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Abstract 

In this work, small-pore zeolites of different topology (CHA, LTA5, Rho), all with 

Si/Al ratio of 5, have been added to highly permeable poly(1-trimethylsilyl-1-propyne) 

(PTMSP) to increase its selectivity and thermal and mechanical stability. Membranes 

were characterized by TGA, XRD, SEM and CO2 and N2 single gas permeation 

measurements at different temperatures. TGA reveal that the thermal resistance of the 

membranes is as good as pure PTMSP polymer. XRD and SEM results reflect that there 

is good interaction between the fillers and the membrane matrix, at 5 and 10 wt. % zeolite 



 
 

loadings, while at 20 wt.% a dual layer stucture is formed, when Rho zeolite is the filler, 

because the particle size of Rho is higher than those of LTA5 or CHA, and voids appear 

that limit the permselectivity performance. In single gas permeation of N2 and CO2, the 

influence of temperature, zeolite loading and type is analyzed. The selectivity of pure 

PTMSP is considerably enhanced with the addition of the zeolites and the increase of 

temperature, and the MMM loaded with 5 wt. % zeolite surpassed the Robeson’s upper 

bound for CO2/N2 separation, without decreasing the permeability too much. Upon 

increasing temperature from 298 to 333 K, the permselectivity is enhanced even further 

without loss of permeability. The 5 wt% loaded membranes were tested in CO2/N2 mixed 

gas separation experiments at 333 K and 12.5 wt. % CO2 in the feed, and the 

permselectivity of LTA5- and Rho-PTMSP membranes was further enhanced, compared 

with the single gas permeation experiments. 

 

1. Introduction 

The atmospheric concentration of greenhouse gases (GHGs) has increased 

significantly over the last century [1]. Carbon dioxide is the main component of these 

gases, and its accumulation in the environment is leading to severe global warming issues, 

which makes necessary finding a feasible separation technology for the removal of CO2 

from flue gases. Membrane technology appears to be an attractive option in terms of 

energy saving, modularity, ease of scaling up and control [2], such as those energy 

intensive based on wet scrubbing using aqueous amine solutions [3]. In a typical coal-

fired power plant the flue gas is about 323 K, nearly at atmospheric pressure, and has a 

CO2 content as low as 10 – 15 % and partial pressure of 10 – 15 kPa [4]. Therefore, 

membranes with high CO2 permeability and moderate selectivity over other gases are 

required in order to allow working in a wider range of operating conditions in post-



combustion [5]. Besides, membranes should present good thermal and mechanical 

properties and be robust enough for long term operation [6]. In particular, the impact of 

membrane material in CO2 removal is as important as the process conditions [7]. 

Polymeric membranes appear, currently, to be the most advanced option for 

membrane-based post-combustion carbon capture in terms of CO2/N2 permselectivity [8]. 

However, the lack of thermal stability or inadequate performance in terms of 

permselectivity limit their use in industrial separations. In fact, there is a well-known 

trade-off between selectivity and permeability for a specific pair of gases separation [9]. 

One of the ways of improving the performance of polymer membranes is based on the 

concept of mixed-matrix membranes (MMM), which combine the molecular sieving 

effect and other properties of the dispersed fillers with the processing feasibility of 

polymeric materials to achieve a new material with enhanced mechanical and functional 

properties [10]. Components selection is a key feature in the development of new mixed 

matrix membranes. A good adhesion between polymer and sieve is a factor of paramount 

importance in order to achieve a defect-free MMM with synergic properties, and this 

limits the choice of candidate materials [11]. 

Since polymer selection determines the minimum separation performance, poly 

(1-trimethylsilyl-1-propyne) (PTMSP), which is the organic polymer with the highest gas 

permeability reported, being located at the right of the Robeson’s upper bound [9], is 

selected as continuous matrix in this work, since it. The CO2 permeability of PTMSP 

reported in literature covers a range between 16000 – 38000 Barrer at 298 K [12, 13], 

probably because the different stages of aging affecting PTMSP performance [14]. The 

high permeability of PTMSP is based on high solubility and high diffusivity and is 

probably related to its very low density (0.75 g cm-3) and its extremely high free volume 

(0.29) [15, 16], accounting for the presence of microvoids [12], compared with the rest 



 
 

of dense glassy polyimides [17]. The glassy structure of PTMSP explains the low chain 

mobility with a glass transition temperature greater than 523 K [15], which makes it a 

promising material for high temperature membrane separations, but leads to loss of 

permselectivity with time due to physical aging phenomena upon permeation and CO2 

plasticization. The addition of properly selected inorganic fillers is supposed to enhance 

membrane selectivity when no defects are presented [18-20].  

