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Abstract 13 

This work aims to estimate the levels of lead (Pb), nickel (Ni), manganese (Mn), vanadium (V) and 14 

chromium (Cr) corresponding to a three-month PM10 sampling campaign conducted in 2008 in the city of 15 

Dunkerque (Northern France) by means of statistical models based on Partial Least Squares Regression 16 

(PLSR), Artificial Neural Networks (ANN) and Principal Component Analysis (PCA) coupled with ANN. 17 

According to the European Air Quality Directives, because the levels of these pollutants are sufficiently 18 

below the European Union (EU) limit/target values and other air quality guidelines, they may be used for 19 

air quality assessment purposes as an alternative to experimental measurements. An external validation of 20 

the models has been conducted, and the results indicate that PLSR and ANNs, with comparable 21 

performance, provide adequate mean concentration estimations for Pb, Ni, Mn and V, fulfilling the EU 22 

uncertainty requirements for objective estimation techniques, although ANNs seem to present better 23 

generalization ability. However, in accordance with the European regulation, both techniques can be 24 

considered acceptable air quality assessment tools for heavy metals in the studied area. Furthermore, the 25 

application of factor analysis prior to ANNs did not yield any improvements in the performance of the 26 

ANNs. 27 
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1. Introduction 30 

Recent studies have shown a positive correlation between high concentrations of particles and public health 31 

deterioration. Particulate Matter (PM) remains a concerning environmental problem in urban areas due to 32 

its physical properties, such as mass distribution, particle size and shape, and chemical composition, which 33 

may include various acidic and toxic species such as metals, metalloids and aromatic compounds (Karar 34 

and Gupta 2006). In addition to industrial emissions, non-exhaust PM emissions from road traffic have 35 

been identified as an important source of metals in urban environments (Thorpe and Harrison 2008). 36 

Furthermore, long-term exposure to metals could cause severe toxic effects on human health (Chen and 37 

Lippmann 2009). 38 

In this context, the European Union, through the Air Quality Framework Directive (EC 2008) and the 4th 39 

Daughter Directive (EC 2004), has established a set of air quality objectives for certain pollutants in PM10: 40 

a limit value of 500 ng m-3 for Pb (Directive 2008/50/EC) and target values of 6 ng m-3 for As, 20 ng m-3 41 

for Ni and 5 ng m-3 for Cd (Directive 2004/107/EC) for the total content in the PM10 fraction averaged over 42 

a calendar year. Along with these limit/target values, an upper and lower assessment threshold (hereafter 43 

known as UAT and LAT) are also specified, expressed as a percentage of the corresponding limit/target 44 

value as follows: 70 and 50 % (Pb and Ni) and 60 and 40 % (As and Cd). Depending on the level of 45 

pollutants with respect to these thresholds, different air quality assessment methods with respect to the 46 

pollutants are permitted. Thus, in accordance with Directive 2008/50/EC, when the pollutant levels are 47 

below the lower assessment threshold (LAT), the air quality may be assessed using solely modelling or 48 

objective estimation techniques without the need for experimental measurements. Taking into account the 49 

high cost and time consumption associated with analytical determination of the levels of these pollutants, 50 

it may be interesting to try to find new alternatives for air quality assessment so that fewer experimental 51 

measurements may be required. 52 

According to the Guidance on Assessment under the EU Air Quality Directives, “objective estimation 53 

technique” is a fairly broad term that includes mathematical methods to calculate concentrations from 54 

values measured at other locations and/or times based on scientific knowledge of the concentration 55 

distribution. Empirical data-based modelling or statistical modelling falls within this definition and 56 

represents an attractive alternative to deterministic modelling (air dispersion modelling), given that it 57 

requires less specific knowledge of the system under consideration as it attempts to find the existing 58 

relationship between the immission concentrations of pollutants and other variables that may influence the 59 
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processes that control the formation, transportation and removal of aerosols in the atmosphere, disregarding 60 

the physical principles in which the equations that describe these processes are based on, as well as other 61 

decisive information such as emission inventories.  62 

Partial Least Squares Regression and Artificial Neural Networks have been proposed in this study to 63 

estimate PM10-bound heavy metals because both have been used in the literature as mathematical 64 

techniques to forecast the air concentration of a number of pollutants. Pires et al. (2008), Polat and Durduran 65 

