Electrochemical membrane reactors for the utilisation of carbon dioxide

4 Ivan Merino-Garcia^a, Enrique Alvarez-Guerra^a, Jonathan Albo^b, Angel Irabien^{a*}

- 6 ^aDepartment of Chemical and Biomolecular Engineering, University of Cantabria, Avenida de
- 7 los Castros s/n, 39005 Santander, Cantabria, Spain.
- 8 ^bDepartment of Chemical Engineering, University of the Basque Country, Apdo. 644, 48080,

9 Bilbao, Spain.

10 ^{*}Corresponding author; e-mail: <u>angel.irabien@unican.es</u>

11

3

5

12 Climate Change is among the greatest challenges for humankind in the 21st century.

13 Carbon Capture and Utilisation (CCU) allows the production of value-added chemicals

14 from CO₂, reducing at the same time the undesirable effects of global warming.

Among the available methods for CO₂ utilisation, the electrochemical reduction appears as a promising technological solution to store intermittent renewable energy in the form of chemical bonds, leading to valuable chemicals such as formic acid, methanol or ethane, which can be put back into the market.

The application of electrochemical membrane reactors (ecMRs) for the valorisation of CO₂ allows the separation of the catholyte and anolyte compartments, leading to an enhanced separation of reaction products and avoiding their re-oxidation. Among these membrane-based reactors, the utilisation of Membrane Electrode Assemblies (MEAs), where the cathode and anode are coupled with a conductive membrane, are gaining importance. Besides, Gas Diffusion Electrodes (GDEs) are able to reduce mass transfer limitations and therefore, enhanced efficiencies in the process of CO₂ electroreduction.

Accordingly, the aim of the present review is to compile the literature on the application of membrane reactors for CO_2 electroreduction, paying special attention to the type of membrane, reactor configuration and catalytic material in the electrochemical reactor. 29 Then, a performance comparison in terms of Faradaic efficiency and products reported30 up to date, is carried out.

31

32 **1. Introduction**

Climate change is one of the most significant challenges to achieving sustainable development. The emissions of carbon dioxide (CO₂) to the atmosphere need therefore to be drastically reduced in order to alleviate the proven effects of global warming [1, 2].

Among the available CO_2 mitigation strategies, Carbon Capture and Utilisation (CCU) to produce useful chemicals from CO_2 [3-5] is particularly interesting, since it may alleviate our rely on fossil fuels for energy and chemical synthesis [6], promoting, at the same time, new technical sinks in the carbon life cycle.

There are different techniques to activate and convert CO_2 at low temperatures. Among them, photoreduction (photocatalysis), electrochemical reduction (electrocatalysis) and reforming of CO_2 are considered the most interesting ones [7].

The technology for CO₂ photoreduction is still incipient. Photocatalytic materials seem to be unstable and current efficiencies are still low. Besides, plasma methods are clean and fast, but their energy efficiency is still very low (around 6 %). On the other hand, conventional methods (i.e. reforming) involve high cost associated to the needs of high thermal power [7].

In contrast, the electrocatalytic reduction of CO_2 is an attractive solution since it allows obtaining hydrocarbons and oxygenates with a simple procedure at low operation temperatures. In addition, this technique shows promise to reduce greenhouse gas emissions and control the anthropogenic carbon cycle by transforming CO_2 to fuels and chemicals [8]. Due to the environmental and potential economic benefits, different systems have been developed for the electrochemical conversion of CO_2 [9].

The efficiency of this process can be enhanced by selecting a highly active electrocatalytic material, increasing the pressure of CO_2 (using gas diffusion electrodes (GDEs)) or applying efficient electrochemical reactor configurations, among others [10].

Besides, the application of membranes in electrochemical reactors for CO₂ reduction is
also interesting, since it allows separating the cathodic and anodic reactions that occur
simultaneously in a redox system. Thus, studies on CO₂ conversion in divided
electrochemical membrane reactors (ecMRs) are commonly found in literature [11].

Membranes may play a very important role, since they allow the use of different 63 catholyte and anolyte volumes, enhancing the separation of products, leading to 64 technical advantages in the reduction process. Besides, Membrane Electrode 65 Assemblies (MEAs), where cathode and anode are coupled with conductive membrane 66 materials, are also an interesting approach. The literature shows the application of 67 different ion exchange membranes for the electrochemical reduction of CO₂ in divided 68 cells, namely cation exchange membranes (CEMs), usually Nafion[®], and anion 69 exchange membranes (AEMs) such as SelemionTM. In addition, the phase involved in 70 71 these reactors has also been taken into account. Works based on gas phase at the cathode side are emerging due to the low solubility of CO_2 in water [12], with the aim 72 73 to improve mass transfer limitations occurring in liquid phase systems. Moreover, the 74 utilisation of gas phase in both, the cathode and anode compartments, has been reported in a few works [13, 14], although the efficiencies of those systems are still low, and 75 therefore, further developments are needed. 76

There are several reviews on different aspects related to CO_2 electrochemical conversion [6, 9, 15-17]. However, none of them pays specific interest to the discussion on membrane reactor configurations for CO_2 electroreduction. Thus, the aim of the present review is to discuss the different reports on electrochemical membrane reactor configurations for CO_2 utilisation. A discussion of relevant studies on the topic are presented, emphasizing on: membrane materials, electrochemical reactor designs and catalytic material for each system.

84

85 **2. Electrocatalytic reaction analysis**

The performance of a CO₂ electrochemical reduction process is in general evaluated in terms of *Faradaic efficiency (FE)*, *energy efficiency (EE)* and *current density (CD)*. The

88 *FE* represents the percentage of electrons that end up in the desired product:

89
$$FE(\%) = \frac{z \cdot n \cdot F}{\rho} x 100$$
 (1)

where z is the number of exchanged electrons, n is the number of moles for a product, F is the Faraday constant (96,485 C·mol⁻¹), and Q represents the charge passed in the system (C).

Besides, the *energy efficiency* (*EE*) refers to the amount of energy in the products
divided by the amount of electrical energy put into the system [8], as defined by
equation 2:

96
$$EE = \sum_{k} \frac{E_{k}^{0} \cdot FE_{k}}{E_{k}^{0} + \eta}$$
 (dimensionless) (2)

97 where E_k^0 is the equilibrium cell potential for a specific product k (V), FE_k is the *FE* of 98 product k, and η is the cell overpotential (V) [6].

99 And finally, the *current density* (*CD*), which is related to the conversion rate of the 100 electrochemical reaction, usually expressed in mA·cm⁻². 101 The goal for an efficient CO_2 electroreduction process is to achieve high *EEs* and 102 reaction rates for CO_2 conversion (i.e., high *CD*). Therefore, high *FE* and low 103 overpotentials on the cathode and anode are necessary in order to bring the technology 104 closer to an industrial scale.

105 Moreover, the reduction products obtained from the electroreduction of CO_2 are diverse, 106 mainly including carbon monoxide (CO), formic acid (HCOOH), formaldehyde 107 (CH₂O), methanol (CH₃OH), methane (CH₄), ethylene (C₂H₄) or ethanol (CH₃CH₂OH), 108 depending on the number of electrons involved as shown from equation 3 to equation 9. 109 It is also very common to find a mixture of products [6, 16, 18].

110
$$CO_2 + 2H^+ + 2e^- \to CO + H_2O$$
 (3)

111
$$CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H$$
 (4)

112
$$CO_2 + H^+ + 2e^- \to HCOO^-$$
 (5)

113
$$CO_2 + 4H^+ + 4e^- \to HCHO + H_2O$$
 (6)

114
$$CO_2 + 6H^+ + 6e \to CH_3OH + H_2O$$
 (7)

115
$$CO_2 + 8H^+ + 8e^- \to CH_4 + 2H_2O$$
 (8)

116
$$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$$
 (9)

The mechanisms for CO₂ reduction on metallic electrodes have been hypothesized by
several authors, as summarized in Figure 1 [6, 8, 16].

119 In general, metal groups 1 and 2, which lead to CO and HCOOH formation, are widely

- 120 found in the literature [19, 20]. On the other hand, studies applying metals included in
- the group 3 for alcohols and hydrocarbon formation are less abundant [21, 22].

122

- 123 Figure 1. Mechanisms for the electrochemical reduction of CO_2 in water at metal
- surfaces. Reproduced with permission from ref. [8].
- 125
- 126 In order to give an overview of the available literature in the valorisation of CO₂ using
- ecMRs, Figure 2 shows the products distribution of reported systems.

Figure 2. Distribution products, sreports for CO₂ utilisation in ecMRs. Notation:
HCOOH; CO; CH C₄; C₃OH; dimethyl bonate (DMC)
[revised March 2016].

HCOOH and CO are the main products in ecMRs, due to their lower number of
electrons and protons exchanged. Besides, the production of hydrocarbons (i.e. CH₄,
C₂H₄ and C₂H₆) are gaining increasing importance, in spite of the higher number of
electrons and protons required in the process [9, 15]. On the other hand, CH₃OH (3 %)
and DMC (2 %) have been scarcely found to be the main products in ecMR systems.
Considering the relevance of the cathode material in the CO₂ electroreduction process,
Figure 3 shows the type of catalysts applied for the production of different products in

140 ecMR systems.

142 Figure 3. Different catalysts applied for the formation of different products obtained.

143 Notation: Ag; Ni; Sn; Pb; Pt; Cu; Cu: Sn

144 As observed, CO is generally obtained in ecMRs with Ag-based catalysts (90 %).

145 Besides, Sn-based catalysts are the most common reported materials for HCOOH

146 production, although Pb, Pt, and Cu-based catalysts can be also active for HCOOH 147 formation in ecMRs [20, 23-25]. Cu-based catalyst have been mainly used for the 148 electrochemical conversion of CO_2 to hydrocarbons and CH_3OH [21, 26]. DMC has 149 been obtained at Pt-Nb catalysts (95 % Pt). The figure, thus, demonstrates the 150 importance of the cathodic material selection in the valorisation of CO_2 , in order to 151 achieve high efficiencies for different products.

Some electrocatalysts for the electrochemical reduction of CO_2 gave desirable product selectivity under continuous operation, but only a few of them have resulted in high efficiency production (e.g. Sn and Pb to obtain HCOOH). In this way, the selectivity to the desired product with high efficiencies strongly depends on other aspects related to the process such as the composition of electrocatalysts, the catalytic mechanism for CO_2 reduction or operation conditions (pH, electrolyte, potential, temperature, pressure, etc.) [18].

159

3. Electrocatalytic membrane reactors

161 The main limitations of CO_2 valorisation processes are related to the slow kinetics of 162 CO_2 electroreduction, high-energy consumption and low *EE* of the process. To tackle 163 those issues, different reactor configurations have been developed, in order to enhance 164 process performance and bring the technology for CO_2 electroreduction closer to the 165 industrial-scale [18].

This section analyses the different electrochemical reactor reported in literature, paying special attention to the relative position of the electrodes and the membrane in each configuration. The different reactor configurations applied along the time are presented in Figures 4 to Figure 7. Firstly, undivided electrochemical reactors, in which dense plates-type electrodes are separated by a liquid phase that acts as both anolyte and catholyte (Figure 4.a) were conventionally applied. In these cells, product recuperation is not simple and requires an additional separation step, increasing process costs.

174

175Figure 4. Conventional undivided electrochemical reactor (a) and electrochemical

176 reactor separated by an ion exchange membrane (b).

Besides, Figure 4.b. shows an ecMR with two compartments divided by an ion exchange membrane. In this case, the membrane isolates cathodic and anodic reactions, which may occur simultaneously in an electrochemical process, leading to an enhanced separation of products and the avoidance of re-oxidation reactions [11]. Different research groups have applied plate electrodes in two-compartment cells separated with an ion exchange membrane [19, 23, 24, 26-36]. In general, the application of CEMs, where the transport of protons is favoured, is preferred [20, 23, 24, 26, 28-36] with respect to the use of AEMs [19, 27], where species such as bicarbonate are mainlytransported through the membrane.

186 The type of membrane [11], together with the selection of the electrolyte (e.g. H^+ or K^+ 187 can cross the membrane in H_2O or KOH aqueous anolytes, respectively), is very 188 important in the process. When a CEM is applied to the CO₂ electrochemical reduction 189 process, the following reactions are observed [11]:

190
$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 (10)

191
$$2H^+ + 2e^- \to H_2$$
 (11)

192

However, with AEMs the anionic species travel from the cathode to the anode (e.g. HCO_3^- from an aqueous solution of KHCO₃ as catholyte). In this case, CO₂ evolved at the anode side and needs to be further separated from the O₂ generated in the anode. The typical reactions for the CO₂ electroreduction to CO using AEMs at the cathode side are as follows [11]:

198
$$3 CO_2 + H_2O + 2 e^- \rightarrow CO + 2 HCO_3^-$$
 (12)

199
$$2 CO_2 + 2 H_2 O + 2 e^- \rightarrow H_2 + 2 HCO_3^-$$
 (13)

200

The main aspects that limit these electrochemical reactions are mass transport across the membrane, the nature of the reaction medium and the required protons of the product of interest. The procedure to activate the membranes prior their use is also a key factor to achieve an enhanced CO_2 electrochemical reduction [37].

Besides, polarization losses in the electroreduction of CO_2 are usually related to the transport of species and concentration gradients, which may basically depend on the membrane. The effect of using a CEMs or AEMs on polarization losses was recently studied by Singh et al. [38], concluding that losses when using a CEM are higher than

those for an AEM or without membrane. In spite of that, most of the works on CO₂ 209 electrochemical reduction are performed with Nafion[®] CEMs. Other variables such as 210 211 cathode and anode overpotentials, mass transfer, pH between cathode and anode and 212 other operation conditions (e.g. CO_2 flow and pressure, CD, etc) should be also taken into account in order to reduce polarization losses. In general, CO₂ reduction to CO 213 involves a high level of polarization. However, this level decreases as the number of 214 215 required electrons to produce a specific product increases. Besides, different ways to 216 minimize polarization losses, achieving high *CDs* to favour CO₂ reduction vs. hydrogen evolution reaction (HER) have been proposed [38]. It seems that the electrolyte should 217 be close to neutral pH. 218

Moreover, in order to overcome mass transfer limitations occurring in ecMRs, GDEs, in which the catalytic material is dispersed by different methods onto a porous structure, have been used for the electrochemical valorisation of CO_2 [10, 21, 25, 39-44]. The development of suitable supports to achieve a good catalyst dispersion and transport of reactants (i.e. CO_2) is essential for an enhanced efficiency of the process. Porous carbon papers have been usually applied for the fabrication of GDEs [39], although different polymers, which enhanced properties, are currently under development [45].

Depending on the relative position of the GDE with respect to the ion exchange membrane, different reactor configurations are reported (Figure 5). Particularly, Figure 5a shows a catalytic layer–membrane configuration [46]. Additionally, MEAs, where cathode-membrane-anode are coupled and thus, the contact and transport of species between the electrodes are enhanced, can be found in literature [11, 47-49].

Figure 5. Catalysts dispersed at the cathode coupled with an ion exchange membrane (a)and, both electrodes coupled with the membrane (MEA) (b).

