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Abstract In this study we assess the suitability of a recently introduced analog-based Model Output
Statistics (MOS) downscaling method (referred to as MOS-Analog) for climate change studies and compare
the results with a quantile mapping bias correction method. To this aim, we focus on Spain and consider
daily precipitation output from an ensemble of Regional Climate Models provided by the ENSEMBLES
project. The reanalysis-driven Regional Climate Model (RCM) data provide the historical data (with
day-to-day correspondence with observations induced by the forcing boundary conditions) to conduct the
analog search of the control (20C3M) and future (A1B) global climate model (GCM)-driven RCM values. First,
we show that the MOS-Analog method outperforms the raw RCM output in the control 20C3M scenario
(period 1971–2000) for all considered regions and precipitation indices, although for the worst-performing
models the method is less effective. Second, we show that the MOS-Analog method broadly preserves
the original RCM climate change signal for different future periods (2011–2040, 2041–2070, 2071–2100),
except for those indices related to extreme precipitation. This could be explained by the limitation of the
analog method to extrapolate unobserved precipitation records. These results suggest that the MOS-Analog
is a spatially consistent alternative to standard bias correction methods, although the limitation for extreme
values should be taken with caution in cases where this aspect is relevant for the problem.

1. Introduction

Precipitation is a challenging variable which is crucial in several sectors, such as agriculture [see, e.g., Ceglar
et al., 2016] and hydrology [see, e.g., Llasat et al., 2016], particularly in the context of climate change and/or
in applications involving extreme events [Foley, 2010; Rummukainen, 2010]. The coarse resolution (generally
few hundred kilometers) and the systematic biases of global climate models (GCMs) prevents the direct appli-
cation of global climate projections at a regional scale (generally few kilometers) for impact studies. Therefore,
dynamical and/or statistical downscaling techniques are typically applied to bridge this gap in order to
obtain plausible regional climate change projections of precipitation [see Fowler et al., 2007; Maraun et al.,
2010, and references therein]. During the last decade, downscaling has become a strategic topic in national
and international climate programs (see, e.g., the World Climate Research Program-endorsed Coordinated
Regional Climate Downscaling Experiment (CORDEX) initiative, Giorgi et al. [2009], or the European Union
(EU)-funded COST Action VALUE, Maraun et al. [2015]).

The dynamical downscaling approach is based on regional climate models (RCMs)—with typical resolu-
tions of tens of kilometers—running over limited geographical domains with boundary conditions given by
the GCM to be downscaled [Giorgi and Mearns, 1991]. These RCMs explicitly solve mesoscale atmospheric
processes and provide spatially and physically consistent outputs. However, they still have considerable
biases [Christensen et al., 2008; Herrera et al., 2010; Turco et al., 2013] which are typically adjusted in practi-
cal applications using a variety of Model Output Statistics (MOS) methods. Formally, in the MOS downscaling
approach, the target variable (e.g., precipitation) simulated by the RCM is directly corrected against the avail-
able local-scale observations using appropriate statistical techniques [Marzban et al., 2006; Maraun et al., 2010;
Ruiz-Ramos et al., 2016].

The most popular MOS techniques for climate change studies are distribution-wise; that is, the correction
function is derived from the observed and simulated distributions. This approach is usually referred to as
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(distributional) bias correction and includes several variants of the quantile mapping (QQM hereinafter) as the
most popular techniques (see Teutschbein and Seibert [2012], Gutjahr and Heinemann [2013], and Sunyer Pinya
et al. [2015] for a review). However, a number of limitations have been recently reported for these methods.
One important drawback of QQM is that it can modify the raw climate change signal [Hagemann et al., 2011;
Pierce et al., 2013; Maraun, 2013; Maurer and Pierce, 2014; Cannon et al., 2015; Dosio, 2016]. Also, QQM is not
able to correct for biases related to model error in large-scale circulation [Eden et al., 2012; Addor et al., 2016] or
heterogeneous biases in space [Maraun and Widmann, 2015], and, importantly, QQM is not effective in cases
where the observations and RCM outputs have different spatial resolutions, i.e., when downscaling is also
required [White and Toumi, 2013; Maraun, 2013; Teutschbein and Seibert, 2013].

As an alternative to these popular techniques, a number of event-wise MOS methods which use the temporal
correspondence between simulations and observations have been recently developed, e.g., conditioning the
distribution-wise methods to different weather types [Wetterhall et al., 2012] or considering RCM simulations
nudged to (or driven by) reanalysis data to train the statistical methods using the temporal correspondence
(between simulations and observations) existing in this case [Turco et al., 2011; Eden et al., 2014]. Although the
temporal correspondence is weaker for reanalysis-driven RCM climate simulations (driven only at the bound-
aries of the simulation domain) than for the (grid or spectral) nudged ones, the former simulations are those
currently available in most of the international downscaling initiatives—such as Ensemble-based Predictions
of Climate Changes and their Impacts (ENSEMBLES) [van der Linden and Mitchell, 2009], North American
Regional Climate Change Assessment Program (NARCAP) [Mearns et al., 2012], and CORDEX [Giorgi et al., 2009;
Jacob et al., 2014]— and, therefore, they can be more widely applied in practice.

Turco et al. [2011] introduced a MOS downscaling method based on the application of the analog technique
to the reanalysis (ERA40)-driven RCM outputs from the ENSEMBLES project. They showed that the application
of this methodology (hereafter referred to as MOS-Analog) improves the representation of the mean regimes,
the seasonal cycle, the frequency and the extremes of precipitation for all the RCMs. It is worth noting that the
main advantages of the analog methodology are that (i) it is conceptually simple and easy to implement with
low computational cost, (ii) is able to reproduce nonlinear relationship between predictors and predictands,
and (iii) can reproduce realistic and spatially coherent precipitation patterns. The main drawback is that it
cannot simulate unobserved weather patterns, and this limitation should be cautiously taken into account for
climate change studies [see, e.g., Gutiérrez et al., 2013].

In this paper we analyze the application of the MOS-Analog method to downscale future RCM projections. To
this aim, we consider the different GCM-RCM combinations available from the ENSEMBLES projects for both
the historical (20C3M) and future (A1B) emission scenarios, together with the corresponding reanalysis-driven
RCM simulations. First, we evaluate the performance of the method in a control historical period, showing
that it can satisfactorily reproduce the observed spatial and temporal climate patterns of mean and extreme
precipitation. Second, we analyze the downscaled climate change signal as compared with that correspond-
ing to the direct RCM output for different future periods (2011–2040, 2041–2070, and 2071–2100). Overall,
similar regional climate change signals are observed, particularly in cases with a strong signal agreement
among members.