Zeolites were the first molecular sieves used as fillers in polymer matrices for gas 

separation because of their crystalline character with well-defined pore structures and 

shape selectivity properties [21]. Zeolite 4A nanoparticles have been widely reported in 

the literature to increase the permselectivity performance of glassy polyimides such as 

Matrimid [22], P84 [23], polyvinyl acetate [24], polycarbonate [25], or poly ether sulfone 

(PES) [26], and rather constant selectivity. However, adhesion with the commercially 

available polymers mentioned above is still a major challenge and many efforts have been 

made regarding preparation methods such as priming [26], zeolite modification by 

organic linkers [27] or zeolite preheat treatment [28]. Besides, zeolite 4A with a Si/Al 

ratio of 1 is very sensitive to the presence of moisture, which is a main component in flue 

gas, constituting a problem because the adsorbed water may not be easily released at the 

membrane separation temperatures [28]. The effect of Si/Al ratio on LTA fillers in 

PTMSP for CO2/N2 separation was studied in a previous work, using zeolites with Si/Al 

ratio 1 (Zeolite A) and ∞ (ITQ-29) [29]. The membranes prepared with low-Si/Al ratio 

showed the highest CO2 permeability and selectivity, surpassing Robeson’s upper bound 

even at 333 K, due to better adhesion between zeolite A and the polymer matrix, obtaining 

a dual layer structure that approach the membrane performance to that of a pure zeolite 

A membrane at 20 wt. % zeolite A loading. Pure silica ITQ-29 did not dispersed or 

adhered too well with the rigid structure of the super glassy PTMSP polymer [30]. The 



ideal CO2 adsorbent is a material with an intermediate CO2 affinity, high adsorption 

capacity, combined with good selectivity and easy regeneration. This applies also for an 

effective filler for CO2 selective MMM. Kosinov et al. [31] have just presented promising 

CHA (SSZ-13) purely inorganic hollow fiber CO2 selective membranes but they did not 

manage a Si/Al ratio as high as 5 into a defect-free zeolite layer. In the particular case of 

PTMSP, as far as we know, only Woo et al. [20] and Fernández-Barquín et al. [29] 

employed porous zeolites to modify the gas separation performance of the PTMSP. As 

far as we know, no works have yet been reported employing CHA or Rho zeolites into a 

mixed matrix membrane using PTMSP.  

This is the reason why, in this work, we study the effect of small-pore zeolites 

with Si/Al ratio of 5 and different structures (CHA, LTA5 and Rho), as well as good CO2 

adsorbing capacity, on the PTMSP matrix for MMM performance in CO2/N2 separation. 

MMM were characterized by thermogravimetric analysis (TGA), scanning electron 

microscopy (SEM), X-ray diffraction (XRD), and pure gas permeation of N2 and CO2, in 

the temperature range of 298 – 333 K, taking into account the mechanical and thermal 

stability. The most promising membranes were also measured in dry 12.5% CO2/ 87.5% 

N2 mixture separation at 333 K, to evaluate gas separation performance. 

 

2. Experimental 

2.1 Preparation of MMM 

MMM were prepared following the procedure described in our previous work 

[29]. Poly (trimethylsilyl propyne) (PTMSP) was purchased from ABCR GmbH 

(Germany) with a purity of 95%, dried at 70 ºC for several hours before being dissolved 



 
 

in toluene. The difference is that in this work, the zeolite fillers employed have different 

topologies, CHA, LTA and Rho.   

Zeolites were synthesized at the Instituto de Tecnología Química in Valencia, 

according to procedures reported in literature [32, 33, 34], with a Si/Al molar ratio of 5 

and the properties that are summarized in Table 1. 

Table 1. Properties of the zeolites employed in this work. 

Zeolite 

Particle size 

(µm) a 

Density 

(g/cm3) 

Pore volume 

(cm3/g) 

Pore size 

(Å) 
Si/Al Reference 

CHA 1.0 1.508 0.33 3.8 5 [35-37] 

LTA5 0.5 1.498 0.27 4 5 [37-41] 

Rho 1.5 1.442 0.26 3.6 5 [33,42] 

a: Observed by SEM, except Rho, which forms agglomerates with PTMSP as binder, so 

the particle size is taken from [33]. 

 

The gases used in the experiments were carbon dioxide (99.97 %), oxygen 

(>99.999 %) and nitrogen (>99.999 %) provided by Air Liquide (Spain). 

The membrane thickness was analyzed by means of a digital micrometer 

(Mitutoyo digimatic micrometer, IP 65) with a high accuracy up to 0.001 mm. The 

average thickness of the membranes is 72.75 ± 5.46 µm, not being influenced by the type 

of zeolite, and not far from the nominal thickness of 100 µm expected. As all the 

membranes have similar thickness, the permeability values are not affected by this 

parameter. The density of same membranes was also determined after the permeation 

tests, to study gravimetrically the integrity or possible physical aging of the membrane. 

The nominal filler loading used were 5, 10 and 20 wt. % referred to PTMSP polymer 

ratio. 



