (B = 110).

from lower densities, w = 1, no matter the budget, and
gradually increases it until it reaches the value given by
Eq. (5), which is in fact an upper bound; as a consequence, the
encoder sends lower dense coded packets, without increasing
the number of transmissions.

Figure 6 shows the better performance, in the required
number of operations, if we take as a reference behavior of
a legacy RLNC scheme, i.e G = #operationsRLNC

#operationsTNSC . We fix the
budget, B = 110, since it provides a good trade-off between
complexity and overhead, and we also modify the size of the
corresponding Galois Field, q (for both the TSNC solution
and the reference RLNC scheme). We can see that increasing
the number of density regions (m) above 4 does not yield
any additional benefit; furthermore, the Gradual1 approach
outperforms the other TSNC schemes. Although the reduce
slightly increases for higher q values, we have to bear in
mind the larger computational costs, since they require both
multiplications and subtractions, compared to the simple xor
operations if GF (2) is used. Hence, this latter configuration
would lead to larger reduction in terms of energy consumption
and computational time.

B. Results over realistic wireless links

So far, we have assumed ideal channel conditions, in-
cluding the instantaneous knowledge of the decoder status
at the encoder. However, these assumptions are far from
being sensible in a real situation. In order to challenge the
proposed schemes under more realistic circumstances, we
have implemented the required modules within the framework
of the ns-3 simulator. We have then modeled a single

0 20 40 60 80 100
1

2

3

4

δ milliseconds

G
ai

n

Step-by-step Gradual1 Gradual2
m = 2 m = 4

Figure 7: Reduction in the number of operations with respect
to the RLNC scheme (B = 110).

wireless link, following 802.11b (11Mbps) recommendation,
between the two nodes. Our implementation starts from that
presented in [8], where the NC layer is set between the
UDP and IP level. Since the decoder needs to receive K
arbitrary packets and none of them is particularly relevant,
link layer retransmissions are disabled; they do not provide
any gain and can be even contra-productive, as was shown
in [8]. A maximum number of 4 transmissions per datagram
is established when the legacy TCP is used. We have made the
changes required to implement the TSNC approach, including
the decoder notifications.

First, we study the impact of the delay affecting the
dofs notifications sent by the decoder. It corresponds to the
combination of the propagation delay and the processing time
required by the decoder to calculate the dofs. In order to
capture its impact, we have added a timer within the ns-3
framework, which is activated whenever the decoder needs to
send a notification, to synthetically delay it by δ (ms). In this
sense, if δ = 0, the delay just corresponds to the propagation
time over the wireless link.

We show the reduction in the number of operations that
are performed, taking as a reference the ones required by
the legacy RLNC, see Figure 7. We keep using a budget of
B = 110 packets, and we sweep δ. We can see that the best
behavior is obtained by the Gradual1 approach, for m = 4.
Furthermore, if m = 2 the impact of δ is less significant, since
the encoder has low chances to tune the density, leading to
a higher density at the beginning and a similar value after
receiving the dofs notification from the decoder, no matter
when this happens.

Despite the reduction caused by higher δ values, this
strongly depends on the particular system and application. The
processing time measured in our benchmark is, on average,
0.6 ms per packet. We have carried out the measurements on
a computer equipped with an Intel Core i5-3317U, running
at 1.70GHz. We can thus state that, in this case, the delay
induced by this processing is negligible, since it is much lower
than the transmission time.

Once we have seen the complexity reduction offered by the
proposed schemes, we next study the network performance,
by analyzing the corresponding goodput, as can be seen in
Figure 8. We plot the values obtained for the three solutions,
comparing them with the performance of the RLNC scheme
and the one exhibited by the TCP protocol (using the New
Reno version [20]), since it is the traditional transport layer
used for reliable services (file transfer). When B ≤ 110 the
goodput of TSNC mimics the one offered by RLNC and, as

100 110 120 130 140 150
4

4.5

5

5.5

6

TCP

RLNC

B

T
hr

ou
gh

pu
t

(M
bp

s)
Steps− by − step Gradual1 Gradual2

m = 2 m = 4

Figure 8: Goodput of the different approaches Vs. B (δ = 0).

was previously discussed, the computational cost is heavily
reduced (≈ 3 times lower). However, when B ≥ 120, we
can see a goodput reduction, due to the transmission of linear
dependent packets.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed two novel tuning functions
to be used with TSNC techniques. They aim to reduce the
computational complexity of network coding by introducing
only a small overhead in the network. Besides, we have
broadened previous works, by considering non ideal networks
in our analysis. We have implemented the corresponding
techniques as well as different tuning functions within the
ns-3 framework and we have exploited such implementation
to thoroughly analyze both the goodput and the impact of the
corresponding delay in the notifications sent by the decoder.