The domain of study is the Spanish Iberian Peninsula, which is geographically complex and heterogeneous,
and it is characterized by large climate variability due to the influences of different climatological regimes.
This is a challenging area for the statistical and dynamical downscaling, since they must be able to simulate
very different climates in a relatively small area with notable orographic complexity. Herrera et al. [2010] ana-
lyzed the performance of the ERA40-driven RCM simulations in this region, showing that they can capture
the annual cycle of precipitation in the different river basins. However, they also indicated that some of these
models have strong biases and exhibit a poor performance as they overestimate the frequency of rainfall.
Moreover, they deficiently represent extreme events. Generally, the MOS-Analog method is able to reduce
the biases of these models [Turco et al., 2011]. On the other hand, Turco et al. [2013] analyzed the GCM-driven
control runs (20C3M scenario) and found large biases for some RCM-GCM combinations attributable to RCM
in-house coupling problems with some particular GCMs. Importantly, these biases are shown to distort the
corresponding climate change signal. The lessons learned in these previous studies set the basis for the
present work.

The study is organized as follows. After this introduction, section 2 describes the RCMs and observational
data sets used; section 3 presents the downscaling method, and section 4 analyzes the validation results in a
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Table 1. RCM Simulations Produced in the ENSEMBLES Project Used in This Study With
the Corresponding Driving GCMa

Number - Acronym RCM Driving GCM Reference

1 - CNRMb ALADIN ARPEGE Radu et al. [2008]

2 - DMIb HIRHAM ARPEGE Christensen et al. [2008]

3 - DMI-BCM HIRHAM BCM Christensen et al. [2008]

4 - DMI-ECHAM5 HIRHAM ECHAM5-r3 Christensen et al. [2008]

5 - ICTPb RegCM3 ECHAM5-r3 Pal et al. [2007]

6 - KNMIb RACMO ECHAM5-r3 Van Meijgaard et al. [2008]

7 - HCb HadRM3Q0 HadCM3Q0 Haugen and Haakensatd [2006]

8 - MPIb M-REMO ECHAM5-r3 Jacob [2001]

9 - SMHIb RCA ECHAM5-r3 Samuelsson et al. [2011]

10 - SMHI-BCM RCA BCM Samuelsson et al. [2011]
aThe numbers are used to facilitate the reading of the Taylor diagrams presented

later (see section 4).
bThe best performing models in this region according to previous studies [Herrera

et al., 2010; Turco et al., 2013].

control period. Finally, section 5 analyzes the projection results and section 6 synthesizes the main results of
this study.

2. Observed and Simulated Data
2.1. ENSEMBLES RCM Data Set
The EU-funded project ENSEMBLES [van der Linden and Mitchell, 2009] was a collaborative effort of different
European institutions focused on the generation of climate change scenarios over Europe. Regional simula-
tions were produced with the latest generation RCMs at that time over a common area covering the entire
continental European region with a common resolution of 25 km. The resulting data set is publicly available
for research activities (http://ensemblesrt3.dmi.dk).

A first experiment was carried out using the ERA40 reanalyses from the European Centre for Medium Range
Weather Forecasts (ECMWF) [Uppala et al., 2005] as boundary conditions for the RCMs. All RCMs were run over
a common period of 40 years, 1961–2000.

A second experiment for climate change studies was done using different GCM simulations over two periods:
A control one using the 20C3M scenario (1961–2000), i.e., with observed greenhouse gasses, and a future
one based on the A1B scenario (2001–2100), which is consistent with the emission trend over recent decades
[Peters et al., 2012].

For this study we consider the 10 RCMs available in the ENSEMBLES archive that cover the period until 2100
(Table 1). For practical reasons, the daily outputs of the RCMs were bilinearly interpolated from their original
resolution (25 km) to the grid defined by Spain02 (20 km approximately) described in the next section.

2.2. Observed Data
The observed data are the high-resolution (0.2∘ ×0.2∘, 20 km×20 km approximately) gridded data set Spain02
[Herrera et al., 2012, 2016] of daily precipitation over Spain. This recently developed data set—which is publicly
available for research activities at http://www.meteo.unican.es/datasets/spain02,— was produced using data
from 2756 quality-controlled stations from the Spanish Meteorological Agency (AEMET), covering the Spanish
Iberian Peninsula and the Balearic Islands over the period 1950–2008 (see Figure 1).

An analysis of upper percentiles and extreme indicators revealed the capability of Spain02 to reproduce the
intensity and spatial variability of extremes [Herrera et al., 2012]. The high quality of this data set has been
confirmed also by Turco and Llasat [2011], and it has been used to validate [Herrera et al., 2010; Gómez-Navarro
et al., 2012], post process [Turco et al., 2011], and apply [Turco et al., 2014] the ENSEMBLES RCMs described in
section 2.1.
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Figure 1. Topography of Spanish Iberian Peninsula and the Balearic Islands as represented by Spain02 at 0.2∘ × 0.2∘ ,
showing the main river basins: (0) Catalana, (1) Norte, (2) Duero, (3) Tajo, (4) Guadiana, (5) Guadalquivir, (6) Sur,
(7) Segura, (8) Levante, (9) Ebro, and (B) Baleares. The inset shows a geographical map at
larger scale.

3. Methodology
3.1. MOS Based on Analogs: MOS-Analog
The analog method [Lorenz, 1963, 1969] is based on the hypothesis that “analog” atmospheric patterns
(predictors) should cause “analog” local effects (predictands). This is one of the most popular downscaling
techniques and has been used in many applications [see, e.g., Zorita et al., 1995; Matulla et al., 2008; Gutiérrez
et al., 2012; Radanovics et al., 2013].

The predictand used in this paper is the interpolated 0.2∘ observed precipitation over the Iberian Peninsula
given by Spain02, whereas the RCM-simulated precipitation field is used as predictor. Note that this variable is
one of the most informative variables for precipitation downscaling purposes [Eden et al., 2012], but generally
it is avoided in perfect prognosis downscaling studies (e.g., precipitation is not used per se as predictor) since
it is very model dependent [see, e.g., Jerez et al., 2013], and thus, there may be significant differences between
the reanalysis and the GCMs. This problem does not exist in the MOS setting. Indeed, the RCM precipitation is
used both for training (considering the ERA40-driven simulations) and for test or future periods (considering
the GCM-driven simulations), allowing us to define a simple and parsimonious method. Therefore, the pre-
dictor pattern considered in this paper is defined by the RCM precipitation in a 0.2∘ grid covering the Iberian
Peninsula (see Turco et al. [2011], or more details on the sensitivity of the method to different configurations).