  

2.2 Characterization 

Thermogravimetric analysis have been performed to determine the thermal 

degradation of the MMM using a DTG-60H thermobalance (Shimadzu, Japan) in air 

atmosphere at a heating rate of 10 K min–1 up to 973 K. The sample temperature was 

measured with an accuracy of ± 0.1 K and the TG sensitivity was about 1 µg. 

The cross-sectional areas and the morphology of selected membranes of each 

composition were observed by scanning electron microscopy (SEM), using a Jeol JSM 

5410 equipment, located at the Universidad Politécnica de Valencia. Membrane samples 

were fractured in liquid nitrogen, to obtain a clean cross section that is coated with gold 

to reduce the charging effects on the polymer surface. 

The X-ray diffraction (XRD) of zeolite crystals and MMM was measured at the 

Servicio de Difracción de Rayos X y Análisis por Fluorescencia del  Servicio General de 

Apoyo a la Investigación de la Universidad de Zaragoza. Data were collected at room 

temperature using a Rigaku/D/max 2500 diffractometer, provided with rotating anode, at 

40 kV and 80 mA Cu Kα radiation with λ = 1.5418 Å and graphite monochromator. 

Single gas permeability of N2 and CO2 was determined within the temperature 

range 298 – 333 K in a constant volume system experimental setup shown in Figure 1. 

The membrane module consists of two stainless pieces with a cavity where the membrane 

is placed on a 316LSS macroporous disk support of 20 µm nominal pore size (Mott Corp., 

USA) and sealed by Viton rings. The effective membrane area was 15.55 cm2. In a typical 

run, the air tightness of the system was check before each permeation test, being tested, 

firstly, N2 permeation tests and secondly, those with CO2. The pure gas is fed at 2–3 bar 

into both permeate and feed compartments and then the permeate side is evacuated to 

generate the pressure difference across the membrane. Two transducers (Omega, UK) 



 
 

measured the pressure in the feed side and across the membrane during the whole 

experiment, in order to monitor the gas volume that passes through it. Each permeation 

test takes, approximately 2 hours, for each temperature, and experimental runs under the 

same membrane compositions and separation conditions are repeated 3 times for 

reproducibility assessment. The accumulated permeate volume calculated from the 

registered pressures is plotted versus time in Figure 2.  

 

 

Figure 1. Experimental setup for the single gas permeation experiments. 

 

When steady state was attained, the following expression was used to calculate 

the pure gas permeability, from the slope of the linear representation of the equation (1) 

[43], in a measurement interval around 1000 and 3000 s for CO2 and N2 permeability 

experiments, respectively, as 

( )
( )

0 0i , f i ,p i
m

i , f i ,p

p p p P
ln ln t

pp p
β

δ

− ∆  
= =  

∆−  
     (1) 



where pi,f and pi,p  are the feed and permeate partial pressures of the gas i, respectively, Pi 

is the permeability, δ is the thickness of the membrane  and βm is a geometric factor with 

a value of 110.76 m-1 in the experimental set up used in this work.  

 

 

Figure 2. Accumulated volume versus time at 298 K for CO2 permeation across the 

MMM. Continuous lines for LTA5-PTMSP, dashed lines for CHA-PTMSP membranes, 

and dotted lines for Rho-PTMSP membranes. 5 wt % (light gray), 10 wt % (gray), 20 wt 

% (black). 

 

The transition regime of mass transfer through a dense material in Figure 2 allows 

us to estimate the diffusivity through the membranes according to  

2 6D δ θ=          (1) 

where δ is the membrane thickness and θ is the time-lag obtained extrapolating to the time 

axis the linear part of the experimental curve of the accumulated permeate volume vs. 



 
 

time plot. Estimated time lag times range from 231 to 2103 s for CO2 and N2 permeation, 

respectively, for the membranes tested in this work. 

The permeability is a function of the absolute temperature and it is described in 

an Arrhenius form equation (2) [44] 

( )0 PP P exp E RT= −        (2) 

where P0 is the pre exponential factor and Ep the activation energy of permeation.  

The gas diffusivity also follows the Arrhenius model [44] 

( )0 DD D exp E RT= −        (3) 

where D0 is the pre exponential factor and ED the activation energy of diffusion. 

From the ratio of the single gas permeabilities of the most permeating gas, i, to 

the least permeating gas, j, the ideal selectivity can be calculated, as  

i

j

P

P
α =          (4) 

Gas separation experiments are carried out on selected membranes by means of 

CO2/N2 mixed gas separation tests using another experimental setup, schematized on 

Figure 3. The membrane module was the same as in the single gas permeation 

experiments. The feed mixture was set up at 12.5 wt. % CO2/ 87.5 wt.% N2 using MC-

50SCCM-D mass flow controllers (Alicat Scientific, USA). This mixture is fed to the 

membrane module with temperature controlled by a Memmert UNE 200 convection oven. 