Furthermore, due to the low solubility of CO_2 in water and the possibility to avoid HER, the conversion of CO_2 directly in gas phase has aroused great interest recently [11, 22, 50-57]. In this configuration, CO_2 transport resistances in the catholyte may be suppressed. Figure 6 shows different reactor configuration approaches using CO_2 gas at the cathode.

239

240

241

Figure 6. Different electrochemical reactor configurations for CO₂ valorisation in gas
phase: gas phase at the cathode separated to the catholyte (a), gas phase at the cathode

with a liquid buffer layer (b), cathode coupled to a membrane without buffer layer (c),

247 and MEA configuration (d).

248 The simplest configuration is shown in Figure 6.a, where a GDE is placed between the 249 gas stream and the catholyte, separating both phases. An alternative, is the replacement 250 of the catholyte by a pH-buffer layer (aqueous salt solution), usually applied between 251 the cathode and the membrane (Figure 6.b). This configuration permits the transport of 252 ionic species (i.e. H^+) by using different aqueous salts such as KHCO₃ [11, 50]. For instance, a large increase in the selectivity for CO evolution (efficiency of 82 %) using 253 254 Ag-based catalyst as working electrode was observed with respect to a configuration in 255 which the buffer layer was not included [11]. Wu et al. [50] discussed that the inclusion of a pH-buffer layer (0.1 M KHCO₃) allowed to dominate CO₂ reduction to HCOO⁻ (FE 256 around 90 %) over HER using a sprayed Sn ink onto a GDL as cathode. 257

Figure 6.c and Figure 6.d present the cell configuration for the reduction of CO_2 in gas phase. In the first case (Figure 6.c); the MEA contains a porous cathode coupled with the membrane, with the anolyte solution between the anode and membrane [51-53]. In the second configuration (Figure 6.d), the electrodes are sandwiched together with the membrane (MEA) [11, 22, 54-57] facilitating the transport of ionic species, which may be beneficial for an effective valorisation of CO_2 into more reduced products such as CH_4 and C_2H_4 [17].

Finally, the development of electroreduction processes completely in gas phase at both electrode compartments is under development. This configuration may overcome mass transfer limitations and facilitate the separation of products. The available literature in this regard is still scarce and it seems that further developments are required [13, 14]. Cook et al. [13] firstly developed gas-gas ecMRs for CO₂ reduction using a Nafion[®] 117 membrane. They observed the formation of CH₄, C₂H₄ and C₂H₆ as major products. Besides, Figure 7 shows the scheme of the electrocatalytic cell applied by Kriescher etal. [14] for CO₂ reduction to hydrocarbons.

Figure 7. Gas-gas ecMR used by Kriescher et al. [55]. Reproduced with permissionfrom ref. [14].

276 The effect of temperature in the electroreduction of CO₂ to hydrocarbons was analysed when CO_2 and N_2 were supplied to the cathode and anode compartments, respectively. 277 The applied MEA consisted on a Fumatech®, Fumapem F-14001 CEM, a Cu-278 279 electrocatalyst (working electrode) and Ti covered with Ir as anode. The concentration of the desired product and current efficiencies were still very low (FE to $CH_4 = 0.12$ % 280 at 6 V and 70 °C). They finally suggest that a higher CO₂ residence time, the 281 282 development of new membrane materials with high proton conductivity and low water 283 transmission rates, and optimization of the three-phase interface (electrode, proton conductor and catalyst) may lead to an enhanced electroreduction of CO_2 in gas phase. 284 285 In any case, further efforts in highly active catalysts, durability of the electrodes and 286 new reactor configurations should be tackled in order to apply this technology for technical applications. Finally, it is important to take into account the manufacture costs
associated to the fabrication of electrochemical reactors, which is not generally discuss
in the literature.

290

4. Main results for CO₂ utilisation in ecMRs

The section is divided in the two main electrochemical reactors: (i) Liquid-Liquid (L-L) ecMRs (even though gas phase may be also present in the cathode side) and (ii) Gas-Liquid (G-L) ecMRs (where gas phase is only in the cathode). Then the subsections are divided by the nature of the membranes and the applied catalysts, in order to give an overview of reported studies in terms of *FE*, *CD* and the voltage (*E*) required in each process with similar catalyst-based materials and membranes.

298 4.1. Liquid-Liquid (L-L) ecMRs

Table 1 summarizes the type of membranes applied, catalytic materials and experimental conditions in L-L ecMRs for the electrochemical reduction of CO₂. Most of the reported studies employed proton conductive membranes (mainly Nafion[®]) to separate catholyte and the anolyte, which usually consist of aqueous solutions of KHCO₃ and KOH, respectively [10, 11, 20, 21 23, 24, 26, 28-35, 40-43, 46, 47, 49, 58-67] in comparison to those reports where cathode and anode chambers are separated by an AEM [19, 27, 36, 54, 68, 69].

As it can be seen, CO, HCOOH, CH_4 and C_2H_4 are the most common products in L-L ecMRs. Besides Ag, Sn or Pb, and Cu-based electrodes are the common catalysts applied, since they allow to obtain CO, HCOOH and hydrocarbons, respectively, with high *FEs*.

- 310 The following subsections critically discuss the reported L-L ecMRs reactors according
- to the type of membranes and catalysts applied in the CO_2 electroreduction process.

Membrane	Cathode	Anode	Catholyte	Anolyte	Products	V vs. Ag/AgCl / CD (mAcm ⁻²)	Main results	P (atm) / T (°C)	Ref.
Nafion®	Sn-GDE	Pt plate	CO ₂ , KHCO ₃	aq. KHCO ₃	НСООН, H ₂ , СО, CH ₄	50 mA/cm ⁻²	FE HCOOH= 93 %	1 / 25	[10]
Nafion®	Ag	Pt-Ir (1:1) alloy	CO_2 , KHCO ₃	aq. KOH	CO, H ₂	-1.38 V	FE CO= 40 %	1 / 25	[11]
Selemion TM (AEM)	Ag foil	Pt foil	CO ₂ , KHCO ₃	aq. KHCO ₃	CO, H ₂ , HCOOH, CH ₄ , CH ₃ OH, C ₂ H ₅ OH	-1.6 to -1.3 V	FE CO= 90 %; HCOOH= 8 %	1 / 25	[19]
Nafion [®] 117	Pb plate	DSA	CO ₂ , KCl + KHCO ₃	aq. KOH	НСООН	2.5 mAcm ⁻²	FE HCOOH= 94.7 % (14.4 mg/L)	1 / 25	[20]
Nafion [®] 117	Cu ₂ O	Platinized titanium	CO ₂ , KHCO ₃	aq. KHCO ₃	CH ₃ OH	-1.3 V	FE CH ₃ OH= 45.7 %	1 / 25	[21]
Nafion [®] 450	Mesh tinned-Cu plate	Platinized titanium plate	CO ₂ y N2, KHCO ₃	aq. KOH	HCOOH, H ₂ , CO, CH ₄	22 mAcm ⁻²	FE HCOOH= 86%	1 / 25	[23]
Nafion [®] 117	Sn plate	DSA	CO ₂ , KCl + KHCO ₃	aq. KOH	НСООН	12.25 mAcm ⁻²	FE HCOOH= 70 %	1 / 25	[24]
Polymer electrolyte membrane	Pt-Glassy carbon electrode	Pt wire	Deionized water or KHCO ₃	Pure deionized water	НСООН	-	HCOOH: continuous mode (0-35 mM); discontinuous mode (0-18 mM)	1 / 25	[25]
Nafion [®] 117	Cu foil	Pt foil	CO ₂ , LiOH in CH ₃ OH	KOH in CH ₃ OH	CH ₄ , C ₂ H ₄ , CO, HCOOH	-4 V	FE (CH ₄ + C ₂ H ₄)= 78 %	- / -30	[26]
Selemion TM (AEM)	Cu foil	Pt foil	CO ₂ , KHCO ₃	aq. KHCO ₃	16 different products	-1.35 to -1.07 V	FE CH ₄ = 40 %; C ₂ H ₄ = 25 %; HCOOH= 23 %	-	[27]
Nafion [®] 112	Cu ₂ O films	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	C ₂ H ₆ , C ₂ H ₄ , CH ₄ , CO	-1.3 V	FE C ₂ H ₄ = 20 %; CH ₄ = 5 %; CO= 4 %; C ₂ H ₆ = 2.5 %	1 / 25	[28]
Nafion [®] 117 or no membrane	Cu plate	Pt plate	CO ₂ , NaOH or KOH in CH ₃ OH	NaOH or KOH in CH ₃ OH	CH ₄ , H ₂	-	Without membrane and using KOH: FE CH_4 = 35.6 %	1.2 / 25	[29]
Nafion [®] 117	Pt/Nb plate	Pt/Nb	CO ₂ , CH ₃ OH	CH ₃ OH +	DMC	-	DMC: 11.37 mM	-	[30]

Table 1. Experimental conditions, catalytic materials, main products and significant results for CO₂ valorisation in L-L ecMRs.

	(95% Pt)	plate (95% Pt)	+ [bmim][Br] + CH ₃ OK	[bmim][Br] +					
				CH ₃ OK					
CEM	Modified Cu electrodes	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	$CH_4, C_2H_4, C_2H_6, H_2, CO$	-1.9 V	FE C ₂ H ₄ = 33 %; CH ₄ = 10 %	1 / 25	[31]
CEM	Cu mesh	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	$CH_4, C_2H_4, C_2H_6, H_2, CO$	-1.9 V	FE CH ₄ = 15 %; C ₂ H ₄ = 8 %	1 / 25	[32]
Nafion [®] 117	Cu foil	Pt foil	CO ₂ , sodium salts in CH ₃ OH	KOH in CH₃OH	CH ₄ , C ₂ H ₄ , HCOOH, CO, H ₂	-3 V	FE CH ₄ = 70.5 % in NaClO ₄ /CH ₃ OH	- / -30	[33]
Nafion [®] 117	Cu wire	Pt plate	CO ₂ , LiClO ₄ in CH ₃ OH	aq. H ₂ SO ₄	CH ₄ , C ₂ H ₄ , CO, HCOOH, CH ₃ COOH	*-3 V	20 bar: FE CH ₄ = 25.5 %; CO= 15.1 %; HCOOH= 22.1 %; CH ₃ COOH= 40.2 %	1-60 / -	[34]
Selemion TM (CEM)	Cu-halide electrodes	Pt plate	CO ₂ , potassium halides	aq. potassium halides	$\begin{array}{c} CH_4, C_2H_4, \\ C_2H_6, CO, \\ C_2H_5OH, H_2 \end{array}$	-2.4 V	CuBr electrode and KBr electrolyte: FE C_2H_4 = 79.5 %; CH ₄ = 5.8 %	-	[35]
FAB (AEM) or no membrane	Pt/Nb plate (95% Pt)	Pt/Nb plate (95% Pt)	CO ₂ , CH ₃ OH + [bmim][Br] + CH ₃ OK	CH ₃ OH + [bmim][Br] + CH ₃ OK	DMC	-	Undivided cell: 80.85 mM; FAB membrane: 9.74 mM	-	[36]
Nafion [®] 117	Sn-GDE	DSA	CO ₂ , KCl + KHCO ₃	aq. KOH	НСООН		FE HCOOH= 70 % (1348 mg/L)	1 / 25	[40]
Nafion [®] 117	Sn-GDE	Pt foil	CO ₂ , KHCO ₃	Water	HCOOH	-1.8 V	FE HCOOH= 78 %	- / 25	[41]
Selemion TM (CEM)	Net Ag- electrode	Pt plate	CO ₂ , KCl	aq. KCl	CO, H ₂	-	AgNO ₃ added to the electrolyte). FE CO> 45 %	-	[42]
Nafion®	Sn-GDE + PTFE	Pt foil	CO ₂ , KHCO ₃	aq. KHCO ₃	НСООН	-1.8 V	FE HCOOH= 87 %	- / 25	[43]
Nafion [®] 117	Pt NP-CNT	Pt rod	CO ₂ , KHCO ₃	aq. KHCO ₃	HCOOH, CH ₃ COOH	-	HCOOH= 2.3×10^{-4} M; CH ₃ COOH= 1.8×10^{-4} M	- / 25	[46]
Nafion [®] 117	Ag - Graphite GDL	Pt black NP	CO ₂ , [emim][Br]	aq. H ₂ SO ₄	CO, H ₂	-1.5 V	FE CO> 9 % (H_2 balance)	- / 22	[47]
Nafion [®] 117	Ag NP	Pt NP	CO ₂ , Aq. [bmim][BF ₄]	aq. H ₂ SO ₄	СО	-	FE CO~ 100 % when 89.5 mole% water was added to the [bmim][BF ₄]	-	[49]
Selemion TM (AEM)	Cu mesocrystals	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	НСООН, СН ₄ , С ₂ Н ₄ , СО, Н <u>2</u>	-1.4 to -0.9 V	FE C ₂ H ₄ = 27.2 %; HCOOH= 17.5 %; CO= 7.5 %; CH ₄ = 2.7 %	-	[54]
Nafion [®] 961 and Nafion [®] 430	Pb plate	IrO ₂ /Ta ₂ O 5	$CO_2, K_2HPO_4 + H_3PO_4$	Aq. KOH	НСООН	2 mAcm ⁻²	FE HCOOH= 93 % HCOOH at 2 mA/cm ² . HCOOH concentration increases with CD (max.= 0.016 M)	1 / 25	[58]