The MOS-Analog downscaling consists of two main steps, which are repeated for each day to be downscaled
(see Figure 2):

1. For each daily precipitation pattern A(t) from the GCM-driven RCM simulation (from a control or future
scenario run), the closest precipitation pattern of the ERA40-driven simulation B(t′) in the historical period
is obtained based on the Euclidean distance between both fields.

2. Then, the precipitation b(t′) observed during this analog historical date t′ is assigned as the downscaled
value a(t) for the GCM-driven RCM.

Note that, as a result of this process, the method can only generate values which have been observed in the
historical period and, therefore, this limitation can affect its extrapolation capability in future climate change
simulations, particularly for extreme values [Gutiérrez et al., 2013].

3.2. Quantile Mapping Method: QQM
We use the popular parametric quantile mapping method introduced by Piani et al. [2010], including the
frequency adaptation proposed by Themeßl et al. [2012] (hereafter QQM). This method assumes that both
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Figure 2. Schematic illustration of the MOS-Analog method (adapted from Fernandez and Saenz [2003]). See the text for
details.

observed and simulated precipitation intensity distributions are well approximated by the gamma distribu-
tion. For the sake of the comparability with the MOS-Analog method, the transfer function has been adjusted
considering the ERA40-driven simulation and applied to calibrate the GCM-driven simulation for both the
historical 20C3M (1961–2000) and future A1B (2001–2100) scenarios as follows:

X∗
GCM = F−1

Obs(FERA40(XGCM)), (1)

where XGCM and X∗
GCM are the original and corrected values of the GCM-driven simulation, and FObs and

FERA40 the adjusted Gamma distribution of the observations and the ERA40-driven simulation. Note that,
in the standard application of these techniques, the adjustment is done considering the historical GCM
driven simulations.

3.3. Comparison Measures
Three main approaches have been applied to evaluate the applicability of the MOS-Analog approach. First,
we compare the simulated (both RCM outputs and MOS downscaled ones) and observed climatologies (spa-
tial patterns) for the precipitation indices shown in Table 2 computed from daily data and characterizing total
precipitation, dry and wet spells, and extreme precipitation, as defined by the joint CCl/CLIVAR/JCOMM Expert
Team on Climate Change Detection and Indices (ETCCDI indices) [World Meteorological Organization, 2009;
Zhang et al., 2011]. The comparisons between the simulated and observed climatologies are summarized
using Taylor diagrams [Taylor, 2001]. This diagram synthesizes three spatial measures—standard deviation (S),
centered root-mean-square difference (R), and correlation (C)—in a single bidimensional plot. Two variations
from the standard Taylor diagram have been applied in this study:

1. The measures S and R are normalized, dividing them by the standard deviation of the observations. In this
way it is possible to compare the different indices.

2. Information about spatial average of the bias (M) has been introduced (using colors) for each point in the
Taylor diagram. In particular, we use the difference between the simulated and observed mean, normalized
by the observed mean.

Second, in order to assess the correspondence of the simulated and observed annual cycles, we analyze the
performance of the method in the different river basins (according to Figure 1) at a monthly scale. To this
aim, we calculated several monthly indices spatially averaged for each river basin. These standard measures

Table 2. Climatic Mean and Extreme ETCCDI Indices for Precipitation Used
in This Work (See Also http://etccdi.pacificclimate.org)

Label Description Units

PRCPTOT Total precipitation mm

R1 Number of day with precipitation over 1 mm/d days

SDII Mean precipitation amount on a wet day (>1 mm) mm

R20 Number of days with precipitation over 20 mm/d days

RX1DAY Maximum precipitation in 1 day mm

CDD Consecutive dry days (<1 mm) days

CWD Consecutive wet days (>1 mm) days
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Figure 3. Spatial distribution of the observed (left column) Spain02, (middle column) RCM, and (right column) MOS-Analog mean values (averaged over the
baseline period 1971–2000) for some of the precipitation indices shown in Table 2. The spatial validation scores for the RCM and MOS-Analog simulated values
are given below the corresponding panels: mean error M (in % with respect to the observed mean); the relative standard deviation S; the centered
root-mean-square R; and the correlation C.

(both regarding the spatial patterns of the precipitation climatologies and considering the annual cycle) have
been calculated over the period 1971–2000, which is later used to estimate the climate change signal (i.e.,
the difference between the downscaled values for the future A1B period and the control 20C3M ones).

Finally, we analyze how well the MOS-Analog downscaled results preserve the climate change signal of the
RCMs (see section 5 for more details). In order to assess this consistency, and for the sake of comparison with
standard bias correction techniques, we compare the results of the MOS-Analog method with those resulting
from the popular bias correction quantile mapping technique described in section 3.2.

In order to graphically show both the climate change signal and the ensemble agreement, we have adopted
the technique used in Hemming et al. [2010], in which the map combines the ensemble mean scenario, with
different colors, and the percentage agreement in the direction of change among the ensemble members,
with different intensity of colors [Kaye et al., 2012].
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Figure 4. Taylor diagrams for the GCM-driven RCMs for different ETCCDI indices (Table 2). The squares and the dots with the numbers indicate, respectively, the
model output (as referred on Table 1) and the MOS-Analog applied to this model.

4. Validation Results in the Control Period

In this section we analyze the results obtained when downscaling the historical (20C3M) GCM-driven RCMs
in the control period 1971–2000.

4.1. Maps of Mean and Extreme Climates
As an illustrative example, and for the sake of brevity, in Figure 3 we show the comparison maps for the KNMI
model and the corresponding MOS-Analog values; note that this RCM has been chosen since it is one of the
most skilful for precipitation in this region [Herrera et al., 2010], thus could be more challenging for the MOS
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Figure 5. Seasonal cycle of the spatially averaged R1 index (in days) for each river basin (according to Figure 1). The black line represents the observed (Spain02)
climatology. The violet-shaded band spans the values for the RCMs, while the green one spans the respective MOS downscaled values.

method to improve it. The panels in this figure show the annual values of the indices (averaged over the com-
mon period 1971–2000) for the observations (Spain02, Figure 3, left column), the regional KNMI simulations
(Figure 3, middle column), and the corresponding MOS-Analog downscaled values (Figure 3, right column);
the numbers below the panels in this figure indicate the bias (or mean error, M), the relative standard devia-
tion (S), the centered root-mean-square (R), and the correlation (C). These metrics are then used to produce
a Taylor diagram summarizing this information. This figure shows that the MOS-Analog downscaled values
clearly outperform the raw RCM outputs. The Taylor diagrams shown in Figure 4 summarize the verification
results for all the models and indices in the control period (1971–2000).