(2012) and Singh et al. (2012) applied PLSR to predict PM concentrations, and numerous authors over the 66 

years have investigated the development of ANN models to predict PM concentrations and gaseous 67 

pollutants (Gardner and Dorling 1999; Kukkonen et al. 2003; Perez and Reyes 2002), to cite but a few. 68 

Furthermore, Chelani et al. (2002) performed not only a prediction of PM10 concentration but also of 69 

ambient air metal levels, namely Cd, Cr, Fe, Ni, Pb and Zn, with a low prediction error. Moreover, because 70 

the number of independent input variables is relatively high with respect to the number of samples, an 71 

alternative approach based on applying Principal Component Analysis (PCA) prior to ANN development 72 

was considered due to this technique being reported in the literature as an effective strategy to improve 73 

model performance (Lu et al. 2003, Sousa et al. 2007, Ul-Saufie et al. 2013). 74 

Despite having a relatively small contribution to the total content of PM in terms of mass, metals in 75 

Dunkerque have been reported as clear tracers of the local industrial activities in the city (Kfoury 2013). In 76 

this respect, the main objective of this work is to estimate the levels of some EU-regulated and non-77 

regulated metals in airborne PM10 in the urban area of Dunkerque. For this purpose, statistical models based 78 

on PLSR and ANNs have been developed as objective estimation techniques.  79 

It is worth mentioning that because this work is devised as an air quality assessment tool at a later stage, it 80 

is about estimation instead of forecasting. Thus, it is intended to provide an estimation of the pollutant 81 

concentrations of the recent past as an alternative to experimental measurements instead of predicting future 82 

pollutant concentrations.   83 

 84 

2. Description of the methodology and area of investigation 85 

2.1 Partial least squares regression fundamentals 86 

Partial least squares regression is a statistical method that, as with other multivariate regression techniques, 87 

seeks to find the relationship between two data matrices in order to predict a response or a set of response 88 

variables (Y) from a set of predictors (X). However, it differs from other multivariate calibration techniques 89 
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in that it aims to reach two goals simultaneously as follows: to capture variance and to achieve correlations, 90 

i.e., maximize covariance (Abdi 2010). That is to say, PLSR attempts to find factors that maximize the 91 

amount of variation explained in X that is relevant for predicting Y as a generalization of other related 92 

techniques, e.g., principal component regression (PCR), which obtains factors based solely on the amount 93 

of variance captured in X and disregards entirely the covariance, and multiple linear regression (MLR), 94 

which tries to find a single factor that best correlates predictors with responses. 95 

By performing a projection of the original predictor variables into a new space, PLSR creates a set of 96 

orthogonal factors, referred to as latent variables, to be used to predict the output variable(s). This 97 

projection is performed as follows: first, the X-matrix is decomposed as a product of a set of X-scores T 98 

multiplied by a set of X-loadings P.  99 

𝑋 = 𝑇𝑃′ + 𝐸                                                                                                                                               (1) 100 

X-scores are expressed as a linear combination of the original predictor variables by means of a set of 101 

vectors of coefficients known as weights, which ensure the orthogonality of scores.  102 

 𝑇 = 𝑋𝑊∗                                                                                                                                                    (2) 103 

where  104 

𝑊∗ = 𝑊(𝑃′𝑊)−1                                                                                                                                       (3) 105 

In parallel, a similar decomposition is performed for the Y-matrix, which is expressed as a product of the 106 

Y-scores U multiplied by the Y-loadings C. 107 

𝑌 = 𝑈𝐶′ + 𝐺                                                                                                                                               (4) 108 

As mentioned before, X-scores not only model X (Eq. (1)) but also predict Y. This prediction is achieved 109 

using Eq. (5). 110 

𝑌 = 𝑇𝐶′ + 𝐹 = 𝑋𝑊∗𝐶′ + 𝐹 = 𝑋𝐵 + 𝐹                                                                                                     (5) 111 

Therefore 112 

𝐵 = 𝑊∗𝐶′                                                                                                                                                    (6) 113 