Nafion®	Electrocatalysts: Cu, CuO, ZnO, Mo ₂ C, Co ₃ O ₄	Pt/C (40% wt)	CO ₂ , KHCO ₃ or KOH or DMF	Water	-	-	Cu, CuO, ZnO, Co ₃ O ₄ actives catalysts in the protocol	1 / 25	[59]
Nafion [®] 112	Cu NWs or Cu NNs	Pt foil	CO ₂ , KHCO ₃	aq. KHCO ₃	СН ₄ , С ₂ Н ₄ , НСООН, Н ₂	-1.5 to -1.1 V	Cu NWs: FE C ₂ H ₄ = 12%; Cu NNs: FE CH ₄ = 14 % and HCOOH= 48 %	- / 10	[60]
Selemion TM (CEM)	Cu	-	CO ₂ , KHCO ₃	aq. KHCO ₃	CH ₄ , C ₂ H ₄ , CO, HCOOH	-1.64 V	FE CH ₄ = 33.3 %; C ₂ H ₄ = 25.5 % at - 1.44V and 5 mA/cm ²	- / 19	[61]
CEM	Crystal Cu	-	CO ₂ , KHCO ₃	aq. KHCO ₃	CH ₄ , C ₂ H ₄ , CO, HCOOH, H ₂ , alcohols	-1.75 V	Cu (110): FE CH ₄ = 49.5 %; C ₂ H ₄ = 15.1 %	- / 18	[62]
Nafion [®] 117	Sn-GDE	DSA	CO ₂ , KCl + KHCO ₃	aq. KOH	НСООН	-2 V / 90 mAcm ⁻²	FE HCOOH=70 % (1519 mg/L)	1 / 25	[63]
Selemion TM	Cu NP over glassy carbon	-	CO ₂ , NaHCO ₃	aq. NaHCO ₃	CH ₄ , H ₂	-1.55 V	FE CH ₄ = 76 %	1.2 / 25	[64]
Nafion [®] 112	Cu ₂ O electrodeposited	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	CH ₄ , C ₂ H ₄ , H ₂ , CO, HCOOH	-1.9 V	FE CH ₄ = 21 %; C ₂ H ₄ = 11 %; H ₂ = 50 %	1 / -	[65]
Nafion®	Cu foil	Pt mesh	CO ₂ , KHCO ₃	aq. KHCO ₃	CH ₄ , C ₂ H ₄ , H ₂ , CO	-1.65 to -1.4 V	FE CH ₄ = 0-70 %; C ₂ H ₄ = 0-35 %; H ₂ = 10-95 %; CO= 0-13%	-	[66]
Nafion®	Fe NP over GDL	Pt wire	CO ₂ , KHCO ₃	aq. KHCO ₃	HCOOH, CH ₃ COOH, CH ₃ OH	**1 V	Global productivity: 1.75x10 ⁻² mmole/h	- / 25	[67]
Selemion TM (AEM)	Cu ₂ O-derived Cu	Pt wire	CO ₂ , KHCO ₃ , PdCl ₂	aq. KHCO ₃	$C_2H_6, H_2,$ alcohols, CH ₄ , C_2H_4, CO	-1.2 V	FE C ₂ H ₆ = 30 %; H ₂ = 15 %; alcohols< 15 %; CH ₄ , C ₂ H ₄ and CO= traces	-	[68]
Selemion TM (AEM)	Cu ₂ O layers into Cu disc	Pt wire	CO ₂ , KHCO ₃	aq. KHCO ₃	C ₂ H ₄ , H ₂ , C ₂ H ₅ OH, CH ₄ , CO, HCOOH	-1.2 V	FE C ₂ H ₄ = 39 %; H ₂ ~ 50 %; rest of products< 10 %	-	[69]

* Ref. electrode: Pb(Hg)x/PbSO₄/SO₄²⁻ ** Difference of 1 V between electrodes 314

315 4.1.1. L-L ecMRs based on CEMs

CEMs have been widely used in ecMR systems due to their enhanced properties for the transport of protons. Among the available materials, Nafion[®] is typically applied. A number of value-added products, on dependence of the electrocatalytic materials applied, can be found in the literature as described hereafter.

320 <u>Ag-based electrodes</u>

321 In the first group, silver cathodes have been commonly used for CEM-based systems [11, 42, 47-49]. In this regard, Delacourt et al. [11] studied different reactor 322 configurations for the electrochemical reduction of CO₂ to syngas (CO + H₂). A 323 Nafion[®] membrane was used in a L-L ecMR to form a MEA. The catalytic layer 324 325 consisted in acetylene black carbon and a polymer of the same nature, together with Ag catalyst. The experiments were carried out at 20 mA \cdot cm⁻² with a cathode potential of -326 1.42 V vs. SCE. A CO formation efficiency of 40% was achieved. In the same way, 327 other researchers have also used different CEMs for the electrochemical reduction of 328 CO₂ to syngas [42, 47-49]. 329

Rosen et al. [47] applied a sandwich style reactor with two liquid and gas channels with a Nafion[®] 117 membrane. An Ag nanopowder ink supported on Sigracet graphite GDL was used. The ionic liquid [emim][Br] was used as catholyte, obtaining a *FE* to CO higher than 96 % as a function of the potential cell applied. Besides, *FE* to H₂ formation was very low. The *EE* observed ranged between 50 % to 90 % at 1.5 V. Salehi-Khojin et al. [48] also used a Nafion[®] membrane in a L-L ecMR. The rate for CO₂ conversion was about 10 times higher on 5 nm Ag nanoparticles (NP) than on a bulk Ag electrode.

Moreover, Rosen et al. [49] also used Ag NP and the ionic liquid [emim][BF_4] for the electroreduction of CO₂. They showed that the addition of water to the ionic liquid increased the efficiency for CO_2 conversion to CO. The maximum *FE* to CO achieved in this system was nearly 100 % when 89.5 mol% water was added to the ionic liquid. Besides, Yano et al. [42] used a SelemionTM CEM to separate the cathode and anode compartments, with a GLS (gas-liquid-solid)/Ag electrode and 0.5 M KCl. The effect of the pH was studied. The *FE* to CO was higher than 45 % using a GLS-Ag electrode. Besides, a CO conversion near 100 % was observed when AgNO₃ was added to the electrolyte at pH=3.5, concluding that *FE* decreased as the pH increased.

Overall, it seems that an appropriate catholyte and pH conditions are crucial for an enhanced CO_2 electrochemical conversion. Besides, the application of highly conductive ionic liquids for the reduction process seems to be beneficial [70]. The use of CEMs for the electrochemical reduction of CO_2 to CO in Ag-based electrodes in combination with ionic liquids as electrolytes showed *FEs* to CO near to 100 %.

351 <u>Cu-based electrodes</u>

Moreover, several authors reported the application of Cu-based catalysts in combination with CEMs for the electrochemical reduction of CO_2 into valuable products [21, 23, 26, 28, 29, 31-35, 46, 59-62, 64-66, 71]. The conversion efficiencies have been found to be directly linked to the type of Cu catalyst used in the working electrode (Cu foil, Cu mesh, Cu NP, etc).

Ogura et al. [71] describe a Cu mesh in order to evaluate the influence of different potassium halides (KCl, KBr and KI) as catholytes at pH=3. A Nafion[®] 117 membrane was used to divide the anode and cathode compartments. They concluded that the presence of Cu-halide anions facilitated the electron transfer and the current density. The reduction of CO₂ increases in the following order Cl⁻ < Br⁻ < I[.] A tinned-Cu mesh cathode together with a Nafion[®] 450 membrane has also been proposed to electroreduce

CO₂ to HCOOH, H₂, CO and CH₄ in L-L ecMR [23] with a pure CO₂, or a mixture of 363 CO₂ and N₂, in gas phase combined with a 0.45 M KHCO₃ catholyte. The experiments 364 were carried out near ambient conditions and over a CD range of 22 to 178 mA \cdot cm⁻². 365 366 The FE achieved for each product in the factorial design of experiments carried were 23-71 % to HCOOH, 24-86 % to H₂, 0-5 % to CO and 0-0.3 % to CH₄. They also 367 showed that current efficiency increases with CO_2 concentration. The maximum FE to 368 HCOOH (*FE*= 86%) was obtained at 22 mA·cm⁻². Kas et al. [28] used a three-electrode 369 370 assembly in order to analyse the catalytic activity for the electrochemical reduction of CO₂ to hydrocarbons. Cuprous oxide films were electrodeposited onto Cu plates as 371 working electrodes, with a Nafion[®] 112 membrane separating the cathode and anode 372 compartments. A 0.1 M KHCO₃ solution (pH= 6.8) was used as catholyte with CO₂ gas 373 to produce CO, CH₄, C₂H₄ and C₂H₆ at a FE of 0-4%, 1-5%, 20% and 2.5%, 374 375 respectively, at an applied voltage of -1.1 V vs. RHE.

376 Gonçalves et al. [31, 32] evaluated a Cu mesh and a modified Cu electrode for the 377 reduction of CO₂. The Cu-modified materials showed and improved efficiency for the electrochemical reduction of CO₂ to hydrocarbons, in comparison to a Cu mesh, with a 378 FE has high as 33% and 10% for C_2H_4 and CH_4 , respectively. Manthiram et al. [64] 379 demonstrated that well-dispersed Cu NP over glassy carbon (working electrode) show 380 high *FEs* to CH_4 from CO_2 reduction using a two-compartment flow cell. A SelemionTM 381 membrane separated the working and counter electrode compartments, which are filled 382 with an aqueous solution of 0.1M NaHCO₃. A FE to $CH_4 = 76$ % was obtained at -1.55 383 V vs. Ag/AgCl, higher than the obtained values at Cu foils for the same conditions (FE~ 384 385 40 %). The authors suggested that these prepared Cu-electrodes may help to achieve enhancement for the electrochemical reduction of CO₂ to CH₄, minimizing polarization 386 losses and maximizing the energy efficiency. 387

Moreover, Kas et al. [65] suggested that the concentration of the electrolyte could 388 strongly affects the selectivity of the electrochemical reduction of CO₂ to hydrocarbons. 389 Cu-NP over Cu substrates were used as working electrodes in a two-compartment 390 stainless-steel autoclave reactor, in which a Nafion[®] 112 membrane divided the cathode 391 392 and anode (Pt mesh) compartments. A 0.5 M KHCO₃ aqueous solution allows to obtain FEs of 21 %, 11 % and 50 % to CH_4 , C_2H_4 and H_2 , respectively, at -1.9 V vs. Ag/AgCl 393 and 1 atm. However, decreasing the electrolyte concentration to 0.1 M results in 394 395 increased FE to C_2H_4 (36 %) in the same conditions. Besides, C_2H_4 formation is additionally favoured by increasing CO₂ pressure to 9 atm. From these results, it can be 396 397 concluded that the concentration of the electrolyte has an important effect in the selectivity of the electrochemical reduction of CO₂ into hydrocarbons. The same idea 398 was supported by Varela et al. [66] in an H-type cell divided by a Nafion[®] membrane 399 400 using the same electrolyte (aq. KHCO₃ solution). A Cu foil and a Pt mesh were used as 401 working and counter electrodes, respectively. The maximum FE to CH₄ (70 %) was 402 obtained at -1.6 V vs. Ag/AgCl, applying a 0.2 M KHCO₃ concentration as electrolyte. 403 According to the work developed by Kas et al. [65], electrolytes with high buffer capacity (i.e. high KHCO₃ concentration) increase FE to CH₄ and H₂ over C₂H₄. They 404 405 also add that C₂H₄ formation is not affected by local pH at low overpotentials 406 (proton/electron transfer is not the rate determining step in the formation process).

Kaneco et al. used a Cu foil as cathode with different sodium salts in CH₃OH [33] or LiOH [26]. A Nafion[®] 117 membrane was used in both cases to separate the cathode and anode sides, and high negative V vs. Ag/AgCl were applied to the cell. When a NaClO₄ /CH₃OH mixture was used as electrolyte [33] the *FE* to CH₄ was 70.5 % at -3 V. In the second case [26], the *FE* to CH₄ + C₂H₄ was as high as 78 % at -4 V. The positive effect of sodium salts in CH₄ selective production was then proven. Aydin et al.

[34] used a Cu wire with polypyrrol-coated electrocatalyst. A lithium salt (LiClO₄) in 413 methanol was used as catholyte with a Nafion[®] 117 membrane separating the chambers. 414 High-pressure experiments (10, 20, 40, and 60 bars) in a CO₂ atmosphere were 415 performed. At 20 bar, FE was as high as 25.5 % and 3.1 % for CH₄ and C₂H₄, 416 respectively. Other different products such as CO, HCOOH and acetic acid were also 417 detected with a FE of 15.1 %, 22.1 % and 40.2 %, respectively. Yano et al. [35] used a 418 CEM (SelemionTM) and a Cu mesh or Cu (I) halide-confined mesh with the same 419 420 catholyte and anolyte based on aqueous potassium halides. The study seeks to analyse the influence of different Cu-halides electrodes at -2.4 V vs. Ag/AgCl applied potential. 421 The CuBr electrode presented higher FE to C_2H_4 when KBr was used as electrolyte 422 (*FE*= 79.5 % and 5.8 % to C_2H_4 and to CH_4 , respectively). CuI and CuCl have been also 423 used as electrodes in this system, and the FE to C_2H_4 in each case was 72.8 % and 60.5 424 425 %, respectively. The study showed that Cu halide-confined meshes enhance the FE to C_2H_4 in comparison to a Cu mesh electrode (*FE* of 40% to C_2H_4 in KCl solution). 426

Xie et al. [60] used a two compartment cell based on modified Cu electrodes (Cu 427 nanowires or Cu nanoneedles), 0.1 M KHCO₃ as electrolyte and a Nafion[®] 112 428 membrane to separate the compartments. Cu nanowires presented better results in terms 429 of FE to C_2H_4 (12% at -1.3 V vs. RHE) whereas Cu nanoneedles led to the highest FE 430 to CH₄ (14 % at -1.2 V) and to HCOOH (48 % at -0.9 V). Hori et al. [61, 62] also used a 431 CEM to separate the cathode and the anode in L-L ecMRs. The performance of different 432 433 metal electrodes as cathode catalyst [61] and different Cu single crystal electrodes [62] were studied to analyse their influence in CH_4 and C_2H_4 production. The highest FE 434 was observed for a Cu electrode at -1.44 V vs. NHE at 5 mA·cm⁻² (33.3 % CH₄ and 435 25.5 % C_2H_4) [61]. In a second study [62], higher FEs to CH₄ were achieved when a Cu 436 (110) electrode was used (49.5% CH₄ and 15.1% C_2H_4 at -1.55 V and 5 mA·cm⁻²). The 437

25

447 Ampelli et al. [46] studied the influence of the phase used in the cathode in order to carry out a comparison in terms of productivity and type of products at the same 448 conditions (electrodes and reaction). In these reactors, a Nafion[®] membrane was used to 449 separate the compartments and different metal NP such as Co, Cu, Fe and Pt were 450 supported over functionalized carbon nanotubes (CNTs) or commercial carbon black 451 452 (CB), forming a GDE as represented in Figure 8. The differences between the systems are the type of electrolyte at the anode compartment (KHCO₃ in L-L ecMR and KCl in 453 454 G-L ecMR).

455

456 Figure 8. Representation of the GDE used for CO₂ electrochemical reduction in the

457 work from Ampelli et al. [46]. Reproduced with permission from ref. [46].

Different products were detected in each configuration. HCOOH, acetic acid and CH₃OH were obtained as traces in the L-L ecMR. In addition, the order of product formation was on dependence of the metal catalyst applied: Pt-CNT ~ Fe-CNT > Cu-CNT > Fe-carbon black in the L-L ecMR. In addition, the reaction mechanisms were analysed in both cases [46]. The absence of the electrolyte and the higher CO_2 concentration at the catalyst surface could inhibit the mechanisms for electron transfer, favouring the CO_2 dissociation to CO at the different metals used as catalyst.

465 Yim et al. [29] studied the influence of the membrane in a L-L ecMR using CH₃OH as a 466 solvent. A Cu plate was used as cathode, and a Nafion[®] 117 membrane for CH₄ 467 production. The results showed that the electrochemical cell without membrane 468 presented better results (FE= 35.6% to CH₄) in comparison to the system with the 469 Nafion[®] membrane.