These figures show that, overall, the MOS-Analog method improves considerably the RCM results for all the
indices (less evident for the CDD index, as already noticed by Turco et al. [2011]), with larger spatial correlation
values and standard deviation closer to the observed ones. In terms of errors, the MOS-Analog downscaling
method also improves the RCMs results for the bias (M) and the centered root-mean-square error (R). In par-
ticular, the MOS-Analog clearly reduces their overestimation of rainfall frequency, common on the RCMs as
they tend to drizzle [Gutowski et al., 2003], correcting partially their underestimation of CDD while the bias
for CWD shifts from RCM positive values to MOS-Analog positive or negative values depending on the RCM.
Finally, although the MOS-Analog is able to reduce the overestimation of R20, R1, and PRCPTOT given by the
RCMs, there is yet a positive bias for these indicators which could affect the future climate change signal. These
results are generally confirmed also repeating this analysis for each subregions of Figure 1 (Figures S1–S7 in
the supporting information).

Overall, the MOS-Analog method is able to improve the above considered scores for different indices for
all RCMs, although for the worst-performing models the downscaling is less effective. Note that three
GCM-driven RCMs (3. DMI-BCM; 4. DMI-ECHAM5; 10. SMHI-BCM) show significantly worse performance than
the other simulations. This result confirms the study of Turco et al. [2013], which analyzed a greater ensemble
of RCMs from ENSEMBLES containing the 15 models with data up to 2050. They found large biases for some
RCM-GCM combinations, and these biases are shown to distort the corresponding climate change signal.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2638
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Figure 6. As in Figure 5 but for RX1DAY index (in mm/d).

Therefore, it is not advisable ignoring the performance of the RCM-GCM runs in the control period and the
side effects of large biases. Thus, hereafter, we consider the ensemble of the best seven models (Table 1).

4.2. Seasonal Cycle
In this section, we analyze the ability of the RCMs and the MOS-Analog downscaled results to reproduce the
strong seasonal cycle of rainfall, which differs considerably among the different river basins (according to
Figure 1). Here we focus on a seven-member ensemble formed by the best performing RCMs identified in the
previous section. We consider the seasonal cycle of the number of precipitation days (R1; Figure 5) and the
monthly maximum (RX1DAY ; Figure 6). Similar results have been found for the total precipitation (Figure S8).

Despite the differences in values, the three indices have a similar cycle among the basins, with two maxi-
mum periods in the Mediterranean basin, the major one in autumn and the secondary in spring and, for the
remaining basins, a maximum in winter and a minimum in summer. The performance of the RCMs and the
MOS-Analog method to reproduce the observed seasonal cycles of the indices, in the different basins, is quite
remarkable, with generally a reduced spread (smaller uncertainty) in the latter case (see also Tables S1–S3
for a quantification of the error for each index and each river basin). In particular, as pointed out in the previ-
ous section, the RCMs clearly overestimate the R1 index and the MOS-Analog is able to correct this problem
(Figure 5). Also, it is worth noting the good performance of both the RCMs and the MOS-Analog method to
reproduce the observed seasonal cycle of the RX1DAY index (Figure 6). Finally, note that the greater errors
are generally found for the Mediterranean basins (Figures 5g–5k and 6g–6k and basins “Segura,” “Levante,”
“Ebro,” “Catalana,” and “Baleares” in Tables S1–S3), as also found by Herrera et al. [2010] and Turco et al. [2011]
considering the ERA40-driven RCMs.

5. Future Scenarios

In this section we analyze the regional climate change signals for different future periods (2011–2040,
2041–2070, 2071–2100), obtained as the ratio (expressed as percentage of change) of the mean val-
ues for the corresponding A1B GCM-driven RCM simulations and the 20C3M control ones in the baseline
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Figure 7. Future climate change signals (expressed as percentage of change with regard the baseline control period 1971–2000) for the period 2071–2100 for
the precipitation indices shown in Table 2. The different rows correspond to the results for to the seven-member ensemble (ENS), the quantile mapping bias
correction method (QQM), and the MOS-Analog downscaling method. The color saturation level shows the percentage agreement in the direction of change
among the ensemble members.

(1971–2000) period. For the sake of comparison with standard bias correction techniques, in addition to the
MOS-Analog method, this analysis also includes the results corresponding to the Piani quantile mapping
method (QQM).

Figure 7 shows the regional climate change signal for all indices shown in Table 2 for the future period
2071–2100 for the seven-member (see Table 1) RCM ensemble (ENS), together with results for the
MOS-Analog downscaling method (MOS) and the quantile mapping method (QQM). High agreement for the
RCM climate change signals appears in most of the Iberian Peninsula for the indices PRCPTOT , R1, and CWD
(with negative changes), and for the index CDD (with positive changes, larger than +25%). Instead, the other
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Figure 8. Seasonal changes of the precipitation index PRCPTOT for different future periods (2011–2040, 2041–2070, 2071–2100). Values for MOS-Analog (MOS),
the quantile mapping bias correction method (QQM), and RCMs (ENS) are expressed in percentage of change between the baseline (1971–2000) and future
periods. The color saturation level shows the percentage agreement in the direction of change among the ensembles.
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Figure 9. The same as Figure 8 but for RX1DAY index.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2642



Journal of Geophysical Research: Atmospheres 10.1002/2016JD025724

Figure 10. The same as Figure 8 but for CDD index.
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indices display more heterogeneous signals (with large areas either positive or negative) and more disagree-
ment between the models. For instance, for the SDII and RX1DAY indices, large part of the maps show no
agreement among the RCMs.

Overall, the RCM regional climate change signal for the different indices is preserved by the QQM, with the
exception of SDII, where the QQM exhibits a larger region with positive signal. These differences are prob-
ably due to the use of the reanalysis-driven RCM outputs to calibrate the bias correction method—for the
sake of comparability with the MOS-Analog method—and are induced by the difference of rain frequen-
cies in the reanalysis- and control-driven simulations. Note that the standard application of the QQM method
(using the control simulations for calibration) could reduce this disagreement. On the other hand, the
MOS-Analog method broadly preserves the climate change signal for nonextreme indices but exhibits large
differences for R20 and RX1DAY , particularly for those regions with positive signals. This could be a result of the
limitation of the analog method to extrapolate unobserved values, particularly for the RX1DAY results. Over-
all, similar conclusions are obtained for the climate change signals relative to the different periods 2011–2040
and 2041–2070 (see Figures S9 and S10, respectively), although with lower values of changes (in absolute
value) and lower level of agreement between the models compared to the pattern shown for the end of the
century (Figure 7).