The permeate flow rate was measured at the exit using a flowmeter and the CO2 

concentration was measured at the end by a G100 analyser provided with a temperature 

probe (Fonotest, USA). The permeate is mixed with pure known N2 flow rate for dilution, 

before entering the analyzer, since the maximum CO2 concentration measured by the 



analyser is 20%. The permeability, Pi, is calculated by equation (5) and the separation 

factor by equation (6). 

i
i

i

Q
P

A p

δ
=

∆
         (5) 

2 2

2 2

CO N

CO N

y y
S.F.

x x
=         (6) 

where Pi is given in Barrer (1 Barrer = 10-10 cm3 (STP)·cm/cm2 s cmHg), i represents the 

penetrating gas i, ∆pi is the partial pressure difference of i across the membrane (cmHg), 

Qi is the permeate flow rate of i (cm3/s) at standard pressure and temperature and y and x 

are the concentration at the permeate and feed stream, respectively.  

 

Figure 3. Experimental setup for the gas separation experiments. 

 

 

 

 



 
 

3. Results and discussion 

3.1. Synthesis and characterization 

Before analyzing the influence of temperature on permeation, the thermal stability 

of the membranes was measured by Thermo Gravimetric Analysis (TGA). The TGA 

analyses of the MMM are presented in Figure 4. In can be observed that the 

decomposition of the pure PTMSP agrees with literature [45] and the thermal stability of 

the MMM is very similar to that of pure PTMSP, resisting temperatures up to 573 K.  

From the thermogravimetric curves, the real filler composition has been calculated 

from the residual weight in TGA analyses, being 7.58 ± 3.30, 12.26 ± 3.26 and 20.35 ± 

3.25 wt. % for 5, 10 and 20 wt. % CHA -PTMSP MMMs, respectively. In the case of 

LTA5-PTMSP MMM, the real zeolite loading is 8.48 ± 3.55, 10.48 ± 1.69 and 22.09 ± 

2.09 wt. % for 5, 10 and 20 wt. %, respectively. For Rho-PTMSP MMM, the real zeolite 

loading is 7.65 ± 2.72, 10.30 ± 2.14 and 19.71 ± 2.90 for, 5, 10 and 20 wt. %, respectively. 

There is a lower deviation from the nominal values than those obtained for pure silica 

ITQ-29 [30], which points out to a good dispersion and adhesion of the particles with 

Si/Al of 5 in the membrane matrix. These results point out that these materials are 

thermally stable up to 573K, being potential materials to be used at industrial level where 

processes at elevated temperatures are carried out. Besides, from these thermogravimetric 

analysis, it can be observed that the nominal loading of the fillers agrees with real values. 
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Figure 4. TGA of CHA-PTMSP (a) LTA5-PTMSP (b) and Rho-PTMSP (c) MMM. 

 



 
 

The XRD patterns of the PTMSP-based MMM are shown in Figure 5. The main 

high intensity peaks of CHA are presented at diffraction angles of around 9º, 13º, 21º and 

31º [46]. The characteristic reflections of CHA become stronger with the zeolite loading. 

The XRD also reveals the presence of this zeolite in the membrane matrix, because the 

peaks appear in the corresponding angles of CHA. In general, the narrower a high-

intensity peak is, the more crystalline nature presents. The width of the peaks at 20 wt. % 

CHA is larger, probably, due to the appearance of voids at high loading that prevented 

obtaining reproducible permeation experiments [29]. This agrees with the XRD patterns 

of LTA-based MMMs drawn in Figure 5 (b), where the high loading of 20 wt. % led to 

a dual layer structure as in LTA Si/Al = 1 in our previous work [29] and ZIF-8 in ZIF-

8/PEBAX-5233 MMMs [47]. The XRD of LTA5-PTMSP and Rho-PTMSP membranes 

also reveal the presence of these zeolites in the membrane matrix, because the peaks 

appear in the corresponding angles of the LTA5 and Rho, respectively. Besides, as in 

Rho-PTMSP MMMs, the characteristic reflections of LTA5 and Rho zeolites become 

stronger with the filler loading. 

Another observation that can be withdrawn from the XRD patterns in Figure 5 is 

that the primary crystalline pattern of PTMSP is disrupted by the introduction of the 

zeolite particles, regardless the type of zeolite. The main broad band of PTMSP decreases 

with respect to increasing zeolite loading for all the types of zeolite under study. This 

means that the crystallinity of MMM has been modified upon addition of the zeolite 

particles, as observed before for similar systems [48]. 
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Figure 5. X-ray diffractogram of the (a) CHA, (b) LTA5 and (c) Rho-filled MMM. 

The cross-section images of the MMM are shown in Figure 6. A heterogeneous 

distribution of the zeolites is shown due to their sedimentation on the membrane side in 

contact with the plate, leading to an asymmetric morphology in the membranes [25, 38]. 