Further details of this technique can be found in Wold (2001). PLS Toolbox (Eigenvector Research, Inc.) 114 

for MATLAB was used in the present study to develop the PLSR models. 115 

 116 

2.2 Artificial neural network fundamentals 117 

Artificial neural networks are computational systems based on biological nervous systems that attempt to 118 

mimic the fault-tolerance and capacity to learn of biological neural systems. They are formed by a number 119 
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of highly interconnected simple processing elements, or artificial neurons (also known as nodes or units), 120 

receiving a set of inputs, either from original data or from the output of other neurons in the neural network, 121 

via weighted connections (or weights) that resemble synaptic connections in a biological neuron. These 122 

nodes are arranged into three types of layers, i.e., input, hidden and output layers. Data are fed into the 123 

nodes in the input layer and later transferred to the subsequent layers. Every node in the hidden and output 124 

layers also has a single bias value known as the activation threshold value. Being the weighted sum of the 125 

inputs computed, the corresponding threshold value is subtracted to compose the activation of the neuron. 126 

The activation signal is passed through an activation function (also known as a transfer function) to produce 127 

the output of the node. The relationship between the output and the inputs finally has the mathematical 128 

representation, as presented in Eq. (7): 129 

𝑦𝑡 = 𝑤0 + ∑ 𝑤𝑗 . 𝑔(𝑤0,𝑗 + ∑ 𝑤𝑖,𝑗𝑥𝑡,𝑖
𝑝
𝑖=1 )

𝑞
𝑗=1 + 𝜀𝑡                                                                                        (7) 130 

where p is the number of input nodes, q is the number of hidden nodes, 𝑤𝑖,𝑗  (𝑖 = 0,1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑞) 131 

and 𝑤𝑗  (𝑗 = 0,1,2, … , 𝑞) are connection weights, and 𝜀𝑡 is a bias error.  132 

A multitude of neural network architectures are possible. However, in practice, simple network structures 133 

with a relatively small number of hidden nodes often work well in out-of-sample forecasting. In this work, 134 

a multilayer perceptron (MLP) neural network with a sigmoid hidden transfer function and a linear output 135 

transfer function has been selected, applying the Levenberg-Marquardt learning algorithm. A schematic 136 

representation of the network structure is shown in Fig. 1. 137 

The ANN models in this study were developed using the Neural Network Toolbox for MATLAB 138 

(MathWorks, Inc.).  139 

 140 

2.3 Description of the area of study and sampling site 141 

The city of Dunkerque, with a population of approximately 68,000 inhabitants in 2008, is located on the 142 

northern coastline of France, limited by the French-Belgian border. The main urban area is surrounded in 143 

its northern part by the harbour of Dunkerque, which is classified as the third most important port in France 144 

due to shipping and freight transport (including ore, coal and copper, among other goods) and as the seventh 145 

port in order of importance of Northern Europe. The city is also in close proximity to the English Channel, 146 

connecting the North Sea with the Atlantic Ocean, which is the world’s busiest seaway, with approximately 147 

500 vessels transiting daily. There is also a highly industrialized area in the city’s vicinity for the metallurgic 148 
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industry, as it has an integrated steel manufacturing plant (nearly 4 km NW), an electric steel plant (6 km 149 

NE) and a ferromanganese alloy production plant (at approximately 6 km W).  150 

A total of 78 samples were measured throughout an intensive PM10 sampling campaign performed from 151 

February to May 2008 in Dunkerque by Hleis (2010). Fig. 2 shows the location of the sampling site 152 

(51º02’07’’N, 02º22’05’’E and approximately 10 m above sea level), which was placed on the rooftop of 153 

the Les Darses site (to prevent the sampling of punctual events at street / ground level) on the boundary line 154 

between the industrial area and the city so that the effects of both urban and industrial emissions were 155 

registered during sampling (under WSW and NNW wind sectors) (Kfoury 2013). Further details of the 156 

sampling procedure are described in Hleis (2010). The composition of inorganic elements (Al, Ca, Cr, Cu, 157 

Fe, K, Mg, Mn, Na, Ni, Pb, Sn, Ti, V and Zn) and ions (Cl-, NO3
-, SO4

2- and NH4
+) in the particles was 158 

determined. The mean values of these constituents are reported in Hleis (2010). 159 

 160 

2.4. Modelling database and pre-treatment 161 

As usual for this type of modelling, input variables consist of (i) meteorological data, namely average 162 

temperature (ºC), average relative humidity (%), prevailing wind direction (º), prevailing wind speed (ms-163 