We also explored the seasonal projections for some representative indices for three future A1B periods.
Figure 8 shows the seasonal climate change signal for the total precipitation (PRCPTOT index). These projec-
tions indicate regional changes in the range from −25% to −5% with greater agreement in spring, summer,
and autumn (March-April-May (MAM), June-July-August (JJA), and September-October-November (SON),
respectively), mostly in the West of the region, for the end of the century. Interestingly, in the Mediterranean
coast the agreement in JJA is small even for the last period. The winter (December-January-February, DJF)
projections show large fluctuations in the direction of change, from mainly negative in the first period,
2011–2040, to mainly positive in 2041–2070, and again negative in 2071–2100. This is also the season with
large areas of the maps with no agreement on the sign of the changes.

Figure 9 considers the RX1DAY index and shows a quite heterogeneous pattern, with low level of agreement,
although there are some areas with consistent pattern of positive changes (between 5% and 25%) in DJF, and
negative (between −25% and −5%) in the other seasons, mainly in summer (with changes even lower than
−25%). Generally, higher agreement is found for the end of the century.

Finally, Figure 10 suggests a high agreement in the increase in the CDD index (i.e., longer periods without
rain), especially for the period 2071–2100, with most of the area agreeing on more than 25% of change,
regardless of the considered season. It is worth noting that for the period 2041–2070, both the QQM and
the MOS-Analog methods show a negative change over most of the domain, while ENS displays low level of
agreement among the RCMs.

6. Summary and Conclusions

The present study has investigated (i) the potential of the recently introduced MOS-Analog downscaling
method for climate change projections when applied to RCM precipitation outputs and (ii) how well the
method preserves the RCM climate change signal for a set of precipitation indices. The analysis focuses
on precipitation over Spain and, besides the MOS-Analog method, a standard distributional-based quantile
mapping approach is also considered for comparison purposes.

The validation against the observed gridded data Spain02 shows that the MOS-Analog method clearly
outperforms the raw RCM outputs in the control period (20C3M scenario). Specifically, the MOS-Analog
downscaling method improves considerably the RCM results for all the indices considered, although for the
worst-performing models (DMI-BCM, DMI-ECHAM5, and SMHI-BCM) the downscaling method is less effective.
These RCMs have very large biases and can be considered outliers/errors of the ensemble [Turco et al., 2013].

The projected changes are quite consistent among the RCMs for total precipitation, wet-day frequency and
spell indices. High level of consistency in the geographical patterns are found for all the seasons, except
for winter toward the end of the century. In particular, the higher agreement between models in the later
period could be due to a relative smaller influence of natural variability toward the end of the century. The
main drivers of these projections are probably the synoptic structures that drive the decreasing precipitation
(e.g., persistence of anticyclones) [Sumner et al., 2003; García-Valero et al., 2012; Cortesi et al., 2014] and the

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2644



Journal of Geophysical Research: Atmospheres 10.1002/2016JD025724

land-surface atmosphere interactions (e.g., soil moisture feedbacks) [Seneviratne et al., 2010; Jerez et al., 2012].
Our confidence in the physical mechanism and the model results gives some credibility to the increasing
drought risk in the Mediterranean region [Orlowsky and Seneviratne, 2011; Dai, 2011]. In spite of the agreement
of the projected changes for total precipitation, wet-day frequency, and spell indices, the overall uncertain-
ties in heavy rainfall climate projections remain quite large, even for the end of the century. Indeed, due to
the importance of the convective process for intense rainfall in this region [Llasat, 2001; Llasat et al., 2014] and
the common weakness of the models to simulate these processes [Hohenegger et al., 2008; Rowell, 2011], the
heavy rainfall projections should be taken with caution [Kendon et al., 2014]. There is also a large uncertainty
for extreme indices (R20 and RX1DAY) with large regions with negative and positive signals.

The RCM climate change signal is broadly preserved by the distributional-based quantile mapping method,
with some differences mainly for SDII due to the procedure used to calibrate the model (using reanalysis-
driven RCM data, for the sake of comparability with MOS-Analog results) and to the different wet-day frequen-
cies of the reanalysis- and control-driven RCM simulations. The MOS-Analog method also broadly preserves
the climate change signal with the exception of extreme indices (R20 and RX1DAY in this work). This is prob-
ably due to the limitation of the MOS-Analog method to simulate unobserved records. This could make this
method unsuitable to downscale climate change projections for those applications where extreme values are
important. However, it is worth noting that this method can produce accumulated values or frequencies over
several days larger (or smaller) than the historical values and, therefore, can extrapolate nonobserved values
for these types of indices. Finally, it must be noted that standard bias correction methods are not intended
to correct climate trends [Maraun, 2016], and methods that deliberately constrain the climate change signals
based on process understanding are rare [Collins et al., 2012; Walton et al., 2015]. In this study, the cases where
the MOS-Analog method modifies the RCM climate signals (for extreme indices) could be simply explained by
the limitation of the method to extrapolate unobserved values (e.g., higher extremes simulated by the RCM
for a future period) and not by a merit of the method to introduce plausible changes in the regional climate
change signal—which could be the case in other situations, since the MOS-Analog can potentially introduce
extra regional information in the downscaling process.

In the case of the MOS-Analog method, since the analog search is performed at a national level, the down-
scaled values preserve the spatial coherence of the observed fields. Therefore, this method can be considered
a spatially consistent alternative for distributional bias correction methods. Moreover, it could be easily
extended to a multivariable consistent framework by defining joint patterns (e.g., precipitation-temperature)
for the analog search.

Finally, we underline that bias correction remains a provisional solution until better models will be available
(see Ehret et al. [2012], Pielke and Wilby [2012], and Maraun [2016], and references therein for a critical review on
the bias correction techniques). It is worth noting that a newer generation of climate models are now available
(developed in the framework of the CORDEX program), with up-to-date RCMs, but still affected by biases
[Kotlarski et al., 2014; Jerez et al., 2015]. The application of the MOS-Analog method to these RCMs remains to
be done.

To sum up, the results shown in this paper suggest that the increasing dryness could be considered
a robust result and indicate the urgency to apply adaptation and mitigation strategies, according to
the Spanish National Climate Change Adaptation Plan (www.magrama.gob.es/es/cambio-climatico/temas/
impactos-vulnerabilidad-y-adaptacion/), also considering that, already at present, many areas in Spain suffer
from problems related to water resources [Quiroga et al., 2011]. The MOS downscaled data are freely available
for research purposes by applying to the corresponding author.