In CHA-PTMSP and Rho-PTMSP MMM, the zeolite particles have a higher density 

(CHA 1.508 g cm-3, Rho 1.442 g cm-3) than the pure polymer (0.75 g cm-3), and they 

accumulate at the bottom of the membrane. Better filler dispersion is observed for the 

LTA5-PTMSP membranes, which can be attributed to the smaller size of the LTA5 

zeolite particles, and the tendency of Rho particles to form clusters of agglomerates at the 

bottom of the membrane. CHA particles are too large and dense to make defect-free 20 

wt.% CHA-PTMSP MMMs.  

 



 

Figure 6. Cross-sectional images of the MMMs: (a) 5 wt. % CHA-PTMSP, (b) 5 wt. % 

LTA5-PTMSP, (c) 20 wt. % LTA5-PTMSP, (d) 5 wt.% Rho-PTMSP, (e) 20 wt. % Rho-

PTMSP. 

 

Zeolite with smaller particle sizes have lower effect  at lower filler loadings on the 

membrane compaction.  These compaction values have been calculated as the difference 
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between the membrane density before and after the set of permeation experiments. Each 

membrane is exposed to ten permeation experiments of two hours each, under an average 

pressure difference of 2.5 bar and in the consecutive temperature range from 298 to 333 

K. These compaction values are collected in Table 2. This allows expecting higher 

resistance to physical aging, because of the free volume structure is kept for longer times 

[49].  

Table 2. Compaction values of the MMM in increasing order of particle size: LTA, CHA, 

Rho. 

 
Density 

before experiment 

(g/cm3) 

Density 

after experiment  

(g/cm3) 

Compaction 

5wt% LTA5-PTMSP 0.745 ± 0.02 0.566 ± 0.17 0.180 ± 0.08 

10wt% LTA5-PTMSP 0.969 ± 0.25 0.785 ± 0.18 0.184 ± 0.03 

20wt% LTA5-PTMSP 0.961 ± 0.35 0.861 ± 0.26 0.1 ± 0.10 

5wt% CHA-PTMSP 0.771 ± 0.27 0.571 ± 0.08 0.2 ± 0.06 

10wt% CHA-PTMSP 0.896 ± 0.08 0.739 ± 0.05 0.154 ± 0.03 

5wt% Rho-PTMSP 0.899 ± 0.13 0.688 ± 0.07 0.211 ± 0.06 

10wt% Rho-PTMSP 0.638 ± 0.11 0.517 ± 0.12 0.122 ± 0.08 

20wt% Rho-PTMSP 1.051 ± 0.28 0.900 ± 0.10 0.152 ± 0.07 

 

3.2 Influence of temperature on transport properties 

The former observations can be related to the permeability, diffusivity and 

selectivity of the MMM in comparison with the pure PTMSP membrane. The gas 

permeability through the pure PTMSP membranes prepared in our laboratory decreases 

with increasing temperature, from 17454 ± 5102 Barrer at 298 K to 12056 ± 2375 Barrer 



at 333 K, whereas the ideal CO2/N2 selectivity is not improved. This is a typical behavior 

for PTMSP, due to the high free volume, and the fact that the rigid and weakly molecular 

sieving structure is more prone to changes in solubility than diffusivity [12, 13].  

Contrarily, the CO2 permeability of the MMM prepared in this work generally 

increases with temperature, for each zeolite loading and zeolite type. The average 

deviations errors for gas permeability measured are 7, 10 and 15 % for Rho, LTA5 and 

CHA-PTMSP based MMM, respectively The CO2/N2 ideal selectivity of the MMM is 

higher than that of the pure PTMSP, in the temperature range under study. The CO2/N2 

selectivity of 5 wt. % Rho-PTMSP MMM increases from 6.19 to 13.54, CHA-PTMSP 

MMM from 7.78 to 31.6, and LTA5-PTMSP MMM from 9.00 to 27.88, when increasing 

the temperature from 298 to 333 K. This is why the Robeson’s upper bound for CO2/N2 

separation, in Figure 7 is overcome for the intermediate loading MMM when increasing 

the temperature from 298 to 323 K. In Figure 7, the permselectivity values of the pure 

PTMSP membranes, prepared in this work in a similar manner as the MMM, are included, 

for the sake of comparison. The upper bound trade off relationship between permeability 

and selectivity has been calculated as function of temperature, taking into account the 

parameters obtained by Rowe et al. [50]. The upper bound shifts vertically with 

temperature and in the case of the CO2/N2 separation moves downwards with an increase 

in temperature [50]. Therefore, the permselectivity of the MMM is improved up to 280 

% and 2800 % higher at 298 and 323 K, respectively, compared to that of the pure PTMSP 

membranes. 