470 Albo et al. [21] studied the electrochemical reduction of CO₂ into CH₃OH using Cu₂O and Cu₂O/ZnO-catalyzed carbon papers. A Nafion[®] 117 membrane was also used to 471 separate the cathode and anode compartments. When a Cu₂O-carbon paper electrode 472 was used, a FE to CH₃OH of 45.7 % was achieved, but a rapid deactivation of the 473 474 material occurred. In any case, a stable modest FE of 17.7 % was obtained is Cu₂O/ZnO 475 (1:1)-based systems at -1.3 V vs. Ag/AgCl, so the use of Cu₂O-ZnO mixtures for the continuous electrochemical CO₂ reduction to CH₃OH showed promise. Recently, the 476 technical possibilities for the electrochemical reduction of CO₂ into CH₃OH has been 477 478 reviewed [73].

Regarding the possibility of suppressing the liquid phase from the catholyte (to avoid 479 480 transfer limitation due to the low solubility of CO_2 in water), Genovese et al. [67] made a comparison between liquid (L-L ecMR) and gas (G-L ecMR) conditions in the 481 482 production of fuels from CO₂ reduction. Different metallic NP (Fe or Cu) supported on GDL were tested as working electrodes, whereas a Pt wire was used at the anode side. A 483 CEM (Nafion[®]) divided the cell compartments filled with a 0.5 M KHCO₃ solution in 484 the anode side. Alcohols and traces of hydrocarbons were observed in gas-phase 485 486 studies, while liquid phase experiments mainly produced HCOOH, CH₃COOH and traces of CH₃OH. As a conclusion, liquid phase CO₂ reduction allowed to achieve 487 higher productivity values $(5x10^{-3} \text{ mmol} \cdot \text{h}^{-1} \text{ in liquid phase over } 1.5x10^{-4} \text{ mmol} \cdot \text{h}^{-1} \text{ in}$ 488 gas phase, using Cu-GDL-based catalyst), minimizing also the HER. 489

As can be deduced from the discussion above, the catalyst plays a main role in the 490 491 electrochemical reduction of CO₂, so a correct catalyst selection for each process is 492 essential. For this purpose, Singh et al. [59] developed a catalytic activity protocol for the electrochemical reduction of CO₂. Different electrocatalysts (Cu, CuO, ZnO, Mo₂C 493 and Co₃O₄) were supported into a GDL, forming the cathodes. A Nafion[®] membrane 494 was sandwiched between the electrodes and different studies such as cyclic 495 496 voltammetry (CV) and linear sweep voltammetry (LSV) were carried out, whilst the cathode side of the reactor was fed with CO₂ saturated 0.5 M KHCO₃ solution. As 497 conclusion, Cu, CuO, ZnO and Co₃O₄ were actives in the proposed protocol for the 498 499 electrochemical reduction of CO₂.

In conclusion, Cu-based electrodes have been widely used as cathodes. It seems that nanomaterial-based electrodes may enhance the electroreduction of CO_2 to hydrocarbons (mainly CH_4 and C_2H_4) [64]. Besides, electrolyte type and its concentration seem to be crucial for an efficient CO_2 electroreduction process. Finally, the utilisation of Cu-halides meshes is favourable, attending to the high FE to C₂H₄ (79.5 %) in L-L ecMRs divided by a CEM, in comparison to the FE achieved on Cumesh electrodes [35].

507

508 <u>Sn and Pb-based electrodes</u>

Many authors have focused their research on the utilisation of tin and lead catalysts for 509 510 the electroreduction of CO_2 using L-L ecMRs [10, 20, 24, 40, 41, 43, 58, 63] with the aim of producing HCOOH with high FEs. Kopljar et al. [10] studied the feasibility of 511 512 the electrochemical HCOOH production within an industrial environment. A proton conductive membrane (Nafion[®]) to separate the cathode and anode chamber was used 513 514 and both chambers were filled with an aqueous solution of KHCO₃. High FE (> 80 %) was obtained at 200 mA·cm⁻² and pH= 10, whereas the FE for CO and H₂ was 515 approximately 10 %. A maximum FE of 93 % to HCOOH was achieved at 50 mA \cdot cm⁻². 516 In the same way, Wang et al. [41] carried out different electrochemical measurements 517 518 such as CV and electrochemical and impedance spectroscopy (EIS), in order to analyse 519 the FE to HCOOH formation. The electrolyte was a KHCO₃-based solution in a wide range of concentrations. When a concentration of KHCO₃ equal to 0.5 M is used, a 520 maximum FE of 78 % to HCOOH was achieved at an applied potential of -1.8 V. Wang 521 522 et al. [43] reached performance enhancements by adding polytetrafluoroethylene 523 (PTFE) into the catalyst layer. This makes possible to increase the catalytic surface area and CO₂ diffusion. The highest FE was around 87 % at -1.8 V vs. Ag/AgCl when 11.1 524 wt%. of PTFE was added, improving the FE to HOOCH to a value of 25.4 %. As can be 525 526 noticed in these studies, the type and concentration of the electrolytes have a great influence on the maximum achieved FE that could be achieved. Besides, improvements 527 in the catalyst layer by adding different compounds are also an interesting approach. 528

Moreover, Alvarez-Guerra et al. [20] used a Pb plate as cathode and a solution of 0.45 529 M KHCO₃ + 0.5 M KCl as catholyte. The highest FE to HCOOH achieved was 94.7 % 530 at low current density values (2.5 mA·cm⁻²) with a measured concentration of 14.4 531 $mg \cdot L^{-1}$. At the same conditions, a Sn plate was used as working electrode to compare 532 533 the performance of the process in terms of rate of HCOOH production and FE [24]. With a Sn cathode, the rates for HCOOH production were 25 % higher with efficiencies 534 around 70 %. Considering these results, Del Castillo et al. [40] applied GDEs loaded 535 536 with Sn particles with the aim of operating at higher CD. This Sn-GDE configuration led to higher concentrations (885 and 1348 mg \cdot L⁻¹), maintaining an efficiency of about 537 70 %. One year later, Del Castillo et al. [63] analysed the effect of metal loading and 538 Sn-particle size in Sn-GDE electrodes in order to improve HCOOH formation rates. The 539 best results were observed with a catalytic loading of 0.75 mg $Sn \cdot cm^{-2}$ and a particle 540 size of 150 nm, achieving FEs around 70 % to HCOOH at 90 mA·cm⁻², with rates and 541 concentration over 3.2 mmol \cdot m⁻² s⁻¹ and 1.5 g \cdot L⁻¹, respectively. They concluded that the 542 543 use of smaller Sn-NP (< 150 nm) and carbon supports for the electrochemical reduction 544 of CO₂ to HCOOH might allow further improvements in the process.

The utilisation of Pb-based catalyst as cathodes for the electroreduction of CO₂ to 545 HCOOH in L-L ecMRs has been also considered by Subramanian et al. [58], in which 546 the anode and the cathode chambers were separated by a composite perfluoro polymer 547 CEM. CO_2 was absorbed in a 0.2 M K₂HPO₄ + H₃PO₄ solution, which was fed to the 548 cathode chamber, obtaining a maximum FE to HCOOH of 93 % at 2 mA·cm⁻². They 549 also showed that HCOOH concentration increases with CD. The highest measured 550 value was 0.016 mol·L⁻¹ (1085 mg·L⁻¹), which is in the range of those concentrations 551 552 obtained by Del Castillo et al. [40] using DSA as anode. It should be remarked that the 553 utilisation of GDEs led to high FE when Sn and Pt are used as cathode and anode catalysts, respectively. In order to analyse the viability of HCOOH production from CO₂ electroreduction, Dominguez-Ramos et al. [74] studied the global warming footprint associated to the process, identifying different scenarios and concluding that the requirements of energy and materials are too high to ensure a sustainable production of HCOOH from CO₂ electroreduction and thus, future technical advances are required.

In general, Sn-based catalysts allow obtaining HCOOH from CO_2 reduction with higher *CDs* when compared to Pb-based catalyst, even though Sn-based catalysts have been commonly used for this process, as found in literature. Besides, the modification of the catalyst layer by adding different compounds, the utilisation of GDEs based on NPs and alterations in the electrolyte may enhance the *FE* and concentration of HCOOH at the reactor outlet.

565 <u>*Pt-based electrodes*</u>

566 In addition, Pt-based catalysts have been used for the electrochemical valorisation of CO₂ in L-L ecMRs for DMC synthesis [30] and CO₂ electroreduction to HCOOH [25]. 567 568 Garcia-Herrero et al. [30] used a Pt/Nb plate (95 % Pt) with 200 mL of CH₃OH in combination with the ionic liquid [bmim][Br] and potassium methoxide as electrolyte. 569 A Nafion[®] 117 membrane was used. A concentration of 11.37 mM was achieved when 570 the electrolyte is formed by 80% CH₃OH, 15% ionic liquid and 5% CH₃OK. On the 571 other hand, Tamilarasan et al. [25] used a glassy carbon electrode with a Pt catalytic 572 loading of 1 mg cm⁻² at the cathode in a 0.5 M KHCO₃ solution. A polymer electrolyte 573 574 membrane was applied and the influence of operation mode in the cell (continuous or discontinuous) was evaluated for HCOOH production at ambient conditions. The results 575 576 showed that higher concentrations can be obtained (almost double) in a continuous operation mode (0 to 35 mmol·L⁻¹) in comparison to 18 mmol·L⁻¹ in a discontinuous 577 578 operation mode.

In conclusion, many researchers used CEMs, in particular Nafion[®] membranes, for the electrochemical reduction of CO_2 in L-L ecMRs. Most of the anodes studied are based on Pt plates. However, different catalyst materials and electrolytes at the cathode compartment have been tested depending on the desired product. High *FEs* to HCOOH and CO have been achieved using CEMs, whereas further studies seems to be needed in order to achieve higher *FE* and concentrations for the formation of hydrocarbons using ecMRs.

586 4.1.2. L-L ecMRs based on AEMs

587 Materials based on Ag, Cu and Pt have been widely used as working electrodes for the 588 electrochemical reduction of CO_2 in order to obtain CO, hydrocarbons and DMC, 589 respectively, using AEMs in ecMRs. Besides, Pt has been commonly reported as anode 590 in these systems [19, 27, 36, 54, 68, 69].

591 Hatsukade et al. [19] studied the electrochemical reduction of CO₂ on silver surfaces. In this work, an Ag foil was used as cathode, and an AEM was placed between the 592 593 electrodes to mitigate the transport of liquid products from the working to the counter 594 electrode. A solution of 0.1 M KHCO₃ was utilized as electrolyte (pH= 6.8 at the catholyte) and a voltage range of -0.6 to -1.42 V vs. RHE was applied to the cell. CO 595 and H₂ were the main products obtained, with also HCOOH, CH₄, CH₃OH and 596 597 C₂H₅OH. The FE range for H₂, CO, HCOOH and other products formation were 10-100 598 %, 5-90 %, 2-8 % and < 0.1 %, respectively. A *FE*= 90 % to CO was achieved at -1.1 V vs. RHE, whereas a FE=8 % to HCOOH was obtained at -1.4 V vs. RHE. 599

Regarding Cu-based catalysts, Kuhl et al. [27] tested a Cu foil in order to analyse the multicarbon products formed from CO_2 electroreduction, being 16 the different products observed such as CH_4 , C_2H_4 and HCOOH, together with ethylene glycol,

32

603 glycoladehyde, hydroxyacetone, acetone or glyoxal, that are not commonly as CO₂ 604 electroreduction products. A FE of 40 % to CH_4 was achieved at -1.15 V, whereas C_2H_4 and HCOOH were detected with a FE of 25 % at -1.05 V and 23 % FE at -0.87 V, 605 606 respectively. Besides, Chen et al. [54] applied different Cu-based catalysts (Cu mesocrystals, Cu NP and electropolished Cu) for the electroreduction of CO₂ in an 607 aqueous solution of KHCO₃. The highest FEs were achieved when applying Cu 608 mesocrystals, with values of 27.2 %, 17.5 %, 7.5 % and 2.7 % for the production of 609 610 C₂H₄, HCOOH, CO and CH₄, respectively at different potentials.

In addition, Chen et al. [68] evaluated the influence of electrolyte conditions using Cu₂O-derived Cu catalyst in order to electroreduce CO_2 to C_2H_6 in a three-electrode cell with a 0.1 M KHCO₃ solution, when an AEM (SelemionTM) separated cathode and anode compartments. The *FE* to C_2H_4 was 30 % at -1.2 V vs. Ag/AgCl, while traces of C_2H_6 were observed. The other products obtained were H₂, HCOOH and alcohols.

616 Besides, adding PdCl₂ (100 mg) to the electrolyte at the same operation conditions, 617 produced increases in the FE to C_2H_6 , with values of 30 % at -1.2 V vs. Ag/AgCl. They 618 proposed that C₂H₄ is firstly produced from CO₂ reduction at Cu sites. Afterwards, the hydrogenation of C_2H_4 with the assistance of PdCl₂ occurs to produce C_2H_6 . By 619 620 contrast, other Pd-based particles were also tested, but did not reach the same conversion efficiencies. Ren et al. [69] also tested Cu₂O-based catalysts in an 621 622 electrochemical cell divided by an AEM in order to study the FEs to C_2H_4 and C_2H_5OH in a 0.1 M KHCO₃ solution. In this way, Cu₂O layers deposited onto a Cu disc, and a Pt 623 wire were used as working and counter electrodes, respectively. The influence of the 624 625 Cu_2O layers was also discussed, concluding that 1.7-3.6 µm thickness led to the best FE to C₂H₄ and C₂H₅OH at -1.2 V vs. Ag/AgCl, with values of 34-39 % and 9-16 %, 626 respectively. In these conditions, the FE to CH_4 was < 0.1 %. Therefore, it can be 627

628 concluded that the FE to C_2 products can be systematically tuned by varying the 629 thickness of Cu_2O overlayers.

As discussed in another section, Garcia-Herrero et al. [36] studied the influence of the 630 631 applied membrane in the electrochemical synthesis of DMC from CO₂. For this purpose, an AEM and a Pt/Nb (95 % Pt) plate as working electrode was applied. The 632 maximum concentration achieved for DMC was 9.74 mmol·L⁻¹. The best results were 633 obtained without membrane in which the DMC concentration was 80.85 mmol \cdot L⁻¹, 634 following by that concentration obtained when using a Nafion[®] CEM (11.37 mM). The 635 636 better performance in the absence of membrane was explained by mass transport 637 enhancements, although the presence of the ionic liquid [bmim][Br] was also required 638 to reach those values. Yim et al. [29] reached the same conclusion when no membrane was applied in their system. In any case, the application of an undivided cell makes 639 640 difficult the separation of reaction products and thus, increases the cost associated to the 641 process.

Overall, the utilisation of AEMs rather than CEMs to divide the ecMR is gaining importance due to the advantages of reducing polarization losses. Besides, high *FE* to CO (90 %) has been achieved in Ag-based catalysts, which is comparable to the *FEs* observed in some cases in which CEMs have been tested. Regarding the utilisation of Cu-based catalysts, C_2H_4 has been obtained with Cu_2O and AEMs with acceptable *FEs* (~ 30-40 %). Besides, C_2H_6 and C_2H_5OH have been also produced, where the thickness of the Cu₂O layers seem to be critical in order to enhance efficiency.