References
Addor, N., M. Rohrer, R. Furrer, and J. Seibert (2016), Propagation of biases in climate models from the synoptic to the regional scale:

Implications for bias adjustment, J. Geophys. Res. Atmos., 121, 2075–2089, doi:10.1002/2015JD024040.
Cannon, A. J., S. R. Sobie, and T. Q. Murdock (2015), Bias correction of GCM precipitation by quantile mapping: How well do methods

preserve changes in quantiles and extremes?, J. Clim., 28(17), 6938–6959.
Ceglar, A., A. Toreti, R. Lecerf, M. Van der Velde, and F. Dentener (2016), Impact of meteorological drivers on regional inter-annual crop yield

variability in France, Agric. For. Meteorol., 216, 58–67.
Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher (2008), On the need for bias correction of regional climate change

projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.
Christensen, O., M. Drews, J. Christensen, K. Dethloff, K. Ketelsen, I. Hebestadt, and A. Rinke (2008), The HIRHAM regional Climate Model

version 5, Tech. Rep. 06-17, DMI, Copenhagen, Denmark. [Available at http://www.dmi.dk/dmi/en/print/tr06-17.pdf.]

Acknowledgments
This work was partially supported
by the strategic action for energy
and climate change by the Spanish
R+D 2008–2011 Program ESTCENA
(code 200800050084078), the project
MULTI-SDM (CGL2015-66583- R,
MINECO/FEDER), the Italian project
of Interest NextData of the Italian
Ministry for Education, University
and Research, and by the European
Science Foundation within the
framework of COST ES1102 (Validating
and integrating downscaling methods
for climate change research). This
paper has also been written under
the framework of the International
HYMEX project and the Spanish HOPE
(CGL2014-52571-R) project. We also
acknowledge the ENSEMBLES project
(funded by the European Commission’s
6th Framework Programme through
contract GOCE-CT-2003-505539)
for the RCM data used in this work
(http://ensemblesrt3.dmi.dk/). The
authors thank AEMET and UC for the
data provided for this work (Spain02
gridded precipitation data set, www.
meteo.unican.es/es/datasets/spain02).
Special thanks to the authors of the
MeteoLab-Toolbox (www.meteo.
unican.es/software/meteolab) which
helped us to postprocess the data and
to validate the method. Finally, we
thank the anonymous referees for their
useful comments.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2645

http://www.magrama.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/
http://www.magrama.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/
http://dx.doi.org/10.1002/2015JD024040
http://dx.doi.org/10.1029/2008GL035694
http://www.dmi.dk/dmi/en/print/tr06-17.pdf
http://ensemblesrt3.dmi.dk/
http://www.meteo.unican.es/es/datasets/spain02
http://www.meteo.unican.es/es/datasets/spain02
http://www.meteo.unican.es/software/meteolab
http://www.meteo.unican.es/software/meteolab


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025724

Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson (2012), Quantifying future climate change, Nat. Clim.
Change, 2(6), 403–409.

Cortesi, N., J. C. Gonzalez-Hidalgo, R. M. Trigo, and A. M. Ramos (2014), Weather types and spatial variability of precipitation in the Iberian
peninsula, Int. J. Climatol., 34(8), 2661–2677.

Dai, A. (2011), Drought under global warming: A review, Wiley Interdiscip. Rev. Clim. Change, 2(1), 45–65.
Dosio, A. (2016), Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution

EURO-CORDEX regional climate models, J. Geophys. Res. Atmos., 121, 5488–5511, doi:10.1002/2015JD024411.
Eden, J. M., M. Widmann, D. Grawe, and S. Rast (2012), Skill, correction, and downscaling of GCM-simulated precipitation, J. Clim., 25(11),

3970–3984.
Eden, J. M., M. Widmann, D. Maraun, and M. Vrac (2014), Comparison of GCM- and RCM-simulated precipitation following stochastic

postprocessing, J. Geophys. Res. Atmos., 119, 11,040–11,053, doi:10.1002/2014JD021732.
Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert (2012), Hess opinions. “Should we apply bias correction to global and

regional climate model data”?, Hydrol. Earth Syst. Sci., 16(9), 3391–3404.
Fernandez, J., and J. Saenz (2003), Improved field reconstruction with the analog method: Searching the CCA space, Clim. Res., 24(3),

199–213.
Foley, A. M. (2010), Uncertainty in regional climate modelling: A review, Prog. Phys. Geog., 34(5), 647–670.
Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007), Linking climate change modelling to impacts studies: Recent advances in downscaling

techniques for hydrological modelling, Int. J. Climatol., 27(12), 1547–1578. General Assembly of the European-Geosciences-Union,
Vienna, Austria, Apr. 2006.

García-Valero, J. A., J. P. Montavez, S. Jerez, J. J. Gómez-Navarro, R. Lorente-Plazas, and P. Jiménez-Guerrero (2012), A seasonal study of the
atmospheric dynamics over the Iberian Peninsula based on circulation types, Theor. Appl. Climatol., 110(1–2), 291–310.

Giorgi, F., and L. Mearns (1991), Approaches to the simulation of regional climate change—A review, Rev. Geophys., 29(2), 191–216.
Giorgi, F., C. Jones, and G. Asrar (2009), Addressing climate information needs at the regional level: The CORDEX framework, WMO Bull.,

58(3), 175–183.
Gómez-Navarro, J., J. Montávez, S. Jerez, P. Jiménez-Guerrero, and E. Zorita (2012), What is the role of the observational data set in the

evaluation and scoring of climate models?, Geophys. Res. Lett., 39, L24701, doi:10.1029/2012GL054206.
Gutiérrez, J., D. San-Martín, S. Brands, R. Manzanas, and S. Herrera (2012), Reassessing statistical downscaling techniques for their robust

application under climate change conditions, J. Clim., 26, 171–188.
Gutiérrez, J. M., D. San-Martín, S. Brands, R. Manzanas, and S. Herrera (2013), Reassessing statistical downscaling techniques for their robust

application under climate change conditions, J. Clim., 26(1), 171–188.
Gutjahr, O., and G. Heinemann (2013), Comparing precipitation bias correction methods for high-resolution regional climate simulations

using COSMO-CLM, Theor. Appl. Climatol., 114(3–4), 511–529.
Gutowski, W. J., S. G. Decker, R. A. Donavon, Z. Pan, R. W. Arritt, and E. S. Takle (2003), Temporal-spatial scales of observed and simulated

precipitation in central U.S. climate, J. Clim., 16(22), 3841–3847.
Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani (2011), Impact of a statistical bias correction on the projected

hydrological changes obtained from three GCMs and two hydrology models, J. Hydrometeorol., 12(4), 556–578.
Haugen, J., and H. Haakensatd (2006), Validation of HIRHAM version 2 with 50 km and 25 km resolution, Tech. Rep. Gen. Tech. Rep. 9, RegClim,