1), average pressure (mbar) and cumulative precipitation (L m-2), which are obtained at the meteorological 164 

station in the harbour of Dunkerque, and (ii) major pollutant data, which are composed by average 165 

concentrations (µg m-3) of sulphur dioxide (SO2), tropospheric ozone (O3) and nitrogen oxides (NOx) 166 

measured at the St. Pol sur Mer air quality monitoring station (the Atmo-Nord-Pas-de-Calais air quality 167 

network) and PM10 concentrations measured at the Les Darses site. Additionally, two nominal variables 168 

were considered to account for the seasonal (1: Winter, 2: Spring, 3: Summer, 4: Fall) and weekend effects 169 

(0: Working day, 1: Weekend). 170 

Output variables in this study consisted of PM10-bound Pb, Ni, Mn, V and Cr levels in ambient air (ng m-3) 171 

at the sampling site. Among the EU regulated metals, Pb and Ni were determined. Additionally, three non-172 

regulated metals were also considered: Mn, V and Cr. These metals were tracers of various industrial 173 

activities found in Dunkerque, where previous studies on trace metal levels have been developed: Mn, for 174 

ferromanganese alloys manufacturing; V, for marine traffic and liquid fuel combustion; and Cr, for non-175 

integrated steel manufacturing and coal combustion (Kfoury 2013). Because these metals are not regulated 176 

by the EU, they do not have a limit/target. Therefore, to normalize the metal concentration and calculate 177 

the EU uncertainty indices, the following values were considered as equivalent to the LAT for non-178 
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regulated metals: the annual air quality guideline for Mn (150 ng m-3) proposed by the World Health 179 

Organization (WHO 2000) and the maximum observed concentration for V and Cr in the absence of a 180 

standard value for a period of duration comparable with that of the period of study.  181 

As shown in Fig. 3, the Pb and Ni mean values are below their respective LAT. Therefore, according to the 182 

EU Air Quality Directives, objective estimation techniques can be applied for the air quality assessment in 183 

relation to Pb and Ni.  184 

A pre-treatment procedure for outlier identification and removal based on the statistical parameter of the 185 

Mahalanobis distance was conducted. Additionally, as usual for this type of technique, the complete 186 

database was divided into three subsets as a result of applying a data-splitting procedure, the Kennard-Stone 187 

algorithm, which selects the more representative samples for each subset based on Euclidean distances. 188 

Thus, 60 % of the total number of samples was used for model development, 20 % for verification to avoid 189 

over-fitting and 20 % for external validation. Furthermore, to avoid scale effects, the dependent variables 190 

were normalized by dividing the metal concentrations by their respective LAT. 191 

 192 

2.5 Model performance criteria 193 

In this study, the evaluation criteria to determine whether a model is suitable for air quality assessment 194 

purposes is principally based on the following: (i) the fulfilment of the European Union uncertainty 195 

requirements for objective estimation techniques, and (ii) the accuracy of estimated mean values because 196 

the metal limit/target values correspond to annual mean concentrations. Two indices of uncertainty were 197 

calculated: the relative maximum error without timing (RME) and the relative directive error (RDE). The 198 

former is the largest concentration difference of all percentile (p) differences normalized by the respective 199 

measured value (Borrego et al. 2008), as calculated by Eq. (8). The latter is the difference between the 200 

closest observed concentration to the limit/target value and the correspondingly ranked modelled 201 

concentration normalized by the limit/target value (Denby et al. 2010), as given by Eq. (9).  202 

RME = max(|CO,p-CE,p|) CO,p⁄                                                                                                                                      (8) 203 

RDE = |CO,LV-CE,LV| LV⁄                                                                                                                                              (9) 204 

Additionally, a number of statistical parameters were considered to evaluate the model performance. These 205 

performance indicators are the fractional bias (FB), the correlation coefficient (r), the root mean squared 206 

error (RMSE) and the fractional variance (FV), as given by Eqs. (10-13): 207 

r = [
∑ (CO,i - CO

̅̅ ̅̅ )(CE,i - CE
̅̅ ̅̅ )n

i=1

√σOσE

]                                                                                                                                              (10) 208 
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FB =
CO
̅̅ ̅̅ - CE