Another observation from the experimental single gas permeation of the MMM 

studied in this work is that the effect of the temperature on the CO2 permeability varies 

with the zeolite loading and morphology. Although the CO2 permeability decreases with 

zeolite filler content regardless the type of filler, the selectivity of LTA5, CHA and Rho-



 
 

PTMSP MMM reaches values of 9.27, 15.93 and 6.19 at 298 K, respectively, much higher 

than that of the pure PTMSP membranes (α (CO2/N2) =1.22 ± 0.07) at the same 

temperature measured in the permeation setup in Figure 1. This occurs at 10 wt. % 

loading for the smallest particle size zeolites (LTA5 and CHA) and 5 wt. % for the largest 

Rho particles, which is in agreement with the XRD and SEM observations. The CO2 

permeability, of some MMM at certain content of zeolite loading and temperature, is not 

decreased, though, contrarily to the general permselectivity trade-off reported for MMM. 

For instance, for 5 wt. CHA-based MMM at 333K, the CO2 permeability is not decreased, 

while for LTA5 and Rho –based MMM at 303 and 323K, respectively, the CO2 

permeability is almost constant up to a loading of 10 wt. %. This is because of polymer 

chain rigidification around the zeolite particles, partial pore blockage of zeolites by the 

polymer chains and extended diffusion pathways of the penetrants through the membrane 

[51-55], with constant or decreasing selectivity [23]. This behavior is attributed to the 

molecular sieving effect imparted by the introduction of the small-pore zeolites in the 

membrane, as well as the good interaction with the PTMSP chains that prevents 

interfacial voids. In general, CO2/N2 selectivity increases only up to 10 wt. % zeolite 

content, decreasing again when the zeolite loading is raised to 20 wt.%, due to the 

appearance of voids. The agglomeration of excess particles at the bottom observed by 

SEM (Figure 6) generate the preferential orientations observed by XRD (Figure 5) that 

lead to poorer adhesion between some particles and the polymer, providing that obtaining 

a good adhesion is especially difficult when using glassy polymers with rigid structure 

[27]. Moore and Koros established in 40 wt. % the upper limit over which a zeolite 4A 

could not be added to a glassy polymer without generating defects that decrease the 

selectivity gained [56]. In this work, the CO2/N2 selectivity is considerably increased even 

at zeolite loadings as low as 5 and 10 wt. %, improving the CO2 permselectivity. 
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Figure 7. Comparison of the permselectivity of the MMM prepared in this work at 298 

K (a) and 323 K (b), in comparison with the Robeson’s upper bound for CO2/N2 gas pair 

separation [9, 50]. Half symbols represent 5 wt. % (▄) and 10 wt. % (▀) loadings, 

respectively, and full symbols, 20 wt. %. 

 

The permselectivity of the LTA5, Rho and CHA-PTMSP MMM prepared in this 

work is enhanced with increasing operation temperature from 298 K to 333 K. Indeed, at 

323 K, Robeson’s upper bound is surpassed by 5 and 10 wt. % CHA -PTMSP and 10 wt. 



 
 

% LTA-PTMSP MMM, while the data obtained for 5 wt. % LTA5-PTMSP and Rho-

PTMSP MMMs are almost on the Robeson’s upper bound limit. In conclusion, selectivity 

is much greater than that of pure PTMSP membranes, due to the molecular sieving effect 

of the incorporation of the small-pore zeolites to the polymer matrix and the absence of 

defects between the polymer and the zeolites in the membrane matrix. Moreover, 

permeabilities are not substantially reduced compared to the pure polymer and all this 

results on overcoming the existing polymer membranes performance [57-60].  

 The effect of filler type and filler content on the CO2 permeability is represented 

at 298 and 323 K, in Figure 8 (a) and 8 (b), respectively. The relative CO2 permeability 

of the MMM with respect to that of the pure PTMSP membranes is plotted versus zeolite 

loading for the three different morphologies. At 298 K, the CO2 permeability of both 

CHA and LTA5 PTMSP based MMM is enhanced with the filler content, while the best 

CO2 permeability of Rho-PTMSP MMM at 298 K is obtained at a zeolite loading of 10 

wt%. On the other hand, at 323 K the CO2 permeability of CHA and Rho PTMSP MMM 

decreases with zeolite loading, while the highest CO2 permeability through LTA5-

PTMSP MMM is obtained for a filler content of 10 wt. %, being higher than that of pure 

PTMSP membranes measured in the same conditions. At both temperatures the lowest 

decrease of CO2 permeability with increasing zeolite loading are obtained for the LTA5-

PTMSP MMM.  



 

Figure 8. Relative CO2 permeability of the different MMM with respect to that of pure 

PTMSP membranes versus zeolite content at 298 K a) and 323 K b).  CHA- (black), 

LTA5- (gray) and Rho- (light gray) based PTMSP MMM. 

 

The effect of filler type and filler content on the CO2/N2 selectivity at 298 and 323 

K has been also presented (Figure 9 a) and 9 b)). The relative CO2/N2 selectivity to that 

of the pure PTMSP membranes is plotted as a function of zeolite loading and morphology. 