As a result, further developments in terms of catalyst materials and electrolytes arenecessary to achieve the desired products with high *FEs*.

651 *4.2. Gas-Liquid (G-L) ecMRs*

Table 2 summarizes the different experimental conditions, catalytic materials, main products and performance results for the use of G-L ecMRs in CO_2 electroreduction processes. As for L-L ecMRs, CEMs are the common alternative to separate the cathodic and the anodic compartments in these systems [11, 12, 17, 45, 46, 50, 52, 53, 55-57, 75, 76].

657 4.2.1. G-L ecMRs based on CEMs

658 Regarding the use of CEMs in G-L ecMRs, Delacourt et al. [11] used an integrated system with a buffer layer between the Ag catalytic layer and the membrane for the 659 reduction of humidified CO₂. An enhanced selectivity for CO₂ reduction to CO was 660 observed, since the buffer layer probably prevented an excessive amount of protons 661 reaching the cathode. In fact, the FE to CO increases up to 80 % when a pH-buffer layer 662 663 of KHCO₃ was used. In addition, Wu et al. [50] studied the influence of a KHCO₃ buffer layer placed between the cathode and a Nafion® membrane in a G-L 664 configuration at pH= 7 when using a Sn-based GDEs. The onset potential for HCOOH 665 666 production was observed at -1.2 V and the FE was as high as 70 %. A high cell 667 potential was needed in order to overcome the anodic overpotential required for water oxidation. It seems that buffer layers can be utilized to enhance the formation of CO and 668 669 HCOOH, increasing FEs. The pH and concentration of the buffer layer are also essential to achieve high FEs in both systems. 670

Membrane	Cathode	Anode	Catholyte	Anolyte	Products	V vs. Ag/AgCl / CD (mAcm ⁻²)	Main results	P (atm) / T (°C)	Ref.
Nafion®	Ag	Pt-Ir (1:1) alloy	Humidified CO ₂ gas	Pure water/KHC O ₃	CO, H ₂	-1.38 V	FE CO= 82 % with buffer layer	1 / 25	[11]
Sterion [®] (CEM)	Cu powders in carbon nanotubes (CNTs)	IrO ₂ over carbon paper	CO ₂ gas	H ₂ O saturated N ₂	C ₂ H ₄ O, methyl- HCOOH, CH ₄	-30 mA	Selectivity: C ₂ H ₄ O= 70 %; methyl-HCOOH= 13 %; CO= 10 %; CH ₄ = 7 %	1 / 90	[12]
Nafion [®] 117	Fe or Pt over CNTs	Pt wire	CO ₂ gas	aq. KCl	Alcohols and hydrocarbons (traces)	2 V	Fe-CNTs presents better performance	1 / 60	[17]
PEI and QPEI doped with KOH (AEM)	Cu ₂ O on porous carbon paper	Pt/C	CO ₂ gas	Deionized water	$\begin{array}{c} \text{CO, } \text{H}_2, \text{CH}_4, \\ \text{C}_2\text{H}_4, \text{C}_2\text{H}_6 \end{array}$	* Cell potential: 1.8 to 3 V	FE CH ₄ = 6-11 %; C ₂ H ₄ = 3-20 %	1 / 25	[22]
Nafion [®] 115	Pt or Fe doped TPE-CMP/CNTs	Pt wire	CO ₂ gas	aq. KHCO ₃	C_1 - C_8 oxygenates.	-1.5 V	Highest productivity: 70 % Pt/TPE-CMP + 30 % CNTs $(7.2 \times 10^{-5} \text{ mmol} \cdot \text{h}^{-1}).$	- / 60	[45]
Nafion [®] 117	Metal NP on CNT/GDL	Pt wire	CO ₂ gas	aq. KCl	CO, H_2 , CH_3OH , C_2H_4O , C_2H_5OH , acetone, C_3H_8O , CH_3COOH .	-	Fe-CNT/GDL: best productivity (4.8x10 ⁻⁴ mmol·h ⁻¹)	- / 25	[46]
Nafion [®] with buffer layer	Sn ink + GDL	Pt/C spray + GDL	CO ₂ gas	aq. KOH	HCOOH, CO, H_2	-1.2 V	FE HCOOH= 70 %	1 / 25	[50]
AEM	Silver-coated	Pt plate	CO ₂ gas	aq. K ₂ SO ₄	CO, HCOOH, H ₂	-1.51 V / 20 mAcm ⁻²	FE CO= 92.1 %	1 / -	[51]
Nafion [®] 115	Cu foil	Pt flag	Humidified CO ₂ gas	aq. H ₂ SO ₄	CH_4, C_2H_4	-1.95 V	FE CH ₄ = 8 %; C ₂ H ₄ = 10 %	- / 22	[52]
Nafion [®]	Cu-solid polymer electrolyte	Pt mesh	CO ₂ gas	aq. K ₂ SO ₄	СН ₄ , С ₂ Н ₄ , СО, Н ₂ , НСООН	-1.45 V	FE H ₂ > 89 %	- / 22	[53]
Nafion®	Cu on porous carbon	Pt/C (40 % wt Pt)	CO ₂ gas	Alkali doped PVA	CH ₃ OH, HCOH, CH ₄	* Cell potential: 2 V	FE CH ₄ = 4.5 %; CH ₃ OH and HCOH < 1%	1 / 25	[55]
Glass frit	Sn-GDL	Pt wire	CO ₂ gas	aq. NaHCO ₃	НСООН	-1.8 V	FE HCOOH= 70 %	-	[56]
AMI-7001	Cu ₂ O on porous	Pt/C (40%	Humidified	water	$\overline{\mathrm{CH}_4,\mathrm{C}_2\mathrm{H}_4},$	-2.7 to -2.2 V	FE $CH_4 = 30 \%$; $CH_3OH = 20$	1 / 25	[57]

Table 2. Experimental conditions, catalytic materials, main products and significant results for CO₂ valorisation in G-L ecMRs.
(AEM)	carbon paper	wt Pt)	CO ₂ gas		CH ₃ OH, H ₂		%; C ₂ H ₄ = 15 %		
Nafion®	TPE-CMP doped with metal NP	Pt wire	CO ₂ gas aq. KHCO ₃		Hydrocarbons, C ₂ H ₄ O, H ₂ , alcohols	-	Hydrocarbon traces	- / 60	[75]
Nafion [®] 115	GDM-Fe metal doped	Pt wire	50 % CO ₂ in He	aq. KCl	CO, H ₂ , hydrocarbons and organics	10-20 mA	FE CO= 18.9 %; H ₂ = 80.6 %; hydrocarbons and organics= 0.55 %	- / 60	[76]

672 * Cell potential (not referred to any reference electrode)

Ampelli et al. [75] added different polymers to form Nafion-based MEAs with GDLs. 673 Different products such as CO, CH₃OH, C₂H₅OH, C₃H₈O, acetic acid and acetaldehyde 674 were obtained when Pt was supported on CNTs as electrocatalyst. The total FE was 675 higher than 95 % in all tests. Besides, the hydrocarbon and oxygenates production for 676 Pt-CNT with polymer (10 % weight metal) was also analysed. The results showed that 677 678 doping with an active metal is not enough to increase productivity, probably due to a reduced conductivity. Nevertheless, small additions of CNT make possible to enhance 679 the productivity to an approximate value of 7 x 10^{-5} mmol. 680

Aeshala et al. [55] also used a Nafion[®] membrane to produce CH_4 in a G-L ecMR. Cu was supported on carbon porous papers and a potential of 2 V was applied to the cell at ambient conditions to reach a *FE* of about 4.5 %.

Genovese et al. [76] also studied the possibility of introducing another gas (He) into the 684 cathodic chamber together with CO₂ in a 50% concentration. A Nafion[®] 115 membrane 685 686 was used to form a GDE with the loaded metals (Fe or Pt). In these experiments, CO, 687 H_2 , and hydrocarbons were observed, with the highest FE to CO achieved when the 688 metallic Fe catalyst was used (FE= 18.9 %). A Pt-based catalyst was also tested but the FE to CO decreased. The FE to hydrocarbons was also less than 1 % in all cases. In this 689 690 regard, Genovese et al. [17] used a MEA composed of Fe or Pt electrocatalysts supported on CNTs added to a Nafion[®] 117 membrane, while a Pt wire was used as 691 692 counter electrode, with the aim to obtain long C-chain products. The electrolyte utilized at the anode side was a 0.5 M KCl solution. At 1 atm and 60 °C the Fe-CNTs 693 694 electrocatalysts presented better performance in terms of productivity of alcohols and hydrocarbons at 2 V vs. Ag/AgCl. They concluded that both, the design of nanocarbon 695 696 materials and the correct evaluation of the engineering issues of electrodes and cells are 697 needed steps for the development of electrochemical processes for CO_2 reduction to 698 long-carbon chain products.

Ampelli et al. [46] used a Nafion[®] membrane and different metallic NP (Co, Cu, Fe and 699 700 Pt) supported over a functionalized CNT, forming a GDE for its use in G-L ecMRs. In this case, CH₃OH, C₂H₅OH, C₃H₈O, acetaldehyde, acetone and some hydrocarbons 701 702 (C4-C9) were observed. When CO_2 in gas phase was used at the cathode, the 703 productivity was reduced in the following order: Fe-CNT > Fe-carbon black > Cu-CNT > Pt-CNT. The highest productivity value achieved in the system was 4.8×10^{-4} 704 mmol·h⁻¹ for Fe-CNT electrocatalysts. As previously mentioned, the absence of 705 706 electrolyte and the higher CO₂ concentration at the catalyst surface could inhibit the mechanism of electron transfer, favouring the CO₂ dissociation to CO. Further reports 707 708 from Ampelli et al. [45] demonstrated the influence of different electrocatalysts for the 709 conversion of CO₂ to liquid fuels in gas-phase conditions using a tetrakis-phenylethene conjugated microporous polymer (TPE-CMP) doped with Pt or Fe NP. Besides, CNTs 710 711 were also tested in combination with the previous catalysts with the aim to enhance productivity. A Nafion[®] 115 membrane was assembled with the 712 TPE-CMP(CNTs)/GDL by hot-pressing method, forming the working electrode. The use of 713 CNTs in combination with the electrocatalysts (30 wt% CNTs) enhanced considerably 714 the performance due to a better dispersion of the ink onto the GDL and an enhanced 715 electrode conductivity [45]. The best result, in terms of C1-C8 oxygenates formation, 716 was 7.2 x 10^{-5} mmol·h⁻¹, when a 70 % Pt/TPE-CMP + 30 % CNTs was used as 717 electrocatalyst. This may show the potential use of CMPs for the process of CO₂ 718 719 reduction in ecMRs.

Cu catalysts were also studied in G-L ecMRs using a Nafion[®] CEM in order to obtain
hydrocarbons from CO₂ [12, 52, 53]. Dewulf et al. [52] fed to the cathodic compartment

CO₂ humidified in an aqueous solution of KHCO₃. The obtained *FEs* ranged between 0-8 % and 0-10 % to CH₄ and C₂H₄, respectively. The highest values were achieved for a constant applied potential of -2 V.

725 As commented above, sandwiching the cathode, the membrane and the anode to form a 726 MEA for CO_2 reduction in gas phase makes possible to enhance CO_2 electroreduction. 727 In this sense, Gutiérrez-Guerra et al. [12] used a Cu powder-based MEA as cathode with a hot-pressed Sterion[®] membrane (CEM) and IrO₂-carbon paper as anode. Water was 728 introduced into the anode side with N_2 , while CO_2 in gas phase was used as catholyte. 729 730 Besides, electrocatalytic experiments were conducted at atmospheric pressure and in a 731 range of temperatures between 80 and 90 °C. CO₂ consumption rate was higher at 90 °C 732 in the different supports evaluated (i.e. graphite (G), activated carbon (AG) and carbon 733 nanofibers (CNF)). The product selectivity at the Cu-CNFs electrodes was $C_2H_4O=70$ %, methyl-HCOOH= 13 %, CO= 10 %, CH₄= 7 % at -30 mA. The high selectivity for 734 C₂H₄O can be attributed to the size of Cu particle. In addition, Cu-AC electrodes 735 736 reached a selectivity of 50 % to C₂H₄O at -30 mA (with CH₃OH as the second main product). However, Cu-G electrodes led to a higher selectivity to CH₃OH (75 %) at -30 737 738 mA. As a conclusion, an increase in CD for Cu-G and Cu-AC electrodes led to an 739 increase in CH₃OH selectivity due to the higher supplied rate of protons.

CH₄ and C₂H₄ were also obtained at Cu-based catalyst in a different report [77]. In this case, different anolytes were applied (KOH, KHCO₃, KH₂PO₄ and K₂SO₄). The results showed that the use of 1 M KOH led to the best performance when humidified CO₂ was fed to the cathode. The maximum *FE* to C₂H₄ and CH₄ were 69 % and 9.1 %, respectively, for an applied voltage of -2.72 V vs. Ag/AgCl. Conversely, Komatsu et al. [53] used a dry CO₂ gas as reactant. In this case, C₂H₄, CH₄, CO, H₂ and HCOOH were produced at 25 °C, although HER was predominant (*FE* about 89-97 %). They concluded that the use of a CEM, with high protons transport capacity, is required for the production of products that need high amounts of protons and electrons such as CH_4 and C_2H_4 .

Prakash et al. [56] used a gas flow electrochemical cell, in which a glass frit was used to separate the two compartments. A Sn-based cathode was applied for the production of HCOOH, with a highest performance (FE= 70 %) found at -1.6 V vs. NHE.

753 As summary, different products such as CO, HCOOH, hydrocarbons and alcohols can 754 be achieved with high FEs from CO₂ electroreduction using CEM in G-L ecMRs. The use of buffer layers between cathode and membrane seems to be an interesting approach 755 756 to increase the FE to CO and HCOOH in these reactors. Nevertheless, hydrocarbons 757 and alcohols have been obtained with poor FEs (< 10 %) and productivities, except for 758 the work developed by Cook et al. [77]. To overcome these limitations, the addition of different microporous polymers into the membrane or the utilisation of CNTs as 759 760 catalytic support, among others, may be of help [45, 46]. These improvements may 761 probably lead to a better the near future.

762 4.2.2. G-L ecMRs based on AEMs

763 Other authors have tested AEMs for CO₂ electroreduction in G-L ecMRs [11, 22, 51, 764 57]. Delacourt et al. [11] employed an AEM (polyethersulfone-based membrane with bicyclic ammonium groups) and humidified CO2 as catholyte. In this case, a buffer 765 766 layer (KHCO₃) was not included in the reactor and the FE to CO (3 %) was significantly lower than that obtained in configurations discussed above, in which a 767 buffer layer and a CEM (Nafion[®]) were used [11]. These authors also showed that the 768 769 use of AEM is advantageous when water is present at the anolyte because of the 770 generation of KHCO₃. Hori et al. [51] used Ag-coated AEM as electrode. The CEM

alone was not suitable for CO_2 reduction because the surface of the membrane was partly ruptured during CO_2 reduction and the reaction was rapidly suppressed. Thus, the use of an AEM allows a sustained reduction of CO_2 to CO, HCOOH and H₂ for more than 2 h. The *FE* to CO was 92.1 % at 20 mA·cm⁻², whereas the *FE* to HCOOH was 12.1 % at 100 mA·cm⁻².