̅̅ ̅̅

0.5 (CO
̅̅ ̅̅ + CE

̅̅ ̅̅ )
                                                                                                                                                             (11) 209 

RMSE =√
1

N
∑ (CO,i-CE,i )

2N
i=1                                                                                                                                        (12) 210 

FV = 2 
σO-σE

σO+σE

                                                                                                                                                                (13) 211 

where n = the total number of observations, Co,i = the ith observed value, CE,i = the ith estimated value and 212 

CO
̅̅ ̅ and CE

̅̅ ̅ are the observation and estimation averages, respectively. These indicators were calculated in 213 

both development and validation steps.  214 

 215 

3. Results and discussion 216 

3.1. Levels of the studied metals 217 

Fig. 3 shows that the Pb and Ni mean concentrations for the period of study are below the corresponding 218 

legislated objective/limit values for ambient air. Moreover, the Mn average concentration is also below the 219 

WHO air quality guideline in relation to manganese. Nevertheless, there are some particular cases, i.e., Ni 220 

and Mn, where the non-averaged concentrations (individual sample concentrations) of these pollutants 221 

amply exceed the corresponding objective/limit values as follows: as shown, the Ni and Mn maximum 222 

observed concentrations exceed by 10 and 6 times their LAT and LAT-equivalent values, respectively. 223 

Special attention should be paid to model performance in this sense because exposures to high levels of 224 

these metals may have detrimental effects on human health. It has been demonstrated that inhaled 225 

manganese produces neurotoxic effects that vary from neuropsychological and motor functions (Mergler 226 

et al. 1999), postural stability (Hernández-Bonilla et al. 2011) and increased risk of Parkinson’s disease 227 

(Finkelsteinn and Jerret 2007) at lower concentration exposures (near 50 ng m-3) to a movement disorder 228 

known as Manganism at concentrations above 1 mg m-3 (Aschner et al. 2005). Regarding vanadium, its 229 

toxic effects depend on its degree of oxidation and may include irritation of the respiratory tract, 230 

haematological and biochemical changes and functional lesions in certain organs (Sumanta et al. 2015). 231 

The studies conducted by Hleis (2010) and Kfoury (2013) have shown that the levels of Pb, Ni, Mn, V, Cr 232 

and other metals and metalloids in Dunkerque are remarkably associated with industry as they have been 233 

reported to be tracers of local industrial activities. The results of pollution roses and receptor modelling for 234 

source apportionment by means of non-negative matrix factorization indicate that Pb emissions may be 235 

mainly attributed to integrated steelworks, which is an Mn emission source as well (Kfoury 2013; Hleis 236 

2010). However, the ferromanganese manufacturing plant emissions also influence the levels of Pb and 237 

certainly the levels of Mn (Hleis 2010). Ni and V are tracers of heavy oil combustion because they explain 238 
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72 % and 86 % of the observed concentrations, respectively (Kfoury 2013). With regard to Cr, it is 239 

considered to be a marker of the activity of the electric steel plant, although Cr levels may also be partly 240 

due to oil combustion. The strong presence of industrial activities in Dunkerque and the firm connection 241 

between ambient air metal levels and the local industry makes the city a suitable location to develop 242 

objective estimation models for metals because the inputs to these models partly consist of major pollutant 243 

concentrations, which are undoubtedly related to industry as well. 244 

 245 

3.2. Estimation of Pb and Ni 246 

Table 1 presents the results obtained with the best developed models for the two considered EU-regulated 247 

metals (Pb and Ni) using the three different considered approaches as follows: PLSR, ANNs and PCA-248 

ANN. Results related to training (T) and external validation (V) subsets are presented for each model.  249 

In the first place, for the evaluation of these models as an air quality assessment tool from a regulatory point 250 

of view, which is the main goal of the present study, the mean value estimation and the conformity of the 251 

compliance with the uncertainty requirements are two key aspects to take into account. In this regard, while 252 

complying with the uncertainty requirements (expressed in this study in terms of the RME and RDE indices) 253 

because both uncertainty indices are well below 100 %, which is the maximum uncertainty percentage 254 

allowed by the EU for objective estimation techniques to be used for air quality assessment, every model 255 

is able to provide a good estimate of the mean concentration due to the lower values obtained for the FB 256 

index, which is an indicative measure of the accuracy in estimating mean values. For the training stage, the 257 