At 298 K, both the CO2/N2 selectivity of Rho and LTA- PTMSP based MMM decrease 

with filler content, being the highest with a 5 wt% zeolite loading, while the CO2/N2 

selectivity of CHA-PTMSP MMM enhances with an increase in the filling. On the 

contrary, at 303 K the best CO2/N2 selectivity of CHA-PTMSP MMM is with a filler 

content of 5 wt%, while that of LTA and Rho-PTMSP based MMM increases up to a 

zeolite loading of 10 wt%, decreasing again when the filler charge is raised to 20 wt. %, 

probably due to the appearance of voids. However, the CO2/N2 selectivity is considerably 

enhanced compared to that of the pure PTMSP membranes, up to a factor of 30. 

 



 
 

 

Figure 9. Relative CO2/N2 selectivity of the different MMM with respect to that of pure 

PTMSP membranes versus zeolite content at 298 K a) and 323 K b). CHA- (black), 

LTA5- (gray) and Rho- (light gray) based PTMSP MMM. 

 

The permeation tests carried out at different temperatures agreed with Arrhenius-

type relationships, according to equation (3) and (4) (not shown). Noteworthy, LTA5-

PTMSP MMM give the highest permeabilities, probably because LTA5 zeolite has the 

largest pore size. This enhances the diffusivity contribution to permeation of LTA5-based 

MMM, compared with the others, because of the 3-dimensionally interconnected larger 

pores of the LTA5 zeolite particles [61]. The activation energies for permeation are –7.1 

± 1.4 and –12.6 ± 4.1 kJ mol–1 for CO2 and N2 through pure PTMSP membranes, 

respectively, which agrees with other authors [58]. While the energies for diffusion are -

7.12 ± 4.99 and -17.29 ± 8.34 kJ mol–1 for CO2 and N2, respectively, also in agreement 

with other works [12, 48]. The activation energies for permeation and diffusion through 

the MMMs are presented in Table 3. The higher the temperature effect on the diffusion 

rate, the higher is the energy activation for diffusion and the higher the influence of 

diffusivity of permeation [48]. In this work, the MMMs present positive values for the 

activation energy for permeation that are greater than that of the pure polymer, because 



the solubility of the Si/Al = 5 zeolites used as fillers is also playing a role. From Table 3, 

it is evident that the positive value of Ep in the membrane is accompanied by a positive 

value of ED, only when the MMM start forming a dual phase structure and thus behaving 

like a pure inorganic membrane. A negative Ep value is accompanied also by a negative 

value of ED for the better dispersed LTA5-PTMSP MMM at zeolite loadings of 5 and 10 

wt.%, of lower particle size than CHA and Rho. 

 

Table 3. Activation energies of permeation and diffusion for CO2 and N2 through the 

PTMSP-based MMM. 

Membrane 

wt.% 

loading 

Ep [kJ/mol] ED [kJ/mol] 

  CO2 N2 CO2 N2 

PTMSP 0 -7.10 ± 1.4 -12.6 ± 4.1 -7.12 ± 4.99 -17.29 ± 8.34 

CHA-

PTMSP 

 

5 46.53 ± 14.72 12.13 ± 3.17 25.15 ± 8.89 12.85 ± 2.28 

10 
16.53  ± 8.75 7.19  ± 2.67 25.15 ± 9.47 1.36 ± 0.30 

LTA 5- 

PTMSP 

5 -11.23 ± 9.18 42.29 ± 13.05 -4.56 ± 2.61 28.25 ± 1.65 

10 18.76 ± 16.18 42.46 ± 15.17 21.18 ± 3.35 21.25 ± 2.92 

20 -5.88 ± 1.38 23.14 ± 16.14 -10.05 ± 1.54 43.96 ± 15.27 

Rho-PTMSP 

5 14.64 ± 3.68 -5.04 ± 0.69 15.50 ± 7.23 -12.35 ± 8.15 

10 26.43 ± 2.75 21.38 ± 8.54 22.94 ± 0.27 13.63 ± 3.21 

20 18.33 ± 4.51 10.14 ± 3.21 2.89 ± 0.67 13.04 ± 4.62 

 



 
 

3.3 Mixed gas separation properties 

Once the novel MMM were characterized, the MMM showing the highest 

separation ability of all studied in this work were those loaded with 5 wt. % regardless 

the type of zeolite. The separation of CO2/N2 gas mixtures at 12.5% CO2 was measured 

at 333 K and 4 bar, which approaches real mixed gas separation in flue gas post 

combustion treatment. Results are collected in Table 4. The permeation was calculated 

from the mixed gas separation set-up in Figure 3, by equation (7). Both CO2 permeation 

and ideal selectivity of LTA5 and Rho-filled MMM were enhanced in mixed gas 

separation in comparison with single gas permeation experiments, whereas this was not 

observed when CHA was used as filler. The real separation factor was calculated using 

equation (8). The separation factor has lower values than the ideal selectivity, because the 

zeolites and MMM adsorb preferentially the CO2 thus hindering the largest N2 molecule 

diffusion through the membrane. This implies a final CO2 percentage in the permeate of 