The results showed a clear trade-off between network
performance and computational complexity. However, we
can conclude that there is an interesting point where the
computational complexity is reduced by ≈ 3.5×, without
a significant degradation of the goodput. The impact of the
feedback delay was also considered in the analysis, and the
results showed that it has a clear impact on the computational
cost. Note that in any case the TSNC scheme provides better
results than the legacy RLNC solution.

In our future work we plan to broaden this analysis. First,
we would like to study different tuning functions. The main
idea would be to find the most appropriate trade-off between
computational cost and network performance. Second, since
multicast transmissions is one of the most interesting use
cases for the RLNC, we will analyze how the TSNC solution
behaves over such networks. In fact, feedback issues get more
challenging in multicast networks. Hence, we are interested in
proposing a TSNC scheme without a direct feedback from the
decoder, as previous works have fostered for RLNC solutions
over multicast networks. Moreover, we will also propose a
more precise upper bound for the probability of receiving a
linearly dependent packet, given the current dofs, to improve
the density estimation.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Government
(Minesterio de Economía y Competitividad, Fondo Europeo
de Desarrollo Regional, FEDER) by means of the projects
COSAIF, “Connectivity as a Service: Access for the Inter-
net of the Future” (TEC2012-38754-C02-01), and ADVICE
(TEC2015-71329-C2-1-R). This work was also financed in

part by the TuneSCode project (No. DFF 1335-00125)
granted by the Danish Council for Independent Research.

REFERENCES

[1] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, pp. 1–11, 2011.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.
1204–1216, Jul 2000.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2003.818197

[4] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information
Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371–381, Feb 2003.

[5] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, 2003. Proceedings., p. 7803, 2003.

[6] S. Feizi, D. E. Lucani, and M. Médard, “Tunable sparse network
coding,” in Proc. of the Int. Zurich Seminar on Comm, 2012, pp. 107–
110.

[7] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” SIGCOMM Comput.
Commun. Rev., vol. 37, no. 4, pp. 169–180, Aug. 2007. [Online].
Available: http://doi.acm.org/10.1145/1282427.1282400

[8] D. Gómez, E. Rodríguez, R. Agüero, and L. Muñoz, “Reliable
communications over wireless mesh networks with inter and intra-flow
network coding,” in Proceedings of the 2014 Workshop on Ns-3, ser.
WNS3 ’14. New York, NY, USA: ACM, 2014, pp. 4:1–4:8. [Online].
Available: http://doi.acm.org/10.1145/2630777.2630781

[9] D. Gomez, P. Garrido, E. Rodriguez, R. Aguero, and L. Munoz,
“Enhanced opportunistic random linear source/network coding with
cross-layer techniques over wireless mesh networks,” in Wireless Days
(WD), 2014 IFIP, Nov 2014, pp. 1–4.

[10] M. Luby, “LT codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, 2002, pp. 271–
280.

[11] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions
on, vol. 52, no. 6, pp. 2551–2567, June 2006.

[12] S. Puducheri, J. Kliewer, and T. E. Fuja, “The design and performance
of distributed lt codes,” IEEE Transactions on Information Theory,
vol. 53, no. 10, pp. 3740–3754, Oct 2007.

[13] A. Tassi, I. Chatzigeorgiou, and D. E. Lucani, “Analysis and opti-
mization of sparse random linear network coding for reliable multicast
services,” IEEE Transactions on Communications, vol. 64, no. 1, pp.
285–299, Jan 2016.

[14] J. Heide, M. Pedersen, F. Fitzek, and M. Medard, “On code parameters
and coding vector representation for practical RLNC,” in Communica-
tions (ICC), 2011 IEEE International Conference on, June 2011, pp.
1–5.

[15] C. Sorensen, D. Lucani, F. Fitzek, and M. Medard, “On-the-fly overlap-
ping of sparse generations: A tunable sparse network coding perspec-
tive,” in Vehicular Technology Conference (VTC Fall), 2014 IEEE 80th,
Sept 2014, pp. 1–5.

[16] S. Feizi, D. E. Lucani, C. W. Sørensen, A. Makhdoumi, and M. Médard,
“Tunable sparse network coding for multicast networks,” in Network
Coding (NetCod), 2014 International Symposium on, June 2014, pp.
1–6.

[17] C. W. Sorensen, A. S. Badr, J. A. Cabrera, D. E. Lucani, J. Heide, and
F. H. P. Fitzek, “A Practical View on Tunable Sparse Network Cod-
ing,” in European Wireless 2015; 21th European Wireless Conference;
Proceedings of, May 2015, pp. 1–6.

[18] C. W. Sørensen, A. Paramanathan, J. Guerrero, M. V. Pedersen, D. E. L.
Roetter, and F. Fitzek, “Leaner and meaner: Network coding in simd
enabled commercial devices,” in IEEE Wireless Communications and
Networking Conference. Proceedings, 2016.

[19] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research
oriented network coding library,” in Networking 2011 Workshops.
Springer, 2011, pp. 145–152.

[20] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582 (Proposed
Standard), Internet Engineering Task Force, Apr. 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6582.txt