776 Aeshala et al. [22, 57] evaluated different membrane materials for the electrochemical 777 reduction of CO_2 in gas phase. In the first work [22] two different types of membrane materials doped with KOH were used in order to prepare AEMs: polyethylenimine 778 779 (PEI) and quaternized PEI (QPEI). Besides, polyvinyl alcohol (PVA) was used as a 780 polymer matrix to form the membrane. The GDE was formed using Cu₂O particles supported on porous carbon papers. H₂, CO, CH₄, C₂H₄ and C₂H₆ were the main 781 products obtained with a FE of 6-11 % CH₄ and 3-20 % to C₂H₆ and a product 782 selectivity of 67.6 % for C₂H₆ and 16.4 % for CH₄. In a second work [57], the same 783 authors evaluated a MEA configuration with CMI-7000 (CEM) and AMI-7001 (AEM) 784 785 at the same conditions for humidified CO₂ electroreduction. The results showed that the performance for AMI-7001 membrane was more favourable than that for CMI-7000, 786 since the FE to interesting products were 30 % to CH₄, 15 % to C₂H₅OH and 20 % to 787 788 CH₃OH with AMI-7001 membrane, whereas CMI-7000 produced mainly H_2 (FE= 80%). That means that a correct membrane selection is essential to achieve high CO₂ 789 electroreduction efficiencies. 790

In general, the use of AEMs is considerably less efficient than using CEMs for the electroreduction of CO₂ to CO (*FE*= 3 % vs. 82 %) as explained by Delacourt et al. [11], even though Hori et al. [51] obtained higher *FE* to CO (92.1 %) using a Ag-coated AEM as electrode at 20 mA·cm⁻². On the other hand, AEMs presented better performance than CEMs for the production of hydrocarbons since CEMs favoured HER instead of CO_2 reduction (*FE* ~ 80 % to H₂). Therefore, future research efforts should also include the application of AEMs for the electrochemical reduction of CO_2 .

798

799 *4.3. Overview*

800 Considering the crucial role of membranes in CO₂ reduction processes and the considerable amount of studies reported, an overview of the FEs to different products 801 802 reached in the electrochemical reduction of CO₂ in L-L and G-L ecMRs at different V is carried out. Figure 9 and Figure 10 show, respectively, the FE as a function of the 803 membrane applied and the main product obtained at different applied potentials vs. 804 Ag/AgCl. It should be noted that the figures uniquely provide a picture for the 805 806 comparison of different membrane materials, although the data come from studies 807 where different variables, namely cathode materials, products, reaction medium, 808 operating conditions and/or cell/electrode structure, may affect the results.

809

Figure 9. *FE* vs. V as a function of the type of membrane applied in L-L and G-L

ecMRs.

From the figure, it seems that the use of CEMs is, in general, more favourable to reach higher *FEs.* Although it also depends on the reduced products obtained, as shown in Figure 10. Additionally, the application of CEMs are more common than AEMs for the electrochemical valorisation of CO_2 , although AEMs may lower polarization losses and thus their application may be an opportunity for high efficient CO_2 electroreduction systems.

818

Figure 10. *FE* vs. V for the formation of main products in L-L and G-L ecMRs. The points are experimental data and the lines are referred to the equilibrium potential for each product (HCOOH= -0.809 V; CO= -0.729 V; C_2H_4 = -0.539 V; CH₄= -0.439 V vs. Ag/AgCl).

Unsurprisingly, the best *FEs* were obtained for CO and HCOOH formation. The highest *FE* to CO (~ 90-100 %) was achieved using L-L ecMRs [19, 49] and a G-L ecMR [51] with Ag-based catalysts at the cathode side. Hatsukade et al. [19] achieved a *FE*= 90 % at -1.3 V vs. Ag/AgCl using a Ag-Foil as working electrode in an electrochemical reactor divided by an AEM. Besides, Rosen et al. [49] obtained a *FE* to CO near to 100 % by adding 89.5 % mol of water to the ionic liquid [bmim][BF₄] as electrolyte in a L-L ecMR divided by a CEM, where Ag NP were used as electrocatalyst. Additionally, a similar *FE* was achieved by Hori et al. [51], who reported a *FE* to CO= 92.1 % at -1.51

831 V vs. Ag/AgCl with a Ag-coated electrode in a G-L ecMR divided by an AEM.

832 On the other hand, the best *FEs* to HCOOH (~ 90 %) were achieved in L-L ecMRs with 833 Sn-GDEs electrodes [10, 43] and CEMs at 50 mA·cm⁻² and -1.8 V vs. Ag/AgCl, 834 respectively, even though Pb plates also allowed to obtain similar *FEs* at low *CD* [20,

835 58]. In addition, high concentrations of HCOOH (~ $1.5 \text{ g} \cdot \text{L}^{-1}$) were achieved in Sn-GDE

electrodes with smaller *FE* (70 % at -2 V and 90 mA·cm⁻²) by Del Castillo et al. [63].

837 Regarding hydrocarbon formation, the highest FEs to CH₄ and to C₂H₄ were 76 % at -1.55 V vs. Ag/AgCL and 79.5 % at -2.4 V vs. Ag/AgCl, respectively, in L-L ecMRs 838 839 [35, 64]. In these studies, Cu-based electrocatalysts were applied in combination with CEMs in divided cells. However, other available reports did not show FEs higher than 840 841 50 % and 30 % in L-L and G-L ecMRs, respectively (considerably lower than FEs 842 obtained to CO and HCOOH in these reactors). Therefore, the development of novel approaches in terms of reactor configuration, catalyst materials and electrolyte 843 composition, among others, should be considered in the future in order to obtain 844 845 hydrocarbons with high FEs and CDs in ecMRs.

Moreover, a deeper characterization of the reaction mechanism by which products are formed is crucial to design effective electrocatalysts for the electrochemical reduction of CO_2 [78]. Unfortunately, the different mechanisms of products obtained on different catalysts are still unclear. Different intermediates have been identified in the literature on dependence of the CO_2 reduction pathway. In this regard, $CO_2^{--}_{ads}$, CO_{ads} , HCO_{ads}^{-} and $H_3CO_{ads}^{-}$ have been proposed to be probable intermediates in the electrochemical reduction of CO_2 to HCOOH, CO, CH_4 and CH_3OH respectively. Besides, Kortlever et 853 al. [79] argue that the electrolyte composition and the pH may change the results of the reaction significantly. Besides, they also considered that the absorbed CO_2^{-1} anion 854 intermediate and the absorbed (CO)₂⁻ anionic dimer play an essential role in some of 855 856 mechanistic pathways for C1 and C2 production, even though the electrocatalyst, the electrolyte and the operating conditions applied also affect in the pathways for the 857 electrochemical reduction of CO_2 . Therefore, the optimal electroreduction of CO_2 . 858 859 requires catalysts with suitable absorption properties and electrolytes with positive impacts on the catalytic selectivity and activity [79]. 860

Finally, the highly endothermic CO_2 conversion reactions consume lots of energy. Therefore, the high costs associated to these processes should be considered. In this regard, the use of renewable energy might be of help in order to achieve an economically viable CO_2 electroreduction process. It seems that further efforts on evaluating the whole life cycle of CO_2 conversion processes are required.

866

4. Conclusions and future prospects

868 In this review, studies on CO₂ electroreduction in different membrane reactor 869 configurations have been compiled and discussed in terms of type of membrane applied, 870 electrode configuration and electrocatalyst applied in order to analyse the different technical solutions to perform the electrochemical reduction of CO₂ into valuable 871 872 products using electrochemical membrane reactors. The role of membranes in these 873 reactors is to divide the cathode and anode compartments, improving the separation of 874 products and avoiding their re-oxidation. Besides, GDEs can be coupled with ionic exchange membranes (cation or anion) with the aim to form membrane electrode 875 876 assemblies (MEAs). These systems reduce mass transfer limitations and increase

process efficiency, and are gaining importance in CO₂ electrochemical reduction 877 processes. Nafion[®] membranes are the most common membranes applied, especially 878 when high amounts of protons are necessary to form more reduced species. Liquid-879 880 Liquid electrochemical membrane cells are the most studied reactors. Gas-Gas ecMRs reports, however, are recently emerging due to the mass transport enhancements at both, 881 882 cathode and anode compartments. Furthermore, different metal-based catalysts such as silver, copper, tin and lead are used as electrocatalysts for CO₂ valorisation into 883 884 different products, such as carbon monoxide, hydrocarbons and formic acid, respectively in aqueous salt solutions such as Na^+ , K^+ , Cl^- , HCO_3^- and OH^- . 885

As a conclusion, further advances in new reactor configuration, membranes and catalytic materials need to be accomplished before achieving high conversion rates, *FEs* and *CDs* for the electrochemical reduction of CO_2 in ecMRs.

889 In this regard, the authors recommend to focus the research efforts on the:

i) development of reactor configurations based on GDEs and MEAs, which favour the 890 891 transport of components; ii) addition of new polymers in ion exchange membranes, in 892 order to improve the electrode conductivity; iii) development of new highly active 893 nanostructured materials as catalyst support, which are able to increase the productivity for the desired products; iv) study of different electrolyte solutions, including also ionic 894 895 liquids with the aim of suppressing HER; and v) identify favourable operating 896 conditions (i.e. pressure, temperature, V, CD, and CO₂ flow rates) for an enhanced reduction of CO_2 in continuous operation. 897

898

899 Acknowledgements

- 900 The authors gratefully acknowledge the financial support of the Spanish Ministry of
- 901 Economy and Competitiveness (MINECO) through the project CTQ2013-48280-C3-1-
- 902 R. Ivan Merino-Garcia and Jonathan Albo would like to thank the MINECO for the
- 903 Early Stage Researcher grant (BES2014-070081) and Juan de la Cierva postdoctoral
- 904 program (JCI-2012-12073).
- 905

906 **References**

- 907 [1] Intergovernmental panel on climate change (2014). Climate change 2014: Mitigation
- 908 of climate change. 12th session of IPPC WG III, Berlin, Germany (7-11 April 2014)
- 909 [2] J. Albo, A. Irabien, Non-dispersive absorption of CO₂ in parallel and cross-flow
- membrane modules using EMISE, J. Chem. Technol. Biot. 87:10 (2012) 1502-1507.
- 911 [3] G. Centi and S. Perathoner, Opportunities and prospects in the chemical recycling of
- carbon dioxide to fuels, Catal. Today 148 (2008) 191-205.
- [4] K. S. Lackner, Carbonate chemistry for sequestering fossil carbon, Annu. Rev.
 Energy Environ. 27 (2002) 193-232.
- 915 [5] D. T. Whipple and P. J. A. Kenis, Prospects of CO₂ utilization via direct
 916 heterogeneous electrochemical reduction, J. Phys. Chem. Lett. 1 (2010) 3451-3458.
- 917 [6] H. R. M. Jhong, S. Ma, P. J. A. Kenis, Electrochemical conversion of CO₂ to useful
- 918 chemicals: current status, remaining challenges, and future opportunities, Curr. Opin.
- 919 Chem. Eng. 2 (2013) 191-199.
- 920 [7] B. Hu, C. Guild, S. L. Suib, Thermal, electrochemical, and photochemical
 921 conversion of CO₂ to fuels and value-added products, J. CO₂ Util. 1 (2013) 18-27.

- 922 [8] J. P. Jones, G. K. S. Prakash, G. A. Olah, Electrochemical CO₂ reduction: recent
 923 advances and current trends, Isr. J. Chem. 53 (2013) 1-17.
- [9] E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J. Perez-Ramirez,
 Status and perspectives of CO₂ conversion into fuels and chemicals by catalytic,
 photocatalytic, and electrocatalytic processes, Energy Environ. 6 (2013) 3112-3135.
- 927 [10] D. Kopljar, A. Inan, P. Vindayer, N. Wagner, E. Klemm, Electrochemical
 928 reduction of CO₂ to formate at high current density using gas diffusion electrodes, J.
 929 Appl. Electrochem. 44 (2014) 1107-1116.
- 930 [11] C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, Design of an electrochemical
- cell making syngas (CO + H₂) from CO₂ and H2O reduction at room temperature, J.
 Electrochem. Soc. 155 (2008) B42-B49.
- [12] N. Gutiérrez-Guerra, L. Moreno-López, J. C. Serrano-Ruiz, J. L. Valverde, A. de
 Lucas-Consuegra, Gas phase electrocatalytic conversion of CO₂ to syn-fuels on Cu
 based catalysts-electrodes, Appl. Catal. B-Environ. 188 (2016) 272-282.
- [13] R. L. Cook, R. C. Macduff, A. F. Sammells, Ambient temperature gas phase CO₂
 reduction to hydrocarbons at solid polymer electrolyte cells, J. Electrochem. Soc. 135
 (1988) 1470-1471.
- [14] S.M.A. Kriescher, K. Kugler, S.S. Hosseiny, Y. Gendel, M. Wessling, A
 membrane electrode assembly for the electrochemical synthesis of hydrocarbons from
 CO_{2(g)} and H₂O_(g), Electrochem. Commun. 50 (2015) 64-68.
- 942 [15] R. J. Lim, M. Xie, M. A. Sk, J. M. Lee, A. Fisher, X. Wang, K. H. Lim, A review
- 943 on the electrochemical reduction of CO_2 in fuel cells, metal electrodes and molecular
- 944 catalyst, Catal. Today 233 (2014) 169-180.

- 945 [16] Y. Oh and X. Hu, Organic molecules as mediators and catalysts for photocatalytic
 946 and electrocatalytic CO₂ reduction, Chem. Soc. Rev. 42 (2013) 2253-2261.
- 947 [17] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, Electrocatalytic conversion of
- 948 CO₂ to liquid fuels using nanocarbon-based electrodes, J. Energ. Chem. 22 (2013) 202949 213.
- [18] J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalyst for the electroreduction ofcarbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43 (2014) 631-675.
- 952 [19] T. Hatsukade, K.P Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Insights into the
- electrocatalytic reduction of CO₂ on metallic silver surfaces, Phys. Chem. Chem. Phys.
 16 (2014) 13814-13819.
- [20] M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Conversion of carbon dioxide into
 formate using a continuous electrochemical reduction process in a lead cathode, Chem.
 Eng. J. 207-208 (2012) 278-284.
- 958 [21] J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol
- 959 from CO_2 electroreduction at Cu_2O and Cu_2O/ZnO -based electrodes in aqueous
- 960 solution, Appl. Catal. B-Environ. 176-177 (2015) 709-717.
- [22] L. M. Aeshala, R. Uppaluri, A. Verma, Electrochemical conversion of CO₂ to
 fuels: tuning the reaction zone using suitable functional groups in solid polymer
 electrolyte, Phys. Chem. Chem. Phys. (2014). DOI: 10.1039/c0xx00000x.
- 964 [23] H. Li, C. Oloman, The electro-reduction of carbon dioxide in a continuous reactor,
 965 J. Appl. Electrochem. 35 (2005) 955-965.