46.8 %, 43.4 % and 42.0 % and in the retentate 9.52 %, 9.06 % and 8.47 % for CHA-

PTMSP, LTA5-PTMSP and Rho-PTMSP, respectively. The CO2 permeabilities are also 

enhanced as compared with the single gas permeation experiments, which proves the 

influence of diffusivity selectivity despite the preferential sorption for CO2 over N2 of 

both zeolites and MMM, as in other membrane systems [62]. 

 

  



Table 4. CO2/N2 separation of 5 wt. % loaded MMMs at 333 K and 12.5% CO2 in the 

feed mixture. 

Zeolite filler P(CO2) 

[Barrer] 

P(N2) 

[Barrer] 

Ideal  

Selectivity, α 

% CO2 in 

permeate 

Separation 

factor (S.F.) 

CHA 22914 692 33.13 46.8 6.2 

LTA5 27249 1242 21.94 43.4 5.4 

Rho 64920 1308 49.65 42.0 5.1 

Zeolite A * 112627 1785 63.10 39.6 4.9 

*This experiment was carried out with the 20 wt. % loaded zeolite A in PTMSP, whose 

characterization was studied in a previous work [29].  

 

4. Conclusions  

In this work, mixed matrix membranes (MMM) have been successfully prepared 

using the highly permeable PTMSP polymer and small-pore zeolites with Si/Al ratio of 

5, and topologies LTA5, CHA and Rho, respectively, by the solution casting method. A 

filler loading of 5 and 10 wt. % in the PTMSP matrix provides good thermal stability as 

well as adhesion and dispersion throughout the MMM. The permselectivity of N2 and 

CO2, increased with the incorporation of all the zeolites. The CO2 permeability through 

the membrane decreases, but the CO2/N2 selectivity is considerably improved, in 

consequence enhancing the CO2 permselectivity. The adhesion at the highest filler 

loading of 20 wt. % is hindered by agglomeration and irregular particle orientation that 

causes voids appearance between the phases, as observed by XRD and SEM.  

The increase in CO2/N2 permselectivity over the Robeson’s upper bound for this 

gas pair mixture is enhanced when operation temperature is increased from 298 K to 333 

K. This is attributed to the molecular sieving effect upon zeolite introduction, which was 



 
 

maintained even at increasing temperature. In fact, at 323 K not only LTA-PTMSP 

membrane but also CHA-PTMSP membranes surpass this upper bound. 

The 5 wt. % zeolite MMM performance were tested for the CO2/N2 mixture 

separation at 333 K. Mixed gas separation experiments reveal similar CO2 permeability 

and higher CO2/N2 ideal selectivity as in single gas permeation, and low real separation 

factor, thus proving the higher influence of diffusivity selectivity despite the preferential 

sorption for CO2 over N2 of both zeolites and MMM. 

These results indicate the good compatibility between the Si/Al = 5 zeolite fillers 

and the PTMSP to produce novel membrane materials with improved permselectivity and 

the potential of these membranes to be used in CO2 separation at higher temperature than 

conventional processes.  
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Figure 3. Experimental setup for the gas separation experiments. 

Figure 4. TGA of CHA-PTMSP (a) LTA5-PTMSP (b) and Rho-PTMSP (c) MMM. 

Figure 5. X-ray diffractogram of the (a) CHA, (b) LTA5 and (c) Rho-filled MMM. 

Figure 6. Cross-sectional images of the MMMs: (a) 5 wt. % CHA-PTMSP, (b) 5 wt. % 

LTA5-PTMSP, (c) 20 wt. % LTA5-PTMSP, (d) 5 wt.% Rho-PTMSP, (e) 20 wt. % Rho-

PTMSP 

Figure 7. Comparison of the permselectivity of the MMM prepared in this work at 298 

K (a) and 323 K (b), in comparison with the Robeson’s upper bound for CO2/N2 gas pair 

separation [9, 48]. Half symbols represent 5 wt. % (▄) and 10 wt. % (▀) loadings, 

respectively, and full symbols, 20 wt. %. 

Figure 8. Relative CO2 permeability of the different MMM with respect to that of pure 

PTMSP membranes versus zeolite content at 298 K a) and 323 K b).  CHA- (black), 

LTA5- (gray) and Rho- (light gray) based PTMSP MMM. 

 



 
 

Figure 9. Relative CO2/N2 selectivity of the different MMM with respect to that of pure 

PTMSP membranes versus zeolite content at 298 K a) and 323 K b). CHA- (black), 

LTA5- (gray) and Rho- (light gray) based PTMSP MMM. 

 

 

 