PLSR FB index values are lower than the FB values with ANNs and the PCA-ANN model. The reason why 258 

the FB index of PLSR models is so small is that the PLSR-estimated and observed mean values are nearly 259 

equal, resulting in an FB index very close to its ideal value, which, according to Eq. (11), is 0. However, if 260 

attention is to be paid to the values of the rest of the FB indices, it is evident that they are not significantly 261 

higher as the estimated mean values are close to the corresponding observed values in every case. 262 

It is worth noting that the mean values in this work are not in fact annual mean concentrations because the 263 

available data samples belonged to a period of study limited to three months, from mid-February to mid-264 

May 2008. The sampling period varied from 6 to 14 hours, and consequently, the levels of pollutants 265 

presented significant variability. Therefore, there was an additional difficulty for the estimation. 266 

Although a correct estimation of the mean value while fulfilling the EU uncertainty requirements is 267 

sufficient for a model application in the frame of the EU Air Quality Directive, it would be greatly 268 
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preferable for the model to also be able to correctly estimate the individual sample concentrations. To 269 

evaluate this capacity and provide a more comprehensive response of model performances, a series of 270 

additional statistical indicators have been addressed. With regard to these performance indices, the 271 

correlation coefficient values of the PLSR and ANN models are within the range of 0.5-0.9, indicating a 272 

good tendency of the estimated and observed values to vary together. Nevertheless, even if the r values are 273 

close to 1, there is no guarantee that the estimated and observed values match each other, only that they 274 

may differ by a consistent factor. For this reason, other statistics must be taken into consideration.  275 

As for PCA-ANN models, they provide lower values of the correlation coefficient - within the range of 0.3-276 

0.6- than PLSR and ANNs. This fact, together with an increase in uncertainty indices, indicates that, for 277 

this specific application, performing PCA prior to the development of ANNs is not an effective alternative.  278 

Models have been evaluated on the basis of comparisons against observations via a set of statistical 279 

indicators, which, while providing insight on general model performance, do not necessarily indicate 280 

whether model results have reached a sufficient quality level for a given application, e.g., for policy support. 281 

Ideally, models should have a correlation coefficient close to 1 and FB, RMSE and FV values close to 0. 282 

Unfortunately, in practice, due to the uncertainty of observation and the analytical determination in the 283 

laboratory, these values will rarely be achieved. In this regard, Kumar et al. (1993) propose values for some 284 

of these parameters associated with a minimum quality for the models: NMSE ≤ 0.5 and -0.5 ≤ FB ≤ 0.5.  285 

A supplementary manner to evaluate model performance is by means of a graphic representation. In this 286 

regard, Fig. 4 depicts the estimated normalized concentrations of Pb and Ni obtained with the PLSR and 287 

ANN models for the training and external validation subsets. As observed, both models exhibit difficulties 288 

in accurately estimating the individual sample concentrations, leading to an underestimation of the highest 289 

concentrations. Notwithstanding, PLSR and ANNs capture the underlying trend during training, although 290 

there is a slightly better fitting when using ANNs, as reflected in the lower RMSE and FV values obtained 291 

with ANNs with respect to those obtained with the PLSR model.  292 

With respect to the external validation subset, as a result of a decrease in the accuracy of the estimations, 293 

there is a general slight decrease in the correlation coefficient values and an increase in the values of the 294 

RMSE and FV indices of every model compared with those obtained for the training subset. However, the 295 

FB index values for PLSR and ANNs are below 0.5 and, therefore, within the acceptable range for FB for 296 

an air quality model suggested by Kumar et al. (1993). Additionally, for the PLSR and ANN models, the 297 

correlation coefficient of the external validation subset ranged from 0.5-0.8, which was similar to those 298 
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obtained for the training subset. Consequently, based on the performance results obtained for external 299 

validation, PLSR and ANNs may be considered proper approaches to estimate ambient Pb and Ni levels in 300 

the studied site. Nevertheless, as a general remark, the best pair of training and external validation statistics 301 

are found when using ANNs, which indicates that the model is able to not only fit the data correctly but 302 

also provide good estimates of data not used for the development of the models, which implies that ANNs 303 