- 966 [24] M. Alvarez-Guerra, A. Del Castillo, A. Irabien, Continuous electrochemical
 967 reduction of carbon dioxide into formate using a tin cathode: Comparison with lead
 968 cathode, Chem. Eng. Res. Des. 92 (2014) 692-701.
- 969 [25] P. Tamilarasan, S. Ramaprabhu, Task-specific functionalization of graphene for
 970 cathode catalyst support in carbon dioxide conversion, Journal of Materials Chemistry
 971 A (2014) 1-27.
- [26] S. Kaneco, K. Iiba, S.K. Suzuki, K. Ohta, T. Mizuno, Electrochemical reduction of
 carbon dioxide to hydrocarbons with high Faradaic efficiency in LioH/Methanol, J.
 Phys. Chem. B 103 (1999) 7456-7460.
- [27] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the
 electrochemical reduction of carbon dioxide on metallic copper surfaces, Energ.
 Environ. Sci. 5 (2012) 7050-7059.
- 978 [28] R. Kas, R. Kortlever, A. Milbrat, M. T. M. Koper, G. Mul, J. Baltrusaitis, 979 Electrochemical CO_2 reduction on Cu_2O -derived copper nanoparticles: controlling the 980 catalytic selectivity of hydrocarbons, Phys. Chem. Chem. Phys. 16 (2014) 12194-981 12201.
- [29] K. J. Yim, D. K. Song, C. S. Kim, N. G. Kim, T. Iwaki, T. Ogi, K. Okuyama, S. E.
 Lee, T. O. Kim, Selective, high efficency reduction of CO₂ in a non-diaphragm-based
 electrochemical system at low applied voltage, RSC. Adv. 00 (2014) 1-3.
- [30] I. Garcia-Herrero, M. Alvarez-Guerra, A. Irabien, CO₂ electro-valorisation to
 dimethyl carbonate from methanol using potassium methoxide and the ionic liquid
 [bmim][Br] in a filter-press electrochemical cell, J. Chem. Technol. Biotechnol. 90
 (2015) 1433-1438.

- [31] M. R. Gonçalves, A. Gomes, J. Condeço, R. Fernandes, T. Pardal, C. A. C.
 Sequeira, J. B. Branco, Selective electrochemical conversion of CO₂ to C2
 hydrocarbons, Energ. Convers. Manage. 51 (2010) 30-32.
- 992 [32] M. R. Gonçalves, A. Gomes, J. Condeço, R. Fernandes, T. Pardal, C. A. C.
- 993 Sequeira, J. B. Branco, Electrochemical conversión of CO₂ to C2 hydrocarbons using
- different ex situ copper electrodeposits, Electrochim. Acta 102 (2013) 388-392.
- 995 [33] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO_2 to 996 methane at the Cu electrode in methanol with sodium supporting salts and it's
- 997 comparison with other alkaline salts, Energy & Fuels 20 (2006) 409-414.
- 998 [34] R. Aydin, H. O. Dogan, F. Köleli, Electrochemical reduction of carbon dioxide on
 999 polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol,
 1000 Applied Catalysis B 140-141 (2013) 478-482.
- [35] H. Yano, T. Tanaka, M. Nakayama, K. Ogura, Selective electrochemical reduction
 of CO₂ to ethylene at a three phase interface on copper (I) halide-confined Cu-mesh
 electrodes in acidic solutions of potassium halides, Journal of Electroanalytical
 Chemistry 565 (2004) 287-293.
- I. Garcia-Herrero, M. Alvarez-Guerra, A. Irabien, Electrosynthesis of dimethyl
 carbonate from methanol and CO₂ using potassium methoxide and the ionic liquid
 [bmim][Br] in a filter-press cell: a study of the influence of cell configuration, J. Chem.
 Technol. Biotechnol. 91:2 (2016) 507-513.
- [37] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, Electrocatalytic conversion of
 CO₂ to liquid fuels using nanocarbon-based electrodes, J. Energy Chem. 22 (2013) 202213.

- [38] M. R. Singh, E. L. Clark, A. T. Bell, Effects of electrolyte, catalyst, and membrane
 composition and operating conditions on the performance of solar-driven
 electrochemical reduction of carbon dioxe, Phys. Chem. Chem. Phys. 17 (2015) 1892418936.
- 1016 [39] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, A gas-phase electrochemical
 1017 reactor for carbon dioxide reduction back to liquid fuels, Chem. Eng. Trans. 32 (2013)
 1018 289-294.
- 1019 [40] A. Del Castillo, M. Alvarez-Guerra, A. Irabien, Continuous electroreduction of
- 1020 CO₂ to formate using Sn gas diffusion electrodes, AIChE J. 60 (2014) 3557-3564
- 1021 [41] Q. Wang, H. Dong, H. Yu, Development of rolling tin gas diffusion electrode for
- 1022 carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, J.
 1023 Power Sources 271 (2014) 278-284.
- 1024 [42] H. Yano, F. Shirai, M. Nakayama, K. Ogura, Electrochemical reduction of CO₂ at
 1025 three phase (gas/liquid/solid) and two phase (liquid/solid) interfaces on Ag electrodes, J.
- 1026 Electroanal. Chem. 533 (2002) 113-118.
- 1027 [43] Q. Wang, H. Dong, H. Yu, H. Yu, Enhanced performance of gas diffusion
 1028 electrode for electrochemical reduction of carbon dioxide to formate by adding
 1029 polytetrafluoroethlyene into catalyst layer, J. Power Sources 279 (2015) 1-5.
- 1030 [44] J. Albo, A. Irabien, Cu₂O-loaded gas diffusion electrodes for the continuous
 1031 electrochemical reduction of CO₂ to methanol, J. Catal. (2015),
 1032 http://dx.doi.org/10.1016/j.jcat.2015.11.014
- 1033 [45] C. Ampelli, C. Genovese, M. Errahali, G. Gatti, L. Marchese, S. Perathoner, G.
- 1034 Centi, CO₂ capture and reduction to liquid fuels in a novel electrochemical setup by

- using metal-doped conjugated microporous polymers, J. Appl. Electrochem. 45 (2015)701-713.
- 1037 [46] C. Ampelli, C. Genovese, B. C. Marepally, G. Papanikolaou, S. Perathoner, G.
- 1038 Centi, Electrocatalytic conversion of CO_2 to produce solar fuels in electrolyte or
- electrolyte-less configurations of PEC cells, Faraday Discuss. 00 (2015) 1-3.
- 1040 [47] B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A.
- 1041 Kenis, R. I. Masel, Ionic Liquid-mediated selective conversion of CO₂ to CO at low
- 1042 overpotentials, Science Express 334 (2011) 643-644.
- 1043 [48] A. Salehi-Khojin, H. R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis, R.
- I. Masel, Nanoparticle silver catalyst that show enhanced activity for carbon dioxideelectrolysis, J. Phys. Chem. C 117 (2013) 1627-1632.
- 1046 [49] B. A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin, R. I. Masel, Water enhancement
 1047 of CO₂ conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate, J.
- 1048 Electrochem. Soc. 160 (2013) H138-H141.
- 1049 [50] J. Wu, F.G. Risalvato, P.P Sharma, P.J. Pellechia, F.S. Ke, X.D. Zhou,
 1050 Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of
 1051 low temperature full electrochemical cells, J. Electrochem. Soc. 160 (2013) F953-F957.
- 1052 [51] Y. Hori, H. Ito, K. Okano, N. Nagasu, S. Sato, Silver-coated ion exchange
 1053 membrane electrode applied to electrochemical reduction of carbon dioxide,
 1054 Electrochim. Acta 48 (2003) 2651-2657.
- 1055 [52] D. W. Dewulf, A. J. Bard, The electrochemical reduction of CO_2 to CH_4 and C_2H_4
- 1056 at Cu/Nafion electrodes (solid polymer electrolyte structures), Catalysis Letters 1 (1988)
 1057 73-80.

- 1058 [53] S. Komatsu, M. Tanaka, A. Okumura, A. Kungi, Preparation of Cu-solid polymer
 1059 electrolyte composite electrodes and applications to gas-phase electrochemical
 1060 reduction of CO₂, Electrochimica Acta 40 (1995) 745-753.
- 1061 [54] C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren, B. S. Yeo, Stable and
 1062 selective electrochemical reduction of carbon dioxide to ethylene on copper
 1063 mesocrystals, Catal. Sci. Technol. 5 (2014) 161-168.
- 1064 [55] L. M. Aeshala, S. U. Rahman, A. Verma, Effect of solid polymer electrolyte on
 1065 electrochemical reduction of CO₂, Separation and Purification Technology 94 (2012)
 1066 131-137.
- 1067 [56] G. K. S. Prakash, F. A. Viva, G. A. Olah, Electrochemical reduction of CO₂ over
 1068 Sn-Nafion coated electrode for a fuel-cell-like device, J. Power Sources 223 (2013) 681069 73.
- 1070 [57] L. M. Aeshala, R. Uppaluri, A. Verma, Effect of cation and anion solid polymer
 1071 electrolyte on direct electrochemical reduction of gaseous CO₂ to fuel, Journal of CO₂
 1072 utilisation 3-4 (2013) 49-55.
- 1073 [58] K. Subramanian, K. Asokan, D. Jeevarathinam, M. Chandrasekaran,
 1074 Electrochemical membrane reactor for the reduction of carbon dioxide to formate, J.
 1075 Appl. Electrochem. 37 (2007) 255-260.
- 1076 [59] S. Singh, C. Mukherjee, A. Verma, Development of catalytic activity protocol for1077 electrochemical reduction of carbon dioxide to value added products, Clean Techn.
- 1078 Environ. Policy 17 (2015) 533-540.

- 1079 [60] J. Xie, Y. Huang, H. Yu, Tuning the catalytic selectivity in electrochemical CO₂
 1080 reduction on copper oxide-derived nanomaterials, Front. Environ. Sci. Eng. (2014).
 1081 DOI: 10.1007/s11783-014-0742-1.
- 1082 [61] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO
 1083 selectivity in electrochemical reduction of CO₂ at metal electrodes in aqueous media,
 1084 Electrochim. Acta 39 (1994) 1833-1839.
- 1085 [62] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompained with 1086 simultaneous charge transfer on copper single crystal electrodes related with 1087 electrochemical reduction of CO_2 to hydrocarbons, Surface Science 335 (1995) 258-1088 263.
- 1089 [63] A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A.
 1090 Irabien, Electrocatalytic reduction of CO₂ to formate using particulate Sn electrodes:
 1091 effect of metal loading and particle size, Appl. Energ. 157 (2015) 165-173.
- 1092 [64] K. Manthiram, B. J. Beberwyck, A. P. Alivisatos, Enhanced electrochemical
 1093 methanation of carbon dioxide with a dispersible nanoscale copper catalyst, J. Am.
 1094 Chem. Soc. 136 (2014) 13319-13325.
- 1095 [65] R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, G. Mul, Manipulating the
 1096 hydrocarbon selectivity of copper nanoparticles in CO₂ electroreduction by process
 1097 conditions, ChemElectroChem 2 (2015) 354-358.
- 1098 [66] A. S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO₂
 1099 electroreduction on copper: the effect of the electrolyte concentration and the
 1100 importance of the local pH, Catal. Today 260 (2016) 8-13.

- 1101 [67] C. Genovese, C. Ampelli, B. C. Marepally, G. Papanikolaou, S. Perathoner, G.
- 1102 Centi, Electrocatalytic reduction of CO_2 for the production of fuels: a comparison
- between liquid and gas phase condition, Chem. Eng. Trans. 43 (2015) 2281-2286.
- 1104 [68] C. S. Chen, J. H. Wan, B. S. Yeo, Electrochemical reduction of carbon dioxide to
- 1105 ethane using nanostructured Cu₂O-derived copper catalyst and palladium(II) chloride, J.
- 1106 Phys. Chem. C 119 (2015) 26875-26882.
- 1107 [69] D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S. Yeo, Selective
- 1108 electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide
- 1109 catalysts, ACS Catal. 5 (2015) 2814-2821.
- 1110 [70] M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Ionic liquids in the
- electrochemical valorisation of CO₂, Energy Environ. Sci. 8(2015)2574-2599.
- 1112 [71] K. Ogura, M. D. Salazar-Villalpando, CO₂ electrochemical reduction via adsorbed
 1113 halide anions, Energy Conservation 63 (2011) 35-38.
- 1114 [72] G. Keerthiga, B. Viswanathan, R. Chetty, Electrochemical reduction of CO₂ on
 1115 electrodeposited Cu electrodes crystalline phase sensitivity on selectivity, Catal. Today
 1116 245 (2015) 68-73.
- 1117 [73] J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Towards the electrochemical
 1118 conversion of carbon dioxide into methanol, Green Chem. 17 (2015) 2304-2324.
- 1119 [74] A. Dominguez-Ramos, B. Singh, X. Zhang, I.E. Hertwich, A. Irabien, Global
 1120 warming footprint of the electrochemical reduction of carbon dioxide to formate, J.
 1121 Clean. Prod. 148 (2015) 148-155.

- 1122 [75] C. Ampelli, C. Genovese, S. Perathoner, G. Centi, M. Errahali, G. Gatti, L.
 1123 Marchese, An electrochemical reactor for the CO₂ reduction in gas phase by using
 1124 conductive polymer based electrocatalysts, Chem. Eng. Trans. 41 (2014) 13-18.
- 1125 [76] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, Electrocatalytic conversion of
- 1126 CO₂ on carbon nanotube-based electrodes for producing solar fuels, Journal of Catalysis
- 1127 308 (2013) 237-249.
- [77] R. L. Cook, R. C. Macduff, A. F. Sammells, High rate gas phase CO₂ reduction to
 ethylene and methane using gas diffusion electrodes, J. Electrochem. Soc. 137 (1990)
 607-608.
- 1131 [78] D. Ren, Y. Huang, B. S. Yeo, Electrocatalysts for the selective reduction of carbon
 1132 dioxide to useful products, Chimia 69 (2015) 131-135.
- 1133 [79] R. Kortlever, J. Shen, K. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, Catalyst
- and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys.
- 1135 Chem. Lett. 6 (2015) 4073-4082.