Norwegian Meteorological Institute, Oslo, Norway. [Available at http://regclim.met.no/results/gtr9.pdf.]
Hemming, D., C. Buontempo, E. Burke, M. Collins, and N. Kaye (2010), How uncertain are climate model projections of water availability

indicators across the Middle East?, Philos. Trans. R. Soc. A, 368(1931), 5117–35.
Herrera, S., J. Gutiérrez, R. Ancell, M. Pons, M. Frías, and J. Fernández (2012), Development and analysis of a 50-year high-resolution daily

gridded precipitation dataset over Spain (spain02), Int. J. Climatol., 32(1), 74–85.
Herrera, S., J. Fernández, and J. Gutiérrez (2016), Update of the spain02 gridded observational dataset for EURO-CORDEX evaluation:

Assessing the effect of the interpolation methodology, Int. J. Climatol., 36(2), 900–908.
Herrera, S., L. Fita, J. Fernandez, and J. M. Gutierrez (2010), Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES

regional climate multimodel simulations over Spain, J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.
Hohenegger, C., P. Brockhaus, and C. Schaer (2008), Towards climate simulations at cloud-resolving scales, Meteorol. Z., 17(4), 383–394.
Jacob, D. (2001), A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin,

Meteorol. Atmos. Phys., 77(1–4), 61–73.
Jacob, D., et al. (2014), EURO-CORDEX: New high-resolution climate change projections for European impact research, Reg. Environ. Change,

14(2), 563–578.
Jerez, S., J. Montavez, J. Gomez-Navarro, P. Jimenez, P. Jimenez-Guerrero, R. Lorente, and J. F. Gonzalez-Rouco (2012), The role of the

land-surface model for climate change projections over the Iberian Peninsula, J. Geophys. Res., 117, D01109, doi:10.1029/2011JD016576.
Jerez, S., J. P. Montavez, P. Jimenez-Guerrero, J. J. Gomez-Navarro, R. Lorente-Plazas, and E. Zorita (2013), A multi-physics ensemble of

present-day climate regional simulations over the Iberian Peninsula, Clim. Dyn., 40(11–12), 3023–3046.
Jerez, S., et al. (2015), The impact of climate change on photovoltaic power generation in Europe, Nat. Commun., 6, 10014.
Kaye, N. R., A. Hartley, and D. Hemming (2012), Mapping the climate: Guidance on appropriate techniques to map climate variables and

their uncertainty, Geosci. Model Dev., 5(1), 245–256.
Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior (2014), Heavier summer downpours with climate change

revealed by weather forecast resolution model, Nat. Clim. Change, 4(7), 570–576.
Kotlarski, S., et al. (2014), Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble,

Geosci. Model Dev., 7(4), 1297–1333.
Llasat, M. C. (2001), An objective classification of rainfall events on the basis of their convective features: Application to rainfall intensity in

the northeast of Spain, Int. J. Climatol., 21(11), 1385–1400.
Llasat, M. C., R. Marcos, M. Llasat-Botija, J. Gilabert, M. Turco, and P. Quintana-Seguí (2014), Flash flood evolution in north-western

Mediterranean, Atmos. Res., 149, 230–243.
Llasat, M. C., R. Marcos, M. Turco, J. Gilabert, and M. Llasat-Botija (2016), Trends in flash flood events versus convective precipitation in the

Mediterranean region: The case of Catalonia, J. Hydrol., 541, 24–37.
Lorenz, E. (1963), Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141.
Lorenz, E. (1969), Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26(4), 636–646.
Maraun, D. (2013), Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Clim., 26(6), 2137–2143.
Maraun, D. (2016), Bias correcting climate change simulations-a critical review, Curr. Clim. Change Rep., 2(4), 211–220.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2646

http://dx.doi.org/10.1002/2015JD024411
http://dx.doi.org/10.1002/2014JD021732
http://dx.doi.org/10.1029/2012GL054206
http://regclim.met.no/results/gtr9.pdf
http://dx.doi.org/10.1029/2010JD013936
http://dx.doi.org/10.1029/2011JD016576


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025724

Maraun, D., and M. Widmann (2015), The representation of location by a regional climate model in complex terrain, Hydrol. Earth Syst. Sci.,
19(8), 3449–3456, doi:10.5194/hess-19-3449-2015.

Maraun, D., M. Widmann, J. M. Gutiérrez, S. Kotlarski, R. E. Chandler, E. Hertig, J. Wibig, R. Huth, and R. A. Wilcke (2015), Value: A framework
to validate downscaling approaches for climate change studies, Earth’s Future, 3, 1–14.

Maraun, D., et al. (2010), Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical
models and the end user, Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

Marzban, C., S. Sandgathe, and E. Kalnay (2006), MOS, perfect prog, and reanalysis, Mon. Weather Rev., 134(2), 657–663.
Matulla, C., X. Zhang, X. L. Wang, J. Wang, E. Zorita, S. Wagner, and H. von Storch (2008), Influence of similarity measures on the performance

of the analog method for downscaling daily precipitation, Clim. Dyn., 30(2–3), 133–144.
Maurer, E. P., and D. W. Pierce (2014), Bias correction can modify climate model simulated precipitation changes without adverse effect on

the ensemble mean, Hydrol. Earth Syst. Sci., 18(3), 915–925, doi:10.5194/hess-18-915-2014.
Mearns, L. O., et al. (2012), The North American regional climate change assessment program: Overview of phase I results, Bull. Am. Meteorol.