present better generalization ability than the other studied techniques.  304 

 305 

3.3. Estimation of Mn, V and Cr 306 

The results of the best developed models for Mn, V and Cr are presented in Table 2. Despite the fact that 307 

the ambient air levels of these pollutants are not regulated by the European Directives, the model evaluation 308 

analysis is performed in the same manner as in the case of Pb and Ni. Nevertheless, because these pollutants 309 

are lacking a policy limit/target value, an RDE-equivalent (RDEeq) uncertainty index has been calculated 310 

based on the version equivalent to LAT values for regulated pollutants, as mentioned in section 2.4. Note 311 

that, with this assumption, Mn, V and Cr mean values, unlike those of Pb and Ni, are closer to their 312 

corresponding LAT.  313 

As can be observed, the EU uncertainty requirements for objective estimation techniques are fulfilled with 314 

an RME and an RDEeq lower than 100 % in all cases, except for the external validation RME index of the 315 

Cr PCA-ANN model. However, it could be argued that because some of these metals may present 316 

considerably higher air concentrations, such as Mn, which exceeds by almost six times 150 ng m-3 (which 317 

is the WHO air quality guideline used as LAT-equivalent) with a maximum observed value of 872.8 ng m-318 

3 for the period of study (Fig. 3), more restrictive uncertainty requirements should be addressed, considering 319 

that an allowed 100 % uncertainty in the estimation may lead to erroneously regarding as acceptable an 320 

underestimation of a potentially dangerous pollutant level. 321 

With respect to the mean concentration, lower values of the FB index for the Mn, V and Cr PSLR and ANN 322 

models indicate acceptable training and external validation estimations. These values are within the same 323 

order of magnitude as those obtained for Pb and Ni and below 0.5, complying with the minimum quality 324 

requirements proposed by Kumar et al. (1993). Again, that is not applicable to Cr PCA-ANN models with 325 

an external validation FB index of -1.46.  326 

As for the models’ performance in relation to the estimation of individual sample concentrations, 327 

correlation coefficient values lower than 0.66 for external validation indicate an unsatisfactory fitting. 328 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 

 

However, this measure can be dominated by a small proportion of extreme values that may not reflect the 329 

behaviour of the bulk of the data. At any rate, the ANN model correlation coefficients are greater than those 330 

obtained for the PLSR and PCA-ANN models. This, together with the fact that ANNs provide the lowest 331 

FB index and adequate RME and RDEeq, points to ANNs as the most suitable approach of the three studied. 332 

 333 

4. Conclusions 334 

In this work, statistical models based on PLSR and ANNs to estimate the levels of the considered EU-335 

regulated metals, i.e., Pb and Ni, have been developed and externally validated. Based on the results 336 

obtained and according to the European Air Quality Framework Directive, these models can be taken into 337 

consideration as valid approaches to be used as objective estimation techniques for air quality assessment 338 

in relation to metals in the area of study because they are able to correctly estimate mean values within an 339 

uncertainty range up to 100 %. Both linear (PLSR) and non-linear (ANNs) statistical models show a 340 

comparable performance, although the latter exhibit an enhanced generalization ability. However, ANN 341 

performance experienced no improvements by the application of factor analysis techniques, such as PCA, 342 

before model development. 343 

Additionally, in this study, some metals that lack a limit/target value in European legislation, namely Mn, 344 

V and Cr, have also been considered due to the strong relationship that exists between their levels and the 345 

local industry of the study area and due to the scientific evidence that suggests that some of these non-346 

regulated metals can also cause damage to human health. As with Pb and Ni, the PLSR and ANN models 347 

for Mn and V work relatively well in terms of mean estimation within the EU Directive uncertainty limits. 348 

Nevertheless, they are not able to properly describe variations of Cr.  349 

Finally, the statistical models developed for every metal struggle with the estimation of the individual 350 

sample concentrations and, as with many deterministic models, tend towards a slight underestimation. 351 

Therefore, further work will focus on deepening knowledge regarding the interactions between the different 352 

inputs and their relationship with the outputs to improve this specific matter. 353 
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Figure captions 427 

 428 

Figure 1: Structure of the artificial neural network 429 

 430 

Figure 2: Sampling site and monitoring and meteorological stations in Dunkerque 431 