Ref.	T (°C)	Pressure (atm)	Membrane	Cathode	Anode	Catholyte	Anolyte	Reference electrode	Products	Main results
9	25	1	Nafion®	Ag	Pt-Ir (1:1) alloy	CO ₂ , KHCO ₃	Aq. KOH	SCE	CO, H ₂	40 % FE CO at -1.42 V and 20 mA/cm 2
19			Selemion [™] (anion)	Cu foil	Pt foil	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl (converted to RHE)	16 different products	FE: 40 % methane at -1.15 V, 25 % ethylene at -1.05 V, 23% formate at -0.87 V
20	25	1	Selemion [™] (anion)	Ag foil	Pt foil	CO ₂ , KHCO ₃	Aq. KHCO₃	RHE	CO, H ₂ , formate, methane, methanol, ethanol	90 % FE CO at -1.1 V and 8% FE formate at - 1.4 V
21	25	1	Nafion [®] 450	Mesh tinned-copper plate	platinized titanium plate	CO ₂ y N2, KHCO ₃	Aq. KOH	SHE	Formate, H ₂ , CO, methane	86 % FE formate at 22 mA/cm ²
22	25	1	Nafion [®] 117	Pb plate	DSA	CO ₂ , KCl + KHCO ₃	Aq. KOH	Ag/AgCl	Formate	14.4 mg/L and 94.7 % FE to formate at 2.5 mA/cm ²
23	25	1	Nafion [®] 117	Sn plate	DSA	CO ₂ , KCl + KHCO ₃	Aq. KOH	Ag/AgCl	Formate	Formate FE about 70 % at 12.25 mA/cm ²
24	25	1	Nafion [®] 112	Cuprous oxide films electrodeposited onto copper plates	Pt mesh	CO₂ , KHCO₃	Aq. KHCO₃	RHE	Ethane, ehylene, methane, CO	FE: 0-4 % CO, 1-5 % CH ₄ , 20 % C ₂ H ₄ , 2.5 % C ₂ H ₆ at -1.1 V
25	25	1.2	Nafion [®] 117 or no membrane	Cu insoluble plate	Pt insoluble plate	CO ₂ , NaOH or KOH in methanol	NaOH or KOH in methanol		Methane, H ₂	Without membrane and using KOH: 35.6 % FE to methane at 0.5 V
26			Nafion [®] 117	Pt/Nb plate (95% Pt)	Pt/Nb plate (95% Pt)	CO ₂ , methanol + [bmim][Br] + CH ₃ OK	Methanol + [bmim][Br] + CH ₃ OK	Ag/AgCl	Dimethyl carbonate	11.37 mmol/L of dimethyl carbonate
27	25	1	Cation ex. membrane	Cu mesh/modified copper electrodes	Pt mesh	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl	Methane, ethylene, ethane, H ₂ , CO	Modified electrodes: 10 % methane and 33 % ethylene at -1.9
28	25	1	Cation ex. membrane	Cu mesh/foil	Pt mesh	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl	Methane, ethylene, ethane, H ₂ , CO	Cu mesh: 15 % methane and 8 % ethylene at -1.9
29	-30		Nafion [®] 117	Cu foil	Pt foil	CO ₂ , sodium salts in methanol	KOH in methanol	Ag/AgCl	Methane, ethylene, formic acid, CO, H ₂	70.5 % FE methane in NaClO₄/methanol at - 3V and 22.7 mA/cm ²
30		1 to 60	Nafion [®] 117	Cu wire	Pt plate	CO₂, LiClO₄ in methanol	Aq. H ₂ SO ₄	Pb(Hg)x/Pb SO4/SO42-	Methane, ethylene, CO, formic acid, acetic acid	FE At 20 bar: 25.5 % methane, 15.1 % CO, 22.1 % formic acid, 40.2 % acetic acid at - 3V vs. Pb(Hg)x/PbSO ₄ /SO ₄ ²⁻
31	-30		Nafion [®] 117	Cu foil	Pt foil	CO ₂ , LiOH in methanol	KOH in methanol	Ag/AgCl	Methane, ethylene, CO, formic acid	78 % methane and ethylene at -4V

Table 1. Experimental conditions, materials, main products and significant results of the Liquid-Liquid electrochemical membrane reactors.

32			Selemion [™] (cation)	Cu mesh/Cu-halide electrode	Pt plate	CO ₂ , potassium halides	Aq. potassium halides	Ag/AgCl	Methane, ethylene, ethane, CO, ethanol, H ₂	FE: CuBr electrode and KBr electrolye: 5.8 % methane and 79.5 % ethylene at -2.4 V
33			FAB (anion) or no membrane	Pt/Nb plate (95% Pt)	Pt/Nb plate (95% Pt)	CO ₂ , methanol + [bmim][Br] + CH ₃ OK	Methanol + [bmim][Br] + CH ₃ OK	Ag/AgCl	Dimethyl carbonate	FAB membrane: 9.74 mmol/L, undivided cell: 80.85 mmol/L
34	25	1	Nafion	Sn-GDE	Pt plate	CO ₂ , KHCO ₃	Aq. KHCO₃	Hg/HgO, KHCO3	Formate, H ₂ , CO, methane traces	93 % FE formate at 50 mA/cm ²
35	25	1	Nafion [®] 117	Sn-GDE	DSA	CO ₂ , KCl + KHCO ₃	Aq. KOH	Ag/AgCl	Formate	Formate FE about 70 % and a concentration of 1348 mg/L
36	25		Nafion [®] 117	Sn-GDE	Pt foil	CO ₂ , KHCO ₃	Water	Ag/AgCl	Formate	FE 78 % formate at -1.8 V. 0.5 M KHCO ₃ used
37			Selemion [™] (cation)	Net Ag-electrode	Pt plate	CO ₂ , KCl	Aq. KCl	Ag/AgCl	CO, H ₂	CO conversion 100 % (AgNO ₃ into the electrolyte). FE > 45% CO.
38	25		Nafion	Sn-GDE + PTFE	Pt foil	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl	Formate	FE 87 % formate at -1.8 V and 22 mA/cm ²
39	25	1	Nafion [®] 117	Cu ₂ O and Cu ₂ O/ZnO electrodes	Platinised titanium	CO₂, KHCO₃	Aq. KHCO₃	Ag/AgCl	Methanol	FE Cu ₂ O: 45.7 % at -1.3 V; FE Cu ₂ O/ZnO: 17.7 % at -1.3 V
40	25	1	Polymer electrolyte membrane	Pt-Glassy carbon electrode	Pt wire	Deionized water or $KHCO_3$	Pure deionized water	Ag/AgCl	Formic acid	0 to 35 mM in continuous mode vs. 0 to 18 mM in discontinuous mode
41	25		Nafion [®] 117	Metal NP on carbon paper or CNT/GDL	Pt rod	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl	Formic acid, acetic acid, methyl formate.	2.3e-4 M formic acid (Pt-CNT), 1.8e-4 M acetic acid (Pt-CNT), 1.7e-4 M methyl formate (Cu-CB)
42	22		Nafion [®] 117	Ag - Graphite GDL	Pt black NP	CO ₂ , [emim][Br]	Aq. H ₂ SO ₄	Ag/Ag+	CO, H ₂	FE > 9 % CO. 90% EE at 1.5 V
43			Nafion [®] 212	Ag NP	Pt NP	CO ₂ , EMIM-BF ₄	Aq. H ₂ SO ₄	SHE	со	Rate CO ₂ conversion >> 5 nm Ag NP than Ag bulk electrode
44			Nafion [®] 117	Ag NP	Pt NP	CO ₂ , Aq. BMIM- BF ₄	Aq. H ₂ SO ₄	Ag/0.01 M Ag ⁺	со	100 % FE to CO when 89.5 mol% water was added to the $BMIM-BF_4$
49			Selemion [™] (anion)	Cu: mesocrystals or NP or electropolished	Pt mesh	CO ₂ , KHCO ₃	Aq. KHCO₃	Ag/AgCl	Formate, methane, ethylene, CO, H ₂	Cu mesocrystals: FE: 27.2 % ethylene, 17.5 % formate, 7.5 % CO, 2.7 % methane
56	25	1	Nafion [®] 961 and Nafion [®] 430	Pb plate	IrO2/Ta2O5	CO ₂ , K ₂ HPO ₄ + H ₃ PO ₄	Aq. KOH		Formate	FE 93 % formate at 2 mA/cm ² . Formate concentration increases with current density (higher value 0.01596 mol/L)
57			Nafion [®] 117	Cu mesh	Pt wire	CO ₂ , potassium halides	Aq. KHSO₄	Ag/AgCl		CD excess: KCl < KBr < Kl at -1,2 V
58	25	1	Nafion [®]	Cu rod. Electrocatalysts: Cu, CuO, ZnO, Mo ₂ C, Co ₃ O ₄	Pt/C (40% wt)	CO₂, KHCO₃ or KOH or DMF	Water			Cu, CuO, ZnO, Co₃O₄ actives catalysts in the protocol
59	10		Nafion [®] 112	Cu nanowires/nanonee	Pt foil	CO ₂ , KHCO ₃	Aq. KHCO₃	RHE	Methane, ethylene, formic acid, H ₂	FE: Cu NNs: 14 % methane at -1.2V and 48 % formic acid at -0.9V; Cu NWs: 12 %

			dles					ethylene at -1.3V
60	19	 Selemion [™] (cation)	Different metal electrodes	 CO ₂ , KHCO ₃	Aq. KHCO₃	NHE	Methane, ethylene, CO, formate	FE in Cu electrode: 33.3 % methane and 25.5 % ethylene at -1.44V and 5 mA/cm ²
61	18	 Cation ex. membrane	Cu single electrode/polycryst al Cu	 CO₂, KHCO₃	Aq. KHCO₃	NHE	Methane, ethylene, CO, formate, H ₂ , alcohols	FE with Cu (110): 49.5 % methane y 15.1 % ethylene at -1.55V and 5 mA/cm ²

Ref.	T (°C)	Pressure (atm)	Membrane	Cathode	Anode	Catholyte	Anolyte	Reference electrode	Products	Main results
9	25	1	Nafion [®] / anion membrane	Ag	Pt-Ir (1:1) alloy	Humidified CO ₂ gas	Pure water/KH CO ₃	SCE	CO, H ₂	82 % FE CO with buffer layer and Nafion [®] membrane. 3 % FE CO with anionic membrane
41	25		Nafion [®] 117	Metal NP on carbon paper or CNT/GDL	Pt wire	CO₂ gas	Aq. KCl	Ag/AgCl	CO, H ₂ , methanol, acetaldehyde, ethanol, acetone, isopropanol, acetic acid.	Best productivity to products: around 4.8e-4 mmol/h on Fe-CNT
45	25	1	Nafion [®] with buffer layer	Sn ink + GDL	Pt/C spray + GDL	CO_2 gas	Aq. KOH	Ag/AgCl	Formate, CO, H ₂	70 % FE formate at -1.2 V
46		1	Anion electrolyte membrane	Silver- coated	Pt plate	CO_2 gas	Aq. K₂SO₄	SHE	CO, formic acid, H_2	92.1 % FE CO at 20 mA/cm ² and 12.1 % formic acid at 100 mA/cm ²
47	22		Nafion [®] 115	Cu foil	Pt flag	Humidified CO ₂ gas	Aq. H ₂ SO ₄	SCE	Methane, ethylene	8 % FE methane and 10 % FE ethylene at -2 V
48	25		Nafion®	Cu-solid polymer electrolyte	Pt mesh	CO ₂ gas	Aq. K₂SO₄	SCE	Methane, ethylene, CO, H ₂ , formic acid	FE > 89 % hydrogen
50	25	1	Nafion®	Carbon porous	Pt/C (40 % wt Pt)	CO ₂ gas	Alkali doped PVA		Formic acid, methanol, formaldehyde, CO, methane , ${\sf H}_2$	4.5 % FE to methane
51			Glass frit	Sn-GDL	Pt wire	CO ₂ gas	Aq. NaHCO₃	Ag/AgCl	Formate	FE to formate: 70 % at -1.6 V vs. NHE
52	25	1	CMI-7000 or AMI- 7001	Cu ₂ O on porous carbon paper	Pt/C (40% wt Pt)	Humidified CO ₂ gas	water	SHE	Methane, ethylene, methanol, H_2	CMI-7000: FE > 80 % H ₂ ; AMI-7001: 30 % FE methane (2.5 V), 20 % FE methanol (2 V), 15 % FE ethylene (2 V)
53	25	1	PEI and QPEI doped with KOH (AEM)	Cu ₂ O on porous carbon paper	Pt/C	CO ₂ gas	Deionize d water		CO, H ₂ , methane, ethylene, ethane	6-11 % FE CH4 at 2.75 V and 3-20 % FE C_2H_6 at 2.25 V
66	60		Nafion [®]	TPE-CMP doped with Pt NP	Pt wire	CO ₂ gas	Aq. KHCO₃		Hydrocarbons, hydrogen, CO, methanol, ethanol, isopropanol, acetic acid, acetaldehyde	Global FE > 95 %. Hydrocarbons and oxygenates: best results with Pt doped CNT and TPE-CMP
67	60		Nafion [®] 115	GDM- metal	Pt wire	50 % CO₂ in He	Aq. KCl	Ag/AgCl	CO, H ₂ , hydrocarbons	18.9 % FE CO when Fe (metal doped) is used

Table 2. Experimental conditions, materials, main products and significant result of the Gas-Liquid electrochemical membrane reactors.

			doped						
68	60	 Nafion [®] 115	Pt or Fe doped TPE- CMP/CNTs	Pt wire	CO_2 gas	Aq. KHCO₃	Ag/AgCl	C1-C8 oxygenates.	Higher productivity with 70 % Pt/TPE-CMP + 30 % CNTs (7.2e-5 mmol/h).

Figure 2. Distribution of the studies about ecMRs for CO_2 utilization by type of product.

Notation: formate; carbon monoxide; methane; ethylene; ethane; methane; dimethyl carbonate.

Figure 4. Conventional electrochemical reactor (a) and electrochemical reactor separated by an ion exchange membrane (b).

Figure 5. Catalysts dispersed at the cathode coupled with the membrane (a) and both electrodes coupled with the membrane (b).

Products MEA O_{2(g)} + unreacted

Anode

Cathode

L (aq. salts)

ł

G

Figure 7. G-G ecMR used by Kriescher et al. [55]. Reproduced from Ref. [55].

Figure 8. GDE type electrodes used for CO₂ electrochemical reduction. Reproduced from ref. [41]

Figure 1. Mechanism for electrochemical CO_2 reduction on metal surfaces in water, reproduced from Ref. [7].

Figure 2. Distribution of the studies about ecMRs for CO₂ utilization by type of product. Notation: formate; carbon monoxide; methane; ethylene; ethane; methane; dimethyl carbonate.

Figure 3. Different products as a function of the catalyst involved. Notation: Ag; Ni; Sn; Pb; Pt; Cu.

Figure 4. Conventional electrochemical reactor (a) and electrochemical reactor separated by an ion exchange membrane (b).

Figure 5. Catalysts dispersed at the cathode coupled with the membrane (a) and both electrodes coupled with the membrane (b).

Figure 6. Gas phase used at the cathode separated to the catholyte (a), gas phase at the cathode with liquid buffer layer (b), cathode coupled to membrane without buffer layer (c), and both electrodes coupled to the membrane (d).

Figure 7. G-G ecMR used by Kriescher et al. [55]. Reproduced from Ref. [55].

Figure 8. GDE type electrodes used for CO₂ electrochemical reduction. Reproduced from ref. [41]

Figure 9. FE vs. voltage as a function of the membrane type used in L-L and G-L ecMRs.

Figure 10. FE vs. voltage as a function of valuable products obtained in L-L and G-L ecMRs. The points are experimental data and the lines are referred to the equilibrium potential for each product.