Soc., 93(9), 1337–1362.
Orlowsky, B., and S. I. Seneviratne (2011), Global changes in extreme events: Regional and seasonal dimension, Clim. Change, 110(3–4),

669–696.
Pal, J. S., et al. (2007), Regional climate modeling for the developing world—The ICTP RegCM3 and RegCNET, Bull. Am. Meteorol. Soc., 88(9),

1395–1409.
Peters, G. P., R. M. Andrew, T. Boden, J. G. Canadell, P. Ciais, C. Le Quéré, G. Marland, M. R. Raupach, and C. Wilson (2012), The challenge to

keep global warming below 2∘C, Nat. Clim. Change, 3(1), 4–6.
Piani, C., J. Haerter, and E. Coppola (2010), Statistical bias correction for daily precipitation in regional climate models over Europe,

Theor. Appl. Climatol., 99(1-2), 187–192.
Pielke, R. A., and R. L. Wilby (2012), Regional climate downscaling: What’s the point?, Eos Trans. AGU, 93(5), 52–53.
Pierce, D. W., et al. (2013), The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes

in California, J. Clim., 26(16), 5879–5896.
Quiroga, S., L. Garrote, A. Iglesias, Z. Fernández-Haddad, J. Schlickenrieder, B. de Lama, C. Mosso, and A. Sánchez-Arcilla (2011), The

economic value of drought information for water management under climate change: A case study in the Ebro basin, Nat. Hazards Earth
Syst. Sci., 11(3), 643–657.

Radanovics, S., J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron (2013), Optimising predictor domains for spatially coherent
precipitation downscaling, Hydrol. Earth Syst. Sci., 17(10), 4189–4208.

Radu, R., M. Deque, and S. Somot (2008), Spectral nudging in a spectral regional climate model, Tellus A, 60(5), 898–910.
Rowell, D. (2011), Sources of uncertainty in future changes in local precipitation, Clim. Dyn., 39, 1929–1950.
Ruiz-Ramos, M., A. Rodríguez, A. Dosio, C. Goodess, C. Harpham, M. Mínguez, and E. Sánchez (2016), Comparing correction methods of RCM

outputs for improving crop impact projections in the Iberian Peninsula for 21st century, Clim. Change, 134(1–2), 283–297.
Rummukainen, M. (2010), State-of-the-art with regional climate models, Wiley Interdiscip. Rev. Clim. Change, 1(1), 82–96.
Samuelsson, P., C. G. Jones, U. Willén, A. Ullerstig, S. Gollvik, U. Hansson, C. Jansson, E. Kjellström, G. Nikulin, and K. Wyser (2011), The Rossby

Centre regional climate model RCA3: Model description and performance, Tellus A, 63(1), 4–23.
Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling (2010), Investigating soil

moisture-climate interactions in a changing climate: A review, Earth Sci. Rev., 99(3–4), 125–161.
Sumner, G., R. Romero, V. Homar, C. Ramis, S. Alonso, and E. Zorita (2003), An estimate of the effects of climate change on the rainfall of

Mediterranean Spain by the late twenty first century, Clim. Dyn., 20(7–8), 789–805.
Sunyer Pinya, M. A., et al. (2015), Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe,

Hydrol. Earth Syst. Sci., 19(4), 1827–1847.
Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(D7), 7183–7192.
Teutschbein, C., and J. Seibert (2012), Bias correction of regional climate model simulations for hydrological climate-change impact studies:

Review and evaluation of different methods, J. Hydrol., 456–457, 12–29.
Teutschbein, C., and J. Seibert (2013), Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?,

Hydrol. Earth Syst. Sci., 17(12), 5061–5077.
Themeßl, M. J., A. Gobiet, and G. Heinrich (2012), Empirical-statistical downscaling and error correction of regional climate models and its

impact on the climate change signal, Clim. Change, 112(2), 449–468, doi:10.1007/s10584-011-0224-4.
Turco, M., and M. C. Llasat (2011), Trends in indices of daily precipitation extremes in Catalonia (NE Spain), 1951–2003, Nat. Hazards Earth

Syst. Sci., 11(12), 3213–3226.
Turco, M., P. Quintana-Seguí, M. C. Llasat, S. Herrera, and J. M. Gutiérrez (2011), Testing MOS precipitation downscaling for ensembles

regional climate models over Spain, J. Geophys. Res., 116, D18109, doi:10.1029/2011JD016166.
Turco, M., A. Sanna, S. Herrera, M.-C. Llasat, and J. M. Gutiérrez (2013), Large biases and inconsistent climate change signals in ENSEMBLES

regional projections, Clim. Change, 120(4), 859–869.
Turco, M., M.-C. Llasat, J. von Hardenberg, and A. Provenzale (2014), Climate change impacts on wildfires in a Mediterranean environment,

Clim. Change, 125(3–4), 369–380.
Uppala, S., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131(612), 2961–3012.
van der Linden, P., and J. Mitchell (Eds.) (2009), ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the

ENSEMBLES Project, 160 pp., Met Off. Hadley Cent, Exeter, U. K.
Van Meijgaard, E., L. van Ulft, W. van de Berg, B. Bosveld, B. van der Hurk, G. Lenderik, and A. Siebesma (2008), The KNMI regional

atmospheric climate model racmo version 2.1, Tech. Rep. 302, Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands.
[Available at https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2008/01/01/the-knmi-regional-atmospheric-
climate-model-racmo-version-2-1/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1.pdf.]

Walton, D. B., F. Sun, A. Hall, and S. Capps (2015), A hybrid dynamical–statistical downscaling technique. Part I: Development and validation
of the technique, J. Clim., 28(12), 4597–4617.

Wetterhall, F., F. Pappenberger, Y. He, J. Freer, and H. L. Cloke (2012), Conditioning model output statistics of regional climate model
precipitation on circulation patterns, Nonlinear Processes Geophys., 19(6), 623–633.

White, R. H., and R. Toumi (2013), The limitations of bias correcting regional climate model inputs, Geophys. Res. Lett., 40, 2907–2912,
doi:10.1002/grl.50612.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2647

http://dx.doi.org/10.5194/hess-19-3449-2015
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.5194/hess-18-915-2014
http://dx.doi.org/10.1007/s10584-011-0224-4
http://dx.doi.org/10.1029/2011JD016166
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2008/01/01/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2008/01/01/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1.pdf
http://dx.doi.org/10.1002/grl.50612


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025724

World Meteorological Organization (2009), Guidelines on analysis of extremes in a changing climate in support of informed decisions for
adaptation, Tech. Rep. WCDMP No. 72 WMO/TD-No. 1500, WMO, Geneva, Switzerland.

Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers (2011), Indices for monitoring changes in
extremes based on daily temperature and precipitation data, Wiley Interdiscip. Rev. Clim. Change, 2(6), 851–870.

Zorita, E., J. Hughes, D. Lettemaier, and H. von Storch (1995), Stochastic characterization of regional circulation patterns for climate model
diagnosis and estimation of local precipitation, J. Clim., 8(5), 1023–1042.

TURCO ET AL. MOS-ANALOG PRECIPITATION PROJECTIONS 2648


	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