 432 

Figure 3: Box-plot of the levels of Pb, Ni, Mn, V and Cr for the period of study. The box extends between 433 

the upper and lower quartiles with the inner line representing the median value. The whiskers indicate the 434 

minimum and maximum values. 435 

 436 

Figure 4: Comparison between the observed and modelled normalized Pb and Ni concentrations 437 
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Table 1. Uncertainty, mean concentration and performance statistics for the best models developed for Pb 

and Ni  

Metal Model Subseta 

EU Uncertainty Mean Concentrationb Performance 

RME (%) RDE (%) CO 102 CE 102 FB 102 r RMSE 102 FV 10 

Pb 

PLSR 

T 28.1 1.44 6.52 6.52 3.7 10-08 0.823 3.94 1.95 

V 31.9 0.31 7.46 8.88 -17.4 0.837 4.48 -2.78 

                   

ANN 

T 18.3 2.10 6.38 6.84 -7.0 0.932 2.72 -0.85 

V 54.0 0.54 7.46 8.31 -10.8 0.861 4.90 -4.12 

                   

PCA-ANN 

T 40.1 2.22 6.57 6.78 -3.2 0.663 3.90 5.82 

V 90.4 1.38 3.69 7.95 -73.1 0.266 5.64 -2.56 

Ni 

PLSR 

T 65.9 12.87 68.5 68.5 -7.510-11 0.560 80.5 5.64 

V 83.6 11.70 156.6 98.2 45.8 0.556 241.3 14.62 

               0.0   

ANN 

T 29.2 18.55 73.4 73.8 -0.5 0.873 54.2 1.44 

V 50.0 17.60 156.6 115.8 30.0 0.702 186.6 4.77 

               0.0   

PCA-ANN 

T 64.9 24.86 95.9 95.8 0.1 0.470 161.1 7.20 

V 42.6 2.50 68.6 94.9 -32.2 0.443 63.2 -3.04 

a T: Training; V: Validation 

b O: Observed; E: Estimated 

Table 1



Table 2. Uncertainty, mean value and performance statistics for the best models developed for Mn, V and Cr 

a T: Training; V: Validation 

b O: Observed; E: Estimated 

Metal Model Subseta 

EU Uncertainty Mean Concentrationb Performance 

RME (%) RDEeq (%) CO 102 CE 102 FB 102 r RMSE 102 FV 10 

Mn 

PLSR 

T 53.9 4.71 32.55 33.43 -2.7 0.580 41.49 3.57 

V 53.1 50.23 64.95 58.24 10.9 0.184 92.80 6.99 

                   

ANN 

T 52.6 60.51 33.61 21.38 44.5 0.704 39.20 3.42 

V 48.2 68.86 64.95 63.77 1.8 0.457 81.56 4.64 

                   

PCA-ANN 

T 66.4 78.51 46.05 46.05 0.0 0.463 64.77 7.34 

V 35.3 11.62 29.49 30.33 -2.8 0.431 42.72 1.74 

V 

PLSR 

T 42.7 1.20 13.12 13.42 -2.3 0.694 8.17 2.33 

V 31.5 4.74 18.07 18.48 -2.2 0.590 11.21 3.16 

                   

ANN 

T 41.6 4.28 14.27 14.00 1.9 0.806 7.19 1.78 

V 30.7 5.45 18.07 18.45 -2.1 0.663 10.43 2.11 

                   

PCA-ANN 

T 42.9 1.60 13.14 13.20 -0.5 0.747 5.91 2.93 

V 12.5 15.60 12.79 16.50 -25.4 0.366 13.97 0.56 

Cr 

PLSR 

T 88.8 1.01 4.58 3.96 14.6 -0.031 15.28 11.34 

V 78.5 25.74 6.97 5.78 18.7 0.077 18.09 12.78 

           0       

ANN 

T 50.0 39.17 5.59 3.25 53.1 -0.040 19.24 6.53 

V 83.6 27.89 6.97 3.55 65.0 -0.240 19.06 14.76 

                   

PCA-ANN 

T 79.2 0.43 7.15 7.90 -10.0 0.331 18.33 9.70 

V 489.9 0.43 1.45 9.31 -146.3 0.275 10.04 -13.57 

Table 2
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